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Introduction

La miniaturisation et I'intégration de fonctions (mécanique, capteummande, calcul, etc)
dans des espaces confinés deviennent de plus en plus importantes dapsteiees
modernes. De nombreux exemples de la vie courante illustrenit.cBdami ceux-ci, nous
trouvons les mobilophones, les systemes portables audio et vidéo, Esisat@urs
numeriques, etc. Les domaines faisant appel aux hautes technologesnteles plus
demandeuses, citons, entre autres, les endoscopes de robot, les micropounpdss
applications médicales, I'équipement aérospatial, etc...

Dans un microsystéme, beaucoup de fonctions classiques doiveribréteanentalement
reconsidérées. Les lois d’échelle rendent quelques principesjpbéysnutilisables pour des
microsystéemes, alors que d’autres principes, bien que sand ipbéiréles macrosystemes,
peuvent étre extrémement utiles pour les systemes miniatud%s le cas des fonctions
articulation etguidage

Avant d’aller plus loin, il est utile de définir ce que I'on entend Maromécanique En
effet, la mécanique est la branche qui s’occupe de tout ce gsited un mouvement et/ou
une force. Le term#licro fait clairement référence a une échelle miniature. Ainspearn
définir la micromécanique comme étant la science qui tdatesystemes mécaniques dont
'ordre de grandeur des dimensions est égal ou inférieur au gtilém L'échelle envisagée
est donc plus petite que celle rencontrée en mécanique classigigitlblors, si possible,
de miniaturiser les systemes meécanique connus ou d’en imagingres’germettant de
remplir les fonctions requises.

Dans le cas particulier de la fonction guidage, a I'échaléadnicromécanique, il peut étre
difficile de fabriquer les roulements classiques tels quel#sments a billes, paliers lisses et
autres pivots. En effet, il est malaisé et trés colteux degtedorde petites pieces avec de
bonnes tolérances (c’est-a-dire inférieure a un pourcentagecdie)ala précision de guidage
résultante peut étre insuffisante pour une application particulieng.a donc lieu de
reconsidérer entierement cette fonction.

Une autre raison de cette étude concerne les forces en jeueEmafis les micromachines,
le frottement peut devenir tres important comparé a d’autressfdradorce de frottement est
une force de contact et donc de surface tandis que la gravité atcdaélectromagnétique
sont, elles, des forces de volume. |l est assez aisé de comppendgeoi le frottement
devient si important. Imaginons un cube de eot8on volume est donc égale®tandis que
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la surface d’'un coté vaa. Le rapport entre la surface et le volume vaut doacCe qui

veut dire que si les dimensions du cube diminuent, ce rapport tend anéeigetelonc que le
volume prend une importance relative moindre lorsque les dimensionsudimi Les forces

de volume auront donc un impact de moins en moins important. Or, en regle générale, ce sont
ces forces qui constituent la force motrice d’'une machine, tandikeg|fierces de frottement
constituent une force résistante, responsable d’'une grande paperteed’énergie. On se

rend compte alors gu'il est intéressant de pouvoir diminuer au maximum ces derniere

Nous pouvons également envisager I'application de ces guidages. Damgeseapplications,
par exemple dans des dispositifs médicaux, les exigences detprimperdisent pratiguement
I'utilisation des lubrifiants graisseux. Les particules d’'usurat £galement prohibées en
général. En conséquence, il y a un besoin important de développerrigsidages sans
friction.

Finalement, 'assemblage de petits composants peut devenir ftiieBedieét un dispositif
composé d’un nombre minimal de composants devient indispensable.

Parmi toutes les solutions possibles, le col circulaire spider ou membrane élastique, voir
Figure 1, semblent étre trés attrayants : pas de fratterpas de lubrifiant, encombrement
minimal, une seule piéce fabriquée, pas d’assemblage, etc. Ca deanitage est décisif. En
effet, la meilleure maniére de simplifier 'assemblage est de liteiteombre de pieces.

Il faut cependant étre conscient que ces systemes fonctionnatdfpemation élastique, ce
qui impligue une augmentation de sa raideur et, par conseéquence, une dimihuti
débattement du guidage. Ce n’est qu’au prix de cet inconvénient que nvesopar a

développer un guidage sans frottement.

Rotation axis

Figure 1 : col circulaire et membrane

Dans ce travail, nous nous proposons de compiler et compléter les éijderéalisées
permettant d’'utiliser de facon fonctionnelle les 2 systemes diaggiiprécités, en permettant
un dimensionnement rapide en fonction de I'application envisagée. #Huigdt a un projet
visant a développer une micro-pompe permettant de délivrer des débiasdoedu pl/min.
Ces 2 systemes de guidage ont été envisagés tour a tour afimnukttige aux éléments
mobiles de se mouvoir avec tous les avantages cités plus haut.
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Col circulaire

Introduction

Le col circulaire est une construction monolithique, ce qui en faiourposant tout indiqué
en micromécanique. Cependant, il ne sera préféré a d’aut@daivins que dans le cas ou
'angle de rotation peut étre limité.

En effet, la limitation principale de la solution présentée corckangle de rotation possible
permis. Chaque application sera adaptée afin de respectengietlianite sous peine de
causer la ruine compléte et irrémédiable de l'articulatioet aBgle dépend essentiellement
du matériau employé et de la géométrie.

Le col circulaire est connu depuis de nombreuses années. Il dadéfapmoyé, par exemple,
dans un support de controle de profil, voir figure 2, par R. Pazot [Jugeort s’appelle un
montage a aiguille indicatrice et Pazot ajoute que ceitalation évite 'emploi de ressorts
de rappel, évite la création d’un axe, élimine le probleme des jeux et sirgiifientage.

Pointer \
\\L'_'__ _EEE ILARSpdnanal 1¢
—— _’_ ______j________lgi\

L ppy [ e
i R 7

Part to be mesured  Elastic join Display Profil to control

Figure 2 : montage a aiguille indicatrice

Beaucoup d’applications peuvent étre trouvées dans la littérature aliatitisation d’'une

telle articulation. Entre autres exemples, Xu et Ryu I'ont employé darssdmplificateurs de
déplacement basé sur des piézoactuateurs [10], voir figure 3, RgonG&t Moon ont congu
une table X¥ basée sur un col circulaire [12]. Il est évident que, mémecsi lagit comme
un pivot dans les cas précités, la raideur du col a de I'importdimcdeadimensionner les
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actuateurs permettant de créer le mouvement. Le lecteur pencoae trouver beaucoup
d’autres exemples d’applications dans [6] et [11].

La description du col circulaire et de sa modélisation a étésééaen 1965 par Paros et
Weisbord [5]. Depuis, il a été I'objet de plusieurs études, par grer8mith et Chetwynd
[18]-[19], Zhang et Fasse [15], Koster [14], Heinen [6], Lobontiu [11] etc...

ACHJATQRS AMPLIFERS - output”

lr k!
x
=N
Y
3=

Piezn Stacks

| Bridge Displacement Amplificr

| Cutput Imput
/r' ."I Aglcator i

Output

W. Xu, T. King (1996)Flexures hinges for piezoactuator displacement &es:
flexibility, accuracy and stress consideratipitsPrec. Eng., vol. 19, 4-10.

Figure 3 : amplificateurs de déplacement

Le col circulaire joue un réle trés important dans une piece glutibeaucoup d'autres
fonctions. Ainsi, il est nécessaire de modéliser le col cineulafin de comprendre son
fonctionnement. On trouvera dans ce texte un nouveau modele analytiguiéésipour la
prévision de I'écart angulaire maximum et la rigidité aagaldu col circulaire. L’avantage
de ce modele, comparé aux autres, est qu'’il possible de déterpnaiepiement directement,
les paramétres geomeétriques permettant d’obtenir une raideur donnéesseinnerd.

Ce modele sera ensuite comparé aux résultats fournis par uneedests effectués sur des
cols usinés par électro-érosion a fil et finalement confronk&ésgexpressions déterminées par
d’autres scientifiques.

Modélisation

La modélisation du col circulaire est basée sur la résolution des équatiamaéleahique des
matériaux appliqguée aux poutres a géométrie variable (section continlmehleyari

Afin d’étudier le col, nous fixerons des axes de référencexe k correspond a l'axe de
symétrie du col et I'axg relie les centres des arcs de cercle définissant le bldus
introduirons également 2 variables supplémentaires : I'azgnuét I'épaisseur du cob,
perpendiculairement au plag.

