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Introduction 

La miniaturisation et l’intégration de fonctions (mécanique, capteur, commande, calcul, etc) 
dans des espaces confinés deviennent de plus en plus importantes dans les systèmes 
modernes. De nombreux exemples de la vie courante illustrent ce fait. Parmi ceux-ci, nous 
trouvons les mobilophones, les systèmes portables audio et vidéo, les organisateurs 
numériques, etc. Les domaines faisant appel aux hautes technologies en sont les plus 
demandeuses, citons, entre autres, les endoscopes de robot, les micropompes pour des 
applications médicales, l’équipement aérospatial, etc...  

Dans un microsystème, beaucoup de fonctions classiques doivent être fondamentalement 
reconsidérées. Les lois d’échelle rendent quelques principes physiques inutilisables pour des 
microsystèmes, alors que d’autres principes, bien que sans intérêt pour les macrosystèmes, 
peuvent être extrêmement utiles pour les systèmes miniaturisés. C’est le cas des fonctions 
articulation et guidage. 

Avant d’aller plus loin, il est utile de définir ce que l’on entend par Micromécanique.  En 
effet, la mécanique est la branche qui s’occupe de tout ce qui transmet un mouvement et/ou 
une force. Le terme Micro fait clairement référence à une échelle miniature.  Ainsi, on peut 
définir la micromécanique comme étant la science qui traite des systèmes mécaniques dont 
l’ordre de grandeur des dimensions est égal ou inférieur au millimètre.  L’échelle envisagée 
est donc plus petite que celle rencontrée en mécanique classique.  Il s’agit alors, si possible, 
de miniaturiser les systèmes mécanique connus ou d’en imaginer d’autres permettant de 
remplir les fonctions requises. 

Dans le cas particulier de la fonction guidage, à l’échelle de la micromécanique, il peut être 
difficile de fabriquer les roulements classiques tels que les roulements à billes, paliers lisses et 
autres pivots. En effet, il est malaisé et très coûteux de fabriquer de petites pièces avec de 
bonnes tolérances (c’est-à-dire inférieure à un pourcentage de la cote), la précision de guidage 
résultante peut être insuffisante pour une application particulière. Il y a donc lieu de 
reconsidérer entièrement cette fonction. 

Une autre raison de cette étude concerne les forces en jeu. En effet, dans les micromachines, 
le frottement peut devenir très important comparé à d’autres forces. La force de frottement est 
une force de contact et donc de surface tandis que la gravité ou la force électromagnétique 
sont, elles, des forces de volume.  Il est assez aisé de comprendre pourquoi le frottement 
devient si important. Imaginons un cube de coté a. Son volume est donc égale à a³ tandis que 



La fonction guidage en micromécanique, P. Merken, ULg, 2006 5 

la surface d’un côté vaut a².  Le rapport entre la surface et le volume vaut donc 1/a. Ce qui 
veut dire que si les dimensions du cube diminuent, ce rapport tend à augmenter et donc que le 
volume prend une importance relative moindre lorsque les dimensions diminuent. Les forces 
de volume auront donc un impact de moins en moins important.  Or, en règle générale, ce sont 
ces forces qui constituent la force motrice d’une machine, tandis que les forces de frottement 
constituent une force résistante, responsable d’une grande partie de perte d’énergie.  On se 
rend compte alors qu’il est intéressant de pouvoir diminuer au maximum ces dernières. 

Nous pouvons également envisager l’application de ces guidages. Dans certaines applications, 
par exemple dans des dispositifs médicaux, les exigences de propreté interdisent pratiquement 
l’utilisation des lubrifiants graisseux. Les particules d’usure sont également prohibées en 
général. En conséquence, il y a un besoin important de développer des miniguidages sans 
friction. 

Finalement, l’assemblage de petits composants peut devenir très difficile, et un dispositif 
composé d’un nombre minimal de composants devient indispensable.  

Parmi toutes les solutions possibles, le col circulaire et le spider ou membrane élastique, voir 
Figure 1, semblent être très attrayants : pas de frottement, pas de lubrifiant, encombrement 
minimal, une seule pièce fabriquée, pas d’assemblage, etc. Ce dernier avantage est décisif. En 
effet, la meilleure manière de simplifier l’assemblage est de limiter le nombre de pièces. 

Il faut cependant être conscient que ces systèmes fonctionnent par déformation élastique, ce 
qui implique une augmentation de sa raideur et, par conséquence, une diminution du 
débattement du guidage.  Ce n’est qu’au prix de cet inconvénient que nous parvenons à 
développer un guidage sans frottement. 

 

 

   

Figure 1 : col circulaire et membrane 

 
 

Dans ce travail, nous nous proposons de compiler et compléter les études déjà réalisées 
permettant d’utiliser de façon fonctionnelle les 2 systèmes de guidage précités, en permettant 
un dimensionnement rapide en fonction de l’application envisagée.  Il fait suite à un projet 
visant à développer une micro-pompe permettant de délivrer des débits de l’ordre du µl/min. 
Ces 2 systèmes de guidage ont été envisagés tour à tour afin de permettre aux éléments 
mobiles de se mouvoir avec tous les avantages cités plus haut. 
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Col circulaire 

Introduction 
Le col circulaire est une construction monolithique, ce qui en fait un composant tout indiqué 
en micromécanique. Cependant, il ne sera préféré à d’autres articulations que dans le cas où 
l’angle de rotation peut être limité.   

En effet, la limitation principale de la solution présentée concerne l’angle de rotation possible 
permis. Chaque application sera adaptée afin de respecter cet angle limite sous peine de 
causer la ruine complète et irrémédiable de l’articulation.  Cet angle dépend essentiellement 
du matériau employé et de la géométrie. 

 Le col circulaire est connu depuis de nombreuses années. Il a déjà été employé, par exemple, 
dans un support de contrôle de profil, voir figure 2, par R. Pazot [3]. Ce support s’appelle un 
montage à aiguille indicatrice et Pazot ajoute que cette articulation évite l’emploi de ressorts 
de rappel, évite la création d’un axe, élimine le problème des jeux et simplifie le montage.  

 

 

Figure 2 : montage à aiguille indicatrice 

 

Beaucoup d’applications peuvent être trouvées dans la littérature quant à l’utilisation d’une 
telle articulation. Entre autres exemples, Xu et Ryu l’ont employé dans leurs amplificateurs de 
déplacement basé sur des  piézoactuateurs [10], voir figure 3, Ryu, Gweon et Moon ont conçu 
une table XYθ basée sur un col circulaire [12]. Il est évident que, même si le col agit comme 
un pivot dans les cas précités, la raideur du col a de l’importance afin de dimensionner les 
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actuateurs permettant de créer le mouvement. Le lecteur pourra encore trouver beaucoup 
d’autres exemples d’applications dans [6] et [11].  

La description du col circulaire et de sa modélisation a été réalisée en 1965 par Paros et 
Weisbord [5]. Depuis, il a été l’objet de plusieurs études, par exemple, Smith et Chetwynd 
[18]-[19], Zhang et Fasse [15], Koster [14], Heinen [6], Lobontiu [11] etc...  

 

 

 

Figure 3 : amplificateurs de déplacement 

 

Le col circulaire joue un rôle très important dans une pièce qui inclut beaucoup d’autres 
fonctions. Ainsi, il est nécessaire de modéliser le col circulaire afin de comprendre son 
fonctionnement. On trouvera dans ce texte un nouveau modèle analytique simplifié pour la 
prévision de l’écart angulaire maximum et la rigidité angulaire du col circulaire. L’avantage 
de ce modèle, comparé aux autres, est qu’il possible de déterminer, pratiquement directement, 
les paramètres géométriques permettant d’obtenir une raideur donnée, et inversement.  

Ce modèle sera ensuite comparé aux résultats fournis par une série de tests effectués sur des 
cols usinés par électro-érosion à fil et finalement confronté à des expressions déterminées par 
d’autres scientifiques. 

Modélisation  
La modélisation du col circulaire est basée sur la résolution des équations de la mécanique des 
matériaux appliquée aux poutres à géométrie variable (section continûment variable).   

Afin d’étudier le col, nous fixerons des axes de référence : l’axe x correspond à l’axe de 
symétrie du col et l’axe y relie les centres des arcs de cercle définissant le col.  Nous 
introduirons également 2 variables supplémentaires : l’azimut ϕ  et l’épaisseur du col, b, 
perpendiculairement au plan xy.   

La géométrie du col est représentée sur la Figure 4 ci-dessous. 
 

     W. Xu, T. King (1996), Flexures hinges for piezoactuator displacement amplifiers:  
flexibility, accuracy and stress considerations, in Prec. Eng., vol. 19, 4-10. 
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Figure 4 : géométrie du col circulaire 

 

Il est clair que le mouvement désiré est une rotation autour de l’axe z et que tout autre 
mouvement est un mouvement parasite. Nous verrons par la suite que ces mouvements 
parasites peuvent avoir des conséquences inattendues et indésirables. 

Formes asymptotiques 

Rigidité en flexion 

Nous appelons flexion (simple) la rotation d’une partie par rapport à l’autre, autour de l’axe z, 
voir figure 5. 

 

 

Figure 5 : flexion autour de l’axe z 

 

Il s’agit bien ici du mouvement souhaité, la raideur en flexion selon z doit donc être la plus 
réduite possible. L’angle de flexion varie avec la coordonnée du point où on le calcule.  Cet 
angle vaut, 

3 3

12 12
R R

f f

f

R R

M M dx
dx

Ebh Eb h
α

− −

= =� �  (0.1) 
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On considère que seule la zone du col (qui s’étend de –R à R) est soumise à l’action du 
moment de flexion et que le reste de la poutre est infiniment rigide.  Nous verrons par la suite 
que cette hypothèse est bien vérifiée et est d’ailleurs encore trop large. 

Calculons la dernière intégrale.  La géométrie du col nous donne, 

( )

( )

( )

0
0

0

2 1 cos 2 1 cos
2

2 1 1 cos
2

2
1 cos

h
h h R R

R

h
R

R

R

ϕ ϕ

ε ϕ

ε ϕ
ε

� �� �= + − = + −� �� 	

 �� 


� �= + −� �

 �

= −

 (0.2) 

où l’on a posé, 

0

1

1 2h R
ε =

+
 (0.3) 

Sachant que, 

sin , cosx R dx R dϕ ϕ ϕ= = , (0.4) 

On transforme l’intégrale sous la forme, 

( ) ( )

2 2
3 3 3

3 33 2 23

0
2

cos cos

4 48 1 cos 1 cos

R

R

dx R d d

h R RR

π π

π

ε ϕ ϕ ε ϕ ϕ ε
ε ϕ ε ϕ

− −

= = = Ι
− −� � �  (0.5) 

L’intégrale à évaluer ne diffère des intégrales apparaissant en théorie de la lubrification [2], 
que par le signe de la variable ε et peut donc être résolue par le célèbre changement de 
variable de Sommerfeld [1] qui devient ici,  

cos
cos

1 cos

α εϕ
ε α

+=
+

(0.6) 

On en déduit successivement, 
21

1 cos
1 cos

εε ϕ
ε α
−− =

+
 (0.7) 

( )
( )

2 2

2

2

1 sin
sin

1 cos

ε α
ϕ

ε α
−

=
+

 (0.8) 

21 sin
sin

1 cos

ε αϕ
ε α

−=
+

 (0.9) 

( )
( )

2

2

1 sin
(cos ) sin

1 cos
d d d

ε α
ϕ ϕ ϕ α

ε α
−

= − = −
+

 (0.10) 

Ce qui donne, 

( )
21

1 cos
d d

εϕ α
ε α

−=
+

(0.11) 
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En ce qui concerne les bornes d’intégration,  

( )

( )

0, cos 1 cos 1 cos , cos 1 1 , 0

, cos 0 cos 0, cos , cos
2

ar

ϕ ϕ α ε ε α α ε ε α
πϕ ϕ α ε α ε α ε∗

= = � + = + − = − =�
�
�

= = � + = = − = −�
�

 (0.12) 

L’intégrale I se ramène ainsi à, 

( )
( )

( ) ( )

*
2 3 2

3 32

0 0

1 coscos cos 1

1 cos 1 cos1 cos 1

d
d

π
α

ε αϕ ϕ α ε ε α
ε α ε αε ϕ ε

++ −Ι = =
+ +− −� �  

( )
( ) ( )5 22

0

1
cos 1 cos

1
d

α

α ε ε α α
ε

∗

= + +
− �

 

( ) ( ) ( )2

5 22

0

1
1 cos 1 cos 2

21
d

α

εε α α ε α
ε

∗

� �= + + + +� 	� 
− �  

( ) ( )2

5 22

1 3
1 sin sin 2

2 41

ε εε α α α
ε

∗ ∗ ∗� �= + + +� �
� �−

 (0.13) 

Tenant compte de la valeur ci-dessus de la limiteα ∗ , on a, 

2 2

2

sin 1 cos 1

sin 2 2sin cos 2 1

α α ε

α α α ε ε

∗ ∗

∗ ∗ ∗

= − = −

= = − −
 (0.14) 

Ce qui ramène finalement l’équation cherchée à, 

( ) ( ) ( )
2

2 2 2

5 22

1 3
1 1 arcos 1

2 21

ε εε ε ε ε
ε

� �Ι = + − + − − −� �
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 (0.15) 

Nous nous limiterons au cas où le rapport 0h

R
  est petit devant 1.  Nous obtenons alors, 

0

0

1
1 1

21
2

h
h R
R

ε = ≈ − ≈
+

 (0.16) 

2
0 00 0

2
2 0

2 2

0 0

11 1
441

1 1
2 2

h hh h
hR RR R
Rh h

R R

ε

� �++ + − � �

 �− = = ≈

� � � �+ +� � � �

 � 
 �

 (0.17) 

( )cos 1arα π∗ ≈ − =   (0.18) 

( )2 2 01 1 2
h

R
ε ε− + ≈   (0.19) 
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( )3 3
arcos

2 2

ε ε π− ≈   (0.20) 

2
2 01

2

h

R

ε ε− =   (0.21) 

En remplaçant les différents termes dans l’intégrale, nous obtenons, 
5 2 5 2

0

0 0

3 3

2 2

hR R

h R h
π π

� � � �� �� �Ι = + Ο ≈� � � �� �� 	

 �� 

 � 
 �

 (0.22) 

Et, 

5 2
3

3 2 5 2

0 0

3 3

4 2 8

R

R

dx R R

h R h h

ε π π
−

� �
= ≈� �


 ��  (0.23) 

L’angle de flexion s’écrit finalement, 

3 5 2

0

12 9

2

R

f

f f

R

M R
dx M

Ebh Eb h

πα
−

= =�  (0.24) 

Ce qui revient à dire, 

5 2

02

9
f

f

M hEb

Rα π
=   (0.25) 

Cette expression mesure la raideur en flexion. 

