

Deriving benthic traits through deep learning methods

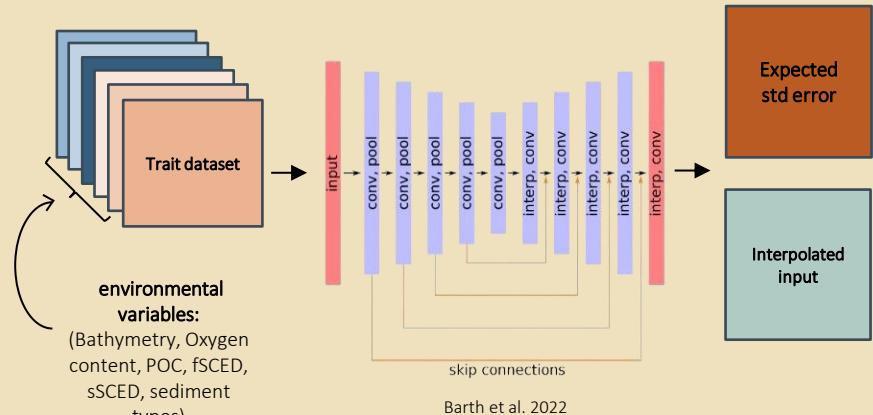
Abel Dechenne¹, Séverine Chevalier², Marilaure Grégoire²,
Aida Alvera Azcarate¹, Alexander Barth¹

A machine learning model (DINCAE) is used to map benthic traits from a point-based dataset. It gives a map and an error estimation.

Intro

- The **Black Sea continental shelf** is poorly sampled
- Dataset are built and given by S Chevalier (personal communication, 2025).
- We use **machine learning interpolation** for their non-linear capabilities resulting in traits maps.
- 27 traits are considered**, several of them will help us to compute **ecological processes** (e.g., vulnerability of species).
- A regular interpolation framework (**DIVAnd**) is used to get a comparison with the Machine Learning results.

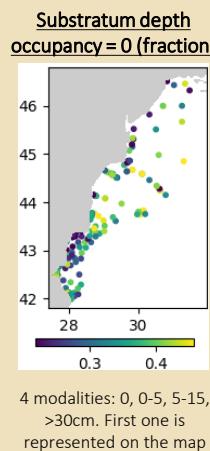
Domain

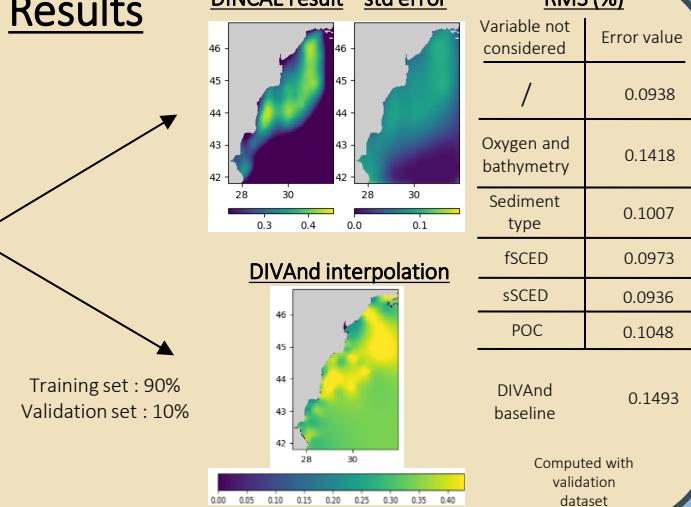

Period

Ten years average:
2008-2018

Method

Data-Interpolating Convolutional Auto-Encoder (**DINCAE***) is used.


It is a **U-Net** which compute convolutional and max pooling steps to **compress and decompress an image**. Environmental variables are used to train the model. The decompression of the image **results with interpolated field**.


Aim

To demonstrate the **machine learning interpolation capabilities for biology**. Seek for the most powerful environmental variables for the reconstruction. Understand and guess **functional diversity** to map water-sediment interactions and **vulnerability patterns** over the shelf.

An ablation study is carried to seek for the most important environmental factors.

Results

Discussion

- DIVAnd RMS error is almost always higher than DINCAE.
- Oxygen and Bathymetry explains a significant portion of the variability of traits
- Temporal variable is not considered due to the low amount of observations
- First convolutional U-net to map benthic traits

Further work

Combination of traits will be considered to map ecological process at the shelf scale

Source

Barth, A. et al. (2022) DINCAE 2.0: multivariate convolutional neural network with error estimates to reconstruct sea surface temperature satellite and altimetry observations. *Geoscientific Model Development*.