
Graphical Abstract
Model Predictive Control-Based Optimization of a Transcritical CO2 Thermal Compressor
Heat Pump Cycle Using a RNN-based Reduced Model
A. Salame, J. Peralez, M. Nadri, P. Dufour, V. Lemort



Highlights
Model Predictive Control-Based Optimization of a Transcritical CO2 Thermal Compressor
Heat Pump Cycle Using a RNN-based Reduced Model
A. Salame, J. Peralez, M. Nadri, P. Dufour, V. Lemort

• A physics-based dynamic model is developed using a finite-volume approach coupled with algebraic elements
to capture the transient behavior of a multistage CO2 thermal compressor heat pump (TCHP).

• The model is validated against experimental data for key outputs, including supply water temperature, high-side
pressure, and thermal coefficient of performance (COP).

• Reduced-order RNN and LSTM models are trained using a combined dataset of experimental and simulated
data to enable fast and accurate prediction.

• A model predictive control (MPC) strategy is proposed and implemented using both RNN and LSTM surrogate
models for real-time residential heating control.

• MPC-RNN and MPC-LSTM strategies evaluated against reference PID baseline
• The MPC-LSTM strategy achieves a 20.56% improvement in thermal COP and a 58.69% reduction in

temperature tracking error.
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A B S T R A C T
A Thermal Compressor Heat Pumps (TCHP) primarily utilizes thermal energy sources, such
as natural gas or waste heat, to drive a compression cycle for efficient heating applications.
TCHP that employ carbon dioxide (CO2) as a refrigerant requires special consideration of its
transcritical characteristics to maintain optimal performance. The unique properties of CO2,
particularly its high operating pressures and critical point behavior, require precise control
strategies to ensure efficiency and system stability. To achieve these objectives, a model-based
control framework is established here that automates main cycle actuators such as the high-
pressure valve and the speed of the burner fan. A dynamic model based on finite volume
approach is proposed to capture the transient processes in the TCHP cycle. The supply water
temperature, thermal coefficient of performance (COP), and high-pressure outputs are validated
with real experimental data. Two control strategies are tested on the dynamic validated model.
The first method employs two independent proportional-integral-derivative (PID) controllers,
each designed to achieve specific setpoints derived from offline optimal correlations. The second
method utilizes model predictive control (MPC) to perform online optimization based on a
defined objective function coupled to a vanilla recurrent neural network (RNN) and long short
term memory (LSTM) models. The fast to compute vanilla RNN and LSTM models are deduced
from real experimental data enriched with data generated from the validated dynamic model that
is slow to compute. Both strategies are evaluated on short term, with variations of the supply
water temperature setpoint.

1. Introduction
According to Eurostat, in 2024, the energy usage in households accounted for 25.8 % of the final energy

consumption, in which 79 % are devoted to space cooling, space heating or water heating Eurostat (2024). In a world
increasingly focused on energy efficiency and sustainable technologies, heat pumps have emerged as a pivotal solution
for both residential and commercial heating and cooling need. One unconventional type of heat pump is the thermally
driven heat pump (TDHP), which can be powered by waste heat, natural gas, or solar radiation. A specific TDHP
application developed by Boostheat employs thermal compressors (TCs) instead of electric compressors, referred
to as a thermal compressor heat pump (TCHP). Other than belonging to heat pumps family, a TCHP uses CO2 as
a refrigerant, encouraged today due to its environmentally friendly characteristics. However, a CO2 heat pump has
some specifications that needs to be followed in order to get its optimal performance. For example, the performance
of CO2 heat pump cycle is highly affected by the heat rejection pressure (high-pressure), as investigated by Nekså
(2002) where he showed that higher coefficient of performance (COP) can be achieved when CO2 is in its transcritical
state. Several works were conducted to find optimal high-pressure correlation for different CO2 heat pump applications
Sarkar, Bhattacharyya and Gopal (2004) and Liao, Zhao and Jakobsen (2000), that eventually could not be generalized.
Qi, He, Wang and Meng (2013) performed experimental studies on transcritical CO2 heat pump systems and developed
correlations for the optimal heat rejection pressure based on various parameters. Wang, Tuo, Cao and Xing (2013)
examined the effect of heat rejection pressure on system performance in a transcritical CO2 air-source heat pump
(ASHP) water heater under a fixed return water temperature. For a TCHP application, Fallahsohi (2023) carried an
energy analysis based on real data, and an optimal high-pressure correlation was derived as function of return water
temperature Salame, Lemort, Dufour and Nadri (2024).
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Since an optimal high-pressure correlation could not be generalized, several works have proposed an online
calculation of the optimal pressure. For example, Zhang and Zhang (2011) proposed a correlation-free online optimal
control of heat rejection pressure by adding a dynamic correction term to the high-pressure setpoint. Since no system
model was used, this method require online pressure measurements. Cecchinato, Corradi, Cosi, Minetto and Rampazzo
(2012) proposed similar approach, but this time it was based on an online artificial neural network (NN) model. Aiming
to find the best scenarios for running a transcritical CO2 refrigeration cycle, Salazar and Méndez (2014) presented PID
control schemes for thermal control. To avoid using a model, Hu, Li, Cao and Xing (2015) introduced an extremum-
seeking control approach to optimize the COP of a transcritical CO2 ASHP water heater system. Although extremum-
seeking methods are model-free and can be reliable when used in real systems Rampazzo, Cervato, Corazzol, Mattiello,
Beghi, Cecchinato and Virzi (2019), but they require more measurements than model based methods. Wang, Zhao,
Zhou, Qiao and Cao (2021) proposed the use of a model predictive control coupled with a nonlinear data-driven state
space derived from a physical dynamic model of an ASHP water heater. This approach directly maximizes the COP
instead of explicitly defining an optimal high-pressure while ensuring that the supply water temperature follows the
demand.

Due to the increasing complexity of processes with the increasing constraints and restrictions on new technological
advances, advanced control strategies are becoming more necessary. Most of these strategies need reduced models that
are both cost effective in terms of simulation and reliable in terms of accuracy. System identification is one of the
fields that investigates obtaining a mathematical description of a dynamical system. By observing the input-output
behavior of a system, a mathematical model can be derived Ljung (1999). Recently, with the rise of machine learning
approaches, deep networks have been used to enhance system identification tools, and this interference is expected to
increase Pillonetto, Aravkin, Gedon, Ljung, Ribeiro and Schön (2025). For example, a multi-layered NN was previously
used for system identification by Jagannathan and Lewis (1996) proving reliability of system identification based on
machine learning models. For time series applications, RNN emerges as a promising system identification tool, for its
ability to maintain memory of previous inputs and states through hidden layers. Standard or Vanilla RNNs inspired
from Elman (1990) often suffers from vanishing and exploding gradients due to unstable backpropagation and difficulty
in learning long-range dependencies because past information fades over time. To overcome these issues, Hochreiter
and Schmidhuber (1997) have proposed a long short-term memory (LSTM) NN as an improved RNN that handles
gradient issues with gating mechanism, allowing the network to learn long dependencies more effectively. Wang (2017)
proposed a new concept using LSTM NNs for dynamic system identification. Lanzetti, Lian, Cortinovis, Dominguez,
Mercangöz and Jones (2019) proposed the coupling of a MPC with a RNN due its high scalability and the ability to
learn multi-step ahead predictions of complex dynamic systems. RNN models are derived based on an off-line fitting
of an input-output data from a validated physical model. Jung, da Costa Mendes, Önnheim and Gustavsson (2023)
investigated practical aspects of implementing MPC with LSTM as predictors in a python framework by varying the
hyperparameters and used solvers. Ławryńczuk and Zarzycki (2025) demonstrated that LSTM and GRU type RNNs are
highly effective and increasingly vital for precise and computationally efficient MPC in nonlinear systems, particularly
in industrial and embedded applications like HVAC and vehicles.

The capability of NNs to capture nonlinear behavior makes them ideal for integration with MPC, enhancing
the accuracy and adaptiveness of real-time optimization in complex industrial processes Ren, Alhajeri, Luo, Chen,
Abdullah, Wu and Christofides (2022). For instance, Turgut and Çoban (2020) developed an NN predictive control
approach for a vapor compression refrigeration cycle, using the Whale Optimization Algorithm to determine control
inputs at each time-step. The authors tested several objective functions by varying the consumption criterion (COP
and exergy efficiency), while tracking a desired cooling load. No significant impact was observed. Most NN–MPC
couplings have been applied at the high control level, particularly in building energy management systems Afram,
Janabi-Sharifi, Fung and Raahemifar (2017). At this level, the typical control time step exceeds 15 minutes, whereas
at the component (low) level, it is often below 1 second Evens and Arteconi (2025). As a result, transient dynamics at
the low level are often neglected.

