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Given a signal X, we want to study
> the regularity in each of its points : Hx (z) Vz € R,

» the significance of the different singularities by computing the Hausdorff
dimension of the sets of points sharing a common regularity :

dimy ({x e R: Hx(z) =h}) VheR.

— Not reachable numerically, hence the need for computable formulas providing
good estimates, called formalisms.

Applications : physics (turbulence), urbanism, finance, medicine, ...
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Holder regularity

Leta > 0,20 € Rand f afunction. Then f € C%(xo) if there exist C, R > 0 and
a polynomial P of degree less than « such that

f(@) = P(2)| < Cle—0*  Va € B(xo, R),

If = Pllpoo (B(ag,my < CT" Vr <R
The Holder exponent of f at zg is

hy(xo) =sup{a > 0: f € C%(z0)}.
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Holder regularity

Leta > 0,20 € Rand f € L. (R).Then f € C“(z0) if there exist C, R > 0 and
a polynomial P of degree less than « such that

|f(z) — P(x)| < Clx — CCO\Q Vx € B(xo, R),

If = Pllizse (8o < CT" Vr < R

The Holder exponent of f at xg is

]I‘(/‘ o< ')(vl‘n) = hf(mO) = Sup{a >0: f c Ca(mo)}

Drawback: f € C*(zo) = f bounded on a neighbourhood of .
— Limited to locally bounded functions.

— Definition of the p-regularity by replacing L*° with L? (Calderon and Zygmud,
1961).
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p-Regularity

Letp > 1,a > *71, zo € Rand f € LY (R).Then f € TE(zo) if there exist
C, R > 0and a polynomial P of degree less than « such that

1

(1/ |f(z) — P(z)|” dac) <Cr* Vr<R,
B(zo,r)

r

a+ L
If— PHLP(B(xO,,«)) <Cr o ovr <R.

The p-exponent of f at xg is

hgcp)(mo) = sup{a > _?1 (1 fe Tﬁ(xo)},
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Examples

» Cusp (canonical singularity) : if
f@) =z = (a<1),
then 1
WP (w0) =a Vp< — if a<0.
«
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Multifractal spectrum and formalism
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Multifractal spectrum and formalism

p-Spectrum (called Holder spectrum when p = +00) :
-1
2% he {?,jtoo] — dimy {x ER: AP (z) = h} :
Multifractal formalism : numerically computable formula which

» always provides an upper bound for the spectrum,
> gives the exact spectrum for a large class of functions,

> is generically the exact spectrum in a well-chosen functional space.
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HE(A) = inf {Zg(diam(En)) :diam(E,) <t,AC UEn} .

» Hausdorff measure associated with & :
HE(A) = lim HS(A).
t—0t+

» s-Dimensional Hausdorff measure :

fx)=2"(s>0) = H =H°

—e——— S

h
» Hausdorff dimension :
. [ inf{s>0:H*(A) =0} ifA#D,
dimg, (A) = { —00 otherwise.
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Wavelet basis

Orthonormal basis of L?(R) of the form
{Q%Qlij,k : ],k S Z} s

where

Yjn(x) = (22 — k).
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Wavelet basis

Orthonormal basis of L2([0, 1]) of the form

{2%¢j,k jeEN kefo,...,2 — 1}} U {00 = 1},

where

Yik(x) =D @ (z—1)—k).

lez
To any function f, we can associate a sequence (c;,x) jen, kefo,...,2i —1} Such that

27 1

F=2 cintbin,
jEN k=0
with
cik =27 / f(2)).i dz.
0

(L°° normalization)
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Dyadic intervals

Ajk = [lc2’j7 (k+ 1)2’]) , jisthescale and k is the position
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Dyadic intervals

>
Ajk = [lc2’j7 (k+ 1)2’1) , jisthescaleand k is the position
>
Ve = Viks  Cxjp = Gk
>
A = {Aj,k:ke {0,...,2 —1}} ~{0,...,2" —1}
>
A=JA ~{G.k) 5Nk}
JEN
>
Aj(zo) = only dyadic interval of scale j containing ¢
>

ffunction < &= (cj,1)(j,k)er = (€x)ren € R
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n(+o0) = K™ = lim inf . .
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Scaling function :
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Wavelets and pointwise regularity (through leaders)

Fixj € Nand A € A;.

