An Extended LOTOS for the design of Real-Time Systems

Luc Léonard and Guy Leduc
Research Assistant and Research Associate of the National Fund for Scientific Research (Belgium)
Université de Liège, Institut d’Electricité Montefiore, B 28, B-4000 Liège 1, Belgium
Tel: + 32 4 3662697 Fax: + 32 4 3662989 E-mail: leonard@montefiore.ulg.ac.be

1. Introduction

We give in the following a brief presentation of ET-LOTOS [LéL 95a, LéL 95b]. ET-LOTOS extends with quantative time the formal description technique LOTOS [ISO 8807]. Other proposals for a “time extended” LOTOS exist. Let us mention [QMF 94] and [BLT 94]. ET-LOTOS serves as basis for the time extension part of E-LOTOS, the new standard for LOTOS currently developed within ISO (ISO/IEC JTC1/SC21).

We assume in the sequel that the reader has a basic knowledge of the syntax and the semantics of LOTOS.

2. Formal semantics and properties of ET-LOTOS

2.1. Datatypes and time domain

In ET-LOTOS, like in LOTOS, datatypes are described in the Abstract Datatype language ACT ONE, that has an initial semantics.

The time domain, denoted \(\mathbb{D} \), is defined as the set of values of a given data sort \(\text{time} (\mathbb{D} = \mathbb{Q} (\text{time})) \). Its definition is left free to the will of the specifier provided that the following elements be defined.

- A total order relation represented by ">".
- An element \(0 \in \mathbb{D} \) such that: \(\forall r \in \mathbb{D}: r\neq 0 \Rightarrow r>0 \)
- An element \(\infty \in \mathbb{D} \) such that: \(\forall r \in \mathbb{D}: r\neq \infty \Rightarrow \infty>r \)
- A commutative and associative operation \(+ : \mathbb{D}, \mathbb{D} \rightarrow \mathbb{D} \) such that:
 \[\forall r, r_1 \in \mathbb{D}: r>r_1 \Leftrightarrow \exists r'>0 \cdot (r'+r_1)=r \]
 \[\forall r, r_1 \in \mathbb{D}: r>0 \text{ and } r_1\neq \infty \Rightarrow r+r_1\in \mathbb{D} \]
 \[\forall r \in \mathbb{D}: r+0=r \]
 \[\forall r \in \mathbb{D}: r+\infty=\infty \]

The relations “\(\leq \)”, and “\(- \)” can be derived easily as follows:

\[\forall r, r_1 \in \mathbb{D} \cdot r \leq r_1 \Leftrightarrow (r < r_1 \lor r_1 = r) \]
\[\forall r, r_1, r_2 \in \mathbb{D} \cdot r \leq r_2 \Rightarrow (r - r_1 \leq r_2 \Leftrightarrow r_2 + r_1 = r) \]
\[\forall r, r_1 \in \mathbb{D} \cdot r \leq r_1 \Rightarrow r - r_1 = 0 \]
In particular, the time domain can be dense as well as discrete, but to be able to give the operational semantics of ET-LOTOS in terms of Labelled Transition Systems (LTS), it must be countable, such as the rational numbers.

2.2 Notations

The following notations hold for the remainder of the paper. G denotes the countable set of common observable gates. $\text{L} = \text{G} \cup \{\delta\}$ denotes the alphabet of observable gates where δ is the special action denoting successful termination ($\delta \notin \text{G}$). δ does not appear explicitly in the syntax of LOTOS. S denotes the set of sorts, V denotes the set of ground terms in the initial algebra associated with the ACT ONE specification: $\text{V} = \cup_{\text{s}} \text{Q(s)}$. $\text{CL} = \text{L} \times \text{V}^*$ denotes the set of observable actions. $\text{A} = \text{CL} \cup \{i\}$ denotes the alphabet of actions, where the symbol i is reserved for the unobservable internal action ($i \notin \text{L}$). g (resp. a) denotes an element of G (resp. A): $g \in \text{G}$, $a \in \text{A}$. $g\text{v}_1…\text{v}_n$ and $\delta \text{v}_1…\text{v}_n$ denote elements of CL, with the v_i's in V. Capital Greek letters such as Γ will be used to denote subsets of G. D denotes the countable time domain which is the alphabet of time actions. $D_{0;\infty} = \text{D} - \{0,\infty\}$.