In contrast, this work proposes a RNN–MPC integration for both low- and high-level control, applied to a TCHP
operating as a single-house heating unit, with a control time step of 1 second. The objective is to solve an optimization
problem that ensures supply water temperature tracking (as a proxy for demand) while minimizing energy consumption.
MPC is particularly suitable for this purpose due to its ability to manage multi-input multi-output systems and to
anticipate future system dynamics through predictive modeling. Contributions of this work are:

1. Derivation of a physics-based dynamic model for a three-stage CO2 heat pump cycle in a python framework in
object-oriented forms. The transient responses are validated with real experimental data.
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2. Integration of low- and high-level control using a MPC with a time-step of 1 second, instead of 1 second for
low-level control and 1 hour for high-level control as is usually done.

3. Use of a vanilla RNN and LSTM as reduced-order models for prediction within the MPC framework, connecting
supply water temperature (high-level) to internal inputs such as opening of expansion valve and burner fan speed
(low-level).

The paper is organized as follows. In section 2, TCHP process is described and control problem is formulated.
Section 3 derives a physics-based model for a TCHP and transient validation with real data is provided. Section 4 defines
reduced models (vanilla RNN and LSTM), identified from real and physics-based (reference) model generated data,
with the main variables satisfying the application purpose. Section 5 proposes a MPC design for the TCHP application
and describes the previously applied PID-based strategy. Section 6 shows a validation of the control strategies named as
PID, MPC-RNN, and MPC-LSTM applied on the reference model under different supply water temperature setpoints,
providing a performance comparison based on temperature error and thermal COP. The work is then concluded in
section 7, providing some insights about future possible work.

2. Problem statement
2.1. TCHP Process Overview

The TCHP, developed by Boostheat, serves as a heating application for residential use. TCHP cycle represented in
Figure 1 consists of three TCs, three buffers, one gas cooler (GC), one evaporator (EVAP), an internal heat exchanger
(IHX), flash tank (FT), two electronic expansion valves (EEVs), and a fume heat exchanger (FHX). At evaporation
pressure, CO2 enters the first-stage compressor and exits at a higher pressure. It is then cooled inside buffer 1 with
a water flow and mixed with the vapor exiting the FT through a one-way valve before entering the second TC. The
CO2 then exits at a higher intermediary pressure and is cooled again inside the second buffer before entering the third
TC. The buffers after each TC also act as dampers for the pressure waves resulting from compression. At its highest
pressure level and high temperature, CO2 rejects heat into the water entering the GC. It is then cooled again while
passing inside one side of the IHX by the CO2 exiting the EVAP, which passes through the other side. After exiting
the IHX, the CO2 refrigerant is expanded in a high-pressure valve (HPV), then enters a FT, where the CO2 in its
gaseous state is re-injected between the first and second TCs through a one-way valve, and the remaining liquid exits
and expands in a low-pressure valve (LPV) before finally entering the EVAP.

For the water side (heating circuit): a smaller portion of the water flow goes to the buffers and the TCs, where it is
subdivided again between the first two buffers and collected before consequently entering the coolers of the TCs. The
larger part of the entering water goes to the gas cooler, where the two parts mix again before entering the FHX, where
the resulting fumes from the combustion process are cooled.

On the TCs side, the top parts of the first two TCs, i.e. heaters are connected to a burner fan, which is used to deliver
the methane/air mixture into the top surfaces, where the gas mixture is burned to heat up. The resulting fume from
both chambers is then directed to the top surface of the third TC, before exiting into the FHX. The EVAP is heated by
a mixture of Monopropylene Glycol-water (MPG), which is cooled by a chiller to a certain temperature value to mimic
cold weather temperatures. MPG is used because of its low freezing point, thus preventing freezing.

While heat exchangers allow heat transfer between the refrigerants and external fluids, the TCs as well as the
expansion valves dictate the refrigerant mass flow rate and pressure differences between each two consecutive stages.
The constant change of thermophysical and heat transfer properties of the refrigerant causes high nonlinearities and
complex couplings inside. This forms a challenging task for dynamic modeling and optimal control attempts. In the
next section, we will formulate the control problem of the TCHP process and give the control structure connecting the
TCHP cycle to the water circuit.
2.2. Control Problem Formulation

The TCHP follows a certain control logic that guarantees its proper behavior. This control is usually hierarchical,
where a goal (the user asks for a certain room temperature) is specified, then a high-level control (i.e. supervisor)
guarantees it by providing setpoints for the low level cycle controllers that ensure that these setpoints are followed.
The major actuators guiding the TCHP operation and corresponding measurements are presented in Figure 2. The
connections between them are further explained:

• The motor speeds of the three TCs (𝜔m1, 𝜔m2, and 𝜔m3) where the first one affects the thermodynamic condition
at the outlet of the EVAP and the second two affect the thermodynamic conditions at the inlet of the GC.
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Figure 1: Test bench layout of the TCHP cycle.

• The burner fan speed 𝜔bf regulates the amount of gas being burned, thus controlling the heaters temperatures
(𝑇heater1 and 𝑇heater2) and consequently the mass flow rate induced by the TCs.

• The mass flow rate leaving the GC is directly affected by the opening of the HPV (𝜑HPV), which is commonly
used to control the high-pressure (𝑝gc) at the GC.

• The mass flow rate entering the EVAP is directly affected by the opening of the LPV (𝜑LPV), which is usually
used to control the superheat (defined as the difference between the EVAP outlet temperature (𝑇𝑒𝑣𝑎𝑝,𝑜𝑢𝑡) and the
saturation temperature).

• The water and MPG pumps on the GC and EVAP sides regulate the mass flow rates 𝑚̇w and 𝑚̇𝑚𝑝𝑔 and control
temperatures differences on the secondary fluids sides.

• The return water temperature 𝑇w, return is influenced by room and outdoor temperatures, while the inlet MPG
temperature 𝑇𝑚𝑝𝑔,𝑖𝑛 is only influenced by the latter. They are both considered as floating inputs or otherwise
disturbances.

The supply water temperature setpoint 𝑇 sp
w, supply is defined according to a an offline-correlation as function of

outdoor temperature and a desired room temperature that is assumed fixed at 20 °C in this work. The return water
recovers heat from several heat exchangers (GC, buffers, TCs coolers, and FHX) before being supplied to the user.
Except for the FHX, other heat exchangers are primarily influenced by the heater temperatures 𝑇heater1 and 𝑇heater2,
which exhibit slower dynamics compared to the burner fan speed 𝜔bf. In contrast, 𝜔bf directly affects the heat exchange
rate in the FHX. Therefore, we focus on the inputs that have the most significant impact on the supply water temperature
𝑇w, supply, namely: 𝜑HPV, 𝜔m2, 𝜔m3, 𝜔bf, 𝑚̇w, and 𝑇w, return.

This study focuses on 𝜔bf and 𝜑HPV as primary control inputs due to their significant impact on performance;
the former which is the major responsible for running the TCs (inducing mass flow rates) and more directly the
heat recovered by FHX. The latter directly influences the high-pressure which have already been proven to be highly
influencing to the overall performance. 𝑚̇w and 𝑇w, return are treated as disturbances, while 𝜔m1 and 𝜔m2 are fixed at a
constant value (150) rpm due to their low influence. Keeping 𝜔m1, 𝜔m2, and 𝑚̇w constant ensures consistent electric
power consumption for fair performance comparisons. On the EVAP side, superheat is regulated via a closed-loop PID
controller adjusting 𝜑LPV.

The nonlinear and dynamic nature of the system, especially the fast responses of 𝜔bf and 𝜑HPV, complicates control
design, requiring a robust strategy. A MPC framework is developed to optimize these inputs while achieving the
A. Salame et al.: Preprint submitted to Elsevier Page 4 of 24
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Figure 2: TCHP inputs and outputs (measurements).

supply water temperature setpoint and minimizing energy consumption. Energy use is mainly tied to gas consumption,
controlled by 𝜔bf, unlike conventional electric heat pumps where compressor speed is the primary variable. The MPC
objective minimizes the supply water temperature deviation from setpoint and 𝜔bf, a proxy for energy use. The MPC
leverages a reduced data-driven RNN model, derived from real data and validated against a physical model, as detailed
in the next section.