Leaders:
(+00)
l;\+x) = [\ = sup sup lear]
3123 MeA;, NC3A
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Wavelets and pointwise regularity (through leaders)

Fixj € Nand A € A;.

Leaders: ‘
1177 =1, = sup sup lear ]
5725 N €A, N C3A
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1
P
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lg\p) = sup Z lea [P 2 (3"=3)

9'23 \ Men,  nC3x
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Wavelets and pointwise regularity (through leaders)

Fixj € Nand A € A;.

Leaders: ‘
1177 =1, = sup sup lear ]
3’23 NEA; N3
p-Leaders:
1
P
et
lg\p) = sup Z lea [P 2 (3"=3)

P
3723\ MeA;, aCaa

Forevery p € [1, +o0] such thatns(p) > 0,

log (l(xp-)T ) ®) (20)5
WP (o) = liminf —~2E0L e P g ),

j—+oo  log(279) Aj(@o

— Allows to define p-exponents when p € (0,1) and s (p) > 0.
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Wavelet density and profile

Wavelet density :

I AE A 2—(a+5)j < < 2_(a_5)j
pa(a) = lim limsup 082 #{ €Ay . < |C)\‘ < }
e—=0F jotoo j

Intuitively :
H#IAEN; ea| ~ g—ail . gpre(a)i Vi >> .
J
Wavelet profile :

1 ANEA;: > g—(ate)j
ve(e) = lim_ limsup —52 #IAE A !CA| Z }
e—0t j— 4o j

Intuitively :
# {)\ €Ajilen| 2 2_0‘]} ~ gve(a@)i Vi>> .
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I A 2—(a+s)j < < 2_(a_5)j
pa(a) = lim limsup 082 #{A €Ay . < |C)\‘ < }
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Wavelet profile :

i > 9—(ate)j
vz(a) = lim limsup log, #{X € A, FCA| > 2 }
e—0t j— 4o j

Intuitively :
# {)\ €Ajilen| 2 2_0‘]} ~ gve(a@)i Vi>> .

Link:
ve(a) = sup pz(c).

o' <a
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Wavelet density and profile

Wavelet density :

1 A, -9~ (ate)i < < 9—(a=e)j
pz(a@) = lim limsup ogy #{A € A — el < }
e—=0T j+4oo J

Intuitively :
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Intuitively :
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One can define p-leaders versions.
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Wavelet density and profile

p-Leaders density / p-Large deviation spectrum:

1 Ae A 2@+l <P < 9= (ame)
p(ap)(oz) = lim limsup 08y #{ € — = = }
e—0t ]—>+oo J

Intuitively :
o) ()i ;
#{)\GA )2 }Nzc Vi >> .

p-Leaders profile :

#{\ e A l(P) > 2—(a+s)j
lli—p)( ) = lim limsup log, #{ “ 2 = }
e—0t j——+oo J

Intuitively :
# {A en; 1P > 2*“3} ~2vd @y s

One can define p-leaders versions.
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Known results

» Upper bound for the Holder spectrum.

Theorem (J.M. Aubry and S. Jaffard, 2002)
If f € U.so CF, then forevery h > 0,

Q;Jroo)(h) <h sup pa(a).
a€(0,h] @

17/26



Known results

» Upper bound for the Holder spectrum.

Theorem (J.M. Aubry and S. Jaffard, 2002)
If f € U.so CF, then forevery h > 0,

P+ (h) < h sup pe(a)
ac(0,n] &

» Exact p-spectrum for Lacunary Wavelet Series, i.e. wavelet series of the form
27 -1 ‘
fam =2 279 bk,
JEN k=0

with &; & R Bern(2("=Y7), 5 € (0,1),a € R.

17/26



Known results

» Upper bound for the Holder spectrum.