2.3 Syntax of the behaviour part of ET-LOTOS

The collection of ET-LOTOS behaviour expressions is defined by the following BNF expressions. In these expressions, \tilde{x} represents a vector of process names, SP is a selection predicate, the e_i's represent a term tx, the o_i's represent either $?x:s$ (with x a variable of sort s) or $!tx$ (with tx a ground term), the x_i's (resp. tx_i's) are variables (resp. ground terms) of sorts s_i's, $d \in \text{D}$ and in et, t is a variable of sort time. The new features are printed in italics:

$$P ::= \text{Q where } X := \text{Q} \quad 2$$
$$\text{Q ::= stop | exit(e_1,…,e_n){d}} | g_1…g_n\text{et}[\text{SP};\text{Q}] | i\text{et}(d);\text{Q} | A^d\text{Q} | \text{Q}[\Gamma] | \text{Q}[\text{SP}] | \text{Q} \mid \text{Q} \mid \text{Q} \mid \text{Q} \mid \text{Q}$$

Remark: in $g_1…g_n\text{et}[\text{SP};\text{Q}]$ we let both et and $[\text{SP}]$ be optional, and use the convention that, if omitted, $[\text{SP}] = [\text{true}]$. In $i\text{et}(d);\text{Q}$, both et and $\{d\}$ are optional. If omitted, $d = 0$. Similarly $\{d\}$ is optional in $\text{exit}(d)$, and exit means implicitly $\text{exit}(\infty)$.

The binding powers of the operators are like in LOTOS. For the new operators, A^d has the same power as action-prefix and $\text{inf} \mid \text{inf}$ the same as $\text{choice} x_1:s_1,…x_n:s_n [{}]$.

An additional shorthand notation: We define the notation $g_1…g_n\{d\};\text{Q}$, for $g_1…g_n\text{et}[\text{t}=\text{d};\text{Q}]$, provided that t be fresh in Q. Under the same restriction, we also introduce the notation

1 This term can be: ‘any s’ (with $s \in \text{S}$)
2 For convenience, we suppose, without lack of generality, that there is a single where-clause that gathers all the process declarations of the specification.
An Extended LOTOS for the design of Real-Time Systems

g0_1 o_n(d_1,d_2) ; P to mean g[t[d_1 s d_2]] ; P. The meaning of these rewritings will become clear in the next section.

2.4 Semantics of ET-LOTOS

The operational semantics of ET-LOTOS, presented in the following, is of the so-called "time/actions" type. This means that the occurrence of actions and the passing of time are considered as separate concerns, each one being described by a dedicated set of rules.

2.4.1 Notations

P, P', Q, Q' denote ET-LOTOS behaviour expressions.

P dP' a\! A means that process P may engage in action a and, after doing so, behave like process P'.

P dP' a • P dP' means \(P \) may idle (i.e. not execute any action in \(A \)) during a period of \(d \) units of time and, after doing so, behave like process P'.

P dP' / means \(\neg (P \downarrow P') \) i.e. \(P \) cannot perform an action on gate g.

P dP', with \(d \! \! \! D_0 \$ \), means that process P may idle (i.e. not execute any action in \(A \)) during a period of \(d \) units of time and, after doing so, behave like process P'.

P dP', with \(d \! \! \! D \$ \), means that \(\neg / P' \) • P dP', i.e. \(P \) cannot idle during a period of \(d \) units of time. In these expressions, it is required that \(P \) and \(P' \) be closed, i.e. they do not contain free variables.

2.4.2 Inference rules

In the following inference rules, \(d \! \! \! D_0 \$, \(d_1 \! \! \! D \), \(d' \! \! \! D \$ \), \(g \! \! \! G \) and \(a \! \! \! A \).

We introduce a process, denoted block, which has no axiom and no inference rules. This process cannot perform any action and blocks the progression of time.

Inaction

(S) \(\text{stop} \downarrow \text{stop} \)

Remark that \(\text{stop} \) cannot perform any action but can idle.