3. Dynamic Model for the TCHP
To develop a model for the TCHP, individual components are first modelled. CoolProp by Bell, Wronski, Quoilin

and Lemort (2014) is used to compute the thermophysical properties of CO2 in a Python framework. In conventional
electric-driven VCC systems, the expansion valve and compressor are assumed to operate in a steady-state, as their
dynamics occur more rapidly compared to those of the heat exchangers. The use of a TC instead of a conventional
compressor changes this rule. In fact, the slowest dynamics in a TCHP cycle correspond to the TCs due to the
high inertia of their heaters, which also causes the slow changes in the refrigerant characteristics (mass flow rate,
temperature, and pressure). Since we can not represent TC dynamically, as it would largely exhaust the computation
cost, we consider the heater temperature as an input rather than burner fan speed. This allows us to safely represent
the TC with steady-state regression models. The dynamic variations of the EEVs are significantly faster than those
of the heat exchangers. Consequently, the EEVs and TCs are modeled statically using algebraic equations, while the
dynamic behavior of the heat exchangers and flash tank is captured through differential equations. To ensure a simpler
model run, the following assumptions are adopted: i) No pressure drop is considered on either side of the fluid, ii)
Mass variation is only accounted for in the last control volume of components: GC, EVAP, buffer1, and FT, while no
variation is considered in the IHX and buffer2. iii) Heat conduction fluxes are neglected and iv) The secondary fluids
are assumed to be incompressible
3.1. Heat Exchangers

Beyond the primary heat exchangers (GC and EVAP), TCHP cycle incorporates several additional heat exchangers,
including IHX, FHX, TC coolers, and two buffers. The GC and EVAP, constructed as brazed plate heat exchangers
made of copper, are specifically designed to withstand the high-pressure conditions associated with CO2 (see Table 1).
These heat exchangers are spatially discretized into several control volumes (see Figure 3). The components such as
FT and buffers are treated as single control volumes. For the CO2 working fluid, the continuity principle yields the
following expression for the time derivative of density in the 𝑖-th control volume:

𝑎𝑖
𝜕𝑝𝑖
𝜕𝑡

+ 𝑏𝑖
𝜕ℎ𝑖
𝜕𝑡

= 𝑚̇𝑓,𝑗−1 − 𝑚̇𝑓,𝑗 , (1)
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Table 1
Design parameters of the GC and EVAP.

Model Number of Plates Total Volume [L] Max Temp [°C] Max Pressure [bar] Total Area [m2]
GC (C042) 56 1.65 200 140/30 1.0422
EVAP (C096) 28 1.917 200 100/30 1.235

where the coefficients 𝑎𝑖 and 𝑏𝑖 are defined as:

𝑎𝑖 = 𝑉𝑖

(

𝜕𝜌𝑖
𝜕𝑝𝑖

)

ℎ𝑖
, (2)

𝑏𝑖 = 𝑉𝑖

(

𝜕𝜌𝑖
𝜕ℎ𝑖

)

𝑝𝑖
. (3)

For the energy conservation equation on the refrigerant side, the expression involving the heat transfer rate 𝑄̇ is:

𝑐𝑖
𝜕𝑝𝑖
𝜕𝑡

+ 𝑑𝑖
𝜕ℎ𝑖
𝑑𝑡

= 𝑚̇𝑓,𝑗−1ℎ𝑗−1 − 𝑚̇𝑓,𝑗ℎ𝑗 − 𝑄̇𝑓,𝑖, (4)
where the coefficients 𝑐𝑖 and 𝑑𝑖 are given by:

𝑐𝑖 = 𝑉𝑖

[

ℎ𝑖

(

𝜕𝜌𝑖
𝜕𝑝𝑖

)

ℎ𝑖
− 1

]

, (5)

𝑑𝑖 = 𝑉𝑖

[

ℎ𝑖

(

𝜕𝜌𝑖
𝜕ℎ𝑖

)

𝑝𝑖
+ 𝜌𝑖

]

. (6)

Here, the thermodynamic derivatives
(

𝜕𝜌
𝜕ℎ

)

𝑝
and

(

𝜕𝜌
𝜕𝑝

)

ℎ
are evaluated at constant pressure and constant enthalpy,

respectively. In the IHX, Equation (4) is applied to both CO2 streams, while no mass variation is assumed to take place.
For heat exchangers with water or MPG as the secondary fluids, the temperature variation is described by:

(

𝑚𝑐 𝜕𝑇
𝜕𝑡

)

𝑠𝑓 ,𝑖
= 𝑄̇𝑠𝑓 ,𝑖 + 𝑚̇𝑠𝑓 ,𝑗ℎ𝑠𝑓 ,𝑗 − 𝑚̇𝑠𝑓 ,𝑗−1ℎ𝑠𝑓 ,𝑗−1. (7)

The temperature variation of the heat exchanger wall is modeled as:
(

𝑚𝑐 𝜕𝑇
𝜕𝑡

)

𝑤𝑎𝑙𝑙,𝑖
= −(𝑄̇𝑓,𝑖 + 𝑄̇𝑠𝑓 ,𝑖). (8)

The heat transfer rates for the working fluid (CO2) and secondary fluid are expressed as:
𝑄̇𝑓,𝑖 = 𝑈𝑓,𝑖𝐴𝑖(𝑇𝑤𝑎𝑙𝑙,𝑖 − 𝑇𝑓,𝑖), (9)
𝑄̇𝑠𝑓 ,𝑖 = 𝑈𝑠𝑓 ,𝑖𝐴𝑖(𝑇𝑤𝑎𝑙𝑙,𝑖 − 𝑇𝑠𝑓 ,𝑖). (10)

Accurate determination of the heat transfer coefficient (𝑈𝑓 ) is critical for modeling heat exchange between CO2and the secondary fluid. This coefficient varies with the phase of CO2 (supercritical, sub-critical, or two-phase)
and the direction of heat transfer (cooling or heating). Although extensive research has been conducted to define
suitable correlations for CO2, no universally reliable generalization has emerged. Consequently, we developed custom
correlations for the heat exchangers by tuning the Dittus-Boelter correlation with experimental data from Fallahsohi
(2023). The Nusselt number (𝑁𝑢) correlations, based on CO2 phase, are as follows:

In the supercritical region (𝑝 > 73.8 bar):
𝑁𝑢 = 0.005𝑅𝑒0.9𝑃𝑟0.18. (11)
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Figure 3: Spatial discretization of a heat exchanger into N control volumes. Each CV on the 𝑖 − 𝑎𝑥𝑖𝑠 carries uniform
pressure and enthalpy. While 𝑗 − 𝑎𝑥𝑖𝑠 carries uniform mass flow rates information.

Similarly used by Yoon, Kim, Hwang, Kim, Min and Kim (2003) but with different constant parameters. In the
subcritical region (𝑝 < 73.8 bar) and two-phase (0 < 𝑞 < 1):

𝑁𝑢 = 0.1𝑅𝑒0.8𝑃𝑟0.6𝑞0.2. (12)
In single-phase conditions, the standard Dittus-Boelter correlation is applied:
𝑁𝑢 = 0.023𝑅𝑒0.8𝑃𝑟0.4 (13)

The single phase Dittus-Boelter is used for the secondary fluid heat transfer coefficient 𝑈𝑠𝑓 . For simulation purposes,
the GC, EVAP, and IHX are discretized into 8, 12, and 4 control volumes, respectively, which offer a good trade-off
between model accuracy and computational efficiency. The buffers and FT are modeled with a single control volume
each since heat exchange rate is not critical in these components. In fact, these components are mainly needed for
creating pressure differences between stages. For the FT, the model by Qiao, Aute and Radermacher (2015) is adopted.
The coolers, key heat recovery components in the TCHP, are modeled using regression techniques, to be elaborated in
Thermal compressors section.
3.2. Electronic Expansion Valves

The TCHP cycle employs two electronic expansion valves: the low-pressure valve (LPV) and the high-pressure
valve (HPV). The LPV regulates the mass flow rate entering EVAP by adjusting its opening in percentage (𝜑LPV),
while the HPV regulates the mass flow rate leaving GC via its opening in percentage (𝜑HPV).