Theorem (J.M. Aubry and S. Jaffard, 2002)
If f € U.so CF, then forevery h > 0,

@;+oo)(h) <h sup pa(a).
ac(0,n] &

» Exact p-spectrum for Lacunary Wavelet Series, i.e. wavelet series of the form

27 -1

fam =2 279 bk,

JEN k=0
with &; & R Bern(2("=Y7), 5 € (0,1),a € R.
Theorem (P. Abry et al., 2015)

—00 otherwise
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Upper bound for the p-spectrum

Theorem
If f is a function for which

po(f) = sup{p > 0:7n;(p) > 0},

then for every 0 < p < po(f) and every h > =1,

7 () < (h+ 1) sup pela)
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Upper bound for the p-spectrum

Theorem
If f is a function for which

po(f) = sup{p > 0:7n;(p) > 0},

then forevery 0 < p < po(f) and every h > *71,

p ’ a+ p ae(;lﬁ]a-i-;
p




Upper bound for the p-spectrum

Theorem
If f is a function for which

po(f) = sup{p > 0:7n;(p) > 0},

then forevery 0 < p < po(f) and every h > *71,

20 <20 < (he 1) sup
-
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Random Wavelet Series

Holder case proved by J.M. Aubry and S. Jaffard (2002).
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Random Wavelet Series

Holder case proved by J.M. Aubry and S. Jaffard (2002).
Model: let

2791

F=Y0" cinthin,

JEN k=0
where the 27 random variables M
a given probability law p;, hence

are drawn independently according to

P (Jejul = 27°7) = ps((—oc, al).

Theorem
For every RWS f, almost surely, for every p > 0 such that n¢(p) > 0 and every
-1
h 2 71
" (he 1) sup 20 it [, n]
@fp (h) ae(_—l,h} ats

—00 otherwise
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Sketch of the proof: case h € [hmm, hl(ff&x]

Theorem (E. Daviaud, 2025)
Let (Bn)nen be a sequence of balls of [0, 1] and let (v )nen be a sequence of (0, 1].

If
s = sup {’y L <limsupBZ”) = 1} ,
n:yn <Y

then there exists a gauge function & such that

HE (limsuan) >0 ond lim 2880 _ o
n—r4o0 r—ot logr

In particular,

dimy (limsup Bn> > s.
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E(a,8) =limswp  |J B (k2‘j, 2—‘”) Ve <1,
Jj—+oo & ‘Cj,k|22""j

then, almost surely,

a+
E(a, p) g{xe[o,l]:h;m(a;)gh} Va < h

h+ o
and
a+ % (HE) ,;i((%) -1
L|E <a, h—l—;) =L(E(o,ve(a)) =1 Ya > e
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k:|ejp|>2ed

E(a,0) = limsup
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If vis an admissible profile, then

SV ={¢eR":vs< v}
(S. Jaffard, 1996)

A subset A of a Polish space X is prevalent if there exists a Borel subset B of X
and a non-trivial Borel probability measure . on X such that (B + ) = 0 for
everyr € Xand X \ A C B.

(B.R. Hunt, T. Sauer and J.A. Yorke, 1992)

Theorem
For a prevalent set of functions f in S*,

> =1,

> forevery0 < p < p, andevery h > *71,

) <h+ 7> sp ) e [hg:i;,hgf;;qu ,
77" (h) = Plac(5hn] “F 5

—o0 otherwise.
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Sketch of the proof

> We define p, > 0 such that for every p < p, and every f € S¥,n¢(p) > 0.
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» Let X be a Random Wavelet Series for which v = v, where
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almost surely, X + f has the expected spectrum.
» Almost surely,

R =hE), b)) =inf{a>0:v(a) >0} = hmin and vz =wv.

In particular, X has the expected spectrum.
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satisfies
vV =vz Onh [hmirh +OO) ’

hence X € S” almost surely. It is enough to prove that for every f € S”,
almost surely, X + f has the expected spectrum.

» Almost surely,
R =hE), b)) =inf{a>0:v(a) >0} = hmin and vz =wv.

In particular, X has the expected spectrum.
» For f e S,

sign(zjyk)i'ir'vd'Rademacher(%)
~~
X+f=>( Tjk + ¢jik) Yik-
gk

greater then a; , with probability %
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