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Multifractal analysis

Given a signalX , we want to study
▶ the regularity in each of its points :HX(x) ∀x ∈ R,
▶ the significance of the different singularities by computing the Hausdorff

dimension of the sets of points sharing a common regularity :

dimH ({x ∈ R : HX(x) = h}) ∀h ∈ R .

→ Not reachable numerically, hence the need for computable formulas providing
good estimates, called formalisms.

Applications : physics (turbulence), urbanism, finance, medicine, ...
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Hölder regularity

Let α ≥ 0, x0 ∈ R and f a function. Then f ∈ Cα(x0) if there existC,R > 0 and
a polynomial P of degree less than α such that

|f(x)− P (x)| ≤ C |x− x0|α ∀x ∈ B(x0, R),

i.e.
∥f − P∥L∞(B(x0,r))

≤ Crα ∀r ≤ R.

The Hölder exponent of f at x0 is

hf (x0) = sup{α ≥ 0 : f ∈ Cα(x0)}.

Drawback : f ∈ Cα(x0) ⇒ f bounded on a neighbourhood of x0.

→ Limited to locally bounded functions.

→ Definition of the p-regularity by replacingL∞ withLp (Calderòn and Zygmud,
1961).
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p-Regularity

Let p ≥ 1, α ≥ −1
p

, x0 ∈ R and f ∈ Lp
loc(R). Then f ∈ T p

α(x0) if there exist
C,R > 0 and a polynomial P of degree less than α such that(

1

r

∫
B(x0,r)

|f(x)− P (x)|p dx

) 1
p

≤ Crα ∀r ≤ R,

i.e.
∥f − P∥Lp(B(x0,r))

≤ Cr
α+ 1

p ∀r ≤ R.

The p-exponent of f at x0 is

h
(p)
f (x0) = sup

{
α ≥ −1

p
: f ∈ T p

α(x0)

}
.
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Examples

▶ Cusp (canonical singularity) : if

f(x) = |x− x0|α (α < 1) ,

then
h
(p)
f (x0) = α ∀p ≤ −1

α
if α < 0.

▶ Chirp (oscillating balanced singularity) : if

f(x) = |x− x0|α sin
(
|x− x0|−β

)
(α < 1 and β > 0) ,

then
h
(p)
f (x0) = α ∀p ≤ −1

α
if α < 0.

▶ Lacunary comb (oscillating lacunary singularity) : if

f(x) =

{
2−αj if x ∈

[
2−j , 2−j + 2−γj

]
0 if x /∈

⋃
j∈N

[
2−j , 2−j + 2−γj

] (α ∈ R, γ > 1) ,

then
h
(p)
f (0) = α+

γ − 1

p
∀p ≤ −1

α
if α < 0

since(
1

r

∫ r

−r

|f(x)|p dx
) 1

p

∼

2J(r)
∑

j≥J(r)

2−αpj2−γj

 1
p

∼
(
2−(αp+γ−1)J(r)

) 1
p
.
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Multifractal spectrum and formalism

p-Spectrum (called Hölder spectrum when p = +∞) :

D(p)
f : h ∈

[
−1

p
,+∞

]
7→ dimH

{
x ∈ R : h

(p)
f (x) = h

}
.

Multifractal formalism : numerically computable formula which
▶ always provides an upper bound for the spectrum,
▶ gives the exact spectrum for a large class of functions,
▶ is generically the exact spectrum in a well-chosen functional space.
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Hausdorff dimension

▶ Gauge function :

ξ : [0,+∞] → [0,+∞] such that ξ(0) = 0 and ξ is increasing near 0.
▶ Hausdorff outer measure associated with ξ at scale t :

Hξ
t (A) = inf

{∑
n

ξ(diam(En)) : diam(En) ≤ t, A ⊆
⋃
n

En

}
.

▶ Hausdorff measure associated with ξ :

Hξ(A) = lim
t→0+

Hξ
t (A).

▶ s-Dimensional Hausdorff measure :

ξ(x) = xs (s ≥ 0) ⇒ Hξ = Hs

s

y

h

+∞+∞

▶ Hausdorff dimension :

dimH(A) =

{
inf{s ≥ 0 : Hs(A) = 0} ifA ̸= ∅,
−∞ otherwise.
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Wavelet basis

Orthonormal basis ofL2(R) of the form{
2

j
2ψj,k : j, k ∈ Z

}
,

where
ψj,k(x) = ψ(2jx− k).