Assuming the valves to be adiabatic and the flow to be isenthalpic, the mass flow rates through the valves are
determined by the flow coefficient, the flow area, the inlet density, and the pressure difference across the valve:

𝑚̇LPV = (𝐶𝑣.𝐴)LPV
√

𝜌ft,l(𝑝ft − 𝑝evap), (14)
𝑚̇HPV = (𝐶𝑣.𝐴)HPV

√

𝜌gc(𝑝gc − 𝑝𝑓𝑡). (15)
The combined value of the product (𝐶𝑣.𝐴) can be obtained by a regression relation with percentage valve opening 𝜑
fitted with experimental data:

𝐶𝑣.𝐴 = 𝑐0 + 𝑐1.𝜑 + 𝑐2.𝜑
2. (16)

Where the 𝑐0, 𝑐1, 𝑐2 parameters are tuned using steady-state data from Fallahsohi (2023). In reality, the valve opening
does not change instantaneously and their behavior is expected to follow the following first order forms:

𝜑̇HPV = 1
𝜏HPV

(𝜑HPV, target − 𝜑HPV), (17)

𝜑̇LPV = 1
𝜏LPV

(𝜑LPV, target − 𝜑LPV). (18)
Time constants of 𝜏HPV = 20𝑠 and 𝜏LPV = 10𝑠 are calibrated to replicate the real transient responses.
A. Salame et al.: Preprint submitted to Elsevier Page 7 of 24



Data-Driven Model-Based MPC of a Heat Pump

Table 2
Prediction accuracy for each output: MAPE (%) for flow and power variables, MAE K for temperatures, and R2 for all
outputs.

Output Variable MAPE (%) / MAE (K) R2

𝑚̇𝑇𝐶1 13.1 % 0.92
𝑇𝑇𝐶1,𝑑𝑖𝑠 0.9 K 0.987
𝑄̇cooler1 2.3 % 0.984
𝑚̇𝑇𝐶23 9.6 % 0.94
𝑇𝑇𝐶23,𝑑𝑖𝑠 1.1 K 0.98
𝑄̇cooler23 2.8 % 0.96

3.3. Thermal Compressors
The TC exhibits the slowest dynamics in the system due to high thermal inertia on the heater. As such, heater

temperatures are treated as independent variables in regression models, so the inertia or slow dynamic is embedded
inside the derived models. Step tests on the third motor speed (𝜔m3) showed negligible impact on system variables and
are thus excluded. The third TC heater temperature, lacking direct measurements, is combined with the second TC to
avoid model stiffness from coupling algebraic mass flow and differential pressure equations. Regression models for the
second and third TCs (TC23) define the mass flow rate entering the GC (𝑚̇𝑇𝐶23), discharge temperature (𝑇𝑇𝐶23,𝑑𝑖𝑠),and heat recovery (𝑄̇cooler23):

𝐿𝑅23,𝑖(𝑝𝑟23, 𝑇𝑟2, 𝜔m2), 𝑖 ∈ {1, 2, 3}, (19)
where 𝑝𝑟 and 𝑇𝑟 being the pressure and temperature ratios. Temperature ratio is the ratio of heater to water temperatures
(both in Kelvin). In this way the inertia of the heater is embedded inside the correlation. For the first TC (TC1),
regression models define the mass flow rate leaving the EVAP (𝑚̇𝑇𝐶1), discharge temperature (𝑇𝑇𝐶1,𝑜𝑢𝑡), and heat
recovery (𝑄̇cooler1):

𝐿𝑅1,𝑖(𝑝𝑟1, 𝑇𝑟1, 𝜔m1), 𝑖 ∈ {1, 2, 3}. (20)
The accuracies of these models (mean absolute error (MAE), mean absolute percentage error (MAPE), and R2) are
summarized in Table 2. Linear regression (𝐿𝑅𝑖) was selected to avoid overfitting given the limited sample size. The
primary limitation of these models is their exclusivity to a certain data range. The full representation of these linear
regression models can be found in appendix A.
3.4. Fume Heat Exchanger

After the combustion process takes place, part of the heat is directly absorbed by the first two TCs, then it goes to
the third and then the remaining enters the FHX to recover it with circulating water. From previous experimental work,
the fume temperature entering the FHX was estimated as function of burner fan speed:

𝑇𝑓𝑢𝑚𝑒,𝑖𝑛 = 0.0625𝜔bf + 193.26. (21)
The temperature of the water entering the FHX is estimated as:

𝑇𝑓ℎ𝑥,𝑤,𝑖𝑛 = (𝑄̇gc + 𝑄̇cooler1 + 𝑄̇cooler23 + 𝑄̇𝑏𝑢𝑓𝑓𝑒𝑟1,2)∕(𝑚̇w𝑐𝑝𝑤) + 𝑇w, return. (22)
The dynamic change of the water temperature entering FHX is respected, as heater temperature is embedded inside the
heat transfer rates expressions in (22). The heat exchange rate in the FHX is considered faster than other components
as it is directly influenced by the burner fan speed rather by the heater temperature. So the dynamics of the heat
exchanger is dominant. In other words, when changing the burner fan speed, the FHX has faster influence on varying
water temperature compared to other heat exchangers mainly depending on heater temperature. The heat recovered by
the FHX can be estimated using logarithmic method:

𝑄̇fhx = 𝐴𝑈fhx ⋅ Δ𝑇𝑚, (23)
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Δ𝑇𝑚 =
(𝑇𝑓ℎ𝑥,𝑓𝑢𝑚𝑒,𝑖𝑛 − 𝑇𝑓ℎ𝑥,𝑤,𝑜𝑢𝑡) − (𝑇𝑓ℎ𝑥,𝑓𝑢𝑚𝑒,𝑜𝑢𝑡 − 𝑇𝑓ℎ𝑥,𝑤,𝑖𝑛)

ln
(

𝑇𝑓ℎ𝑥,𝑓𝑢𝑚𝑒,𝑖𝑛−𝑇𝑓ℎ𝑥,𝑤,𝑜𝑢𝑡
𝑇𝑓ℎ𝑥,𝑓𝑢𝑚𝑒,𝑜𝑢𝑡−𝑇𝑓ℎ𝑥,𝑤,𝑖𝑛

) , (24)

where 𝐴𝑈fhx is a tuned correlation of dependent variables 𝑇𝑓ℎ𝑥,𝑤,𝑖𝑛 and 𝜔bf (appendix C). The fitting resulted in
a MAPE of 15.8 % (Figure 4). After we distinguished between the influence of the burner fan speed and heater
temperatures, a connection is needed and necessary to be made. This is carried out in the next subsection where we
attempt to model dynamic change of heater temperature as function of burner fan speed.
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Figure 4: Parity plot comparing the predicted and measured heat exchange rates in the fume heat exchanger.

3.5. Thermal Compressor Heater
We intend in this section to model the dynamic change of the heaters temperatures. The heater temperature is heated

by gas on one side (externally) and cooled by CO2 from another (internally). The study of the combustion chamber
is out of this work scope, and the internal modeling of the TC is also omitted. One solution is to treat it as a black
box. The corresponding inputs of the external and internal heat transfer are burner fan and motor speeds respectively,
so a system identification based on real experimental step tests is carried to find the good models. The identification
is done with 3 different data-sets, first one is a pseudo random binary sequence (PRBS) on burner fan speed, while
second contains steps tests, and third is step tests on motor speed. The input ranges are: 80 ≤ 𝜔m1, 𝜔m2 ≤ 240 rpm,
and 1950 ≤ 𝜔bf ≤ 9500 rpm. A PRBS is needed here to cover the entire range of burner fan speed.

The defined state vector is [𝑇heater1, 𝑇heater2]𝑇 , the input is 𝜔bf, and the disturbance vector is [𝜔m1, 𝜔m2]𝑇 . The
output vector is equivalent to the state vector, implying full-state measurement.

The system identification model is nonlinear and can be expressed as:
[

𝑇heater1
𝑇heater2

]

(𝑘 + 1) = 𝛽0 + 𝛽1

[

𝑇heater1
𝑇heater2

]

(𝑘) + 𝛽2

[

𝜔bf
𝜔2

bf

]

(𝑘) + 𝛽3

[

𝜔m1
𝜔m2

]

(𝑘), (25)
where 𝛽 = [𝛽0, 𝛽1, 𝛽2, 𝛽3] is retrieved from the minimization of the ordinary least squares error between the measured
and predicted 𝑇heater1 and 𝑇heater2. The results in Figures 5 and 6 show relatively high accuracy, admitting MAEs of
15.86 K and 16.77 K and R2 scores of 0.96 and 0.94 for heaters temperatures 1 and 2, respectively (Appendix B).
The identified heaters temperatures models admit an acceptable fit towards real data, while accuracies can be further
improved. However, since it is also out of this work scope, these models are deemed reliable and are used as part of
the TCHP model.
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Figure 5: Comparison of observed and predicted 𝑇heater1 temperature over time. MAE is 15.86 K and R2 is 0.96, indicating
a good fit. The bottom plot shows the burner fan speed and motor speed over time, illustrating their influence on 𝑇heater1
dynamics.