La géométrie du col est représentée sur la Figure 4 ci-dessous.
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Rcosgp

Figure 4 : géométrie du col circulaire

Il est clair que le mouvement désiré est une rotation autour xie 2'&t que tout autre
mouvement est un mouvement parasite. Nous verrons par la suiteegjuaocvements
parasites peuvent avoir des conséquences inattendues et indésirables.

Formes asymptotiques

Rigidité en flexion

Nous appelons flexion (simple) la rotation d’'une partie par rapptatitid, autour de I'axe,
voir figure 5.

Bending

Figure 5 : flexion autour de I'axez

Il s’agit bien ici du mouvement souhaité, la raideur en flexion seldoit donc étre la plus
réduite possible. L'angle de flexion varie avec la coordonnée du pown ¢icalcule. Cet
angle vaut,

R

J‘12Mf 1M, o
Eb¥ ~  EbJ K
-R

(0.1)

a,

-R
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On considére que seule la zone du col (qui s'étendRla R) est soumise a I'action du
moment de flexion et que le reste de la poutre est infinimaderigNous verrons par la suite
gue cette hypothése est bien vérifiée et est d'ailleurs encore trop large.

Calculons la derniere intégrale. La géométrie du col nous donne,

h=h +2R(1- copp) = z{( &%)— Co¢}

_ h V(o

—2R(1+ 2Rj(l £ cop) (0.2)
_2R,,

= (1- £ cosp)

ou I'on a posé,

1
= 0.3
1+h /2R ©3)
Sachant que,
x=Rsing, dx= Rcop @, (0.4)
On transforme l'intégrale sous la forme,
eRcospdp copdp _ £°
I (0.5)
. )8 R’ (1-& cogp)’ 4R2 (e cog)’ 4R

L’intégrale a évaluer ne differe des intégrales apparaissatitéerie de la lubrification [2],

gue par le signe de la variabieet peut donc étre résolue par le célebre changement de
variable de Sommerfeld [1] qui devient ici,

cosgp :M(O_G)
1+ &ecosy
On en déduit successivement,
1-¢°
l-ccosgp=———— 0.7
% 1+ &cosay 0.7)
_ (1-&%)sima
sifg =~—F—— (0.8)
(1+ € cosa)
— 2 1
sing :—,].é‘SII’lO' (0.9)
1+ & cosa
, (1—52)sina
d(cosg )= - sipdg = ———— da (0.10)
(1+¢£cosa)
Ce qui donne,
_ 2
17€ 40 (0.112)

- (1+&cosa)
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En ce qui concerne les bornes d’intégration,

$=0, cogp=1=> cog+e= t¢e cas ,caf -k)= -Far

(0.12)
¢:7—27, cosp= 0= com+e= 0, cag=—-¢ @ =ar C()Sf)

L’intégrale | se ramene ainsi a,

n

Izj‘ cospdg :]; cogr+¢ (1+£COSC¥)3 te? da
(1-£cosp)’ J1+ecos (1—,92)3 (e com)

0 0

a:l

:@_—‘;)mj(cosa+£)(1+£ cosr)da

a

:(1_—‘12)5/2!.[(“52) cosy +§( B cosa) +£}da
:;W{(H gz)sinam+%am+% sin 27/5} (0.13)

(1-¢)

Tenant compte de la valeur ci-dessus de la limiteon a,

sinag” =+1- coda” =+/ E &
sin2a” = 2sina"” cog”=- 2 1¢&°

Ce qui ramene finalement I'équation cherchée a,

I :ﬁ{(h g’ )V1-¢’ +% arco:{—g)—g—zz\/ 1—52} (0.15)
-£

Nous nous limiterons au cas ou le rapp%ft est petit devant 1. Nous obtenons alors,

(0.14)

1 h,
E= ::1——:1 (016)
1+£ 2R
2R
h, K m@+mj
140+ -0 -1
1-£2 = R 4R22 = R 4R2 :% (0.17)
Ee
2R 2R
a’=arcog(-)=m (0.18)
V1-¢* (1+€%) = 2% (0.19)
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% arcog-¢) = gn (0.20)

‘% 1- ¢ =% (0.21)

En remplacant les différents termes dans l'intégnabus obtenons,

(RY'[3 hY_ 3 (R)
I—(Ej [EH+O(EH~EH(HJ (0.22)

Et,
R s 5/2
d—z(z € ZE _R :gﬂ'\/_lj (023)
h> 4R*2 ( h 8
L’angle de flexion s’écrit finalement,
R
12M, o JR
a, = dx= M 0.24
f J. Ebh 2Eb ' H° (0:24)
Ce qui revient a dire,
M, _2Eb K"
= 0.25
a, 9 7R (0.25)
Cette expression mesure la raideur en flexion.
En ce qui concerne la contrainte maximum au nivkacol,
6M 52
g=M _ 6 2Ebhy af:iEaf\/E (0.26)
bl b9 mJR 37 R
Soit,
R
g =39 IR (0.27)
4 E\ h

Cette derniére expression est importante, elle peme déterminer I'angle de rotation
maximum possible, en fonction du matériau et poe géométrie donnée.

Afin d’obtenir I'angle de rotation le plus élevé gzible, le premiere opération consiste a
choisir les valeurs dR et h. Il faut cependant tenir compte des contraintesrieicyique.

On ne peut pas diminuer indéfiniment la valeuhgd’'usinage ne permettant d’atteindre que

des valeurs de I'ordre de 0,1 rhrbans le méme ordre d’idée, il faut limiter supérement

le rayonR. En effet, plus celui-ci est grand, plus le dotwaire tend a se rapprocher d’'une

lame flexible. L’axe de rotation devient alors axe instantané de rotation et le mouvement
n’est plus exactement circulaire.

1l est possible d’obtenir une épaisseur inférieugs en prenant une série de précautions qui rémidement
augmenter le co(t de la piece. Nous estimons dahme épaisseur de 0,1 mm est une limite raisderaine
pas franchir, sauf pour des applications bien galiéires pour lesquelles le colt importe peu.
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Si I'angle est encore trop petit, il faut changermdatériau, si cela est possible, I'application
envisagée pouvant imposer le choix d’'un matériautableau | donne une idée de l'ordre de
grandeur du rappod/E, pour 4 matériaux différents. Citons finalemeng ¢pulimite élastique
peut encore étre modulée en fonction de I'étantigpre du matériau.

TABLEAU |
CARACTERISTIQUES MECANIQUES

Matériau E(MPa) o (Mpa) olE
Acier inoxydable  X20Cr3 210 000 500 2,4°10
Aluminium 7020 T5 71 500 320 4,5%0
Titane TiAIBV4 115 000 800 7 10

Acier a ressort 455CD6 210 000 1500 7110

Rigidité en torsion

La torsion correspond a un mouvement de rotatiohadgiéce autour de I'axg, comme
illustré sur la figure 6.

Torsion

Figure 6 : torsion autour de I'axex

L’angle de torsion varie de nouveau avec la coander car la section n’est pas constante,
nous avons alors,

da, _ M, _ M, _3M, (0.28)

dx  GgbAi Sbh  Gbh
3

En effet, le coefficient; est donné dans des tables, il dépend du rafgphrtCe rapport est,
dans notre cas, toujours beaucoup plus grand queehd alors verd/3.

Calculons 'angle de torsion total, en considéigue la partie de la poutre non entameée est
toujours infiniment rigide,
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_3M, fdx_9 M, VR

a =— 0.29
‘' GbJH 8 Gb I§(2 ( )
La raideur en torsion vaurt,
M, _8 . K’
—t=—0Gb 0.30
a, 91 R (0.30)

Rigidité en extension
L’extension se mesure le long de I'axevoir figure 7.