En ce qui concerne la contrainte maximum au niveau du col, 

5 2

0 0

2 2

0 0

6 6 2 4

9 3
f

f f

M h hEb
E

bh bh RR
σ α α

π π
= = =  (0.26) 

Soit, 

0

3

4f

R

E h

π σα =   (0.27) 

Cette dernière expression est importante, elle permet de déterminer l’angle de rotation 
maximum possible, en fonction du matériau et pour une géométrie donnée. 

Afin d’obtenir l’angle de rotation le plus élevé possible, le première opération consiste à 
choisir les valeurs de R et h0. Il faut cependant tenir compte des contraintes technologique.  
On ne peut pas diminuer indéfiniment la valeur de h0, l’usinage ne permettant d’atteindre que 
des valeurs de l’ordre de 0,1 mm1. Dans le même ordre d’idée, il faut limiter supérieurement 
le rayon R.  En effet, plus celui-ci est grand, plus le col circulaire tend à se rapprocher d’une 
lame flexible.  L’axe de rotation devient alors un axe instantané de rotation et le mouvement 
n’est plus exactement circulaire. 

                                                 
1 Il est possible d’obtenir une épaisseur inférieure mais en prenant une série de précautions qui  font rapidement  
augmenter le coût de la pièce.  Nous estimons donc qu’une épaisseur de 0,1 mm est une limite raisonnable à ne 
pas franchir, sauf pour des applications bien particulières pour lesquelles le coût importe peu. 
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Si l’angle est encore trop petit, il faut changer de matériau, si cela est possible, l’application 
envisagée pouvant imposer le choix d’un matériau. Le tableau I donne une idée de l’ordre de 
grandeur du rapport σ/E, pour 4 matériaux différents. Citons finalement que la limite élastique 
peut encore être modulée en fonction de l’état thermique du matériau. 

 
TABLEAU I 

CARACTÉRISTIQUES MÉCANIQUES 

Matériau  E (MPa) σ (Mpa) σ/E 

Acier inoxydable X20Cr3 210 000 500 2,4 10-3 

Aluminium  7020 T5 71 500 320 4,5 10-3 

Titane  TiAl6V4 115 000 800 7 10-3 

Acier à ressort  45SCD6 210 000 1500 7,1 10-3 

Rigidité en torsion 

La torsion correspond à un mouvement de rotation de la pièce autour de l’axe x, comme 
illustré sur la figure 6. 

 

 

 

Figure 6 : torsion autour de l’axe x 

 

L’angle de torsion varie de nouveau avec la coordonnée x car la section n’est pas constante, 
nous avons alors, 

33 3

1

3

3

t t t td M M M
bhdx Gc bh GbhG

α = = =  (0.28) 

En effet, le coefficient c1 est donné dans des tables, il dépend du rapport b h. Ce rapport est, 

dans notre cas, toujours beaucoup plus grand que 4, c1 tend alors vers 1 3.   

Calculons l’angle de torsion total, en considérant que la partie de la poutre non entamée est 
toujours infiniment rigide, 
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3 5 2

0

3 9

8

R

t t
t

R

M Mdx R

Gb h Gb h
α π

−

= =�  (0.29) 

La raideur en torsion vaut,  
5 2

08

9
t

t

M h
Gb

Rα π
=   (0.30) 

Rigidité en extension  

L’extension se mesure le long de l’axe x, voir figure 7. 

 

 

Figure 7 : extension selon l’axe x 

 

Le déplacement d’une section infinitésimale de la poutre soumise à un effort de traction vaut, 

du N

dx Ebh
=  (0.31) 

R

R

N dx
u

Eb h
−

= �  (0.32) 

Remplaçons h par sa valeur calculée dans la partie flexion, 

( ) ( )

2 2

0
2

cos cos

2 1 cos 1 cos

R

R

dx
d d

h

π π

π

ε ϕ ϕϕ ε ϕ
ε ϕ ε ϕ

− −

= = = Ι
− −� � �  (0.33) 

On a, 

cos cos 1 1 1
1

1 cos 1 cos 1 cos 1 cos

ε ϕ ε ϕ
ε ϕ ε ϕ ε ϕ ε ϕ

−= + = − +
− − − −

 (0.34) 

Et 

2 2 2

0 0 0
1 cos 2 1 cos 2

d d
d

π π π

ϕ π ϕ πϕ
ε ϕ ε ϕ

Ι = − + = − + = − + Γ
− −� � �  (0.35) 

En utilisant encore le même changement de variable, 
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( )
2

2 2

0

1 cos 1 1

1 1 cos 1
d

α

ε α ε α α
ε ε α ε

∗

∗+ −Γ = =
− + −�  (0.36) 

On a donc, 

2
0 02 21

R R

h h

π α π π π
ε

∗

Ι = − + ≈ − + ≈
−

 (0.37) 

Il vient ainsi, 

0

N R
u

Eb h
π=  (0.38) 

Et 

01 hN
Eb

u Rπ
=  (0.39) 

Rigidité en flexion transverse 

Voyons ce qu’il se passe lorsque le col est soumis à un moment de flexion transverse, c’est-à-
dire un moment de flexion autour de l’axe y, voir figure 8. 

 

 

 

Figure 8 : flexion autour de l’axe y 

 

3

12ft ftd M

dx Ehb

α
=  (0.40) 

3 3

0

12 12
R

ft ft

ft

R

M Mdx R

Eb h Eb h
α π

−

= =�  (0.41) 

La raideur angulaire transverse vaut donc, 

3
0

12
ft

ft

M hEb

Rα π
=  (0.42) 
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Rigidité en translation ou cisaillement technologiq ue d’axe y 

Par translation, on entend la translation de l’un des côtés de la poutre par rapport à l’autre 
côté, le col circulaire délimitant les côtés.   

 

 

Figure 9 : cisaillement d’axe y 

 

Afin de pouvoir effectuer une translation sans avoir de rotation parasite, on doit appliquer une 
charge au droit du col. Cela sera réalisé grâce à un artifice illustré sur la figure 10. 

 

 

Figure 10 : application de la charge 

 

Dans le cas où la charge est excentrée, il apparaît un mouvement de flexion supplémentaire 
dont nous devons tenir compte. 

a) Contribution de la flexion 

Le moment vaut Ox.  La rotation vérifie, 

3 3

12 12f fd M Ox

dx Ebh Ebh

α
− = =  (0.43) 

Et le déplacement total du à la flexion s’exprime par, 
R

f

R

v dxα
−

= �  (0.44) 

Intégrons par partie, 



La fonction guidage en micromécanique, P. Merken, ULg, 2006 16 

,

,

f

f

a db dx

d
da dx b x

dx

α
α

= =�
�
�

= =�
�

  (0.45) 

R

R f

f R

R

d
v x x dx

dx

α
α

−

−

� �= −� 
 �  (0.46) 

On notera que, 

( ) 3

12
0

R

f

R

Ox
R dx

Ebh
α

−

= − =�  (0.47) 

Car l’intégrand est impair. Donc ( )0 0fα = . 

Il reste à calculer, 

( )

2
2 2 2

33
3

3
2

12 12 sin
cos

8
1 cos

R R

f

R R

d O x O R
v x dx dx R d

Rdx Eb h Eb

π

π

α ϕ ϕ ϕ
ε ϕ

ε− − −

= − = =
−� � �  

( )

2
3 2 3

3

0

3 sin cos 3

1 cos

O O
d

Eb Eb

π

ε ϕ ϕ εϕ
ε ϕ

= = Ι
−�  (0.48) 

En utilisant toujours le même changement de variable, nous obtenons, 

( )
( )

( )
( ) ( )

32 2 2

2 32

0

1 sin 1 coscos 1

1 cos 1 cos1 cos 1
d

α
ε α ε αα ε ε α

ε α ε αε α ε

∗

− ++ −Ι =
+ ++ −�  

( )
( )

( )
2

3 2 3 22 2

0

sin cos1 1

1 cos1 1
d

α
α α ε

α
ε αε ε

∗

+
= = Γ

+− −�  (0.49) 

Transformons ce dernier intégrand, 

( )
2 2

2 2
2

1 1
sin cos sin

sin cos 1 1 sin
sin

1 cos 1 cos 1 cos

α α ε αα α ε αε ε α ε
ε α ε α ε ε ε α

� � � �+ + −� � � �+ � �
 � 
 �= = + −� �+ + +
 �
 

2 2 2sin 1 cos 1 cos cos cos cos
1 cos

1 cos 1 cos 1 cos 1 cos

α α ε α ε α α ε αα
ε α ε α ε α ε α

− + − − += = = −
+ + + +

 

( )
1 1

cos cos cos
cos cos 1 1 cos

cos
1 cos 1 cos 1 cos

α α ε αα ε α αε ε α ε
ε α ε α ε ε ε α

� � � �+ + −� � � �+ � �
 � 
 �= = + −� �+ + +
 �
 

1 1
cos

cos 1 1 1

1 cos 1 cos 1 cos

α
α ε ε

ε α ε α ε ε ε α

� �+ −� �
� �
 �= = − � �+ + +
 �

 (0.50) 
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Intégrons chacun des termes, nous obtenons, 

( )2

0
0

1 1 1 sin 2
sin sin cos

2 2 2
d

α α αα α α α α α
ε ε ε

∗
∗

∗
∗� �= − = −� �


 ��  (0.51) 

0
0

1 1 1
cos sin sind

α α

α α α α
ε ε ε

∗
∗

∗= =�  (0.52) 

Pour calculer la dernière intégrale, effectuons le changement de variable de Sommerfeld 
classique, 

cos
cos

1 cos

β εα
ε β

−=
−

 (0.53) 

21

1 cos
d d

εα β
ε β

−=
−

 (0.54) 

21
1 cos

1 cos

εε α
ε β
−+ =

−
 (0.55) 

Concernant les bornes d’intégration, 

( )

( ) 2

0, cos 1 1 cos cos , cos 1 1 , cos 1, 0

cos
cos , cos cos , cos 0,

1 cos 2
ar

α α ε β β ε β ε ε β β
β ε πα ε ε ε ε β β ε β β

ε β
∗

= = � − = − + = + = =�
�

−� = − � − = − + = − = =� −�

 (0.56) 

2
2

2
2 02 2

0 0

1 cos 1 1

1 cos 1 1 cos 1 2 1

d
d

π
α

πα ε β ε πβ β
ε α ε ε β ε ε

∗

− −= = =
+ − − − −� �  (0.57) 

Rassemblons chacun des termes, nous obtenons, 

2

1 sin 2 1 1 1
sin

2 2 2 1

α α πα ε α α ε
ε ε ε ε ε ε ε

∗ ∗
∗ ∗ ∗� �� �� � � �� � � �Γ = − + − − − − −� �� �� � � �� �


 � 
 � −� �
 � 
 �� �
 

2

2

1 sin 2 1 1 1
sin

2 2 2 1

α α πα ε α ε
ε ε ε ε ε ε ε

∗ ∗
∗ ∗� � � �� � � �= − + − − + −� � � �� � � �


 � 
 � −
 � 
 �
 

( ) ( ) ( )22 2 2 2

2 2 2

1 1 1
1 1 1 1

2 2 1

π ππ ε ε ε ε ε
ε ε ε ε ε ε

� �= + − − − − − + −� �

 � −

 

( ) ( )2 2 2 2

2

1 1
1 1 1 1

2 2

π ππ ε ε ε ε ε
ε ε ε ε

� �= + − + − − + − −� �

 �

 

0 0 01
1

2 2

h h h

R R R

ππ π
� � � �� �= + + + −� � � �� �� � � �
 �
 � 
 �

 

2

π≈  (0.58) 
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Finalement, 
3 2

02

R

h

π � �
Ι ≈ � �


 �
 (0.59) 

Et, 
3 2

0

3

2

P R
v

Eb h

π � �
≈ � �


 �
 (0.60) 

Cette dernière expression mesure la contribution de la flexion. 

b) Contribution de l’effort tranchant 

Le déplacement localisé vaut, 

6
5 5
6

dv O O

dx EbhEbh
= =  (0.61) 

Et le déplacement total, 

0

6 6

5 5

R

R

O dx O R
v

Eb h Eb h

π

−

= =�  (0.62) 

Ce déplacement est équivalent à la contribution de l’effort tranchant. 

c) Au total 

La flexion est largement prépondérante et nous négligerons donc l’effet de l’effort tranchant.  
La rigidité en cisaillement technologique se ramène alors à, 

3 2

02

3

hO
Eb

v Rπ
� �≈ � �

 �

 (0.63) 

Rigidité en translation ou cisaillement technologiq ue d’axe z 

Nous pouvons effectuer le même traitement suivant l’axe z. 