3.6. TCHP Performance Characterization
In an electrically driven heat pump, the COP is defined as the ratio of the total recovered heat to the electric power

consumed by the cycle. In this work, heat is the primary source of energy. With a small contribution of electricity
compared to heat and for simplicity, TCHP is evaluated with a thermal COP, defined as the ratio of total heat recovered
𝑄̇heat, tot to total heat consumed 𝑄̇comb (combustion power):

COPthermal =
𝑄̇heat, tot
𝑄̇comb

. (26)

The total heat recovered is distributed as follows:
𝑄̇heat, tot = 𝑄̇gc + 𝑄̇cooler1 + 𝑄̇cooler23 + 𝑄̇𝑏𝑢𝑓𝑓𝑒𝑟1,2 + 𝑄̇fhx. (27)

And the combustion power is:
𝑄̇comb = 𝑚̇CH4

⋅ LHV, (28)
where 𝑚̇CH4

is the methane gas mass flow rate which is proportional to the burner fan speed and LHV is its lower
heating value. The resulting state vector of a TCHP

𝑋 = [𝑝gc, ℎ̄gc, 𝑇̄gc,wall, 𝑝evap, ℎ̄evap, 𝑇̄evap,wall, 𝑝buff1, ℎbuff1, 𝑇buff1,wall, ℎbuff2,
𝑇buff2,wall, ℎ̄ihx1, ℎ̄ihx2, 𝑇̄ihx,wall, 𝑝ft, ℎft, 𝑇heater1, 𝑇heater2]⊤. (29)

The fluid enthalpies ℎ̄ and wall temperatures 𝑇̄𝑤𝑎𝑙𝑙 are represented as vectors for the EVAP, GC, and IHX, where
their lengths are 12, 8, and 4 respectively. The input and output vectors are respectively (Figure 2):

𝑈 = [𝜑HPV, 𝜑LPV, 𝜔bf, 𝜔m1, 𝜔m2, 𝑇w, return, 𝑚̇w, 𝑇mpg, in, 𝑚̇mpg]⊤, (30)
𝑌 = [𝑇heater1, 𝑇heater2, 𝑝gc, 𝑝evap, 𝑇gc,out, 𝑇evap, out, 𝑇w, supply, 𝑇mpg, out]⊤. (31)
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Figure 6: Comparison of observed and predicted 𝑇heater2 temperature over time. MAE is 16.77 K and R2 is 0.94, indicating
a good fit. The bottom plot shows the burner fan speed and motor speed over time, illustrating their influence on 𝑇heater2
dynamics.

MAPE [%] or MAE [K] R2 [-]
Tests HPV BF HPV BF
𝑝gc 1.8 2.88 0.92 0.52

𝑇w, supply 0.33 K 0.18 K 0.6 0.8
COPthermal 2.74 4.26 0.48 0.62

Table 3
Performance evaluation of model predictions compared to real data under different tests.

From Eqs. (1)–(8) and (25), the resulting model of a TCHP is a set of ordinary differential equations in the following
general form:

𝑋̇ = 𝐹 (𝑋,𝑈 ). (32)
The resulting model is complex—high-order, non-linear, and stiff—making it impractical for efficient MPC

predictions and optimizations. Consequently, a simpler, reduced model is required to act as an effective prediction
model for MPC, where accuracy is critical for success. This need can be satisfied by nonlinear identification models,
such as NNs like RNNs and LSTMs. The main output representing the objective of the TCHP application is the supply
water temperature 𝑇w, supply, so the reduced output vector is defined as 𝑦 = 𝑇w, supply, while the dominant reduced input
vector is 𝑢 = [𝜑HPV, 𝜔bf]⊤, and the disturbance vector 𝑑 = [𝑚̇w, 𝑇w, return]⊤ (justified in section 2.2).

The real TCHP machine was excited with step changes on 𝜔bf (BF test) and 𝜑HPV (HPV test). Figures 7 and 8 show
the model validation with real data when varying burner fan speed and high-pressure valve opening respectively. The
model well captures the transient behavior of the main performance factors. The resulting MAPE or MAE and R2 of
𝑝gc, 𝑇w, supply, and COPthermal of the resulting two tests are summarized in Table 3. With these results, the model can
be considered validated and will be referred to as the ’reference model’ throughout this paper.
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Figure 7: Dynamic model validation with real experimental data varying the burner fan speed (BF test).
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Figure 8: Dynamic model validation with real experimental data varying the high-pressure valve opening (HPV test).

4. Neural Network System Identification
The performance of MPC critically depends on the accuracy of the underlying prediction model. To construct

this model, a system identification approach based on NNs is employed. While conventional feedforward NNs offer
one-way connections between neurons, RNNs introduce feedback connections that enable information to persist across
time steps, making them well-suited for time-series modeling (Figure 9).

In this work, we implement two reduced-order models for system identification: a vanilla RNN, originally proposed
by Elman (1990), and a LSTM, introduced in Hochreiter and Schmidhuber (1997). Both models are designed to capture
the dynamic evolution of supply water temperature, using data collected from exciting real system and reference model.
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Table 4
Operating Ranges for Input Parameters and Outputs

Parameter Description Range

𝜑HPV High-pressure valve opening [11, 100] %
𝜔bf Burner fan speed [2000, 9500] rpm
𝑇w, return return water temperature [20, 45] ◦C
𝑚̇w Water mass flow rate [0.13, 0.45] kg/s

𝑇w, supply supply water temperature [25, 55] ◦C

To ensure consistency, both models adopt an encoder-decoder architecture: the encoder processes a sequence of past
measurements and control inputs, while the decoder recursively predicts future outputs over a specified prediction
horizon, conditioned on known future control inputs. The training process for both models is described below.

The vanilla RNN and LSTM input vector 𝑧(𝑘) = [𝑦(𝑘− 1), 𝑢(𝑘), 𝑑(𝑘)]⊤ is constructed by concatenating measured
output 𝑦 = 𝑇w, supply, reduced control input vector 𝑢 = [𝜔bf, 𝜑HPV]⊤, and disturbance vector 𝑑 = [𝑚̇w, 𝑇w, return]⊤.
All input features are normalized using a standard scaler to ensure numerical stability during training. To enrich the
available real data, the validated model is excited using PRBS and step changes with varying amplitudes of 𝑢 and
𝑑, ensuring sufficient variability in both inputs and outputs while remaining within the operational bounds defined
in Table 4. The dataset comprises 60,000 samples collected at one-second intervals, where around 30 % are from
real experimental data and the rest are from reference model predictions. Each of the real and simulated datasets is
chronologically split into training (80%), validation (10%), and testing (10%) sets to preserve temporal continuity. To
enable multi-step prediction, the data is transformed into overlapping sequences using a sliding-window approach.
Each training sequence consists of 10 past time steps (e.g. sequence length 𝑙𝑠𝑒𝑞 = 10 as input to the encoder, and the
decoder predicts the next 10 time steps (e.g. prediction length 𝑙𝑝𝑟𝑒𝑑 = 10).

Both the vanilla RNN and LSTM models are implemented with one recurrent layer of 16 hidden units, which has
been found sufficient, followed by a fully connected output layer. A dropout rate of 10% is applied between layers to
reduce overfitting. Models are trained using the Adam optimizer with a learning rate of 0.001, and the mean squared
error (MSE) is used as the loss function. Training was performed for a maximum of 200 epochs using mini-batches of
size 32, with early stopping based on the validation loss. The best-performing model on the validation set was evaluated
on the test set using both the MSE and R2 metrics.

The vanilla RNN training took approximately 21 minutes, during which MSE validation loss decreased from 5.22
K2 to 0.0871 K2. Similarly, the LSTM training lasted 40 minutes, with MSE validation loss decreasing from 3.7 K2

to 0.06 K2, respectively. This shows an impressive ability of RNN type models to learn nonlinear complex dynamic
models. Next, the different specifications of vanilla RNN and LSTM are explained.
4.1. Vanilla RNN System Identification

Since a RNN represents a discrete-time dynamical system, it is particularly well-suited for modeling sequential data
where temporal dependencies play a critical role. In contrast to classical state-space models, where the state vector 𝑥(𝑘)
has a direct physical interpretation, RNN maintains a latent internal state ℎ(𝑘) that evolves recursively and captures
the system memory. This hidden state implicitly encodes temporal correlations through a first-order Markov structure.
A vanilla RNN used for output prediction is described by the following equations:

ℎ(𝑘) = 𝜎(𝑊𝑧𝑧(𝑘) +𝑊ℎℎ(𝑘 − 1) + 𝑏ℎ), (33)
𝑦̂(𝑘) = 𝑊𝑦ℎ(𝑘) + 𝑏𝑦, (34)

where 𝑧(𝑘) includes past control inputs and outputs, 𝜎 is a nonlinear activation function (e.g., tanh), and 𝑊𝑧, 𝑊ℎ, 𝑊𝑦,
𝑏ℎ, and 𝑏𝑦 are matrices and vectors learned during training by minimizing the error between predicted outputs 𝑦̂(𝑘)
and measured output 𝑦(𝑘), as described earlier in this section.