Exit

(Ex1) \(\text{exit}(e_1,\ldots,e_n)\{d_1\} \downarrow \delta v_1 \ldots v_n \rightarrow \text{stop} \)

where \(v_i = [t_i] \)

\(v_i \in Q(s_i) = \{ [t] \mid t \text{ is a ground term of sort } s_i \} \)

if \(e_i = t_i \) (a ground term)

if \(e_i = \text{any } s_i \)

(Ex2) \(\text{exit}(e_1,\ldots,e_n)\{d_1+d\} \downarrow \text{exit}(e_1,\ldots,e_n)\{d_1\} \)

(Ex3) \(\text{exit}(e_1,\ldots,e_n)\{d_1\} \downarrow \text{stop} \) (\(d > d_1 \))

The \(\{d_1\} \) attribute is called the life reducer. Its role is to restrict the time period during which the process can terminate successfully: \(\text{exit}\{d_1\} \) can only perform \(\delta \) during the next \(d_1 \) time units. If \(\text{exit}\{d_1\} \) has not performed \(\delta \) yet after \(d_1 \) time units, it is too late and the process turns into \(\text{stop} \) (rule Ex3).
An Extended LOTOS for the design of Real-Time Systems

Observable action-prefix

$$(\text{AP1})\quad g_{o_1\cdots o_n} @ t [SP]; P \xrightarrow{g v_1 \cdots v_n} [v_1/o_1, \ldots, v_m/o_m, 0/t] P$$

if

- \[v_1 \in Q(s) = \{ w \mid w \text{ is a ground term of sort } s \} \]
- \[v_i/o_i = v_i/x \]
- \[v_i/o_i \text{ is void} \]

and where

- \[v_1 = [w] \quad \text{if } o_1 = !w \]
- \[v_1 \in Q(s) \quad \text{if } o_1 = ?x:s \]
- \[v_i/o_i = v_i/x \quad \text{if } o_i = ?x:s \]
- \[v_i/o_i \text{ is void} \quad \text{if } o_i = !w \]

$$(\text{AP2})\quad g_{o_1\cdots o_n} @ t [SP]; P \xrightarrow{d} g_{o_1\cdots o_n} @ t [[t+d/t] SP]; [t+d/t] P$$

In \(\hat{t} \), \(t \) is a variable of sort \(\text{time} \). This variable is used to measure the delay actions were being offered on \(g \) when one occurred. When an action occurs (rule \(\text{AP1} \)), \(t \) is instantiated. Instantiating \(t \) by \(0 \) is logical: \(g_{o_1\cdots o_n} @ t [SP]; P \) describes a process at a given instant and the counting of \(t \) starts at that instant. So, \(t \) is still at \(0 \) if the process immediately does an action on gate \(g \). The way the value of \(t \) is kept up to date if \(g_{o_1\cdots o_n} @ t [SP]; P \) idles is defined by \(\text{AP2} \).

The \(t \) variable can appear in the selection predicate \(SP \), if there is one. The conditions joined with \(\text{AP1} \) express that the only possible instantiations for the attributes of \(g \) are the ones that make \(SP \) true at that instant.

Internal action-prefix

$$(\text{I1})\quad i @ t \{d1\}; P \xrightarrow{i} [0/t] P \quad (\text{I2})\quad i @ t \{d1+d\}; P \xrightarrow{d} i @ t \{d1\}; [t+d/t] P$$

There is no rule like \(\text{Ex3} \) for the internal action-prefix. \(i @ t \{d1\}; P \) cannot idle more than \(d1 \) time units. If it reaches this limit, time is blocked. The only solution left is to accomplish \(i \). This means that, in Timed Extended LOTOS, the occurrence of \(i \) is compulsory. The semantics of \(i @ t \{d1\}; P \) is that \(i \) shall occur during the next \(d1 \) time units. On the other hand, the semantics of \(\text{exit}(d1) \) is that \(d \) may occur within the next \(d1 \) time units.

Delay prefixing

$$(\text{D1})\quad P \xrightarrow{\Delta d} P' \quad (\text{D2})\quad \Delta d + d \xrightarrow{d} \Delta d \ P \quad (\text{D3})\quad P \xrightarrow{\Delta d} P' \xrightarrow{d + d} P'$$

\(\Delta d ; P \) expresses that \(P \) will be delayed by \(d \) time units.

Choice

$$(\text{Ch1})\quad P \xrightarrow{Q} P' \quad (\text{Ch1'})\quad P \xrightarrow{Q} P' \quad (\text{Ch2})\quad P \xrightarrow{P', Q} Q'$$

Remark rule \(\text{Ch2} \): the passing of time does not resolve a choice. Rule \(\text{Ch2} \) also states that both operands evolve in time at the same pace.