De nouveau, nous aurons une contribution en flexion et une contribution en cisaillement. 

a) Contribution de la flexion 

Ici, la charge est orientée à 90° par rapport au cas précédent.  Le moment d’inertie de la 
section droite change.  Nous avons alors, 

3 3

12 12ft ftd M Px

dx Eb h Eb h

α
− = =  (0.64) 

Avec, de nouveau, 
R

ft

R

w dxα
−

= �  (0.65) 

On intègre de nouveau par partie, pour trouver, 
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R

R ft

ft R

R

d
w x x dx

dx

α
α

−

−

� �= −� 
 �  (0.66) 

On notera encore que, 

( ) 3

12
0

R

ft

R

Px
R dx

Eb h
α

−

= − =�  (0.67) 

Car l’intégrand est impair. Donc ( )0 0ftα = . 

Il reste donc, en effectuant le premier changement de variable, 

( )

2
2 2 2

3 3

2

12 12 sin
cos

2 1 cos

R R

ft

R R

d P x Q R
w x dx dx R d

dx Eb h Eb R

π

π

α ε ϕ ϕ ϕ
ε ϕ

− − −

= − = =
−� � �  

2
2 2 2

3 3

0

12 sin cos 12

1 cos

PR PR
d

Eb Eb

π

ε ϕ ϕ ϕ
ε ϕ

= = Ι
−�  (0.68) 

Transformons l’intégrand, nous avons successivement, 
2 2 2 2 2

2sin cos sin cos sin sin sin
sin

1 cos 1 cos 1 cos

ε ϕ ϕ ε ϕ ϕ ϕ ϕ ϕϕ
ε ϕ ε ϕ ε ϕ

− += = − +
− − −

 

( )2 2 2 cos cossin 1 cos 1 cos cos cos
1

1 cos 1 cos 1 cos 1 cos

ϕ ε ϕϕ ϕ ε ϕ ε ϕ ϕ
ε ϕ ε ϕ ε ϕ ε ϕ

−− − + −= = = +
− − − −

 

( )
1 1

cos cos cos
cos cos cos 1 cos

1 cos 1 cos 1 cos

ϕ ϕ ϕ εϕ ε ϕ ϕ ϕε ε ε
ε ϕ ε ϕ ε ε ε ϕ

� � � �− + −� � � �− � �
 � 
 �= = + −� �− − −
 �
 

1 1
coscos 1 1 1

1 cos 1 cos 1 cos

ϕϕ ε ε
ε ϕ ε ϕ ε ε ε ϕ

− +
� �= = − + � �− − −
 �

 (0.69) 

Calculons la première intégrale, les autres étant évidentes. 

( )
2

2
2

0
0

1
sin sin cos

2 4
d

π
π

πϕ ϕ ϕ ϕ ϕ− = − − = −�  (0.70) 

La dernière intégrale a été calculée précédemment.  Au total, nous avons, 

0 0 0

1 1
1

4 2 2 4 2

R R R

h h h

π π π π ππ π π
ε ε ε

� � � �� �Ι = − + + − + = + − + ≈� � � �� �� � � �
 �
 � 
 �
 (0.71) 

Et, 
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2

3

0

12PR R
w

Eb h
π=  (0.72) 

b) Contribution de l’effort tranchant 

Le même calcul que pour le cisaillement selon l’axe y mène à, 

0

6 6

5 5

R

R

P dx P R
w

Eb h Eb h

π

−

= =�  (0.73) 

c) Au total 

De nouveau, la flexion est largement prépondérante. Nous aurons donc, 

3
0

2

1

12

hP Eb

w R Rπ
=  (0.74) 

Déplacement de l’extrémité du col 

On se propose, ici, de calculer le déplacement de l’extrémité du col sous l’influence d’un 
moment de flexion. Ceci permettra d’obtenir des informations sur la position du centre de 
rotation du col. 

On a le gradient de l’angle de rotation dans la direction x, 

3

12f fd M

dx Ebh

α
=  (0.75) 

Et le déplacement global, 

( )
R R R

R f f

f f f fR

R R R

d d
v dx x x dx R R dx

dx dx

α α
α α α α

−

− − −

� �= = − = −� 
� � �  (0.76) 

Résolvons cette équation.  On connaît, 

( )
3 2

5 2

0

9

2f f

R
R R M

Eb h

πα =  (0.77) 

Calculons, 

( ) ( )

2 2
3 3

3 3
3

03
2

12 3 3sin cos sin cos
8 1 cos1 cos

R

f f f f

f

R

d M M MR R d
dx d

Rdx Eb EbR EbR

π π

π

α ε εϕ ϕ ϕ ϕ ϕα ϕ
ε ϕε ϕ

ε− −

= = = Ι
−−� � �  

  (0.78) 

( )
( ) ( )

32 2

32

0

1 cos1 sin cos 1

1 cos 1 cos 1 cos1
d

α
ε αε α α ε ε α

ε α ε α ε αε

∗

+− + −Ι =
+ + +−�  

( )
( )

( )
( )2 22 2

0 0

1 1
sin cos sin cos sin

1 1
d d

α α

α α ε α α α ε α α
ε ε

∗ ∗

= + = +
− −� �  
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( ) ( )
2

22

1 sin
1 cos

21

α ε α
ε

∗
∗� �= + −� 	− � 


 

( ) ( ) ( ) ( )
2

2 2 2

2 2 22 2
0

1 1 1 1
1 1 2

2 21 1

R

h
ε ε ε ε ε

ε ε
� � � �= − + + = + + ≈� 	 � 	� 
 � 
− −

 (0.79) 

On a donc, 

3 2

2 2

0 0

6 6
R

f f f

f

R

d M MR R
dx

dx EbR h Eb h

α ε
α

−

= ≈�  (0.80) 

Au total, 

3 2
0

5 2

0

9
6

2
fM hR

v
Eb h R

π� �
= −� 	

� 

 (0.81) 

On constate que le grand terme est �(R), c’est-à-dire que la rotation se fait à 0h

R

� �
Ο� �� �

 �

 près 

autour du centre du col. 

Cette constatation est confirmée par Chau [20]. Dans son travail, il a tenté de prédire la 
trajectoire exacte de l’extrémité du col.  Ses calculs théoriques ont été confrontés à une 
batterie de tests et les trajectoires mesurées ne permettaient pas de conclure quant à l’écart par 
rapport à la trajectoire idéale qui serait l’arc de cercle, les mesures se trouvant toutes à 
l’intérieur de l’intervalle d’erreurs cumulées. 

Coefficients de correction 
Les équations obtenues précédemment sont valables tant que le rapport h0/R reste proche de 
zéro.  Ce qui signifie que, soit l’épaisseur h0 doit être très petite, soit le rayon R doit être très 
grand.  En pratique, cependant, l’épaisseur h0 peut atteindre des valeurs significatives par 
rapport au rayon.  Ceci peut arriver pour des questions de fabrication (h0 sera alors limité 
inférieurement) ou d’encombrement (R sera, lui, limité supérieurement), lorsque la fonction 
du col le permet.  Ainsi, le rapport h0/R pourrait atteindre des valeurs telles que 0,5.  

Nous sommes alors devant un cas pour lequel les équations asymptotiques ne sont plus 
valables rigoureusement.  Nous allons montrer que nous pouvons aisément les conserver, par 
l’application de coefficients correcteurs uniquement fonctions du rapport h0/R. 

Ces coefficients correcteurs seront déduits des équations de la théorie complète, avant leurs 
simplifications pour obtenir les formes asymptotiques.  Il est bien entendu que ces coefficients 
doivent tendre vers un lorsque le rapport h0/R tend vers zéro. 

Rigidité en flexion 

Rappelons l’équation complète en flexion, 

3

2

12

4
f

f

M

Eb R

εα = Ι  (0.82) 
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avec 0h
f

R
� �Ι = � �

 �

, donnée par l’équation (0.15). 

La raideur en flexion est alors mesurée par 

2

33
f

f

M Eb R

α ε
=

Ι
  (0.83) 

Le coefficient correcteur se mesure alors par le rapport entre les raideurs complète et 
asymptotique, 

5 2

1 3

0

3 1

2

R
K

h

π
ε

� �
= � �Ι 
 �

  (0.84) 

La valeur du coefficient correcteur est obtenue en évaluant numériquement chacun des termes 
intervenant dans l’expression I.  Le tableau II donne la valeur du coefficient pour différentes 
valeurs du rapport h0/R. 

 
TABLEAU II 

COEFFICIENT CORRECTEUR K1 

h0/R 10-2 2 10-2 5 10-2 10-1 2 10-1 5 10-1 
K1 1,0013 1,0025 1,0064 1,0129 1,0264 1,0683 

 

Il reste à trouver une expression simple, faisant apparaître le rapport h0/R uniquement.  La 
figure 11 nous montre que l’évolution du coefficient est sensiblement linéaire.  La recherche 
d’une droite de coefficient de corrélation le meilleur possible nous amène à l’expression 
simple suivante, 

0
1 0,137 1

h
K

R
= +  (0.85) 

La figure 11 illustre la bonne corrélation entre l’évolution du coefficient et son 
approximation. 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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K
1
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0
/R)+1

 

Figure 11 : Coefficient correcteur K1 
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L’approximation nous donne une erreur maximale de 0,1%, ce qui est tout à fait correct. 

 
TABLEAU III 
ERREUR SUR K1 

h0/R 10-2 2 10-2 5 10-2 10-1 2 10-1 5 10-1 
K1 1,0014 1,0027 1,0069 1,0137 1,0274 1,0685 

Err (%) 0,01 0,02 0,05 0,08 0,1 0,02 

 

Nous obtenons finalement l’équation corrigée suivante, 

5 2

0
1

0
1

2

9

0,137 1

f

f

M h
K Eb

R

h
K

R

α π
=

= +
 (0.86) 

De même, pour calculer un angle limite, 

1 0

1 3

4f

R

K E h

π σα =  (0.87) 

Rigidité en torsion 

Il est clair que le coefficient correcteur K1 est également valable dans le cas de la torsion. En 
effet, l’expression mesurant le déplacement angulaire (0.29) en torsion fait intervenir la même 
intégrale (0.5) que dans le cas de la flexion. 

Rigidité en extension 

Nous avons obtenu l’équation complète suivante, en extension, 

2 21

N
u

Eb

α π
ε

∗� �
= −� �

−
 �
  (0.88) 

Le coefficient correcteur s’exprime par, 

1 0
2 2

1

21

h
K

R

α π
π ε

∗
− � �

= −� �
−
 �

 (0.89) 

Le tableau IV nous donne la valeur de ce coefficient correcteur.  La figure 12 en donne la 
représentation graphique.  

 
TABLEAU IV 

COEFFICIENT CORRECTEUR K2 

h0/R 10-2 2 10-2 5 10-2 10-1 2 10-1 5 10-1 
K2 1,085 1,122 1,198 1,287 1,422 1,714 
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L’équation trouvée, qui représente ce coefficient correcteur est la suivante, 

0
2 1 0,97

h
K

R
= +   (0.90) 

Cette équation est également représentée sur la figure 12. 
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Figure 12 : Coefficient correcteur K2 

 

L’erreur maximale est de 1,6 %, comme le montre le tableau V. 