To any function f , we can associate a sequence (cj,k)j∈N, k∈{0,...,2j−1} such that

f =
∑
j∈N

2j−1∑
k=0

ψj,k,

with
cj,k =

∫ 1

0

f(x)ψj,k dx.
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Dyadic intervals

▶
λj,k =

[
k2−j , (k + 1)2−j

)
, j is the scale and k is the position

▶
ψλj,k = ψj,k, cλj,k = cj,k

▶
Λj =

{
λj,k : k ∈ {0, . . . , 2j − 1}

}
≃ {0, . . . , 2j − 1}

▶
Λ =

⋃
j∈N

Λj ≃ {(j, k) : j ∈ N, k ∈ Λj}

▶
λj(x0) = only dyadic interval of scale j containing x0

▶
f function ↔ c⃗ = (cj,k)(j,k)∈Λ = (cλ)λ∈Λ ∈ RΛ
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Wavelets and functional spaces

Aim : condition over wavelet coefficients ensuringLp
loc.

Uniform Hölder exponent :

hmin = lim inf
j→+∞

log2

(
supλ∈Λj

|cλ|
)

−j .

Scaling function :

ηf : p > 0 7→ lim inf
j→+∞

log2

(
2−j∑

λ∈Λj
|cλ|p

)
−j .

▶ For p = +∞,

ηf (p) = hmin > 0 ⇒ ∃δ > 0 such that f ∈ Cδ.

▶ For 0 < p < +∞,

ηf (p) > 0 ⇒ ∃δ > 0 such that f ∈ Bδ
p,∞.

▶ For 0 < p ≤ +∞,

ηf (p) > 0 ⇒ f ∈ Lp
loc ⇒ ηf (p) ≥ 0.
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Wavelets and pointwise regularity (through leaders)

Fix j ∈ N and λ ∈ Λj .

Leaders :
l
(+∞)
λ = lλ = sup

j′≥j

sup
λ′∈Λj′ , λ

′⊆3λ

|cλ′ |

p-Leaders :

l
(p)
λ =

 ∑
λ′∈Λj′ , λ

′⊆3λ

|cλ′ |p 2−(j′−j)

 1
p

For every p ∈ [1,+∞] such that ηf (p) > 0,

h
(p)
f (x0) = lim inf

j→+∞

log
(
l
(p)

λj(x0)

)
log (2−j)

, i.e. l(p)λj(x0)
∼ 2

−h
(p)
f

(x0)j .

→ Allows to define p-exponents when p ∈ (0, 1) and ηf (p) > 0.
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Wavelet density and profile

Wavelet density :

ρc⃗(α) = lim
ε→0+

lim sup
j→+∞

log2 #{λ ∈ Λj : 2−(α+ε)j ≤ |cλ| ≤ 2−(α−ε)j}
j

.

Intuitively :
#
{
λ ∈ Λj : |cλ| ∼ 2−αj

}
∼ 2ρc⃗(α)j ∀j >> .

Wavelet profile :

νc⃗(α) = lim
ε→0+

lim sup
j→+∞

log2 #{λ ∈ Λj : |cλ| ≥ 2−(α+ε)j}
j

.

Intuitively :
#
{
λ ∈ Λj : |cλ| ≳ 2−αj

}
∼ 2νc⃗(α)j ∀j >> .

Link :
νc⃗(α) = sup

α′≤α

ρc⃗(α
′).

One can define p-leaders versions.
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Wavelet density and profile

p-Leaders density / p-Large deviation spectrum :

ρ
(p)
c⃗ (α) = lim

ε→0+
lim sup
j→+∞

log2 #{λ ∈ Λj : 2−(α+ε)j ≤ l
(p)
λ ≤ 2−(α−ε)j}

j
.

Intuitively :
#
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λ ∈ Λj : l

(p)
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(p)
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Known results

▶ Upper bound for the Hölder spectrum.

Theorem (J.M. Aubry and S. Jaffard, 2002)
If f ∈

⋃
ε>0 C

ε, then for every h ≥ 0,

D(+∞)
f (h) ≤ h sup

α∈(0,h]

ρc⃗(α)

α
.