Stretching
—
X

Figure 7 : extension selon I'axe

Le déplacement d’une section infinitésimale dedatpe soumise a un effort de traction vaut,
du_ N

—-_ 0.31
dx Ebh ( )
R
g= N[ ax (0.32)
EbJ h
Remplacon$ par sa valeur calculée dans la partie flexion,
5 2 o 2 o
X_E& co co
oax_¢& do=¢c|l——F  _do=1I 0.33
_[ h Zj(l—gcosﬁ) ? _[(1—5 cog) ¢ (059
-R T 0
On a,
gcosp _ecop-1 1 _ . 01 (0.34)
l-ccosp LTecogp e cop de  cos
Et
A . 2 .
|:_jd¢+j ¢ :_7_T+J‘—¢:—7—T+r (035)
1-£cosp 2 e cog 2
0 0 0

En utilisant encore le méme changement de variable,
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(0.36)

r:]'1+£coscr VEE? 1

1-¢* (1+ecox) 1-¢£2

0

On a donc,

| = 2+\/1_7 2+77\/; IT\/; (0.37)

Il vient ainsi,
u =£ﬂ R (0.38)
Eb h
Et
E :l Eb\/E (0.39)
u 77 R

Rigidité en flexion transverse

Voyons ce qu’il se passe lorsque le col est soanuis moment de flexion transverse, c’est-a-
dire un moment de flexion autour de I'axevoir figure 8.

Transversal bending

Figure 8 : flexion autour de I'axey

da, 12M,

it 0.40
dx EhB (0.40)
12M, fdx 1M
aﬁ:—;““%z t | R (0.41)
Eb h Eb h
-R
La raideur angulaire transverse vaut donc,
M 3
M. _Eb h (0.42)
a, 12m\R
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Rigidité en translation ou cisaillement technologiq ue d’'axe y

Par translation, on entend la translation de I'es d6tés de la poutre par rapport a l'autre
c6té, le col circulaire délimitant les cotés.

Shearing‘

Figure 9 : cisaillement d’axey

Afin de pouvoir effectuer une translation sans adei rotation parasite, on doit appliquer une
charge au droit du col. Cela sera réalisé grageattifice illustré sur la figure 10.

$P

Figure 10 : application de la charge

Dans le cas ou la charge est excentrée, il appamaitouvement de flexion supplémentaire
dont nous devons tenir compte.

a) Contribution de la flexion
Le moment vaubx. La rotation vérifie,
da, 12M, 120x

“dx EbH  EbA (0.43)
Et le déplacement total du a la flexion s’exprinag, p
R
V:J.crf dx (0.44)

-R

Intégrons par partie,
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a=a,, db= dx

da (0.45)
da=—_dx b= x
dx
v=| ] I x— dx (0.46)
On notera que,
120x
a (R)=—-]——dx=0 0.47
(R I = (0.47)
Car l'intégrand est impair. Do (0) = 0.
Il reste a calculer,
: 3
d .
v:—j ;* dx _% ’; dx= 120b 8R3st'rf¢ Rosp &
. 9X EbJ E 2 (1-ecosp)’
2 &
3
305 J‘ sin’ ¢ cosp g = | (0.48)
Eb 0(1 gcos¢) Eb
En utilisant toujours le méme changement de vajaimus obtenons,
I_]‘(1—52)Sin2a cosa +e (1+ecosa)  f1-¢
(1+gcosa)2 1+¢£cosy (1—52)3 (e cosm)
1 [sinfa(cosr+é) 1
— = da :—3/2 r (049)
(1-52) 1+&cosy (1-52)

Transformons ce dernier intégrand,

: 1 .
. sinfa| coxr+= |+ £—=| sifa .
siia(cozr+¢) _ ( gj ( gj 1, ( 1) sirf
= =Zsinfg+| e-= |———
£ £) te cas

1+¢&cosa W& com
si‘fa _1-coSa _ ¥& cog-¢& caz- cbs _ £+ @S
= = =l-cosg—
l+ecosy e com te caz cas
cosa 1, cow |+| £-=| cog
cosa (& + cos) (5‘ j ( gj 1 ( 1) coy
= =—cosa+| £~ |—————
1+¢&cosay W& com £ £) e cas
1) 1
cosa COSCHE e 1 1
_ =___1(_) (0.50)
1+ecosr Y& cow g €\ e cos

16
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Intégrons chacun des termes, nous obtenons,

a” 0

Yy a H 0

Lsir ada = —1(a—sina cosr) = Lfgo_Sin& (0.51)
J & 2¢ o2& 2
0

lcosada:E siny -1 simr” (0.52)
Je £ . £
0

Pour calculer la derniere intégrale, effectuonchangement de variable de Sommerfeld
classique,

cosqg =—F—— (0.53)
1-£cosf
1-¢£*
da=———d 0.54
1-£cosf o ( )
_ 2
1+&cosa __1te (0.55)
1-£cosf

Concernant les bornes d’intégration,

a=0,cor=1=> ke cof= co8-¢ ,cf +k)= +k ,Bs Ar

cosp-e -£+£° coB= cof-£ ,cQB= (ﬂ:g (0.56)

a“=arcos(-¢) = -¢ =

1-£cosf
]‘ da _ ( 1-£cosB  EF&° dp= 1 ,B|g _ (0.57)
1+&cosy & e co® 1-&2 ° 2J1-&2 '
0 0
Rassemblons chacun des termes, nous obtenons,
_1( . sin” 1 , 1. 1\ a” T
r=—|a"- + e-—|Ka’-="sing"-| e-—|| ———7—m8 =
2& 2 £ £ E) € 2ell1-£°
= 1(go_Sina +_l(‘9__1j 9 _sina” +(£__1j2 :
2& 2 £ A E) 2e1- &2
1 V4 1 2 7
=—|m+e 1—52)—— 1-&? ——\/1—£2j+— 1-£?) ———
g( 52( ) £ 52( ) 2e\1-£7
1 1 T Vi
=—(mteVi-& |+ (1-&°)| VI- e+ —+1- 2——)
25( ) 52( ) 2c £
:1 7T+\/E +E \/E(]_-{-lj_n
2 R R R 2
T
T 0.58
5 (0.58)
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Finalement,

32
R
| = 2(@] (0.59)
Et,
3srpP(R)
V:_ﬂ_(_j (0.60)
2 Eb\ h

Cette derniere expression mesure la contributiola dlexion.
b) Contribution de I'effort tranchant
Le déplacement localisé vaut,

v O -8 (0.61)

Et le déplacement total,

R
V:E %:6_”_0 R (0.62)
5Eb) h~ 5 Eb\

Ce déplacement est équivalent a la contributiobedfert tranchant.
c) Au total

La flexion est largement prépondérante et nousigergins donc I'effet de I'effort tranchant.
La rigidité en cisaillement technologique se ramaioes a,

32
0.2 Eb(ﬁj (0.63)

v 3 R

Rigidité en translation ou cisaillement technologiq ue d'axe z
Nous pouvons effectuer le méme traitement suivare k.
De nouveau, nous aurons une contribution en flegtame contribution en cisaillement.
a) Contribution de la flexion

Ici, la charge est orientée a 90° par rapport & pracédent. Le moment d’inertie de la
section droite change. Nous avons alors,

da, 12M, 12Px
- = = 0.64
dx Ebh EBF (0.64)

Avec, de nouveau,

R
W:J.aﬂdx (0.65)

On integre de nouveau par partie, pour trouver,
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R
da
W:[xaﬁlRR—J-x L dx (0.66)
On notera encore que,

R
12Px
a,(R)=—]| ==dx=0 0.67
(R)=-[ 2 0.67)
Car I'intégrand est impair. Do, (0) = 0.

Il reste donc, en effectuant le premier changerdemnariable,

n

R 2
da i
W:_J' fld_g-"x2 _12Q ER sif g Rosp &
dx EB J 2 R1-& cosp)
- 4
_12PKR J‘£S|r12¢ cos¢ dg = F? (0.68)
1-£cosp H
Transformons l'intégrand, nous avons successivement
£sin’ ¢ cosp _E sifg cog—- sip+ sip — it g+ sig
1-£cosp e cog e cop
sifg _ 1-codg _te cog+e cas— cog - cosp (& - cop)
1- gcos¢ e coa‘v te cop 4e cgs
cosgp E—(:05515 + cog 5—}
cosp (& - cop) _ £ £) _ cosp +(£__1j cog
1-£cosp e co®p £ £) e cag
cos¢ 1,1
cosgp e e__ 1 ¥ 1 (0.69)
1—£cos¢ e co® E &\ e cop
Calculons la premiéere intégrale, les autres étadeates.
T 1, :
J-—sm2 ¢d¢:—§(¢—sm¢ cop) =-— (0.70)
0
La derniere intégrale a été calculée précédemmantotal, nous avons,
O G Sy 1 ) D o &(1_£j 7Rl | R 0.71)
4 2 & 2 h, 4 ¢ 2 h h

Et,
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S1PR \/E (0.72)
EC "\ h

b) Contribution de I'effort tranchant

Le méme calcul que pour le cisaillement selon I'axeene a,

w= P [ax_or P [R (0.73)
5Eb) h 5 Eb\ b
-R

c) Au total

De nouveau, la flexion est largement prépondéraddtas aurons donc,

—= (0.74)

Déplacement de I'extrémité du col

On se propose, ici, de calculer le déplacementedgrémité du col sous l'influence d'un
moment de flexion. Ceci permettra d’obtenir de®imfations sur la position du centre de
rotation du col.