As a prediction model for MPC, the vanilla RNN should be evaluated over multiple future steps. Figure 10 illustrates
the model’s performance on a test sequence of length 5050. The vanilla RNN is initialized five times using 10 previous
samples, and then recursively predicts the next 500 time steps.

The supply water temperature 𝑇w, supply is predicted with a mean squared error (MSE) of 0.84 K2 and an R2 score
of 0.975.
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Figure 9: Structure of a vanilla RNN unrolled over time steps. At each time step 𝑘, the model receives an input vector
𝑧(𝑘) = [𝑦(𝑘 − 1), 𝑢(𝑘), 𝑑(𝑘)]⊤ and updates its hidden state ℎ(𝑘) via ℎ(𝑘) = 𝜎(𝑊𝑧𝑧(𝑘) + 𝑊ℎℎ(𝑘 − 1) + 𝑏ℎ), where 𝜎 is a
nonlinear activation function (e.g., tanh), and 𝑊𝑧, 𝑊ℎ, and 𝑏ℎ are learned parameters. The predicted outputs is computed
as 𝑦̂(𝑘) = 𝑊𝑦ℎ(𝑘) + 𝑏𝑦. For clarity, biases are omitted from the illustration but are included in the model.
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Figure 10: Validation of the vanilla RNN model on a sample from the test set. The model is initialized using 10 previous
samples, followed by prediction of the next 500 samples. The transition between initialization and prediction is indicated
by the red dashed line. The plot shows the predicted and true values of the supply water temperature 𝑇w, supply. The RNN
achieves a mean squared error of 0.84 K2 and an R2 score of 0.975, indicating high predictive accuracy over the forecasting
horizon.

4.2. LSTM System Identification
LSTM is a type of RNN that incorporates internal gating mechanisms to address the vanishing gradient problem.

Potentially, this makes LSTM more suitable for long input sequences and, consequently, for system identification tasks.
LSTM networks extend vanilla RNNs by introducing a memory cell 𝑐(𝑘) that enables long-term information retention.
The hidden state ℎ(𝑘) serves as short-term memory, while a gating mechanism regulates the flow of information. Each
LSTM cell includes an input gate 𝑖(𝑘), forget gate 𝑟(𝑘), candidate gate 𝑐(𝑘), and output gate 𝑜(𝑘). The update equations
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are defined as follows:
𝑖(𝑘) = 𝜎(𝑊𝑖𝑧(𝑘) + 𝑅𝑖ℎ(𝑘 − 1) + 𝑏𝑖),
𝑟(𝑘) = 𝜎(𝑊𝑓𝑧(𝑘) + 𝑅𝑓ℎ(𝑘 − 1) + 𝑏𝑓 ),
𝑐(𝑘) = tanh(𝑊𝑔𝑧(𝑘) + 𝑅𝑔ℎ(𝑘 − 1) + 𝑏𝑔),
𝑜(𝑘) = 𝜎(𝑊𝑜𝑧(𝑘) + 𝑅𝑜ℎ(𝑘 − 1) + 𝑏𝑜),
𝑐(𝑘) = 𝑓 (𝑘)⊙ 𝑐(𝑘 − 1) + 𝑖(𝑘)⊙ 𝑔(𝑘),
ℎ(𝑘) = 𝑜(𝑘)⊙ tanh(𝑐(𝑘)),
𝑦̂(𝑘) = 𝑊𝑦ℎ(𝑘) + 𝑏𝑦.

(35)

Here, 𝜎 denotes the sigmoid activation function, tanh the hyperbolic tangent, and ⊙ the Hadamard (element-wise)
product. The LSTM weights are grouped as {𝑊𝑖,𝑊𝑓 ,𝑊𝑔 ,𝑊𝑜} for the network input 𝑧(𝑘) and {𝑅𝑖, 𝑅𝑓 , 𝑅𝑔 , 𝑅𝑜} for
the hidden state ℎ(𝑘). The corresponding bias vectors are {𝑏𝑖, 𝑏𝑓 , 𝑏𝑔 , 𝑏𝑜}. This formulation follows the standard LSTM
structure. The implementation procedure follows the same setup described earlier in this section.

Figure 11 shows the validation of the LSTM prediction over the next 500 steps, using the same setup as for the
vanilla RNN. The supply water temperature 𝑇w, supply is predicted with a mean squared error of 0.76 K2 and an R2

score of 0.977.
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Figure 11: Validation of the LSTM model on a sample from the test set. The model is initialized using 10 previous samples,
followed by prediction of the next 500 samples. The red dashed line separates the initialization phase from the prediction
phase. The plot shows the predicted and true values of the supply water temperature 𝑇w, supply. The LSTM achieves a mean
squared error of 0.76 K2 and an R2 score of 0.977, indicating high prediction accuracy across time.

Both the vanilla RNN and LSTM models achieve satisfactory prediction accuracy and can be used as forecasting
models in a MPC with a prediction horizon of 10 steps, for which the reduced-order models are expected to perform
even better than over the 500-step horizon. LSTM performs slightly better, likely due to its enhanced internal structure.

5. MPC Design
The control strategies compared in this study are illustrated schematically in Figures 12 and 13. The baseline PID

strategy relies on predefined correlations: 𝑔1 for determining the heater temperature setpoint 𝑇 sp
heater2 as a function of
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the supply water temperature setpoint 𝑇 sp
w, supply and another function 𝑔2 for setting the high-pressure target 𝑝sp

gc based
on the return water temperature to maximize efficiency.

Model Predictive Control (MPC) is a model-based control strategy that has gained widespread adoption in industrial
applications requiring optimal, constraint-aware decision-making. The performance of MPC depends primarily on four
components: (1) an accurate prediction model (in this case, the previously derived vanilla RNN and LSTM models),
(2) the formulation of the cost function, (3) constraint handling, and (4) the choice of optimization algorithm or solver.
Since prediction model accuracy cannot be guaranteed over long horizons, incorporating feedback from the real system
can help correct deviations and improve robustness Rawlings (2000).

In the MPC strategy, the desired setpoint temperature 𝑦̂sp = 𝑇 sp
w, supply is directly fed to the MPC controller. The

controller computes the optimal burner fan speed 𝑢1 = 𝜔bf and the optimal high-pressure valve opening 𝑢2 = 𝜑HPVby minimizing the following objective function:

min
𝑢1,𝑢2

𝐽 = 𝛼1

𝑁𝑝
∑

𝑗=1
(𝑦̂(𝑘 + 𝑗|𝑘) − 𝑦sp(𝑘 + 𝑗|𝑘))2 +

𝑁𝑐−1
∑

𝑗=0

(

𝛼2(𝑢1(𝑘 + 𝑗|𝑘))2
)

+
𝑁𝑐−1
∑

𝑗=0

(

𝛼3(Δ𝑢1(𝑘 + 𝑗|𝑘))2 + 𝛼4(Δ𝑢2(𝑘 + 𝑗|𝑘))2
)

+ 𝛼5

𝑁𝑝
∑

𝑗=1
𝐿constraint(𝑇heater2(𝑘 + 𝑗|𝑘)), (36)

subject to:
𝑦̂(𝑘 + 𝑗|𝑘) = 𝑓RNN(𝑦(𝑘 − 𝑙𝑠𝑒𝑞),… , 𝑦(𝑘), 𝑢(𝑘 − 𝑙𝑠𝑒𝑞),… , 𝑢(𝑘), 𝑑(𝑘 − 𝑙𝑠𝑒𝑞),… , 𝑑(𝑘)), ∀𝑗 = 1,… , 𝑁𝑝, (37)

𝑢min ≤ 𝑢(𝑘 + 𝑗|𝑘) ≤ 𝑢max, ∀𝑗 = 0,… , 𝑁𝑐 − 1.
(38)

In this formulation, the prediction model 𝑓RNN corresponds to either the trained vanilla RNN or LSTM model
derived in the previous section. The soft constraint term 𝐿constraint(𝑇heater2) = max

(

0, 𝑇heater2 − 𝑇ℎ𝑒𝑎𝑡𝑒𝑟2,max
) is

introduced to penalize violations of the maximum allowable heater temperature, ensuring that safety constraints are
respected.