▶ Exact p-spectrum for Lacunary Wavelet Series, i.e. wavelet series of the form

fα,η =
∑
j∈N

2j−1∑
k=0

2−αjξj,kψj,k,

with ξj,k
i.i.d.∼ Bern(2(η−1)j), η ∈ (0, 1), α ∈ R.

Theorem (P. Abry et al., 2015)
Almost surely, for every p <

{
η−1
α

if α < 0
+∞ otherwise and every h ≥ −1

p
,

D(p)
fα,η

(h) =

{ (
h + 1

p

)
η

α+ 1
p

if h ∈
[
α, α

η
+
(

1
η
− 1
)

1
p

]
−∞ otherwise

.
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Upper bound for the p-spectrum

Theorem
If f is a function for which

p0(f) = sup{p > 0 : ηf (p) > 0},

then for every 0 < p < p0(f) and every h ≥ −1
p
,

D(p)
f (h) ≤ ρ

(p),∗
c⃗ (h) ≤

(
h+

1

p

)
sup

α∈
(

−1
p

,h
] ρc⃗(α)α+ 1

p

=

(
h+

1

p

)
sup

α∈
(

−1
p

,h
] νc⃗(α)α+ 1

p

.

− 1
p

hmin

1

h(p)
max

•
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Random Wavelet Series

Hölder case proved by J.M. Aubry and S. Jaffard (2002).

Model : let

f =
∑
j∈N

2j−1∑
k=0

cj,kψj,k,

where the 2j random variables − log2|cj,k|
j

are drawn independently according to
a given probability law ρj , hence

P
(
|cj,k| ≥ 2−αj

)
= ρj((−∞, α]).

Theorem
For every RWS f , almost surely, for every p > 0 such that ηf (p) > 0 and every
h ≥ −1

p
,

D(p)
f (h) =


(
h+ 1

p

)
sup

α∈
(

−1
p

,h
] ρc⃗(α)α+ 1

p

if h ∈
[
hmin, h

(p)
max

]
−∞ otherwise

.
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Sketch of the proof : case h ∈
[
hmin, h

(p)
max

]

Theorem (E. Daviaud, 2025)
Let (Bn)n∈N be a sequence of balls of [0, 1] and let (γn)n∈N be a sequence of (0, 1].
If

s = sup

{
γ : L

(
lim sup
n : γn≤γ

Bγn
n

)
= 1

}
,

then there exists a gauge function ξ such that

Hξ

(
lim sup
n→+∞

Bn

)
> 0 and lim

r→0+

log ξ(r)

log r
= s.

In particular,

dimH

(
lim sup
n→+∞

Bn

)
≥ s.

We need
lim sup
n→+∞

Bn ⊆
{
x ∈ [0, 1] : h

(p)
f (x)h

}
.
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If
E(α, δ) = lim sup

j→+∞

⋃
k : |cj,k|≥2−αj

B
(
k2−j , 2−δj

)
∀δ ≤ 1,

then, almost surely,

E

(
α,
α+ 1

p

h+ 1
p

)
⊆
{
x ∈ [0, 1] : h

(p)
f (x) ≤ h

}
∀α ≤ h

and

L

E(α, α+ 1
p

h+ 1
p

)(
h+ 1

p

)
νc⃗(α)

α+ 1
p

 = L(E(α, νc⃗(α)) = 1 ∀α ≥ −1

p
.

0 1
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Sν spaces and prevalence

Hölder case proved by J.M. Aubry, F. Bastin and S. Dispa (2007).

If ν is an admissible profile, then

Sν = {c⃗ ∈ RΛ : νc⃗ ≤ ν}.

(S. Jaffard, 1996)

A subsetA of a Polish spaceX is prevalent if there exists a Borel subsetB ofX
and a non-trivial Borel probability measure µ onX such that µ(B + x) = 0 for
every x ∈ X andX \A ⊆ B.
(B.R. Hunt, T. Sauer and J.A. Yorke, 1992)

Theorem
For a prevalent set of functions f in Sν ,
▶ νc⃗ = ν,
▶ for every 0 < p < pν and every h ≥ −1

p
,

D(p)
f (h) =


(
h+

1

p

)
sup

α∈
(

−1
p

,h
] νc⃗(α)α+ 1

p

if h ∈
[
h
(ν)
min, h

(p),(ν)
max

]
,

−∞ otherwise.
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Sketch of the proof

▶ We define pν > 0 such that for every p < pν and every f ∈ Sν , ηf (p) > 0.
▶ LetX be a Random Wavelet Series for which ν = ν, where

ν(α) = lim
ε→0+

lim sup
j→+∞

log2
(
2jρj((−∞, α+ ε])

)
j

satisfies
ν = νx⃗ on [hmin,+∞) ,

henceX ∈ Sν almost surely. It is enough to prove that for every f ∈ Sν ,
almost surely,X + f has the expected spectrum.