 
TABLEAU V 

ERREUR SUR K2 

h0/R 10-2 2 10-2 5 10-2 10-1 2 10-1 5 10-1 
K2 1,097 1,137 1,217 1,307 1,434 1,686 

Err (%) 1,1 1,4 1,6 1,5 0,8 1,6 

 

L’expression finale de la rigidité en extension est la suivante, 

0
2

0
2

1

1 0,97

hN
K Eb

u R

h
K

R

π
=

= +
 (0.91) 

Rigidité en flexion transverse 

De nouveau, le coefficient correcteur K2 reste valable en flexion transverse, pour la même 
raison que dans le cas de la torsion par rapport à la flexion. En effet, nous retrouvons bien, 
dans l’expression du déplacement angulaire en flexion transverse (0.41), la même intégrale 
que dans le cas de l’extension (0.32). 
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Rigidité en cisaillement technologique d’axe y 

Il a été démontré que la flexion est largement prépondérante. Nous négligerons encore la 
contribution de l’effort tranchant. 

L’équation complète en cisaillement technologique s’écrit, 

( )
3

3 22

3

1

O
v

Eb

ε
ε

= Γ
−

  (0.92) 

L’expression complète du coefficient correcteur est la suivante, 

( )3 2 3 22

3 3

0

1

2

R
K

h

επ
ε
− � �

= � �Γ 
 �
 (0.93) 

Le tableau VI nous donne la valeur de ce coefficient correcteur. La figure 13 en donne la 
représentation graphique.  

 
TABLEAU VI 

COEFFICIENT CORRECTEUR K3 

h0/R 10-2 2 10-2 5 10-2 10-1 2 10-1 5 10-1 
K3 0,9829 0,9683 0,9250 0,8696 0,7760 0,5895 

 

La meilleure équation trouvée pour coller à ces points est la suivante, 

0

3
0

1 0,5

1 2,2

h

RK
h

R

+
=

+
 (0.94) 

Également représentée sur la figure 13. 
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Figure 13 : Coefficient correcteur K3 
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L’erreur maximale est de 1,6 %, comme le montre le tableau VII. 

 
TABLEAU VII 
ERREUR SUR K3 

h0/R 10-2 2 10-2 5 10-2 10-1 2 10-1 5 10-1 
K3 0,9834 0,9674 0,9234 0,8607 0,7639 0,5952 

Err (%) 0,05 0,09 0,17 1,03 1,56 0,97 

 

L’équation est donc, 

3 2

0
3

0

3
0

2

3

1 0,5

1 2,2

hO
K Eb

v R

h

RK
h

R

π
� �= � �

 �

+
=

+

 (0.95) 

Rigidité en cisaillement technologique d’axe z 

L’expression mesurant le déplacement w du col lors d’un cisaillement technologique d’axe z 
(0.68) étant fort proche de celle mesurant le déplacement v du col soumis à un cisaillement 
technologique d’axe y (0.48) et tenant compte du fait qu’il a été montré que la contribution de 
l’effort tranchant est négligeable dans les 2 cas, il est évident que le coefficient K3 est 
également valable dans le cas du cisaillement technologique d’axe z. 

Déplacement de l’extrémité du col 

Nous avons vu qu’à 0h

R

� �
Ο� �� �

 �

près, la rotation du système se fait autour du col.  Ici, nous ne 

pouvons plus négliger le second terme de l’équation (0.81).  Celui-ci représente, lorsque le 
rapport h0/R atteint des valeurs telles que 0,5, jusqu’à 25% du premier terme, ce qui n’est plus 
négligeable. 

Nous devons par conséquent, calculer un coefficient correcteur pour chaque terme de la 
relation (0.81). 

Nous connaissons le premier coefficient grâce à la relation (0.86). 

Le second terme de l’expression nous a donné, 
3

2

3M
v

EbR

ε= Ι  (0.96) 

Où I est donné par l’expression (0.79). 

Le second coefficient se calcule donc par, 
23

0
4 2

h
K

R

ε � �= Ι� �

 �

 (0.97) 
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Le tableau VIII nous donne la valeur de ce coefficient correcteur.  La figure 14 en donne la 
représentation graphique.  

 
TABLEAU VIII 

COEFFICIENT CORRECTEUR K4 

H0/R 10-2 2 10-2 5 10-2 10-1 2 10-1 5 10-1 
K4 0,9950 0,9901 0,9756 0,9524 0,9091 0,8000 

 

La meilleure équation trouvée pour coller à ces points est la suivante, 
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Figure 14 : Coefficient correcteur K4 

 

L’erreur maximale est de l’ordre de 10-11%, autrement dit, 0 %, comme le montre le tableau 
IX. 

TABLEAU IX 
ERREUR SUR K4 

h0/R 10-2 2 10-2 5 10-2 10-1 2 10-1 5 10-1 
K4 0,9950 0.9901 0,9756 0,9524 0,9091 0,800 

Err (%) 0,00 0,00 0,00 0,00 0,00 0,00 

 

L’équation est donc, 
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L’erreur maximale, comparée à la solution exacte, reste inférieure à 1,6 % pour tous les 
coefficients correcteurs [7]. 

Coefficient d’état de surface 
La méthode de fabrication influence la rugosité de la surface définissant le col.  Bien que très 
petite par rapport aux dimensions globales, cette rugosité totale (Rp) correspond à une 
diminution non-négligeable de l’épaisseur minimale, h0 (par exemple, si h0 = 0,1 mm et Rp = 
2,75 µm, sur chaque face, la différence vaut environ 5,5 %).  Cette différence est prise en 
compte comme suit. 

5 2
0

1
0

2
, 1 5

9
f p

r r
f

M Rh
K K Eb K

hRα π
� �

= = −� �

 �

  (0.100) 

Comparaison avec les solutions existantes 
Nous pouvons trouver, dans la littérature, beaucoup de références concernant le calcul des 
cols circulaires. Certaines ont pour objet la méthode d’usinage la plus adéquate de cols 
circulaires [17]-[8], d’autres essayent de prévoir la rigidité des cols [5]-[7] et [18]-[19], 
principalement pour la conception de tels guidages. Tous les auteurs donnent la même relation 
pour la forme asymptotique de la rigidité à la flexion, équation (0.25), ci-après appelée la 
solution de Heinen, car c’est la seule qu’il a publiée [6].  Si nous négligeons cette limite et 
nous focalisons sur les formes utilisables en pratique, les solutions données sont presque 
toutes différentes. Les diverses solutions peuvent alors être comparées et discutées.  

En 1965, Paros et Weisbord [5] ont donné la solution suivante, bien connue. Si 0 2h Rβ = , 

pour un col circulaire complet, ils donnent, 
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 (0.102) 

Cette solution semble être une solution exacte du système des équations différentielles mais 
est contestée comme étant la meilleure solution pour le col circulaire par Zangh et Fasse [15] 
car Paros et Weisbord ont employé la théorie linéaire des poutre, dont les hypothèses 
impliquent qu’elle n’est valable que pour de longues poutres avec des sections transversales 
qui varient graduellement, de façon limitée.   

Bien entendu, nous faisons la même hypothèse. Cependant, nous estimons qu’elle est bien 
respectée car la partie du col reprenant la déformation est concentrée au milieu du col, là où la 
section varie plus lentement, comparé aux extrémités du col. Ceci est clairement illustré sur la 
figure 15 qui montre les rotations locales d’une section du col par rapport à la précédente. Sur 
celle-ci, il est clair que la déformation à lieu principalement pour les coordonnées comprises 
dans l’intervalle [-1.5,1.5], le col s’étendant sur l’intervalle [-5,5]. Cette constatation est 
valable pour des valeurs du rapport h0/R réalistes, c’est-à-dire limitées, comme expliqué plus 
loin.   
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Figure 15 : Rotations locales 

 

Zangh et Fasse ont, eux, calculé les raideurs du col circulaire en le modélisant comme 
système élastique par des éléments finis tridimensionnels soumis aux charges appliquées. Les 
déplacements observés permettent de calculer la rigidité correspondante. En adaptant 
l’ensemble de points obtenus, ils ont déterminé les fonctions suivantes, avec 2b Rγ = . 
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Koster [14] donne aussi des approximations fonctionnelles pour les raideurs, dans l’intervalle 
qu’il appelle le “régime réaliste”, c'est-à-dire, 00 2 0,5h R< < . 
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Dans notre cas, nous limitons le rapport h0/R à 0,5. Nous pensons en effet qu’il n’est pas 
réaliste d’avoir une épaisseur h0 égale au rayon R parce que la rigidité du col circulaire doit 
être limitée (équation(0.25)). De la même manière, l’équation (0.26) montre que pour réduire 
la contrainte pour un déplacement donné, le rapport sera maintenu sous une limite calculée 
par la même équation. Finalement, une dernière raison, et non des moindres, est que la 
concentration de contrainte demeure en dessous de 9 % (Peterson, [13] p 56, fig. 37) quand le 
rapport reste limité à un maximum de 0,5. 

Auparavant, Smith & Chetwynd [18]-[19] ont obtenu une formule empirique semblable à 
celle pour une poutre en porte-à-faux simple, également basé sur une méthode des éléments 
fini. La relation est, 

2
f

f

M EI

KRα
=  (0.114) 

I est le moment d’inertie de la plus petite section du col circulaire, K est déterminé par 

éléments finis et peut-être exprimé par 00,565 0,166
h
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= + .  Finalement, l’expression est 

équivalente à, 
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Toutes les expressions de la raideur en flexion sont représentées sur la figure 16. On y peut 
voir que les solutions de Koster, Zhang & Fasse et Smith & Chetwynd s’éloignent de la nôtre 
quand le rapport h0/R augmente. Nous pouvons ainsi identifier 2 familles de courbes.  La 
différence entre ces 2 familles est, au maximum, de 20 %, ce qui est déjà important. 
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Figure 16 : comparaison entre 5 modèles 

 

Pour un rapport h0/R s’étendant entre 0.025 et 0.07, notre expression de la rigidité en flexion 
semble bien coller aux mesures (pour le détail des mesures, voir un chapitre ultérieur : 
validation expérimentale). Pour trois cols circulaires, c’est la meilleure solution, avec Koster 
pour deux d’entre eux.  

Le choix de la meilleure solution devrait alors être fait en accord avec les valeurs les plus 
élevées de ce rapport. Ainsi, d’autres essais avec des épaisseurs de cols couvrant la gamme 
complète du régime réaliste doivent encore être effectués. 

L’expérience se composerait d’essais avec un nombre important de points de mesure pour 
chaque col, afin d’avoir une approximation acceptable de la rigidité. Il est cependant difficile 
de réaliser la même analyse pour un grand nombre de cols et le résultat peut, dès lors, ne pas 
être complet. Ceci illustre encore d’autres essais à effectuer, avec la détermination de la 
rigidité en torsion, en flexion transversale, etc. Cependant, la rigidité importante est celle en 
flexion. Les autres seront évaluées et le col sera dimensionné pour que ces dernières soient 
d’un ordre de grandeur supérieur. 

On pourrait se demander quel est l’intérêt de chercher une solution du col, alors que celle-ci 
est connue depuis 1965 et est donnée par Paros & Weisbord. En réalité, cette dernière est 
difficilement utilisable en pratique, surtout lorsqu’il s’agit de dimensionner rapidement un col.  
La solution de Zhang & Fasse paraît également un peu trop compliquée. Celle de Smith & 
Chetwynd ne donne une solution que pour la rigidité à la flexion.  Ce modèle est donc 
relativement simple et ne permet pas de définir complètement le col circulaire.  En effet, pour 
certaines valeurs de la largeur b, il se peut que les rigidités en torsion, flexion transverse et 
flexion soient comparables, ce qui serait gênant. Le résultat de Koster paraît alors être la 
solution la meilleure. 
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Ce que nous apportons, c’est la possibilité de déterminer l’épaisseur minimum du col, en 
fonction de tous les paramètres géométriques et structuraux, pour un angle de débattement 
désiré. Il nous semble que c’est cette possibilité offerte qui est le plus important pour une 
application pratique. Nous allons voir dans l’exemple suivant comment notre théorie 
s’applique pour le dimensionnement du col. 

Application numérique 
Imaginons que nous désirions concevoir une pompe à balancier, à petit débit, donc une 
micropompe. Il peut être envisagé, pour l’axe du balancier, d’utiliser un col circulaire, pour 
autant que le mouvement du balancier puisse être limité en amplitude.  Comme il s’agit d’une 
pompe, la force exercée sur le col sera la résultante d’une force de pression, transmise par 
l’intermédiaire du balancier.  Nous aurons alors un couple de rappel, Crp, comme illustré sur 
la figure 17. 

 

Figure 17 : transmission de la pression P au col 

 

Nous traiterons l’exemple d’un balancier en alliage de titane (TiAl6V4).  Nous désirons, par 
exemple, que l’épaisseur du balancier soit de 4 mm et que le rayon du col soit de 1 mm, le 
débattement angulaire maximal du balancier sera de 3°, soit 0,05 rad.  Les caractéristiques du 
titane sont les suivantes :  

- module de flexion, E = 115 000 Mpa, 
- module de torsion, G = 45 000 Mpa, 
- limite élastique, � = 800 Mpa. 