On a le gradient de I'angle de rotation dans laafionx,

da, 12M, (0.75)
dx EDbH '
Et le déplacement global,
= Iaf dx=| a, x]: - x (0.76)
Résolvons cette équation. On connait,
3/2
(R=2 y R (0.77)

T 2Eb K2
Calculons,

IT m

jia da'deZIZM J‘Rsmq}Rcosﬁc&ﬁ M, &° J' Sip cog _ 3V|f‘93|
" dx Eb J 8R’ X (1- £ cosp) EbRJ (1-&cosp)’ EbR

-R

2

(0.78)

l_J‘\/l £ sing comr+e (L+ecosa)  ré
l+ecosy M e cos (1-5) (te cas)

a:l

jsina(cosnhs)daz I( sir cog +¢& sia)da

B
(=) (=) s
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-
_ 1 i S|n2a +£(1—COSO'D)j|
eyl
1 |1 1 1 R’
=——|=(1-¢ +£+£2}:—[— 1+¢&° +£}=2—2 (0.79)
(1—52)2_2( ) (1—52)2 2( ) by
On a donc,
R
da 6M. e R? 6M
jaf tax=—mf ROV R (0.80)
dx EbR § Eb h
Au total,
M, R¥:
v=—it R 9—”—6\/E (0.81)
Eb 2| 2 R

On constate que le grand terme €&), c’est-a-dire que la rotation se faitc%‘/%] pres

autour du centre du col.
Cette constatation est confirmée par Chau [20].sDson travail, il a tenté de prédire la

trajectoire exacte de I'extrémité du col. Ses wald¢héoriques ont été confrontés a une
batterie de tests et les trajectoires mesuréegmeagttaient pas de conclure quant a I'écart par
rapport a la trajectoire idéale qui serait I'arc crcle, les mesures se trouvant toutes a

I'intérieur de I'intervalle d’erreurs cumulées.

Coefficients de correction

Les équations obtenues précédemment sont valabiesie le rappoiiy/R reste proche de
zéro. Ce qui signifie que, soit I'épaisségrdoit étre tres petite, soit le rayéhdoit étre tres
grand. En pratique, cependant, I'épaisdeupeut atteindre des valeurs significatives par
rapport au rayon. Ceci peut arriver pour des guestde fabricationhp sera alors limité
inférieurement) ou d’encombremem ¢era, lui, limité supérieurement), lorsque la tarc

du col le permet. Ainsi, le rappdig/R pourrait atteindre des valeurs telles que 0,5.

Nous sommes alors devant un cas pour lequel leatiéga asymptotiques ne sont plus
valables rigoureusement. Nous allons montrer ques pouvons aisément les conserver, par
I'application de coefficients correcteurs uniquetrfenctions du rappoiy/R.

Ces coefficients correcteurs seront déduits deatiéms de la théorie complete, avant leurs
simplifications pour obtenir les formes asymptoéigu Il est bien entendu que ces coefficients
doivent tendre vers un lorsque le rappgwfR tend vers zéro.

Rigidité en flexion
Rappelons 'équation compléte en flexion,
1M, & |

! Eb 4R

(0.82)
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avecl = f (%) donnée par I'équation (0.15).

La raideur en flexion est alors mesurée par

M _EOR (0.83)

Le coefficient correcteur se mesure alors par lgpod entre les raideurs complete et
asymptotique,

52
kK =1/R (0.84)
2 &1\ h

La valeur du coefficient correcteur est obtenu&waduant numériqguement chacun des termes
intervenant dans I'expression |. Le tableau Il mota valeur du coefficient pour différentes
valeurs du rappotiy/R.

TABLEAU I
COEFFICIENTCORRECTEURK 1

hy/R 10° 210° 510° 10* 210" 510%
K, 1,0013 1,0025 1,0064 1,0129 1,0264 1,0683

Il reste a trouver une expression simple, faisapaeaitre le rappoty/R uniquement. La
figure 11 nous montre que I'évolution du coeffidiest sensiblement linéaire. La recherche
d'une droite de coefficient de corrélation le nmeill possible nous amene a I'expression
simple suivante,

K, = 0,137% +1 (0.85)

La figure 11 illustre la bonne corrélation entreévblution du coefficient et son
approximation.

1.08

—_— K1
LO7F | e 01374 RIFL

1.06 -
1.05+
K:E.04f
1.03-
1.02

1.01+

1 1 ! 1 ! !
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

hy/R

Figure 11 : Coefficient correcteurK;
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L’approximation nous donne une erreur maximale,d&d ce qui est tout a fait correct.

TABLEAU Il
ERREUR SURK7

ho/R 10° 210° 510° 10t 210" 510t
K; 1,0014 1,0027 1,0069 1,0137 1,0274 1,0685
Err (%) 001 0,02 0,05 0,08 0,1 0,02

Nous obtenons finalement I'équation corrigée suiwan

M 5/2
LK Eb\r/lo_
as T R (0.86)
K, = 0,137&+ 1
R
De méme, pour calculer un angle limite,
1370 |R
a, =——— |— (0.87)
K, 4 E\h

Rigidité en torsion

Il est clair que le coefficient correcteki est également valable dans le cas de la torsion. E
effet, I'expression mesurant le déplacement angu(&i.29) en torsion fait intervenir la méme
intégrale (0.5) que dans le cas de la flexion.

Rigidité en extension
Nous avons obtenu I'équation compléete suivantex¢ension,

Nf_a _7
u_Eb( C 2} (0.88)

Le coefficient correcteur s’exprime par,

2L oo 7
K; _H\FR(@ 2] (0.89)

Le tableau IV nous donne la valeur de ce coefficanrecteur. La figure 12 en donne la
représentation graphique.

TABLEAU IV
COEFFICIENTCORRECTEURK

h/R 10° 210° 510° 10' 210 510'
K, 1,085 1,122 1,198 1,287 1,422 1,714
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L’équation trouvee, qui représente ce coefficiemtecteur est la suivante,

K, =1+0, 97\/E (0.90)
R

Cette équation est également représentée sule fi.

18

K

—_ 2

17f | 140975 R

,,,,
"""
,,,,,
"""

I | | I | | | | I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

ho/R
Figure 12 : Coefficient correcteurK,

L'erreur maximale est de 1,6 %, comme le montitaldeau V.

TABLEAU V
ERREUR SURK>

ho/R 10> 210° 510° 10 210t 510t
Ko 1,097 1,137 1,217 1,307 1,434 1,686
Err (%) 1,1 1,4 1,6 1,5 0,8 1,6

L’expression finale de la rigidité en extensionlasuivante,

Nog,d Eb\/%
u“ o (0.91)

K,=1+0, 97\/E
R

Rigidité en flexion transverse

De nouveau, le coefficient correctekis reste valable en flexion transverse, pour la méme
raison que dans le cas de la torsion par rapplatfl@xion. En effet, nous retrouvons bien,
dans I'expression du déplacement angulaire endiexiansverse (0.41), la méme intégrale
gue dans le cas de I'extension (0.32).
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Rigidité en cisaillement technologique d’axe y

Il a été demontré que la flexion est largement @mnégrante. Nous neégligerons encore la
contribution de I'effort tranchant.

L’équation complete en cisaillement technologigéer,
0 &

Ve———T 0.92
Eb (1_ 52)3/2 ( )
L’expression compléete du coefficient correcteurlasuivante,
1-¢2)" ¥
K, :E# B (0.93)
2 €T h,

Le tableau VI nous donne la valeur de ce coefftcemrecteur. La figure 13 en donne la
représentation graphique.