3 Of course, in a choice context, the occurrence of \(i \) could be prevented by another offered action.
Generalized choice

The semantics of choice $x_1:s_1, \ldots, x_n:s_n[P]$ is defined via an auxiliary operator, denoted $A\text{choice}(d)$ $x_1:s_1, \ldots, x_n:s_n[P] \rightarrow P$, where $d \in D \times$. $A\text{choice}$ stands for $A\text{gedChoice}$. By definition, choice $x_1:s_1, \ldots, x_n:s_n[P] = A\text{choice}(0)$ $x_1:s_1, \ldots, x_n:s_n[P]$.

\[\text{(GC1)} \]
$$[tx_1/x_1, \ldots, tx_n/x_n]P \overset{A\text{choice}(0)}{\rightarrow} P'$$

\[\text{(GC2)} \]
$$[tx_1/x_1, \ldots, tx_n/x_n]P \overset{d}{\rightarrow} P'', P'' \overset{A\text{choice}(d)}{\rightarrow} P'$$

where the tx_i are ground terms with $[tx_i] \in Q(s_i)$

\[\text{(GC3)} \]
$$\forall <tx_1, \ldots, tx_n> \cdot [tx_i] \in Q(s_i), i = 1, \ldots, n$$
$$A\text{choice}(d') x_1:s_1, \ldots, x_n:s_n[P] \overset{d}{\rightarrow} A\text{choice}(d+d') x_1:s_1, \ldots, x_n:s_n[P]$$

Parallel composition

\[\text{(PC1)} \]
$$P \overset{\text{name}(a) \in \Gamma \cup \{\delta\}}{\rightarrow} P', Q \overset{\text{name}(a) \in \Gamma \cup \{\delta\}}{\rightarrow} Q'$$

\[\text{(PC1')} \]
$$P \overset{\text{name}(a) \in \Gamma \cup \{\delta\}}{\rightarrow} P', Q \overset{\text{name}(a) \in \Gamma \cup \{\delta\}}{\rightarrow} Q'$$

\[\text{(PC2)} \]
$$P \overset{\text{name}(a) \in \Gamma \cup \{\delta\}}{\rightarrow} P', Q \overset{\text{name}(a) \in \Gamma \cup \{\delta\}}{\rightarrow} Q'$$

Infinite parallel composition

\[\text{(IP1)} \]
$$P \overset{\text{name}(a) \in \Gamma \cup \{\delta\}}{\rightarrow} P', Q \overset{\text{name}(a) \in \Gamma \cup \{\delta\}}{\rightarrow} Q'$$

\[\text{(IP2)} \]
$$P \overset{\text{name}(a) \in \Gamma \cup \{\delta\}}{\rightarrow} P', Q \overset{\text{name}(a) \in \Gamma \cup \{\delta\}}{\rightarrow} Q'$$

\[\text{inf} \parallel | | \parallel P \overset{\text{name}(a) \in \Gamma \cup \{\delta\}}{\rightarrow} P', Q \overset{\text{name}(a) \in \Gamma \cup \{\delta\}}{\rightarrow} Q'$$

$\text{inf} \parallel | | \parallel P$ corresponds to an infinity of occurrences of P evolving in parallel. In ET-LOTOS, such a behaviour cannot be described by a recursive process like $P_s := P \parallel | | P_s$, because unguarded recursions block time (see [LeL 95b]).

Hide

\[\text{(H1)} \]
$$P \overset{\text{name}(a) \in \Gamma \cup \{\delta\}}{\rightarrow} P'$$

\[\text{(H2)} \]
$$P \overset{\text{name}(a) \in \Gamma \cup \{\delta\}}{\rightarrow} P'$$

\[\text{(H3)} \]
$$P \overset{d}{\rightarrow} P', \forall g \in \Gamma \cdot (P \overset{g}{\rightarrow} \forall P'' \overset{d'}{\rightarrow} P'' \overset{\text{name}(a) \neq \delta}{\rightarrow} P'' \overset{d'}{\rightarrow})$$

Rule (H3) expresses the maximal progress principle adopted for ET-LOTOS. This principle states that the hidden events must occur as soon as possible. So, the process can only idle if no hidden action is possible.

Enabling

\[\text{(En1)} \]
$$P \overset{\text{name}(a) \in \Gamma \cup \{\delta\}}{\rightarrow} P' \cdot \parallel P \overset{\text{name}(a) \in \Gamma \cup \{\delta\}}{\rightarrow} P'$$

\[\text{(En2)} \]
$$P \overset{\text{name}(a) \in \Gamma \cup \{\delta\}}{\rightarrow} P' \cdot \parallel P \overset{\text{name}(a) \in \Gamma \cup \{\delta\}}{\rightarrow} P'$$
The occurrence of δ is hidden by the enabling operator. According to the maximal progress principle, it must occur as soon as possible.