Calculons d’abord l’épaisseur h0 minimale admissible au niveau du col, pour conserver une 
caractéristique élastique du col.  Les équations (0.86) et (0.87) nous donnent, 
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L’équation se réduit à 
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Il s’agit d’une équation du 3ème degré dont la solution est donnée par les formules de Cardan, 
2
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Appliquons un coefficient de sécurité de 1,5 afin de se situer sous la limite élastique. Ainsi, 
l’épaisseur h0 sera de 0,07 mm (le rayon R vaut 1). 

Cette dernière caractéristique géométrique du col définie, déterminons les différentes raideurs 
du col. 

Raideur en flexion : 

5 2 5 2
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1,01 42,6 /
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M hEb
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Rα π π
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Le moment de flexion à appliquer pour atteindre le débattement de 3° demandé est, 

42,6
2,13

20fM Nmm= =  (0.121) 

Il est alors possible de calculer, grâce à cette valeur maximale du couple et connaissant les 
caractéristiques géométriques de la pompe, la pression maximale que la pompe pourra donner. 

Raideur en torsion :  
5 2 5 2
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Cette raideur en torsion nous permet d’évaluer l’influence qu’aurait un excentrement de la 
résultante de la  force de pression sur le jeu qui doit exister entre le balancier et les parties 
fixes de la pompe (les flasques).  Admettons que cet excentrement est de 0,1 mm, que la 
longueur du balancier est de 10 mm et que la pression vaut 0,1 bar. Le couple de torsion 
agissant sur la poutre vaut, 

4 2 3 110 10 410 10 0,4tC F P S Nmm− − −= ⋅ ∆ = ∆ ⋅ ⋅ ∆ = ⋅ ⋅ ⋅ =  (0.123) 

 

Figure 18 : excentricité de la force 
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Cette rotation aura une influence au niveau des jeux.  Afin que la poutre ne touche pas les 
flasques, le jeu minimum de chaque côté de la poutre devra être, en supposant que le balancier 

ait une largeur l = 2 mm, 3 31 610 610 6
2

l
j mm mα µ− −= = ⋅ = = . 

 

Figure 19 : jeu minimum 

 
Raideur en extension, 
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Raideur en cisaillement technologique (axe z), 
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Le déplacement de l’extrémité du col sous l’effet du moment de flexion nécessaire pour 
atteindre un débattement de 3° est, 
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Validation expérimentale 

Des cols circulaires en acier inoxydable dont l’épaisseur varie de 66 à 175µm ont été usinés 
par électro-érosion à fil (WEDM). Dans ce procédé de mise à forme, la pièce à usiner est 
placée dans une solution diélectrique et une différence de tension entre une partie conductrice 
de la pièce et le fil produit un arc électrique formant des zones fondues et vaporisant le 
matériel localement. 

Comme Ryu et Gweon [8] l’ont expliqué, l’electro-érosion à fil est le meilleur processus pour 
usiner des cols circulaires sans impact sérieux sur le mouvement induit par les erreurs 
d'usinage. La seule erreur est une erreur de forme globale. Tosun, Cogun et Inan [9] ont 
déterminé une relation entre la rugosité arithmétique Ra obtenue et les deux paramètres 
importants dans l’usinage par électro-érosion à fil : la durée d'impulsion, ti(µs), et la tension 
de circuit ouvert, ui(V). La relation qu’ils ont obtenue est la suivante, 

( )0,3613 0,32130,048a i iR t u mµ=  (0.124) 

Le rapport entre la rugosité arithmétique Ra et la rugosité totale Rp est déterminé à partir de 
mesures effectuées sur quelques échantillons et vaut  0,43. 

Finalement, les paramètres utilisés en usinant le col cirulaire, ti = 0,7 µs et ui = 80 V, mènent à 
Rp = 4,86 µm. Après l’usinage, un traitement par microbillage est appliqué à la surface, qui 
permet à Rp de diminuer jusque environ 2.75 µm. 

 

Figure 20 : installation expérimentale 

L'installation expérimentale est illustrée sur les figures 20 et 21. Le col circulaire est fixé à 
une extrémité. Une tige (3) est fixée à l'autre extrémité et la force est appliquée par 
l’intermédiaire d’une vis micrométrique (1). Un capteur de force (2), construit par CSEM est 
utilisé pour mesurer la force appliquée. Les caractéristiques principales de ce capteur sont 
décrites dans le Tableau X. 
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Figure 21 : vue du dessus du banc d’essai 

 
 

TABLEAU X 
CARACTÉRISTIQUES DU CAPTEUR 

Type LC-01 

Charge Nominale ± 0,1N 

Résolution Theorique  < 10 µN 

Erreur de linéarité 0,5 % 

Hystérésis < 0,2 % 

Rigidité 0,2 mm / 0,1 N 

Alimentation 5 V / 5 kHz 

 

La figure 23 présente les résultats d’une série de mesures concernant un col particulier (0.066 
millimètres d'épaisseur). Pour chaque position angulaire du col, trois mesures du couple de 
retour ont été effectuées. Le graphique présente seulement les valeurs moyennes pour chaque 
position, la déviance standard étant en dessous de 0.01 Nmm. Ces mesures sont alors 
comparées au couple évalué en utilisant le modèle corrigé ("modèle 1"). 

On peut facilement voir que l'accord entre les mesures et le modèle est bon pour de petits 
déplacements angulaires, inférieurs à 0,2°. Cependant pour de grands déplacements, le 
modèle surestime les données expérimentales. Trois raisons peuvent expliquer la différence. 

Premièrement, la tige utilisée pour appliquer la force au col peut fléchir sous l’effort appliqué. 
Le débattement pour une tige droite fixée à une extrémité et libre à l'autre est, pour une charge 
P, une longueur de tige l et I le moment d'inertie de la section droite,  
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3 3v Pl EI= −  (0.125) 

Ensuite, la force n'est pas appliquée à l'axe du col et celui-ci peut présenter un moment de 
torsion et donc un déplacement qui peut être évalué par 

( )( )1 2

22
r

t

b d l l
v

l

θ + +
=  (0.126) 

Avec r t tM Rθ = , ( ) 2tM P b d= + , d le diamètre de tige, Rt la rigidité en torsion du col, l1 la 

longueur de la tige et l2 la distance entre le centre du col et le point d'attache de la tige. 

 

 

Figure 22 : flexion de la tige 

 

Par conséquent, le déplacement a trois composants : une résultant de la déformation du col 
circulaire (celui-ci est intéressant), une seconde de la flexion de la tige et la troisième de la 
torsion du col. Le déplacement réel est maintenant 

read t f theov v v v= + +  (0.127) 

La dernière étape consiste à transformer le déplacement linéaire déterminé en un déplacement 
angulaire en utilisant la relation 

( )( )1 2tanf a v l lα = +  (0.128)  

Afin de comparer les mesures au modèle, le couple mesuré doit être tracé en fonction du 
déplacement du col, c'est-à-dire,  

theo read t fv v v v= − −  (0.129) 

Le même procédé peut être employé pour des écarts angulaires. La figure 22 montre la 
différence entre l'écart angulaire mesuré à l'extrémité de la tige et l'écart angulaire effectif du 
col. 
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Le « model 2 » de la 23 tient compte de ces 2 modifications (flexion de la tige et torsion du 
col).  

Finalement, le dernier effet qui se fait sentir est du à l’état de surface au niveau du col. En 
effet, le fini de surface du col n'est pas parfait. La rugosité doit être prise en considération 
(elle n'est pas négligeable comparée à l'épaisseur du col). Ainsi la formule théorique doit être 
modifiée et mène à une limite différente pour les mesures. Retournant à la formule (0.100), un 
autre coefficient de correction a été introduit, Kr, avec Rp = 2,75µm. 

Dans le “model 3”, c’est l’expression complète du couple (0.100) qui est considéré. Le 
résultat de cette méthode globale est illustré sur la figure 23. 

 

Figure 23 : Evolution du modèle 
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L’influence de la rugosité est particulièrement intéressante.  Plus l’épaisseur du col est petite, 
plus l’influence de la rugosité est importante.  Cette influence peut être considérée comme une 
réduction de l’épaisseur du col et donc induit une réduction du couple de rappel.  Cependant, 
il est particulièrement difficile de déterminer la valeur exacte de la rugosité du col. Nous 
privilégierons alors le l’affirmation suivante qui consiste à admettre que le couple de retour 
réel se trouve entre le couple évalué par le modèle qui ne tient pas compte de la rugosité et 
celui calculé en utilisant le coefficient correcteur Kr. 

Les figures 24 à 27 illustrent cette comparaison de couple (modélisation comparée aux 
mesures) pour les 4 différents col qui ont été fabriqués.  Comme il a été mentionné plus haut, 
afin de valider le modèle, les mesures doivent se trouver dans l’intervalle défini par les 2 
différents modèles. Cet intervalle est le plus petit pour le col ayant la plus grande épaisseur. 
En effet, dans ce cas, la valeur relative de h0, par rapport à Rp est plus grande et donc 
l’influence de la rugosité est beaucoup moins importante.  

 
 

 

Figure 24 
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Figure 25 

 
Figure 26 
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Figure 27
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Conclusion 
 

Nous avons montré qu’il était possible d’obtenir, dans le cas du col circulaire, des expressions 
analytiques décrivant son comportement en tant que système élastique.  Ceci grâce au célèbre 
changement de variable de Sommerfeld. 

Ces expressions analytiques ne sont pas commodes pour une étude de mécanisme comportant 
un certain nombre de ces cols.  Nous avons alors recherché des expressions simples 
permettant ce genre d’étude, les expressions asymptotiques. Nous avons montré que celles-ci 
ne sont pas encore suffisantes dans certains cas et les avons corrigées pour tenir compte de 
leurs imperfections.  Enfin, nous avons montré que les expressions déduites pour les 
coefficients correcteurs approchent de façon précise la correction idéale à apporter. 

Ainsi, dans tout le domaine de variation du rapport épaisseur sur rayon, nous disposons 
maintenant d’un modèle simple du col circulaire, déduit analytiquement. 

Une série de tests a été effectuée afin de valider les relations trouvées.  La comparaison des 
valeurs mesurées confirme l’exactitude des relations déduites, dans la gamme des rapports 
h0/R des cols fabriqués.  Il est nécessaire de compléter ces  tests par des tests complémentaires 
qui pourraient faire l’objet d’un travail ultérieur. L’expérience se composerait d’essais avec 
un nombre important de points de mesure pour chaque col, afin d’avoir une approximation 
acceptable de la rigidité.  

Nous pouvons donner, ici, encore d’autres pistes à explorer, pour pousser l’étude plus loin. La 
détermination de la rigidité en torsion, en flexion transversale, en extension et cisaillement 
reste encore inexplorée. Cependant, la rigidité importante est celle de flexion. Nous estimons 
que les autres peuvent être évaluées analytiquement et le col pourra être dimensionné pour 
que ces dernières soient d’un ordre de grandeur supérieur. 

Une étude comparative du modèle développé avec un certain nombre de solutions existantes a 
été effectuée.  Il a été montré, grâce aux tests, que le modèle donnait une excellente 
approximation de la réalité pour les cols utilisés.  L’étendue des valeurs du rapport h0/R des 
cols utilisés pour les tests ne permet pas de conclure, comme il a été mentionné, sur la validité 
de la relation sur la gamme complète des valeurs possible du rapport h0/R. 

Finalement, nous mettrons l’accent sur ce que nous apportons dans ce travail. Il s’agit, comme 
on l’a vu dans l’exemple traité, de la possibilité de déterminer l’épaisseur minimum du col, en 
fonction de tous les paramètres géométriques et structuraux, pour un angle de débattement 
désiré. Il nous semble que c’est cette possibilité offerte qui est le plus important pour une 
application pratique. 



La fonction guidage en micromécanique, P. Merken, ULg, 2006 43 

Membrane flexible  

Introduction 
La membrane flexible est une structure monolithique qui permet un mouvement rectiligne par 
déformation. 

Comme pour le cas du col circulaire, les membranes flexibles ont des applications dans des 
domaines variés, que ce soit dans l’évaluation de la déformation des miroirs de télescope 
soumis à leur propre poids [27] ou pour un guidage en translation, de type court, comme 
développé par Van Daele [21].  Le lecteur pourra encore trouver quelques applications dans 
l’ouvrage de Heinen [6].  

Nous donnerons, ici, les principes généraux régissant l’emploi de telles membranes. Une 
étude plus poussée a déjà été effectuées par Vincent Van Daele [21] et renvoyons par 
conséquent le lecteur à son travail pour de plus amples informations. 

Modélisation 
La modélisation est tirée de la résistance des matériaux appliquée aux plaques circulaires 
soumises à des efforts normaux symétriques (donc de flexion). 

De nouveau, afin de développer les équations, nous devons fixer un système d’axes de 
référence. Ce système d’axes est illustré sur la figure 28. L’origine des coordonnées polaires 
sera prise au centre de la plaque.  Par symétrie, le chargement ne dépend que du rayon r.  De 
plus, dans notre cas, les conditions aux limites ne dépendent également que de r.  Les 
équations utilisées seront donc les équations simplifiées des plaques circulaires (0.130), ne 
faisant plus intervenir la coordonnées angulaire θ. 