TABLEAU VI
COEFFICIENTCORRECTEURK3

h/R 10° 210° 510° 10' 210' s510°
Ks 0,9829 0,9683 0,9250 0,8696 0,7760 0,5895

La meilleure équation trouvée pour coller a cesfgodst la suivante,

140,57
- R

K (0.94)

3

1+ 2,2E
R

Egalement représentée sur la figure 13.

— K
3
0.95]- e (140 5%(n R)(142,25(n R)) ||

0.71

0.65

0.6

0.55
0

1 1 1 1 1 1 1 1 1
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

hy/R

Figure 13 : Coefficient correcteurKs
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L'erreur maximale est de 1,6 %, comme le montialdeau VII.

TABLEAU VIl
ERREUR SURK3

ho/R 10° 210° 510° 10t 2100 s510%
Ks 0,9834 0,9674 0,9234 0,8607 0,7639 0,5952
Err (%) 0,05 0,09 0,17 1,03 1,56 0,97

L’équation est donc,

v 3
1+0,5% (0.95)
K,=—R
’ h,
142,20
R

Rigidité en cisaillement technologique d’axe z

L’expression mesurant le déplacementiu col lors d’'un cisaillement technologique d’axe
(0.68) étantfort proche de celle mesurant le déplacenwedti col soumis a un cisaillement
technologique d’axg (0.48) et tenant compte du fait qu’il a été mowjueé la contribution de
I'effort tranchant est négligeable dans les 2 dagst évident que le coefficier{s est
également valable dans le cas du cisaillement t¢abigue d’'axez.

Déplacement de I'extrémité du col

Nous avons vu qu’é)(‘/%} prés, la rotation du systeme se fait autour du d¢cil. nous ne

pouvons plus négliger le second terme de I'équaioBl). Celui-ci représente, lorsque le
rapporthy/R atteint des valeurs telles que 0,5, jusqu’a 25%rémier terme, ce qui n’est plus
négligeable.

Nous devons par conséquent, calculer un coeffici@ntecteur pour chaque terme de la
relation (0.81).

Nous connaissons le premier coefficient graceralé&ion (0.86).
Le second terme de I'expression nous a donné,

3
v, =Me (0.96)
EbR
Ou | est donné par I'expression (0.79).
Le second coefficient se calcule donc par,
e(hY
K,=—| = || 0.97
-2 o3
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Le tableau VIII nous donne la valeur de ce coedfiticorrecteur. La figure 14 en donne la
représentation graphique.

TABLEAU VIl
COEFFICIENTCORRECTEURK 4

Hy/R 10° 210° 510° 10' 210' 510!
K, 0,9950 0,9901 0,9756 0,9524 0,9091 0,8000

La meilleure équation trouvée pour coller a cesgoést la suivante,

K = 1

e (0.98)
1405

—_— K4
0.98 ---- 1/(1+0,5%(h,/R))

0.96 -
0.94
0.92
K o0l
0.88
0.86
0.84

0.82

0.8

1 1 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

ho/R

Figure 14 : Coefficient correcteur K4

L'erreur maximale est de I'ordre de 106, autrement dit, 0 %, comme le montre le tableau
IX.

TABLEAU IX

ERREUR SURK4

ho/R 10> 210° 510° 10' 210t 510t
K, 0,9950 0.9901 0,9756 0,9524 0,9091 0,800
Err (%) 0,00 0,00 0,00 0,00 0,00 0,00

L’équation est donc,

1 (0.99)
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L’erreur maximale, comparée a la solution exactster inférieure a 1,6 % pour tous les
coefficients correcteurs [7].

Coefficient d’état de surface

La méthode de fabrication influence la rugositéadsurface définissant le col. Bien que trés
petite par rapport aux dimensions globales, ceigosité totale R;) correspond a une
diminution non-négligeable de I'épaisseur minimale(par exemple, iy = 0,1 mm eR, =
2,75 um, sur chaque face, la différence vaut environ%)5 Cette différence est prise en
compte comme Suit.

M, 2 _ h? R
— =K,K, —Eb—2—,K =|1-5" 0.100
oK g B K =15 (0.100)

Comparaison avec les solutions existantes

Nous pouvons trouver, dans la littérature, beauadeipéférences concernant le calcul des
cols circulaires. Certaines ont pour objet la mééha’usinage la plus adéquate de cols
circulaires [17]-[8], d’autres essayent de prévairrigidité des cols [5]-[7] et [18]-[19],
principalement pour la conception de tels guida@ess les auteurs donnent la méme relation
pour la forme asymptotique de la rigidité a la itex équation (0.25), ci-aprés appelée la
solution de Heinen, car c’est la seule qu'il a pedl[6]. Si nous négligeons cette limite et
nous focalisons sur les formes utilisables en quati les solutions données sont presque
toutes différentes. Les diverses solutions peuakems étre comparées et discutées.

En 1965, Paros et Weisbord [5] ont donné la satusibivante, bien connue. SFh /2R,
pour un col circulaire complet, ils donnent,

a, _ 3{ 1} 1 3+, 6(+h) o [2BL 0y
M, 2EbR|28+p°||1+B (28+p5°) (2/3+/32)3/2 B

f

Oy _ogl LB [248 N2
M. = 24{\/@ tan 3 > } (0.102)

Cette solution semble étre une solution exacteydtese des équations différentielles mais
est contestée comme étant la meilleure solutiom jgocol circulaire par Zangh et Fasse [15]
car Paros et Weisbord ont employé la théorie Ineédies poutre, dont les hypothéses
impliquent qu’elle n’est valable que pour de lorgpeutres avec des sections transversales
qui varient graduellement, de facon limitée.

Bien entendu, nous faisons la méme hypothese. @apemous estimons qu’elle est bien
respectée car la partie du col reprenant la défiwmast concentrée au milieu du col, l1a ou la
section varie plus lentement, comparé aux extrénditecol. Ceci est clairement illustré sur la
figure 15 qui montre les rotations locales d’unetis@ du col par rapport a la précédente. Sur
celle-ci, il est clair que la déformation a lieungipalement pour les coordonnées comprises
dans l'intervalle [-1.5,1.5], le col s’étendant diintervalle [-5,5]. Cette constatation est
valable pour des valeurs du rapplagR réalistes, c’'est-a-dire limitées, comme expliqlés p
loin.
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Rotations locales. R=5, h0=0.1

01 i

Rotation ¢ (degré)

o
o
=

|

0.02 i

Figure 15 : Rotations locales

Zangh et Fasse ont, eux, calculé les raideurs dlwiomulaire en le modélisant comme
systeme élastique par des éléments finis tridinoamngils soumis aux charges appliquées. Les
déplacements observés permettent de calculer lditéigcorrespondante. En adaptant
I'ensemble de points obtenus, ils ont déterminédastions suivantes, avgc b/2R.

%= Eb(0,1456+ 0,355°°) (0.103)
%=Eb3(0,10982— 0,108+ 0,388- 0,00"°)( 0,280- 1,396 2}
(0.104)
va: Eb(-0,0673"°+ 0,28%~ 0,038°°) (0.105)
%=Gb3(0,05281*5+ 0,04B- 0,0082°)( 0,274- 1,38% 2 (0.106)
'\;f = Eblf (-0,0353+ 0,118°°) (0.107)
M
' = Eb*(0,0133+ 0,03(°°) (0.108)

ft

Koster [14] donne aussi des approximations fonaities pour les raideurs, dans l'intervalle
qu'il appelle le “régime réaliste”, c'est-a-dit@< h,/2R< 0, E.

N -0 agnps (0.109)
u

La fonction guidage en micromécanique, P. Merkdrg, 2006 29



P oseEp B (0.110)
w 1,2+1pB
M. _0.0467E0 2 (0.111)
a, G 1,2+1p
Mf 0,5

=0,09EbIE 3" (0.112)
af
M ft 3 0,5

= 0,04EL 3° (0.113)

ft

Dans notre cas, nous limitons le rappayR a 0,5. Nous pensons en effet qu’il n’est pas
réaliste d’avoir une épaissely égale au rayoR parce que la rigidité du col circulaire doit

étre limitée (équation(0.25)). De la méme manibeguation (0.26) montre que pour réduire

la contrainte pour un déplacement donné, le rapgerd maintenu sous une limite calculée
par la méme équation. Finalement, une derniér@maist non des moindres, est que la
concentration de contrainte demeure en dessou®/@é®terson, [13] p 56, fig. 37) quand le
rapport reste limité a un maximum de 0,5.