▶ Almost surely,

h(p),(ν)
max = h(p)

max, h
(ν)
min = inf{α ≥ 0 : ν(α) ≥ 0} = hmin and νx⃗ = ν.

In particular,X has the expected spectrum.
▶ For f ∈ Sν ,

X + f =
∑
j,k

(

sign(xj,k)
i.i.d.∼ Rademacher( 1

2 )︷︸︸︷
xj,k + cj,k)︸ ︷︷ ︸

greater then xj,k with probability 1
2

ψj,k.

26 / 26



Sketch of the proof

▶ We define pν > 0 such that for every p < pν and every f ∈ Sν , ηf (p) > 0.
▶ LetX be a Random Wavelet Series for which ν = ν, where

ν(α) = lim
ε→0+

lim sup
j→+∞

log2
(
2jρj((−∞, α+ ε])

)
j

satisfies
ν = νx⃗ on [hmin,+∞) ,

henceX ∈ Sν almost surely. It is enough to prove that for every f ∈ Sν ,
almost surely,X + f has the expected spectrum.

▶ Almost surely,

h(p),(ν)
max = h(p)

max, h
(ν)
min = inf{α ≥ 0 : ν(α) ≥ 0} = hmin and νx⃗ = ν.

In particular,X has the expected spectrum.
▶ For f ∈ Sν ,

X + f =
∑
j,k

(

sign(xj,k)
i.i.d.∼ Rademacher( 1

2 )︷︸︸︷
xj,k + cj,k)︸ ︷︷ ︸

greater then xj,k with probability 1
2

ψj,k.

26 / 26



Sketch of the proof

▶ We define pν > 0 such that for every p < pν and every f ∈ Sν , ηf (p) > 0.
▶ LetX be a Random Wavelet Series for which ν = ν, where

ν(α) = lim
ε→0+

lim sup
j→+∞

log2
(
2jρj((−∞, α+ ε])

)
j

satisfies
ν = νx⃗ on [hmin,+∞) ,

henceX ∈ Sν almost surely. It is enough to prove that for every f ∈ Sν ,
almost surely,X + f has the expected spectrum.

▶ Almost surely,

h(p),(ν)
max = h(p)

max, h
(ν)
min = inf{α ≥ 0 : ν(α) ≥ 0} = hmin and νx⃗ = ν.

In particular,X has the expected spectrum.
▶ For f ∈ Sν ,

X + f =
∑
j,k

(

sign(xj,k)
i.i.d.∼ Rademacher( 1

2 )︷︸︸︷
xj,k + cj,k)︸ ︷︷ ︸

greater then xj,k with probability 1
2

ψj,k.

26 / 26



Sketch of the proof

▶ We define pν > 0 such that for every p < pν and every f ∈ Sν , ηf (p) > 0.
▶ LetX be a Random Wavelet Series for which ν = ν, where

ν(α) = lim
ε→0+

lim sup
j→+∞

log2
(
2jρj((−∞, α+ ε])

)
j

satisfies
ν = νx⃗ on [hmin,+∞) ,

henceX ∈ Sν almost surely. It is enough to prove that for every f ∈ Sν ,
almost surely,X + f has the expected spectrum.

▶ Almost surely,

h(p),(ν)
max = h(p)

max, h
(ν)
min = inf{α ≥ 0 : ν(α) ≥ 0} = hmin and νx⃗ = ν.

In particular,X has the expected spectrum.
▶ For f ∈ Sν ,

X + f =
∑
j,k

(

sign(xj,k)
i.i.d.∼ Rademacher( 1

2 )︷︸︸︷
xj,k + cj,k)︸ ︷︷ ︸

greater then xj,k with probability 1
2

ψj,k.

26 / 26


	Pointwise regularity, multifractal spectrum and formalism
	Wavelets
	Upper bound for the spectrum
	Optimatility of the upper bound
	For a large class of functions
	Generically