Le mouvement désiré est un mouvement suivant la normale à la membrane.  Celui-ci sera 
noté v. 
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Figure 28 : paramètres géométriques de la membrane 

 

Afin de permettre au lecteur de comprendre l’orientation donnée à la résolution des équations 
différentielles des plaques, il est utile d’illustrer la façon dont les membranes peuvent être 
utilisées afin de constituer un guidage linéaire. 

Le guidage linéaire, par définition, est un guidage qui permet le mouvement selon une seule 
direction.  La membrane ne remplira ce rôle qui si elle est utilisée, au minimum, par paire, en 
ayant soin de prévoir une distance raisonnable entre celles-ci, comme dans tout guidage 
linéaire. La figure 29 illustre 2 façons différentes d’assurer le guidage par membrane. dans un 
cas, on utilise seulement 2 membranes et dans l’autre, 4, ce qui permet un débattement plus 
important, au prix d’une précision moindre du guidage. 

 

 

 

Figure 29 : utilisation par paire de membranes pour le guidage linéaire 
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Formes Asymptotiques 

Membrane non fendue 

La déformation d’une plaque circulaire soumise à un chargement symétrique est régie par 
l’équation différentielle suivante [26]. 

4 3 2

4 3 2 2 3

2 1 1 ( )d v d v d v dv p r

dr r dr r dr r dr D
+ − + = −  (0.130) 

On peut encore l’écrire sous la forme, 

1 1 ( )d d d dv p r
r r

r dr dr r dr dr D

� �� �� � = −� �� �� 	

 �� 
� �

 (0.131) 

La résolution de cette équation amène 4 constantes d’intégration, qui seront déterminées par 
les conditions d’appui et le chargement. 

Le cas qui nous intéresse est celui où le bord extérieur est encastré, tandis que le bord 
intérieur est simplement appuyé.  Pour des bords se trouvant à un rayon a pour l’intérieur et b 
pour l’extérieur, nous avons, 

( )

( )
( )

( ) 0 1

( ) 0 2

( ) 0 3r

v r b

dv
r b

dr
M r a

= =

= =

= =

  (0.132) 

La troisième condition peut encore être mise sous la forme, 

( )
2

2
0 3'

r a

d v dv

dr r dr

υ

=

+ =  (0.133) 

En ce qui concerne le chargement, celui-ci étant transmis par l’intermédiaire d’un axe sur tout 
le contour de rayon a, nous pouvons dire que nous avons une force par unité de longueur 
égale à  P/2πa, si P est la force exercée par l’actuateur.  L’effort tranchant par unité de 
longueur sur une circonférence de rayon r est 

1( )
2

KP
T r

r rπ
= =   (0.134) 

L’effort tranchant s’exprime aussi par l’équation différentielle,  

( )d v
T D

dr

∆
=   (0.135) 

où D est la rigidité à la flexion de la plaque, définie par 

( )
3

212 1

Eh
D

υ
=

−
  (0.136) 

En combinant les expressions (0.134) et (0.135), nous obtenons, 

11 Kd d dv K
r

dr r dr dr Dr r

� �� � = =� �� 	

 �� 


 (0.137) 
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En intégrant, nous obtenons, 

( )
2 2

1 2 3ln 1 ln
4 4

r r
v K r A A r A= − + + +  (0.138) 

Nous déduisons alors les dérivées intervenant dans (0.133), 

2
1

1
ln

2 2 2

Adv r r
K r A

dr r
� �= − + +� �

 �

 (0.139) 

2
1 2

2 2

1
ln

2 2 2

A Ad v K
r

dr r
� �= + + −� �

 �

 (0.140) 

D’où la condition (3’) s’écrit, 

( ) ( ) ( ) 2
1 2

1
ln 1 0

2 4
r a

AK
K r A

r

υ
υ

=

+ � �+ + − − =� �

 �

 (0.141) 

Les conditions limites (2) de (0.132) et (3’) nous permettent de déduire A2.  Après quelques 
calculs, nous obtenons, 

2

2 2

1 2ln

4

Ka
A

γ ρ
ρ γ

+ +=
+

 (0.142) 

si nous appelons respectivement ρ et γ les rapports suivants, 

a

b
ρ =   (0.143) 

1

1

υγ
υ

−=
+

  (0.144) 

En réinjectant cette valeur de la constante A2 dans la condition (2) du système d’équations 
(0.132), nous obtenons la valeur de A1, 

2

1 2

1 1 2ln
ln

2 2
A K b

ρ γ ρ
ρ γ

� �+ += − −� �+
 �
 (0.145) 

Finalement, la condition (1) nous permet d’obtenir A3.  Après de nombreuses simplifications, 
nous obtenons, 

2 2

3 2

1 2ln 1
ln

8 4 2

Kb Ka
A b

γ ρ
ρ γ

+ + � �= + −� �+ 
 �
 (0.146) 

Nous pouvons dès lors calculer la raideur de la membrane, 

2

r a r a

P hDK
R

v v

π

= =

= =   (0.147) 

Avec, 

( ) ( )( )
2

2 2 2 2 2
2

1 2ln
2 ln 1 2 ln 1

8r a

Kb
v

γ ρρ ρ ρ ρ ρ ρ ρ
ρ γ=

� �� �+ += + − + + −� 	� �+
 �� 

 (0.148) 

Ce résultat est bien confirmé par Roark et Young [28], qui donnent, pour une plaque circulaire 
encastrée-appuyée, le résultats suivant, 
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3
1 6

3
4

r a

C Lwb
v L

D C=

� �
= − −� �
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 (0.149) 

avec, 

1
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 (0.150) 

Le lecteur vérifiera aisément l’équivalence des 2 résultats. 

Finalement, la raideur de la plaque encastrée-appuyée est donnée par l’expression, 

( ) ( )( )
2

2 2 2 2 2
2

16 1

1 2ln
2 ln 1 2 ln 1

NF

D
R

b

π
γ ρρ ρ ρ ρ ρ ρ ρ
ρ γ

=
� �+ ++ − + + −� �+
 �

 (0.151) 

Cette relation nous permet de déterminer la raideur d’une membrane encastrée à l’extérieur et 
simplement appuyée à l’intérieur, dont le rapport entre les rayons intérieur et extérieur est ρ. 

Nous pouvons calculer la raideur asymptotique de la membrane, c’est-à-dire lorsque le 
paramètre ρ  tend vers 0. En effet, nous avons, successivement,  

( )
2

2 2

2

1 1

1 0

ln 0

ρ
ρ ρ

ρ ρ

− =

− =

=

  (0.152) 

Et donc, 

( ) ( )( )2 2 2 2 2
20

1 2ln
lim 2 ln 1 2 ln 1 1
ρ

γ ρρ ρ ρ ρ ρ ρ ρ
ρ γ→

� �� �+ ++ − + + − =� 	� �+
 �� 

 (0.153) 

Nous obtenons donc, finalement, pour la raideur asymptotique de la membrane non fendue 
encastrée-appuyée, 

2

16
NF

D
R

b

π=   (0.154) 

Nous pouvons encore faire ressortir le terme matériau et le terme géométrie de l’expression de 
la raideur, en exprimant la valeur de D. 

( )
3

22

4

3 1
NF

E h
R

b

π
υ

=
−

  (0.155) 
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Cette raideur asymptotique correspond à la raideur de la membrane non percée.  Nous 
constatons d’ailleurs que la dimension a, le diamètre du trou intérieur, n’intervient plus. 

L’expression nous montre clairement que, le paramètre matériau étant déterminé, il est plus 
intéressant de diminuer l’épaisseur de la membrane que d’augmenter son encombrement.  
C’est intéressant dans le cas de la micromécanique étant donné que l’on ne peut augmenter 
indéfiniment les dimensions.  Cependant, il est clair qu’il existe une limite inférieure à 
l’épaisseur que l’on peut donner à la membrane, pour des raisons technologiques et pour 
éviter le déchirement de la membrane sous charge ou lors du montage. 

Membrane fendue 

Une méthode possible afin de diminuer un peu plus la raideur membranaire est de fendre 
radialement la membrane, comme illustré à la figure 31.   

Dans ce cas, pour le calcul, il faut distinguer les parties fendues et non fendues.  Comme la 
partie fendue est moins rigide, elle va reprendre quasiment l’ensemble de la déformation.  
Nous pouvons alors négliger la partie non-fendue dans la modélisation. 
 

 

Figure 30 : géométrie de la membrane découpée 

 

Soit n le nombre de fentes, pour autant qu’il soit suffisamment grand, nous pouvons assimiler 
la membrane à n poutres consoles dont la largeur est linéairement croissante avec le rayon. 

La membrane étant chargée par un effort P, une section de rayon r, mesuré à partir du centre, 
subira un moment donné par, 

( )( )
P

M r r a
n

= −   (0.156) 

L’inertie de la poutre variera avec le rayon, 

32
( )

12

rh
I r

n

π=   (0.157) 
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Le déplacement total de la poutre est donné par, 

( )
3 3

12 6

2

b b b

a a a

P r aM n P a r
dr dr dr

EI n rh E h E r
α

π π
− −= = =� � �  (0.158) 

En utilisant le rapport ρ défini précédemment, nous obtenons, 

( )3

6
1 ln

Pb

h E
α ρ ρ ρ

π
= − +  (0.159) 

La raideur en rotation est alors, 

( ) ( ) ( )
3 3 1

6 1 ln 6 1 ln
r b

M P h E h E
R b a

n Pb n

π π ρ
α ρ ρ ρ ρ ρ ρ

= −= = − =
− + − +

 (0.160) 

La raideur totale est nR. Elle est donc indépendante du nombre de fentes. 

Cependant, c’est la raideur en translation qui nous intéresse.  Pour la déterminer, nous partons 
de l’expression de la courbure d’une poutre console soumise à un moment de flexion M. 

2

2

d v M

dr EI
=  (0.161) 

Une première intégration nous donne l’angle de rotation α.  

( ) 13

6
ln

P
r a r A

h E
α

π
= − +  (0.162) 

La constante A1 est déterminée par la condition ( ) 0r bα = = .  Nous obtenons alors 

( )3

6
ln

P r
r b a

h E b
α

π
� �= − −� �

 �

 (0.163) 

Une seconde intégration nous donne le déplacement v.  La constante d’intégration A2 est 
déterminée par la condition ( ) 0v r b= = . 

2

3

6
1 ln

2 2

Pb r r b
v ar r b b a

Eh bπ
� �� � � � � �= − + − + −� � � � � �� �


 � 
 � 
 �
 �
 (0.164) 

On calcule alors la raideur comme auparavant. 

( )
3

2 2

1

3 1 4 3 2ln
r a

P n Eh
R

v nb

π
ρ ρ ρ

=

= =
− + −

 (0.165) 

Et, pour l’entièreté de la membrane, 

( )
3

2 2

1

3 1 4 3 2lnF

Eh
R nR

b

π
ρ ρ ρ

= =
− + −

 (0.166) 

Celle-ci peut être retrouvée en utilisant l’énergie de déformation. En effet, 

21

2

b

tot

a

M
U n dr

EI
= �  (0.167) 

Et 
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totdU
v

dP
=  (0.168) 

Finalement, 

P
R

v
=  (0.169) 

On retrouve bien la même expression. 

Calculons la valeur de la raideur, pour un rapport ρ tendant vers 0, nous avons, 

( )2

0
lim 1 4 3 2ln 1
ρ

ρ ρ ρ
→
� �− + − =� 
  (0.170) 

Et donc, la raideur asymptotique de la membrane fendue s’exprime par, 

3

23F

Eh
R

b

π=  (0.171) 

Nous pouvons faire les mêmes constatations que dans le cas de la membrane non fendue.  En 
effet, afin de diminuer la raideur, il faut jouer sur les paramètres matériau et géométrique, 
sachant qu’il est plus intéressant de diminuer l’épaisseur que d’augmenter le diamètre 
extérieur. 

Cette raideur est de nouveau indépendante du nombre de fentes.  Il est cependant nécessaire 
d’avoir un nombre de fente suffisant afin de garantir l’absence d’effets membranaires qui 
introduiraient alors un terme supplémentaire à la rigidité de la membrane. 

Faisons enfin remarquer, que dans le cas du guidage, la solution de la membrane non percée, 
même fendue, n’a pas beaucoup d’intérêt, comme le montre bien la figure 31, sauf dans le cas 
où l’on peut coller la membrane à la pièce à guider.  

 

 

Figure 31 : montage d’une membrane encastrée-appuyée 
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Coefficients de correction 
Ainsi qu’il vient d’être fait remarqué, la solution de la membrane non percée n’a d’intérêt que 
dans de rare cas.  En pratique, il faut tenir compte d’un trou dans la membrane, et donc le 
rapport ρ ne peut plus être assimilé à 0.  Il est alors nécessaire de revenir aux relations 
complètes donnant la raideur.  Comme dans le cas du col circulaire, celles-ci ne sont 
cependant pas facilement applicables.  Nous avons donc recherché une méthode permettant de 
déterminer plus facilement la raideur des membranes fendues et non fendue. 