Auparavant, Smith & Chetwynd [18]-[19] ont obtenneuformule empirique semblable a
celle pour une poutre en porte-a-faux simple, égafe basé sur une méthode des éléments
fini. La relation est,

M, El
a, 2KR

f

(0.114)

| est le moment d’inertie de la plus petite sectitancol circulaire,K est déterminé par
éléments finis et peut-étre exprimé pér= O,565%+ 0,16¢. Finalement, I'expression est
équivalente a,

M

—L =EbKf A (0.115)
a 1,992+ 13,5@

f

Toutes les expressions de la raideur en flexion seprésentées sur la figure 16. On y peut
voir que les solutions de Koster, Zhang & Fasseneith & Chetwynd s’éloignent de la n6tre
guand le rapporhy/R augmente. Nous pouvons ainsi identifier 2 famitiescourbes. La
différence entre ces 2 familles est, au maximun2@&o, ce qui est déja important.
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Reduced bending stiffness
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Figure 16 : comparaison entre 5 modeles

Pour un rapporty/R s’étendant entre 0.025 et 0.07, notre expresseda digidité en flexion
semble bien coller aux mesures (pour le détail mesures, voir un chapitre ultérieur :
validation expérimentale). Pour trois cols circtdaj c’est la meilleure solution, avec Koster
pour deux d’entre eux.

Le choix de la meilleure solution devrait alorseéfait en accord avec les valeurs les plus
élevées de ce rapport. Ainsi, d’autres essais descepaisseurs de cols couvrant la gamme
compléte du régime réaliste doivent encore étecafés.

L’expérience se composerait d’essais avec un nofnpertant de points de mesure pour
chaque col, afin d’avoir une approximation acceletale la rigidité. Il est cependant difficile
de réaliser la méme analyse pour un grand nomboeldeet le résultat peut, dés lors, ne pas
étre complet. Ceci illustre encore d’autres essaiffectuer, avec la détermination de la
rigidité en torsion, en flexion transversale, €ependant, la rigidité importante est celle en
flexion. Les autres seront évaluées et le col darensionné pour que ces derniéres soient
d’un ordre de grandeur supérieur.

On pourrait se demander quel est I'intérét de diesrane solution du col, alors que celle-ci
est connue depuis 1965 et est donnée par Paros i8bive. En réalité, cette derniére est
difficilement utilisable en pratique, surtout lowsigjs’agit de dimensionner rapidement un col.
La solution de Zhang & Fasse parait également untqog compliquée. Celle de Smith &
Chetwynd ne donne une solution que pour la rigiditéa flexion. Ce modele est donc
relativement simple et ne permet pas de définirgétament le col circulaire. En effet, pour
certaines valeurs de la largeyril se peut que les rigidités en torsion, flextoansverse et
flexion soient comparables, ce qui serait génart.rdsultat de Koster parait alors étre la
solution la meilleure.
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Ce que nous apportons, c’est la possibilité derchéer I'épaisseur minimum du col, en

fonction de tous les parametres géomeétriques ettstaux, pour un angle de débattement
désiré. Il nous semble que c’est cette possibifférte qui est le plus important pour une
application pratique. Nous allons voir dans lI'exéanguivant comment notre théorie

s’applique pour le dimensionnement du col.

Application numeérique

Imaginons que nous désirions concevoir une pomalancier, a petit débit, donc une
micropompe. Il peut étre envisage, pour I'axe dlamaer, d’utiliser un col circulaire, pour
autant que le mouvement du balancier puisse @igglen amplitude. Comme il s’agit d’'une
pompe, la force exercée sur le col sera la régeltdiune force de pression, transmise par
I'intermédiaire du balancier. Nous aurons alorscanple de rappel;,,, comme illustré sur

la figure 17.
P
., | i

Figure 17 : transmission de la pression P au col

Nous traiterons I'exemple d’'un balancier en alliaigetitane (TiAlI6V4). Nous désirons, par
exemple, que I'épaisseur du balancier soit de 4ehigue le rayon du col soit de 1 mm, le
débattement angulaire maximal du balancier sef@f deoit 0,05 rad. Les caractéristiques du
titane sont les suivantes :

- module de flexionE = 115 000 Mpa,

- module de torsiorG = 45 000 Mpa,

- limite élastiqueg = 800 Mpa.

Calculons d’abord I'épaissel minimale admissible au niveau du col, pour congewe
caractéristique élastique du col. Les équatior@sjet (0.87) nous donnent,

1 370 R

a, =—————.| 0.116
f o,137rF‘3+ 14 EVR 0110
Posant
B =N =372 (0.117)
R 4 E
L’équation se réduit a
B +pB-q=0, p=0,137", q= pKa;* (0.118)
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Il s’agit d’'une équation du®3°degré dont la solution est donnée par les forngeSardan,

5: 3 pK+ PK 2+(—pj3+3 pK_ pK 2+(_pj3
R 2a, 2a, 3 2, 2, 3 (0.119)

=0,105

Appliquons un coefficient de sécurité de 1,5 afinsg situer sous la limite élastique. Ainsi,
I'épaisseuthg sera de 0,07 mm (le ray®&waut 1).

Cette derniere caractéristique géometrique du &fhie, déterminons les différentes raideurs
du col.

Raideur en flexion :

M, _\ 2EbK® _ 2011500014 0,07

= =1,01 — = 42,6Nmm /rad 0.120
a, o7 JR orr J1 ( )

Le moment de flexion a appliquer pour atteindrddbattement de 3° demande est,
M, =£(’)6= 2,13Nmm (0.121)

Il est alors possible de calculer, grace a cetteuvamaximale du couple et connaissant les
caractéristiques géométriques de la pompe, laipressaximale que la pompe pourra donner.

Raideur en torsion :

52 2
M, =K, —tho 1018 asoom 207 - 66, Nmm fac (0.122)
a, or R NGl

Cette raideur en torsion nous permet d’évaluefllience qu’aurait un excentrement de la
résultante de la force de pression sur le jeudqiti exister entre le balancier et les parties
fixes de la pompe (les flasques). Admettons gueegeentrement est de 0,1 mm, que la
longueur du balancier est de 10 mm et que la messut 0,1 bar. Le couple de torsion
agissant sur la poutre vaut,

C, = FIA=AP[BA =10'110°#410°010'= 0,4Nmn (0.123)

Figure 18 : excentricité de la force

_04
67 667

=610%rad .

-b
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Cette rotation aura une influence au niveau des. jeAfin que la poutre ne touche pas les
flasques, le jeu minimum de chaque coté de la paidvra étre, en supposant que le balancier

ait une IargeurI—mej—IEa 10610° = 610°’mm= @/m.

Figure 19 : jeu minimum

Raideur en extension,

N- K21 Eb\/% =1, 257—1 1150001 ¢ 0,0% 48698 nirr
T

u Vid
Raideur en flexion transverse,
M 3
ED &—1 257%«/ 07= 64928!mm frad
a 1271\ R 127

ft
Raideur en cisaillement technologique (sxe

32
S 3Eb(h°j =0,897-2 1150001 4 0,07 = 1622 mim
v 3 R 3

Raideur en cisaillement technologique (axe

P 1 E6 [ 11500072
=K R =0 897—————"./0,07= 46338 rthm
w o C12r R 127

Le déplacement de Iextremité du col sous l'effet oment de flexion nécessaire pour
atteindre un débattement de 3° est,

_M R 197 h,
~ Eb i { K“6\/:4

2,13 i 1 97
= ! ——0,9666/ 0 7,519 mm
11500074 0,0*‘7{ 1,01 2 ﬁ
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Validation expérimentale

Des cols circulaires en acier inoxydable dont ligpeur varie de 66 a 175um ont été usinés
par électro-érosion a fil (WEDM). Dans ce procé@éndise a forme, la piece a usiner est
placée dans une solution diélectrique et une diffée de tension entre une partie conductrice
de la piece et le fil produit un arc électriquenfiant des zones fondues et vaporisant le
matériel localement.