The weight vector 𝛼 = [𝛼1, 𝛼2, 𝛼3, 𝛼4] adjusts the relative importance of each objective term:
• 𝛼1 > 0 penalizes the tracking error between the predicted supply water temperature and its setpoint.
• 𝛼2 > 0 discourages excessive use of burner fan speed 𝜔bf.
• 𝛼3 > 0 penalizes variations in burner fan speed Δ𝜔bf.
• 𝛼4 > 0 penalizes large changes in high-pressure valve opening Δ𝜑HPV.
• 𝛼5 > 0 discourages exceeding 𝑇ℎ𝑒𝑎𝑡𝑒𝑟2,𝑚𝑎𝑥.
𝑁𝑝 and 𝑁𝑐 denote the prediction and control horizons, respectively. The notation 𝑘 + 𝑗|𝑘 refers to the predicted

value at time 𝑘 + 𝑗 based on information available at time 𝑘. Equation (38) enforces hard constraints on the control
inputs 𝑢(𝑘 + 𝑗|𝑘), while additional penalties on Δ𝑢(𝑘 + 𝑗|𝑘) help limit abrupt changes in control actions that could
destabilize the system.

The MPC controller operates at each time step 𝑘 as follows: let 𝑢𝑜𝑝𝑡(𝑘 + 1) = {𝑢opt
𝑘+1|𝑘,… , 𝑢opt

𝑘+𝑁𝑐 |𝑘
} denote the

optimal control sequence obtained by solving the objective function. Only the first element of this sequence, 𝑢𝑜𝑝𝑡𝑘+1|𝑘, is
applied to the TCHP system. At the next time step 𝑘 + 1, the system state is updated, and the optimization problem is
solved again. This receding horizon approach enables continuous real-time optimization of control inputs.

The prediction horizon is set to match the capacity of the reduced-order models, i.e., 𝑁𝑝 = 𝑙pred = 10, while
the control horizon is fixed at 𝑁𝑐 = 2. The weighting factors in the objective function are selected as: 𝛼1 = 0.95,
𝛼2 = 0.002, 𝛼3 = 0.02, 𝛼4 = 0.002, and 𝛼5 = 0.001. MPC operates with a sampling time of 1 second. The method
used for solving the objective function is ’Nelder-Mead’ built in python ’minimize’ function. In the next section, we
validate the defined control strategies on the TCHP reference model.
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Figure 12: PID-based control strategy: The TCHP reference model is controlled using two parallel PID loops. The first
loop adjusts the burner fan speed 𝜔bf to track 𝑇 sp

heater2 which is correlated to 𝑇 sp
w, supply with a 𝑔1 function. The second loop

controls the high-pressure valve opening 𝜑HPV to regulate the system pressure 𝑝gc, where the setpoint 𝑝sp
gc is determined

via a mapping function 𝑔2, based on the return water temperature 𝑇w, return.

Figure 13: MPC-based strategy: This model predictive control framework relies on a learned model of the system based
on vanilla RNN or LSTM as reduced models. The optimizer computes the optimal control actions 𝜑opt

HPV and 𝜔opt
bf over a

prediction horizon to track the 𝑇 sp
w, supply, given the current return water temperature 𝑇w, return and water mass flow rate 𝑚̇w.

The optimizer uses predictions from the reduced model, which captures the system dynamics. The optimized inputs are
applied to the TCHP reference model, and the resulting outputs 𝑇w, supply and 𝑇heater2 are fed back to the controller.

6. Results and Discussions
The main control objective is to achieve the desired supply water temperature setpoint 𝑇 sp

w, supply with minimal gas
consumption. In this section, the performance of the control strategies is validated on the TCHP reference model by
simulating 5000 seconds, where 𝑇 sp

w, supply is changed each 1000 second. As mentioned in section 2.2, the step changes in
𝑇 sp

w, supply are induced by varying the outdoor temperature between 2 °C and 7 °C. Each increase in setpoint corresponds
to an increase in heating energy demand and vice versa. The transient performance of the control strategies is monitored
and a comparison of their rise time, settling time, overshoots, average temperature error, and average thermal COP is
conducted. A key point is that disturbances are present, and the robustness of the control strategies is also being
assessed. The inlet glycol mixture temperature is assumed to have a pinch of 5 K relative to the outdoor temperature.
𝜑LPV is regulated with a PID to maintain a superheat of 5 K.

The transient responses of the TCHP system under the control strategies are shown in Figures 14 and 15,
corresponding to the outputs (𝑝gc, 𝑇w, supply, and 𝑇heater2) and inputs (𝜑HPV and 𝜔bf), respectively. Both MPC-RNN
and MPC-LSTM are able to follow the setpoint, with MPC-LSTM achieving a smaller error, likely due to its slightly
better predictive accuracy. The PID strategy was also able to stay near the desired 𝑇 sp

w, supply, but exhibited significant
overshoots, especially during increases in setpoint. This is mainly because 𝜔bf regulates 𝑇heater2 and not 𝑇w, supply
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Labels Average COP [-] Average Error [K] Rise Time [s] Settling Time [s] Computation Time [s]
MPC-LSTM 1.82 0.09 5 30 7111
MPC-RNN 1.72 0.094 5 30 6580
PID 1.5 0.2 5 200 4082

Table 5
Performance metrics for PID, MPC-RNN, and MPC-LSTM strategies.

directly, meaning that good tracking of 𝑇 sp
heater2 does not necessarily translate to good tracking of 𝑇 sp

w, supply. This also
results in a long settling time of 200 s. The limitation with the PID strategy lies not in the controller itself -as the
corresponding setpoint are well followed- but in the control structure. In contrast, the MPC strategy directly connects
𝜔bf to 𝑇w, supply using a reduced model (RNN or LSTM), avoiding this issue. This reflects MPC’s ability to act as both
a high- and low-level controller. The TCHP system combines slow and fast dynamics—𝑇heater2 responds more slowly
than 𝑇w, supply, primarily due to the FHX, which is directly influenced by 𝜔bf. This highlights the need for coordination
between high- and low-level control, which this work directly addresses. Unlike other studies, we fully adopt a 1-second
time step for both control levels. This ensures harmony between the two and avoids neglecting the internal dynamics.

The average thermal COP and temperature error of the three strategies during simulation are demonstrated with
bar plots in Figure 16. Left figure shows a highest thermal COP by MPC-LSTM, directly followed by MPC-RNN,
and a significantly lower value by PID. Right figure shows that the smallest average temperature error is achieved by
MPC-LSTM, directly followed by MPC-RNN, and a significantly higher by PID.

Table 5 summarizes the performance metrics of the applied control strategies. Compared to the PID strategy
(COPthermal = 1.57), both MPC-RNN and MPC-LSTM show clear improvements, achieving higher average thermal
COP values of 1.71 (+14.26 %) and 1.82 (+20.56%), respectively. Similarly, the average temperature error decreases
from 0.20 °C under PID to 0.092 °C (-56%) with MPC-RNN and 0.09 °C (-58%) with MPC-LSTM. The average
temperature errors from both MPC strategies are relatively close, with even a similar behavior on 𝜔𝑏 and 𝑇Theater2as seen in Figures 15 and 14. However, the higher thermal COP when using MPC-LSTM shows that it is closer to
the optimal high-pressure compared to MPC-RNN. For the PID strategy that defines fixed correlations (𝑔1 and 𝑔2)
leads to poor performance because (1) it is difficult to consider all influencing inputs within the correlation, (2) such
correlations are derived under steady-state assumptions, neglecting transient behavior, and (3) system behavior may
change over time. Additionally, the difference in the dynamic response between burner fan speed and high-pressure
valve opening reveals the need for a controller capable of handling both variables simultaneously and in real time.
The strength of MPC lies in its ability to regulate multiple inputs while satisfying system constraints and continuously
optimizing performance.

The results demonstrate the effectiveness of the MPC-based approach in balancing energy efficiency and system
demand. MPC’s ability to anticipate future behavior enables earlier reactions to disturbances. The use of a prediction
length equal to the prediction horizon avoided iterations in the optimization process, significantly reducing computation
time. Nevertheless, computation time still increased from 4082 s (PID) to 6580 s (MPC-RNN) and 7111 s (MPC-
LSTM) over the carried simulation. This cost could be reduced further by using approximate MPC, for instance, by
generating optimal control inputs offline across multiple operating points and learning a control policy via a neural
network. Another alternative is to linearize the trajectory online, enabling faster optimization using simpler solvers.
For long-term evaluation, a building model is required. Although a 1-second time step is coherent for internal control,
it can become a computational burden in longer simulations.