La démarche est la même que dans le traitement des raideur du col circulaire. Nous 
multiplions la forme asymptotique par un coefficient correcteur qui est calculé à partir de la 
relation globale et nous recherchons une loi simple approchant ce coefficient correcteur, en 
fonction des paramètre principaux.  

Membrane non fendue  

Reprenons la relation asymptotique (0.151) de la membrane non fendue, 

( ) ( )( )
2

2 2 2 2 2
2

16 1

1 2ln
2 ln 1 2 ln 1

NF

D
R

b

π
γ ρρ ρ ρ ρ ρ ρ ρ
ρ γ

=
� �+ ++ − + + −� �+
 �

 (0.172) 

Afin de simplifier la lecture, nous pouvons mettre la raideur sous la forme, 

( )
3

22

4

3 1
NF NF

E h
R K

b

π
υ

=
−

 (0.173) 

Nous calculons alors la valeur du coefficient KNF, pour différentes valeurs de ρ. Le coefficient 
de poisson intervient dans la valeur de KNF.  Nous l’avons listé dans le tableau XI,  pour le cas 
de l’acier et du titane, dont le coefficient de poisson est 0.3 et pour le cas de l’aluminium, 
avec un coefficient de poisson de 0.33. 

 
TABLEAU XI 

COEFFICIENT KNF 

ρ 0,01 0,02 0,05 0,1 0,2 0,25 

Acier, Titane 0,989 0,972 0,921 0,872 0,914 1 

Aluminium  0,988 0,970 0,915 0,860 0,896 0,979 

 

La figure 32 donne un aperçu de l’allure générale de la variation du coefficient KNF pour 
différentes valeurs du coefficient de poisson, en fonction du rapport des diamètres intérieur et 
extérieur de la membrane.  Nous limitons ce rapport à 0,25, ce qui nous semble être plus que 
suffisant étant donné que nous désirons de la souplesse dans la membrane. Cette souplesse 
étant d’autant plus grande que le rapport est faible. 
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Figure 32 : Coefficient KNF de la membrane encastré-appuyée 

 

Nous voyons sur cette figure que le coefficient KNF, peut encore être exprimé sous la forme 
d’une relation simple du second degré en fonction de ρ, les coefficients dépendants 
directement de υ, 

( ) ( )25,9 7,3 4 1,1 1NFK υ ρ υ ρ= + − + +  (0.174) 

Le tableau XII donne les valeurs du coefficient KNF, pour différentes valeurs du rapport ρ, 
dans les cas de l’acier, du titane et de l’aluminium. 

 
TABLEAU XII 

COEFFICIENT KNF ESTIMÉ 

ρ 0,01 0,02 0,05 0,1 0,2 0,25 

Acier, Titane 0.977 0,955 0,902 0,851 0,886 0,973 

Aluminium  0,978 0,958 0,908 0,861 0,903 0,992 

 

Evidement, cette relation simplifiée introduit une erreur sur la raideur, mais qui est toujours 
limitée, comme l’indique le tableau XIII, où l’erreur est indiquée en calculée en pourcentage 
de la valeur réelle du coefficient. 
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TABLEAU XIII 
ERREUR SUR LE COEFFICIENT KNF ESTIMÉ (%) 

ρ 0,01 0,02 0,05 0,1 0,2 0,25 

Acier, Titane 1,20 1,54 1,38 1,16 1,11 0,64 

Aluminium  1,17 1,53 1,49 1,36 1,26 0,84 

 

Signalons enfin qu’il existe un optimum, comme le montre bien la figure 32. Nous pouvons 
alors calculer la valeur de ρ  à l’optimum, 

1 4 1,1

2 5,9 7,3opt

υρ
υ

+=
+

  (0.175) 

Et donc, le coefficient KNF, à l’optimum, 

( )
216 14,8 28

4 5,9 7,3NFoptK
υ υ

υ
− + +=

+
 (0.176)  

Les valeurs particulières, pour l’acier, le titane et l’aluminium sont reprises dans le tableau 
XIV.  

 
TABLEAU XIV 

VALEUR OPTIMALE DE ρ ET KNF 

 ρopt KNFopt 

Acier, Titane 0,127 0,854 

Aluminium  0,131 0,842 

 

Membrane fendue 

De nouveau, nous pouvons mettre l’expression (0.166) mesurant la raideur de la membrane 
fendue,  sous une forme plus lisible qui met en évidence le coefficient de correction, 

3

23F F

h
R K E

b

π=  (0.177) 

Les valeurs du coefficient KF sont reprises dans le tableau XV, il ne dépend plus du 
coefficient de poisson, nous ne distinguons donc plus le matériau. 

 
TABLEAU XV 
COEFFICIENT KF 

ρ 0,01 0,02 0,05 0,1 0,2 0,25 

KF 1,040 1,082 1,216 1,479 2,228 2,772 

 
La figure 33 illustre l’allure de ce coefficient. 
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Figure 33 : Coefficient KF de la membrane encastré-appuyée 

 
Le coefficient de correction ayant une tendance quadratique, la relation trouvée sera de forme 
quadratique, 

216,4 2,82 1,02FK ρ ρ= + +  (0.178) 

Nous retrouvons, dans le tableau XVI, les valeurs du coefficient KF données par cette dernière 
relation.  La figure 33 illustre également la bonne concordance entre le coefficient réel et celui 
estime. 

 
TABLEAU XVI 

COEFFICIENT KF ESTIMÉ 

ρ 0,01 0,02 0,05 0,1 0,2 0,25 
KF 1,050 1,083 1,202 1,466 2,24 2,750 

 

Enfin, nous avons calculé l’erreur commise par l’approximation, afin de montrer que celle-ci 
est valable. Le tableau XVII reprend les différentes erreurs calculées, toujours exprimées en 
pourcentage du coefficient réel. 
 

TABLEAU XVII 
ERREUR SUR LE COEFFICIENT KF ESTIMÉ 

ρ 0,01 0,02 0,05 0,1 0,2 0,25 
Err (%) 0,91 0,1 1,14 0,89 0,52 0,78 
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Comparaison des deux types de membrane 
Nous pouvons comparer la raideur des membranes fendues et non fendues. 

21

4
F F

NF NF

R K

R K

υ−=   (0.179) 

Les valeurs de ce rapport sont tabulées dans le tableau XVIII. 

 
TABLEAU XVIII 

RAPPORT DES RAIDEURS 

ρ 0,01 0,02 0,05 0,1 0,2 0,25 

Acier, titane 0,239 0,253 0,3 0,386 0,555 0,630 

Aluminium 0,234 0,248 0,296 0,383 0,554 0,631 

 

Ce tableau montre l’intérêt d’utiliser des membranes fendues lorsque cela est possible.  En 
effet, l’effort à développer, pour une même course, sera moindre. 

La figure 34 donne un aperçu d’autres découpes que l’on peut envisager afin de réduire de 
façon drastique la raideur de la membrane. 

Vincent Van Daele [21] a étudié par éléments finis les déformations de la première et la 
quatrième membrane et les a comparées avec la membrane non découpée.  Il a montré que, 
dans ces cas, les raideurs sont divisées par un facteur non négligeable. 

 

 

Figure 34 : types de découpes 
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Aspects de fabrication 
La figure précédente présente des solutions permettant de diminuer drastiquement la raideur 
en translation des membranes, comme Van Daele l’a montré [21]. 

Dans ce travail, où l’on cherche clairement à proposer des solutions pratiques permettant 
d’intégrer ces systèmes de guidage à des ensembles mécaniques complexes, il convient de 
discuter des possibilités de fabrication de ces types de membranes. 

En effet, le lecteur doit garder à l’esprit que les dimensions envisagées ici sont de l’ordre du 
millimètre.  Le diamètre extérieur d’une membrane n’excédera donc pas, dans les cas les plus 
larges, une dizaine de millimètre. Ainsi, comme montré dans le tableau XIV, le diamètre du 
trou intérieur sera d’environ 1,25 mm.  Si nous prenons le cas de la première membrane de la 
figure, par exemple, nous pouvons compter 3 réseaux de fentes à des diamètres croissants, 
compris entre 1,25 et 10 mm.  Van Daele [21] a optimisé la position de ces fentes afin 
d’obtenir la raideur la plus faible.  Il a ainsi déterminé les 3 diamètres suivants (aux 
approximations près, le but, ici, étant d’illustrer la réflexion), 5,5 mm, 6,2 mm et 7 mm, pour 
une largeur de fente de 0,2 mm et une épaisseur de membrane de 0,1 mm. Il est évident que 
de telles découpes ne peuvent être facilement obtenues pas des procédés classiques de mise à 
forme. 

Tentons d’imaginer le résultats obtenu avec le procédé le plus utilisé pour découper des 
rondelles : le poinçonnage.  Cette technique exige la fabrication d’un poinçon et d’une 
matrice. Ceux-ci doivent nécessairement être fabriqués dans un matériau plus dur que la 
matière choisie pour les membranes.  D’une manière générale, ils sont réalisés en acier 
trempé, la trempe étant effectuée après usinage des formes.  Dans notre cas, le poinçon doit 
comporter de fines lamelles dont l’épaisseur est inférieure à 0,2 mm pour tenir compte de 
l’épaisseur de coupe.  Ces lamelles doivent dépasser d’une longueur supérieure à l’épaisseur 
de membrane.  Si l’on envisage d’usiner ces lamelles dans la masse et de tremper le poinçon 
par après, on doit ôter énormément de matière par rapport à la matière brute.  L’opération de 
trempe risque d’induire des déformations catastrophiques pour ces fines lamelles élancées.   

Nous pouvons imaginer d’inverser l’ordre des opérations, c'est-à-dire utiliser de la matière 
brute trempée et revenue afin d’éliminer au maximum les contraintes résiduelles.  Cependant, 
il faut encore usiner des formes complexes très petites, dans une matière durcie à HRC 50 ou 
plus. Parmi les procédés d’usinage capable d’effectuer ces opérations, nous pouvons trouver 
l’usinage à grande vitesse, permettant d’utiliser des fraises de dimensions de l’ordre de  
0,1 mm et capable d’usiner de la matière trempée à plus de HRC 50.   

Une autre technique est l’électro-érosion par enfonçage, procédé qui « dissout » la matière par 
décharge électrique2.  Ce procédé exige cependant, au préalable, le façonnage d’une électrode, 
négatif de la pièce à réaliser.  Le procédé n’appliquant pas d’effort sur la pièce à usiner, il n’y 
a pas d’exigence particulière sur la dureté et la résistance de l’électrode.  La seule nécessité 
est qu’elle soit conductrice.  Généralement, les électrodes sont réalisées en cuivre ou en 
graphite.  Il faut donc, tout de même, réaliser une électrode dont la forme est le négatif du 
poinçon.  Cette électrode ne doit pas nécessairement être réalisée d’une seule pièce, nous 
pouvons donc envisager toute sorte d’inserts et de technique de maintien de ceux-ci. 

Il est évident que la réflexion doit être également menée pour l’usinage de la matrice, qui est 
de forme inverse du poinçon. Cette remarque conduit directement au fait que la technique de 

                                                 
2 Il s’agit, ici, d’une présentation trop simpliste du procédé d’usinage par électro-érosion.  Cependant, le but de 
ce travail n’étant pas d’exposer en détails les techniques de fabrication, nous renvoyons le lecteur à la littérature 
spécialisée pour de plus amples explications concernant cette méthode de mise à forme. 
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l’électro-érosion par enfonçage permet également d’obtenir directement la membrane de 
forme voulue, sans passer par le poinçonnage.  Ceci est plus avantageux étant donné qu’il n’y 
a pas, comme mentionné précédemment, d’effort appliqué sur la pièce à mettre à forme.  En 
effet, dans le cas du poinçonnage, l’effort de découpe du matériau aurait tendance à déformer 
les lamelles et donc à rendre rapidement inutilisable le poinçon. 

Une dernière technique qu’il nous paraît intéressant à investiguer est la découpe Laser. Les 
seuls paramètres limitant cette technique est la largeur du faisceau ainsi que son cône, qui 
limite le rapport largeur sur profondeur de la fente.  De nouveau, cette technique n’applique 
aucun effort sur la pièce à usiner.  Il faut cependant prendre garde à l’échauffement qui 
pourrait induire des déformations importantes. 

Conclusion 
Nous avons, grâce à la théorie des plaques circulaires soumises à des efforts normaux 
symétriques, déduit des relations donnant la raideur des membranes percée et non découpées.  
Les membranes fendues ont été, elles, résolues par les équations classiques de la mécanique 
des matériaux appliquées aux poutres à largeur variable. 

De nouveau, des formes asymptotiques ont d’abord été trouvées avant de leur appliquer un 
coefficient correcteur afin de tenir compte du fait que les cas pratiques ne sont quasiment 
jamais des cas dans lesquels les formes asymptotiques sont valables.  Des formes simples et 
originales des coefficients correcteurs ont été déterminées, faisant intervenir le paramètre 
géométrique sans dimension principal, le rapport entre le diamètre intérieur du perçage central 
et le diamètre extérieur de la membrane. 