Comme Ryu et Gweon [8] I'ont expliqué, I'electrasion a fil est le meilleur processus pour
usiner des cols circulaires sans impact sérieuxlesumouvement induit par les erreurs
d'usinage. La seule erreur est une erreur de fgloleale. Tosun, Cogun et Inan [9] ont
déterminé une relation entre la rugosité arithnuétiR, obtenue et les deux parametres
importants dans l'usinage par électro-érosion all durée d'impulsiortj(us), et la tension
de circuit ouverty(V). La relation gu’ils ont obtenue est la suivante

Ra — 0, 048q0,3613q0,321:‘(ﬂ n,) (0124)

Le rapport entre la rugosité arithmeétiggeet la rugosité total®, est déterminé a partir de
mesures effectuées sur quelques échantillons et@d@

Finalement, les parameétres utilisés en usinantlleilaire,t; = 0,7 ps et = 80 V, ménent a
Ry, = 4,86 um. Apres l'usinage, un traitement par obdlage est appliqué a la surface, qui
permet &R, de diminuer jusque environ 2.75 pm.

1: Micrometer screw
2. Force sensor

3 Lever

4: Stand

48 mm 5. Circular notch hinge

Figure 20 : installation expérimentale

L'installation expérimentale est illustrée sur figeires 20 et 21. Le col circulaire est fixé a
une extrémité. Une tige (3) est fixée a l'autrerémtité et la force est appliquée par
I'intermédiaire d’'une vis micrométrique (1). Un ¢apr de force (2), construit par CSEM est
utilisé pour mesurer la force appliqguée. Les caratiques principales de ce capteur sont
décrites dans le Tableau X.
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Figure 21 : vue du dessus du banc d’essai

TABLEAU X
CARACTERISTIQUES DU CAPTEUR

Type LC-01
Charge Nominale |+ 0,1N

Résolution Theorique< 10 uN

Erreur de linéarité 0,5 %

Hystéreésis <0,2%
Rigidité 0,2mm/0,1 N
Alimentation 5V /5kHz

La figure 23 présente les résultats d’'une sérimégures concernant un col particulier (0.066
millimétres d'épaisseur). Pour chaque position Ewgudu col, trois mesures du couple de
retour ont été effectuées. Le graphique présentiersent les valeurs moyennes pour chaque
position, la déviance standard étant en dessouf.@k Nmm. Ces mesures sont alors
comparées au couple évalué en utilisant le modetegé ("modele 1").

On peut facilement voir que l'accord entre les messet le modele est bon pour de petits
déplacements angulaires, inférieurs a 0,2°. Cepgndaur de grands déplacements, le
modele surestime les données expérimentales. faismns peuvent expliquer la différence.

Premierement, la tige utilisée pour appliquer l@doau col peut fléchir sous I'effort appliqué.
Le débattement pour une tige droite fixée a uneéexté et libre a l'autre est, pour une charge
P, une longueur de tideetl le moment d'inertie de la section droite,
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v=-PI*/3El (0.125)

Ensuite, la force n'est pas appliquée a l'axe tetaelui-ci peut présenter un moment de
torsion et donc un déplacement qui peut étre évadné

y = &+ d)(b+1,) (0.126)
‘ 21, '

Avec 6, =M, /R, M, =P(b+d)/2, d le diametre de tige la rigidité en torsion du cdl; la
longueur de la tige ¢4 la distance entre le centre du col et le poiritatae de la tige.

atheoretical

Figure 22 : flexion de la tige

Par conséquent, le déplacement a trois composamts résultant de la déformation du col
circulaire (celui-ci est intéressant), une secoteda flexion de la tige et la troisiéme de la
torsion du col. Le déplacement réel est maintenant

Vv

read = Vt + Vf + Vthec (0'127)

La derniere étape consiste a transformer le déplecelinéaire déterminé en un déplacement
angulaire en utilisant la relation

a; =atan(v/(l +1,)) (0.128)

Afin de comparer les mesures au modéle, le cougsung doit étre tracé en fonction du
déplacement du col, c'est-a-dire,

Viheo = Vread ™ Vi~ V¢ (0.129)
Le méme procédé peut étre employé pour des écagislares. La figure 22 montre la

différence entre I'écart angulaire mesuré a l'extéde la tige et I'écart angulaire effectif du
col.
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Le « model 2 » de la 23 tient compte de ces 2 nuadibns (flexion de la tige et torsion du
col).

Finalement, le dernier effet qui se fait sentir ésta I'état de surface au niveau du col. En
effet, le fini de surface du col n'est pas parfait.rugosité doit étre prise en considération
(elle n'est pas négligeable comparée a I'épaiskeaol). Ainsi la formule théorique doit étre
modifiée et méne a une limite différente pour lesures. Retournant a la formule (0.100), un
autre coefficient de correction a été introdiit, avecR, = 2,75um.

Dans le “model 3", c’est I'expression compléte dauple (0.100) qui est considéré. Le
résultat de cette méthode globale est illustrdasfigure 23.

Comparison of models for hinge n°3 (0.066 mm)

I I T | I
2| —— measurements | ... e . D s s
—_ — model 1 f :
E 150 5
Z ;
S’ ;
Q) e -
S :
2 ;
O 0B T T NI ST S——
B el i
-05 0 0.5 1 1.5 2 2.5

[ T

2_ meaSUI’ementS ................... ............... .................. e AR
e —— model 2 : : :

15 : —
E
=
e
o 1r i
=
o
P
Sos) -

-05 0 0.5 1 15 2 25

angular displacement (deg)

I T |
1 51 —— measurements ' o)
_— — model 3
E :
e i 1
i
Q
s
go.s— i
Ol 2 A erimeses e e EerE e | .................. | ................. -
0.5 0 05 1 1.5 2 2.5

angular displacement (deg)

Figure 23 : Evolution du modéle
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L’influence de la rugosité est particulieremenenessante. Plus I'épaisseur du col est petite,
plus I'influence de la rugosité est importante.tt€efluence peut étre considérée comme une
réduction de I'épaisseur du col et donc induit téaiuction du couple de rappel. Cependant,
il est particulierement difficile de déterminer Valeur exacte de la rugosité du col. Nous
privilégierons alors le I'affirmation suivante goonsiste a admettre que le couple de retour
réel se trouve entre le couple évalué par le mogéiene tient pas compte de la rugosité et
celui calculé en utilisant le coefficient correat&.

Les figures 24 a 27 illustrent cette comparaisoncdaple (modélisation comparée aux
mesures) pour les 4 différents col qui ont étéidpiers. Comme il a été mentionné plus haut,
afin de valider le modeéle, les mesures doiventreever dans l'intervalle défini par les 2
différents modeles. Cet intervalle est le plustgaur le col ayant la plus grande épaisseur.
En effet, dans ce cas, la valeur relative depar rapport &R, est plus grande et donc
l'influence de la rugosité est beaucoup moins irtgrde.

Resisting torque for hinge n°1 (0.175mm)

5 ;
— measurements : § .
corrected model ; § w

Torque (Nmm)

=y

. ‘ i i ‘
-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
Angular displacement (deq)

Figure 24
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1.6

1.4

Resisting torque for hinge n°2 (0.072mm

1.2

Torque (Nmm)
&

=
o

=
I

0.2

o e SR - o S et e i I — . — P -
—— measurements ; ; : ; ;

| L _ correctedmodel | : . . N /I ________ |
} 5 : : . . /

0
0.2 i i i i i

0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Angular displacement (deg)
Figure 25
Resisting torque for hinge n°3 (0.066mm)
25 I T I \ I
—— measurements :

1.5

Torque (Nmm)

&
tn

-0.5
-0

corrected model

5

0.5 1 15 2
Angular displacement (deg)

Figure 26

25
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Resisting torque for hinge n°4 (0.146mm)

45

T
—— measurements 1 : : : :
4t _ _ corrected model | ... S (SO S o B

35

by
(3]

Torque (Nmm)
o m

X i i i i i
-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Angular displacement (deg)

Figure 27
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Conclusion

Nous avons montré qu'il était possible d’obtenansl le cas du col circulaire, des expressions
analytiques décrivant son comportement en tansgs&me élastique. Ceci grace au célébre
changement de variable de Sommerfeld.