Despite their effectiveness, a limitation of both MPC-RNN and MPC-LSTM is the relatively high number of
hyperparameters that must be tuned to ensure stability and good performance. Finally, the proposed control strategy
is also applicable to electrically driven heat pumps by replacing the burner fan speed with electric motor speed as the
manipulated variable.

7. Conclusion
A novel advanced control strategy based on model predictive control (MPC) was proposed for a CO2 multi-stage

thermal compressor heat pump (TCHP) application for residential heating. At first, the process physics and control
structure are explicitly described. A physics-based dynamic model was derived with coupling of energy and mass
balances equations on a finite volume discrete space combined with algebraic representations of thermal compressors
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Figure 14: The resulting supply water temperature 𝑇w, supply, second heater temperature 𝑇heater2, high-pressure 𝑝gc values,
and their corresponding setpoints when applying control strategies PID, MPC-RNN, MPC-LSTM.

and expansion valves. The transient behavior of the dynamic model is validated with real data at most significant inputs
and outputs. The model becomes a reference model throughout the paper. Reference model is excited to generate data
and is used with the real experimental data to derive reduced models of vanilla recurrent neural network (RNN) and
long short term memory (LSTM) nature, which are able to mimic the dynamic response of the TCHP with high validity.
These reduced models are then coupled with a MPC controller to serve as predictions models resulting in MPC-RNN
and MPC-LSTM strategies that perform online-optimizations. These strategies are tested on the reference model and
are compared with the previous one based on PID that perform on offline correlations. Compared to PID strategy,
MPC-LSTM strategy increases the thermal COP by 20.56 % and reduces the error by 58.69 %. MPC-RNN strategy
increases the thermal COP by 14.26 % and reduces the error by 56.59 %. This work is also a call for the necessity of
coupling high- and low- levels controls with a common time step of 1s. A MPC with an accurate nonlinear reduced
model makes this possible.

MPC demonstrates high effectiveness in multi-input control of heat pump cycles, which are known to be
nonlinear and strongly coupled. It allows better setpoint tracking and dynamic performance compared to PID by
optimizing control inputs at each step and handling system constraints. However, a disadvantage is the high number of
hyperparameters introduced when coupling RNNs with MPC, which requires careful tuning and can affect robustness.
Although the computation cost was not significantly higher than that of PID, further reduction is still possible to enable
more efficient deployment in real-time applications. For example, an approximate MPC from learning the optimal
control on the whole range of operation can potentially reduce computational costs. Further work could also include
low pressure valve opening to the reduced models to increase their degrees of freedom. A lot can further be done, but
what is sure is that more intelligent operations are more and more needed in industries today as they can potentially
increase performance and respect added restrictions.
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Figure 15: The resulting control inputs of burner fan speed 𝜔bf and high-pressure valve opening in percentage 𝜑HPV from
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Figure 16: The average thermal COP and temperature error of the three control strategies during simulation are
demonstrated with bar plots in left and right figures respectively.
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Table 6
Symbols

Symbol Description Unit
𝑝 Pressure bar
ℎ Specific enthalpy J/kg
𝑇 Temperature °C
𝜌 Density kg/m3

𝑚 Mass kg
𝐴 Area m2

𝑉 Volume m3

𝑚̇ Mass flow rate kg/s
𝜔 Speed rpm
𝑈 Heat transfer coefficient W/(m2.K)
𝑄̇ Heat exchange rate W

(

𝜕𝜌
𝜕ℎ

)

𝑝
Density derivative w.r.t. enthalpy at constant pressure kg2/(J.m3)

(

𝜕𝜌
𝜕𝑝

)

ℎ
Density derivative w.r.t. pressure at constant enthalpy s2/m2

𝑐𝑝 Specific heat capacity J/kg·K
𝐶𝑣 Valve flow coefficient -
𝜑 Valve opening in percentage %
𝑁𝑝 Prediction horizon for MPC -
𝑁𝑐 Control horizon of MPC -
𝑙𝑠𝑒𝑞 Sequence length for RNN model -
𝑙𝑝𝑟𝑒𝑑 Prediction length for RNN model -
𝑁𝑢 Nusselt number -
𝑃𝑟 Prandtl number -
𝑞 Quality vapor -

neucom.2025.129712.

A. Regression Models
The derived linear regression (LR) models for the mass flow rate, discharge temperature and cooler heat exchange

rate on the first TC are respectively:
𝑚̇𝑇𝐶1[kg/s] = −0.0382𝑝𝑟1 + 0.0056𝑇𝑟1 + 0.00014𝜔m1[rpm] + 0.0135, (39)
𝑇𝑇𝐶1,𝑑𝑖𝑠[°C] = 75.1𝑝𝑟1 + 15.52𝑇𝑟1 − 0.27𝜔m1[rpm] − 40.4, (40)
𝑄̇cooler1[𝑊 ] = 2270𝑝𝑟1 + 96.1𝑇𝑟1 − 0.35𝜔m1[rpm] − 2335. (41)

While on the second two TCs are:
𝑚̇𝑇𝐶23[kg/s] = −0.025𝑝𝑟1 + 0.0162𝑇𝑟1 + 0.0000097𝜔m1[rpm] + 0.00094, (42)
𝑇𝑇𝐶23,𝑑𝑖𝑠[°C] = 20𝑝𝑟1 + 11.45𝑇𝑟1 − 0.058𝜔m1[rpm] − 5.75, (43)
𝑄̇cooler23[𝑊 ] = 1101.1𝑝𝑟1 + 331𝑇𝑟1 + 7.42𝜔m1[rpm] − 2128.1. (44)

B. Thermal Compressor Heater
Model accuracy is assessed using the following metrics:
• Mean Absolute Percentage Error (MAPE):

MAPE = 100
𝑁

𝑁
∑

𝑘=1

|

|

|

|

|

𝑋(𝑘 + 1) − 𝑋̂(𝑘 + 1)
𝑋(𝑘 + 1)

|

|

|

|

|

.
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Table 7
Abbreviations

Abbreviation Description Unit
CO2 Carbon dioxide -
CH4 Methane -
MPG Mono-propylene glycol -
VCC Vapor Compression Cycle -
ASHP Air-Source Heat Pump -
TCHP Thermal Compressor Heat Pump -
TDHP Thermally Driven Heat Pump -

TC Thermal Compressor -
GC Gas Cooler -

EVAP Evaporator -
IHX Internal Heat Exchanger -
FT Flash Tank -
EEV Electronic Expansion Valve -
HPV High-Pressure Valve -
LPV Low-Pressure Valve -
FHX Fume Heat Exchanger -
PID Proportional-Integral-Derivative Controller -
MPC Model Predictive Control -
NN Neural Network -
RNN Recurrent Neural Network -
LSTM Long Short Term Memory -
LHV Lower heating value of methane J/kg
COP Coefficient of performance -

Table 8
Subscripts and Ratios

Symbol Description Unit
𝑝𝑟 Pressure ratio -
𝑇𝑟 Temperature ratio -
𝑤 Water -
𝑓 CO2 fluid -
𝑚 Motor -
𝑠𝑓 Secondary fluid -
𝑏 Burner fan -
𝛼 Weighting factor in MPC objective function -
𝛽 Parameters of 𝑇ℎ𝑒𝑎𝑡𝑒𝑟 model -
Δ Difference -
𝜏 Time constant s

• Coefficient of Determination (R2):

𝑅2 = 1 −
∑𝑁

𝑘=1
(

𝑋(𝑘 + 1) − 𝑋̂(𝑘 + 1)
)2

∑𝑁
𝑘=1

(

𝑋(𝑘 + 1) − 𝑋̄
)2

,

where:
• 𝑋(𝑘 + 1) is the true value at time step 𝑘 + 1,
• 𝑋̂(𝑘 + 1) is the predicted value,
• 𝑋̄ is the mean of the true values over all time steps.
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C. Fume Heat Exchanger
The correlation defined for the heat transfer coefficient on the FHX as function of water mass flow rate, methane

gas flow rate and entering water temperature to the FHX is as follows:
𝐴𝑈fhx[𝑊 ∕𝐾] = 5.98 × 10−4𝜔bf[rpm] + 0.687𝑇𝑓ℎ𝑥,𝑤,𝑖𝑛[°C] − 16.34 (45)
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