Disabling

- **Disabling 1 (Di1)**
 \[
 \frac{P \xrightarrow{\mathbf{a}} P'}{P[\mathbb{Q}] \xrightarrow{\mathbf{d}} P'[\mathbb{Q}]} \quad \text{(name(a) = \delta)}
 \]

- **Disabling 2 (Di2)**
 \[
 \frac{Q \xrightarrow{\mathbf{a}} Q'}{P[\mathbb{Q}] \xrightarrow{\mathbf{d}} Q'}
 \]

Guard

- **Guard 1 (G1)**
 \[
 \frac{P \xrightarrow{\mathbf{a}} P'}{[\mathbf{SP}] \rightarrow P \xrightarrow{\mathbf{d}} P'} \quad \text{if DS \mid SP}
 \]

- **Guard 2 (G2)**
 \[
 \frac{P \xrightarrow{\mathbf{d}} P'}{[\mathbf{SP}] \rightarrow P \xrightarrow{\mathbf{d}} P'} \quad \text{if DS \mid SP}
 \]

- **Guard 3 (G3)**
 \[
 \frac{P \xrightarrow{\mathbf{d}} \text{stop}}{[\mathbf{SP}] \rightarrow P \xrightarrow{\mathbf{d}} \text{stop}} \quad \text{if \neg DS \mid SP}
 \]

Let

- **Let 1 (L1)**
 \[
 \frac{[g_1/h_1, \ldots, g_n/h_n] \xrightarrow{\mathbf{a}} P', Q[h_1, \ldots, h_n] := P}{P \xrightarrow{\mathbf{d}} P'} \quad \text{let } x_1 = x_1, \ldots, x_n = x_n \text{ in } P \xrightarrow{\mathbf{d}} P'
 \]

- **Let 2 (L2)**
 \[
 \frac{[g_1/h_1, \ldots, g_n/h_n] \xrightarrow{\mathbf{d}} P', Q[h_1, \ldots, h_n] := P}{P \xrightarrow{\mathbf{d}} P'} \quad \text{let } x_1 = x_1, \ldots, x_n = x_n \text{ in } P \xrightarrow{\mathbf{d}} P'
 \]

Process instantiation

- **In 1 (IN1)**
 \[
 \frac{[g_1/h_1, \ldots, g_n/h_n] \xrightarrow{\mathbf{a}} P', Q[h_1, \ldots, h_n] := P}{Q[g_1, \ldots, g_n] \xrightarrow{\mathbf{d}} P'}
 \]

- **In 2 (IN2)**
 \[
 \frac{[g_1/h_1, \ldots, g_n/h_n] \xrightarrow{\mathbf{d}} P', Q[h_1, \ldots, h_n] := P}{Q[g_1, \ldots, g_n] \xrightarrow{\mathbf{d}} P'}
 \]

Let us outline some interesting features of the semantic rules defined above:

- The LOTOS rules are kept unchanged.
- The alphabet \mathbb{A} of actions is kept as is (e.g. no additional time stamps in action labels). It is just
 extended with time actions from a separate set \mathbb{D}.

2.5. Properties

ET-LOTOS exhibits many interesting properties (the proofs can be found in \cite{LeL95b}):

- The operational semantics of ET-LOTOS is consistent.
- Time transitions are deterministic: $\forall P \quad (P \xrightarrow{\mathbf{d}} P' \land P \xrightarrow{\mathbf{d}} P") \Rightarrow P' = P"$.
- Time transitions are closed under the relation \leq: $P \xrightarrow{\mathbf{d}} \Rightarrow \forall d' \in \mathbb{D} \cdot P \xrightarrow{\mathbf{d} + d'}$.
 Furthermore, $P \xrightarrow{\mathbf{d}} P' \Rightarrow \forall d' \in \mathbb{D} \cdot \exists d'' \cdot P \xrightarrow{\mathbf{d} + d'} P' \land d = d' + d''$.
- Time transitions are additive: $P \xrightarrow{\mathbf{d}} P'$ and $P' \xrightarrow{\mathbf{d}'} P"$ implies $P \xrightarrow{\mathbf{d} + \mathbf{d}'} P"$.
- Strong bisimulation \simeq is a congruence.
- ET-LOTOS is upward compatible with LOTOS, according to the definition given in \cite{NiS92}, but
 for guarded specifications only.
References