Nous avons également comparé les raideurs obtenues dans les 2 cas précités, c'est-à-dire la 
membrane intacte et la membrane découpée, pour montrer l’intérêt de fendre radialement les 
membranes afin de diminuer la raideur, source de perte d’énergie.  

D’autres exemples de solutions ont été succinctement présentés. Celles-ci ne sont absolument 
pas dénuées d’intérêt, mais leur étude sort du cadre défini pour ce travail. 

Enfin, nous avons discuté rapidement sur les précautions à prendre lorsque l’on imagine une 
forme de découpe permettant de diminuer la raideur de la membrane.  Cette découpe n’est pas 
nécessairement réalisable d’un point de vue pratique et il convient dès lors d’envisager une 
conception intégrée qui tient compte des moyens de fabrication existant. La question de la 
fabrication des membranes reste en grande partie ouverte, quelques essais ayant déjà été 
effectués pour le travail de Van Daele [21]. 

Cette partie concernant les membranes percées, loin d’être exhaustive, indique déjà une 
tendance générale permettant d’envisager l’emploi de membranes simples, avec une 
estimation de la force à déployer afin d’obtenir un déplacement déterminé. 
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Conclusion 

Le guidage d’éléments de micromécanique n’est pas une chose aisée. Au cours d’un projet de 
recherche, nous avons été assez tôt confronté au choix d’une méthode de guidage efficace en 
micromécanique. Les procédés classiques sont vite apparus difficilement applicables et nous 
avons du nous tourner vers des méthodes moins conventionnelles. Les procédés de guidage 
élastique ont montrés de grandes qualités, pour autant que l’on se contente d’une course 
limitée et qu’une énergie d’actuation suffisante puisse être développée. 

Nous avons ainsi investigué deux systèmes, l’un travaillant en rotation, le col circulaire, et 
l’autre en translation, la membrane. La littérature ne donnant pas de règles applicables 
directement lors d’un prédimensionnement, nous nous sommes penché sur le fonctionnement 
de ces systèmes afin d’en faire ressortir des lois simples d’application et originales.  Celles-ci 
permettent de prendre une décision rapide concernant la pertinence ou non de l’un de ces 
systèmes de guidage. Nous pensons, en effet, que le besoin premier d’un designer n’est pas de 
développer de grandes équations ni d’user sans ménagement des éléments finis, mais de 
pouvoir faire un choix aisé parmi toutes les solutions possibles qui s’offrent à lui. Libre à lui, 
après, de mener toutes les études complémentaires qu’il jugera nécessaires. 

Les lois simples concernant les raideurs des systèmes envisagés ont été rassemblées sur une 
page de formulaire située à la fin de cet ouvrage, cela illustre bien leur caractère condensé, 
gage de facilité d’utilisation. 

Nous terminerons par rappeler que le sujet, loin d’être entièrement couvert par cette étude, 
mérite encore d’être développé. Un certain nombre de pistes de travail ont déjà été 
mentionnées, rappelons les tests à effectuer sur les cols circulaires, l’étude des découpes de 
membranes ou encore les moyens de fabrication de ces éléments. Le lecteur avisé ne 
manquera pas d’en découvrir d’autres encore. Finalement, nous pensons que ce travail 
constitue une contribution intéressante à l’étude des cols circulaires et des membranes 
employés comme système de guidage flexible, contribution permettant l’application des 
guidages à faible débattement et à raideur contrôlée dans un cas concret. 
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Nomenclature 

ααααf Angle de rotation autour de l’axe Z 
ααααft Angle de rotation autour de l’axe Y 

ααααt Angle de rotation autour de l’axe X 
ββββ Rapport h0/2R 

γγγγ Rapport b/2R 
ϕϕϕϕ Azimuth, selon l’axe Y 
θθθθr Angle de rotation selon l’axe X  du à l’excentrement de la force appliquée 
ρρρρ Rapport h0/R, dans les cols circulaire et rapport des diamètres intérieur et extérieur, 
dans les membranes trouées 
σσσσ Contrainte dans le col circulaire 
σσσσmax Contrainte maximale dans le col circulaire 
υυυυ Coefficient de poisson 
a Rayon intérieur dans la théorie des membranes 
b Rayon extérieur dans la théorie des membranes, épaisseur dans la théorie des cols 
D Rigidité en flexion des plaques 
E Module élastique (Module de Young) 
G Module de torsion 
h Epaisseur de membrane  
h0 Epaisseur minimale du col circulaire 
I Moment d’inertie de la section transversale du col 
K Coefficient multiplicateur dans la théorie de Smith et Chetwynd 
K1 Coefficient correcteur en flexion dans la théorie de Merken et Debongnie 
K2 Coefficient correcteur en extension dans la théorie de  Merken et Debongnie 
K3 Coefficient correcteur en cisaillement dans la théorie de Merken et Debongnie 
K4 Coefficient correcteur en déplacement dans la théorie de Merken et Debongnie 
KF Coefficient correcteur pour la membrane fendue dans la théorie de Merken et 
Debongnie 
KNF Coefficient correcteur pour la membrane fendue dans la théorie de Merken et 
Debongnie 
Kr Coefficient correcteur en état de surface dans la théorie de Merken et Debongnie 
M Couple de flexion des membranes 
Mf Couple de flexion autour de l’axe Z 
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Mft Couple de flexion autour de l’axe Y 
Mt Couple de torsion autour de l’axe X 
N Tension selon l’axe X 
O Tension de cisaillement selon l’axe Y 
P Tension de cisaillement selon l’axe Z 
R Rayon du col circulaire 
Ra Rugosité arithmétique 
Rp Rugosité totale 
Rt Raideur en torsion du col selon l’axe X 
ti Durée d’impulsion en WEDM 
u Déplacement selon l’axe X 
ui Tension de circuit ouvert en WEDM 
v Déplacement selon l’axe Y 
vread Déplacement mesuré par le capteur 
w Déplacement selon l’axe Z 
X Axe X du système de coordonnées, aligné avec l’axe de symétrie du col circulaire 
Y Axe Y du système de coordonnées, aligné sur la ligne des centres des 2 arcs définissant 
le col circulaire 
Z Axe Z du système de coordonnées, perpendiculaire aux axes X et Y.
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Annexes 

Mesures sur les cols circulaires 
 

Résultats des mesures 
Epaisseurs en mm 
αf  déplacement angulaire, en degrés 
Mf  Couple de reaction, en Nmm 

col 1 : 0,066 col 2 :  0,072 col 3 :  0,146 col 4 : 0,175 
αf Mf αf Mf αf Mf αf Mf αf Mf αf Mf αf Mf 

0.0011 -0.0188 1.1660 0.8146 -0.0003 0.0094 0.7172 0.7252 0.0002 -0.0188 0.5528 3.7435 0.0001 -0.0188 
0.0006 -0.0141 1.1660 0.8146 -0.0011 0.0188 0.7176 0.7204 -0.0001 -0.0141 0.5522 3.7529 -0.0004 -0.0094 
0.0006 -0.0141 1.1660 0.8146 -0.0003 0.0094 0.7176 0.7204 -0.0004 -0.0094 0.5539 3.7247 -0.0001 -0.0141 
0.0533 0.0518 1.2773 0.8900 0.0532 0.0848 0.7726 0.7770 0.0540 0.0800 0.5960 4.0213 0.0444 0.2543 
0.0528 0.0565 1.2773 0.8900 0.0532 0.0848 0.7730 0.7722 0.0523 0.1083 0.5948 4.0402 0.0489 0.1742 
0.0533 0.0518 1.2773 0.8900 0.0536 0.0800 0.7730 0.7722 0.0548 0.0659 0.5954 4.0307 0.0505 0.1460 
0.1085 0.0942 1.3887 0.9653 0.1083 0.1413 0.8277 0.8335 0.0950 0.3955 0.6369 4.3368 0.0801 0.6781 
0.1080 0.0989 1.3892 0.9606 0.1083 0.1413 0.8285 0.8240 0.0941 0.4097 0.6377 4.3227 0.0852 0.5886 
0.1085 0.0942 1.3892 0.9606 0.1087 0.1366 0.8288 0.8193 0.0933 0.4238 0.6377 4.3227 0.0849 0.5933 
0.1642 0.1318 1.5000 1.0406 0.1638 0.1931 0.8831 0.8853 0.1373 0.6875   0.1169 1.0830 
0.1637 0.1366 1.5005 1.0359 0.1638 0.1931 0.8843 0.8711 0.1356 0.7157   0.1214 1.0030 
0.1642 0.1318 1.5005 1.0359 0.1642 0.1884 0.8843 0.8711 0.1384 0.6686   0.1222 0.9888 
0.2198 0.1695 1.6123 1.1066 0.2188 0.2496 0.9386 0.9371 0.1783 1.0030   0.1547 1.4691 
0.2198 0.1695 1.6113 1.1160 0.2192 0.2449 0.9397 0.9229 0.1772 1.0218   0.1585 0.4032 
0.2198 0.1695 1.6118 1.1113 0.2196 0.2401 0.9390 0.9323 0.1791 0.9888   0.1595 1.3844 
0.2755 0.2072 1.7236 1.1819 0.2747 0.2967 0.9936 0.9936 0.2195 1.3138   0.1923 0.8600 
0.2755 0.2072 1.7231 1.1866 0.2743 0.3014 0.9948 0.9794 0.2190 1.3232   0.1963 1.7893 
0.2755 0.2072 1.7236 1.1819 0.2747 0.2967 0.9944 0.9841 0.2203 1.2996   0.1961 1.7941 
0.3869 0.2825 1.8349 1.2572 0.3298 0.3532 1.0487 1.0501 0.2613 1.6151   0.2297 2.2555 
0.3869 0.2825 1.8344 1.2620 0.3298 0.3532 1.0502 1.0312 0.2599 1.6387   0.2334 2.1896 
0.3869 0.2825 1.8349 1.2572 0.3298 0.3532 1.0499 1.0359 0.2621 1.6010   0.2337 2.1849 
0.4988 0.3532 1.9466 1.3279 0.3852 0.4050 1.1045 1.0972 0.3028 1.9212   0.2681 2.6322 
0.4978 0.3626 1.9461 1.3326 0.3860 0.3955 1.1053 1.0877 0.3028 1.9212   0.2710 2.5804 
0.4983 0.3579 1.9461 1.3326 0.3852 0.4050 1.1053 1.0877 0.3037 1.9071   0.2723 2.5569 
0.6102 0.4285 2.0564 1.4173 0.4407 0.4568 1.1596 1.1537 0.3443 2.2273   0.3054 3.0278 
0.6092 0.4379 2.0579 1.4032 0.4407 0.4568 1.1604 1.1442 0.3449 2.2178   0.3080 2.9807 
0.6097 0.4332 2.0564 1.4173 0.4411 0.4520 1.1604 1.1442 0.3457 2.2037   0.3099 2.9477 
0.7211 0.5086 2.1671 1.4974 0.4961 0.5086 1.2146 1.2102 0.3859 2.5333   0.3440 3.3998 
0.7206 0.5133 2.1681 1.4880 0.4961 0.5086 1.2154 1.2007 0.3864 2.5239   0.3459 3.3668 
0.7206 0.5133 2.1681 1.4880 0.4965 0.5038 1.2154 1.2007 0.3870 2.5145   0.3478 3.3338 
0.8324 0.5839 2.2799 1.5586 0.5512 0.5651 1.2674 1.2949 0.4277 2.8347   0.3832 3.7623 
0.8319 0.5886 2.2804 1.5539 0.5512 0.5651 1.2685 1.2808 0.4282 2.8253   0.3848 3.7341 
0.8319 0.5886 2.2799 1.5586 0.5516 0.5603 1.2685 1.2808 0.4277 2.8347   0.3861 3.7105 
0.9438 0.6592 2.3911 1.6340 0.6067 0.6169   0.4697 3.1314   0.4216 4.1390 
0.9433 0.6639 2.3916 1.6292 0.6070 0.6121   0.4695 3.1361   0.4224 4.1249 
0.9438 0.6592 2.3916 1.6292 0.6070 0.6121   0.4692 3.148   0.4243 4.0919 
1.0052 0.7346   0.6617 0.6734   0.5112 3.4374   0.4595 4.5252 
1.0547 0.7393   0.6621 0.6686   0.5107 3.4468   0.4613 4.4922 
1.0547 0.7393   0.6625 0.6639   0.5112 3.4374   0.4621 4.4781 
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Formulaire 

Col circulaire 
 

0

1

2

3

4

0

0,137 1

1 0,97

1 0,5

1 2,2

1

1 0,5

1 5 p

r

h

R
K

K

K

K

R

h

ρ

ρ

ρ
ρ
ρ

ρ

=

= +

= +
+=
+

=
+
� �

Κ = −� �

 �

 

 
Flexion, axe z 
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Torsion, axe x 
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Flexion transverse, axe y 
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Cisaillement technologique, axe y 
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Cisaillement technologique, axe z 
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Déplacement de l’extrémité du col 
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Membrane non-fendue 
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