Ces expressions analytiques ne sont pas commodesipe etude de mécanisme comportant
un certain nombre de ces cols. Nous avons alarkerehé des expressions simples
permettant ce genre d’étude, les expressions asyioyets. Nous avons montré que celles-ci
ne sont pas encore suffisantes dans certains das avons corrigées pour tenir compte de
leurs imperfections. Enfin, nous avons montré dee expressions déduites pour les
coefficients correcteurs approchent de facon pedeisorrection idéale a apporter.

Ainsi, dans tout le domaine de variation du rapppaisseur sur rayon, nous disposons
maintenant d’'un modeéle simple du col circulairejutanalytiquement.

Une série de tests a été effectuée afin de vdkderelations trouvées. La comparaison des
valeurs mesurées confirme I'exactitude des relatidéduites, dans la gamme des rapports
ho/R des cols fabriqués. Il est nécessaire de compiétertests par des tests complémentaires
qui pourraient faire I'objet d’un travail ultérieulc’expérience se composerait d’essais avec
un nombre important de points de mesure pour chagljeafin d’avoir une approximation
acceptable de la rigidité.

Nous pouvons donner, ici, encore d'autres pistegpdorer, pour pousser I'étude plus loin. La
détermination de la rigidité en torsion, en fleximansversale, en extension et cisaillement
reste encore inexplorée. Cependant, la rigiditéomamte est celle de flexion. Nous estimons
gue les autres peuvent étre évaluées analytiqueebdatcol pourra étre dimensionné pour
gue ces derniéres soient d’'un ordre de grande@rigup.

Une étude comparative du modele développé aveemti@irt nombre de solutions existantes a
ete effectuée. Il a été montré, grace aux tesis, l|g modele donnait une excellente
approximation de la réalité pour les cols utilisésétendue des valeurs du rappbgR des
cols utilisés pour les tests ne permet pas de somatomme il a été mentionné, sur la validité
de la relation sur la gamme compléte des valewssilple du rappotiy/R.

Finalement, nous mettrons I'accent sur ce que appsrtons dans ce travail. Il s’agit, comme
on I'a vu dans I'exemple traité, de la possibitigd déterminer I'épaisseur minimum du col, en
fonction de tous les parametres géomeétriques ettataux, pour un angle de débattement
désiré. Il nous semble que c’est cette possibifférte qui est le plus important pour une
application pratique.
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Membrane flexible

Introduction

La membrane flexible est une structure monolithiquepermet un mouvement rectiligne par
déformation.

Comme pour le cas du col circulaire, les membrdleatbles ont des applications dans des
domaines variés, que ce soit dans I'évaluationaddéfformation des miroirs de télescope
soumis a leur propre poids [27] ou pour un guidagetranslation, de type court, comme
développé par Van Daele [21]. Le lecteur pourreoes trouver quelques applications dans
'ouvrage de Heinen [6].

Nous donnerons, ici, les principes généraux régissamploi de telles membranes. Une
étude plus poussée a déja été effectuées par Yirkam Daele [21] et renvoyons par
conséquent le lecteur a son travail pour de plysesnnformations.

Modélisation

La modélisation est tirée de la résistance desriaai€appliquée aux plaques circulaires
soumises a des efforts normaux symétriques (dofiexien).

De nouveau, afin de développer les équations, mawens fixer un systéme d’axes de
référence. Ce systéme d’axes est illustré sulglardi 28. L'origine des coordonnées polaires
sera prise au centre de la plaque. Par symédrighdrgement ne dépend que du rayobe
plus, dans notre cas, les conditions aux limitesdépendent également que de Les
éguations utilisées seront donc les équations Hiégd des plaques circulaires (0.130), ne
faisant plus intervenir la coordonnées anguléire

Le mouvement désiré est un mouvement suivant lenaler a la membrane. Celui-ci sera
notév.
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Figure 28 : parametres géométriques de la membrane

Afin de permettre au lecteur de comprendre I'oaéinh donnée a la résolution des équations
différentielles des plaques, il est utile d’illiestrda facon dont les membranes peuvent étre
utilisées afin de constituer un guidage linéaire.

Le guidage linéaire, par définition, est un guidage permet le mouvement selon une seule
direction. La membrane ne remplira ce réle qulls est utilisée, au minimum, par paire, en
ayant soin de prévoir une distance raisonnablee eretles-ci, comme dans tout guidage
linéaire. La figure 29 illustre 2 facons différent@assurer le guidage par membrane. dans un
cas, on utilise seulement 2 membranes et dansd;adit ce qui permet un débattement plus
important, au prix d’'une précision moindre du ggiela

|
1 i
| |
| |
{ |
Il

{a) Utilisation par paire (b} Mise en série

Figure 29 : utilisation par paire de membranes pour le guidage linéaire
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Formes Asymptotiques

Membrane non fendue

La déformation d’'une plaque circulaire soumise achargement symétrique est régie par
I'équation différentielle suivante [26].

dv,2dv_1 dv 1 dv_ ) (0.130)

dr4 vdr® r2dr? redr D
On peut encore I'écrire sous la forme,

1 d{ d {1 d(r dﬂ} _ (0.131)
rdr| drlrdr dr D

La résolution de cette équation amene 4 constahit@ggration, qui seront déterminées par
les conditions d’appui et le chargement.

Le cas qui nous intéresse est celui ou le bordriextéest encastré, tandis que le bord
intérieur est simplement appuyé. Pour des bordosgant a un rayoa pour l'intérieur et
pour I'extérieur, nous avons,

v(r=b)=0 (1)
Lr=by=0 (2 (0.132)
M,(r=a)=0 (3

La troisieme condition peut encore étre mise satsrine,

d? v vd
= ' 1
a rdr\T ) 0 (3) (0.133)

En ce qui concerne le chargement, celui-ci étamsimis par l'intermédiaire d’un axe sur tout
le contour de rayom, nous pouvons dire que nous avons une force p& da longueur
égale a P/2ra, si P est la force exercée par I'actuateur. L'effodnthant par unité de
longueur sur une circonférence de rayon r est

Kl

T(r )'E_T (0.134)

L’effort tranchant s’exprime aussi par I'équatiaffétentielle,

d(A
r=pd&Y) (0.135)
dr
ou D est la rigidité a la flexion de la plaque,idi&f par
3
D= EMT (0.136)
12(1-0?)
En combinant les expressions (0.134) et (0.135)s mbtenons,
djidf dvj|_K, _K (0.137)
dr{rdr{ dr Dr r
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En intégrant, nous obtenons,

2 2
v:KrZ(Inr—l)+Alrz+A2In r+ A (0.138)
Nous déduisons alors les dérivées intervenant (@ah33),

dv r 1 r A

—=K—|Inr=-=|+A —+-2 0.139
dr 2( 2) A 2 r ( )

2

d_;’:ﬁ(mr +1j+ﬁ-ﬁ2 (0.140)
dr 2 2) 2 r

D’ou la condition (3’) s’écrit,

(lJrTU)(KInr+A1)+(1—U)(5—ij

7 =0 (0.141)

r=a

Les conditions limites (2) de (0.132) et (3') nqaermettent de déduir,. Aprés quelques
calculs, nous obtenons,

Ka®1+y+2Inp

= 0.142
% 4 o +y ( )
si nous appelons respectivemgrdt yles rapports suivants,
p=2 (0.143)
b
=1 (0.144)
1+v

En réinjectant cette valeur de la constafsdedans la condition (2) du systeme d’équations
(0.132), nous obtenons la valeurAle

2
A= K(i—ln b_p_l+y2+—2lnpj (0.145)
2 2 pity

Finalement, la condition (1) nous permet d’obtéwir Apres de nombreuses simplifications,
nous obtenons,

2 2
p =KD, Ka 1+y:2|n’0(—1—ln bj (0.146)
8 4 po+y 2

Nous pouvons des lors calculer la raideur de |la bmane,
P _ 2mhDK

r=a V|r=a

R= (0.147)

v

Avec,

v = ng {sz Inp+ (1— pz) +(%)( 20° Inp + pz(l— pz))} (0.148)

Ce résultat est bien confirmé par Roark et Your@j, [Gui donnent, pour une plaque circulaire
encastrée-appuyee, le résultats suivant,
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Vo, = ‘W—bg(clLB - Lej (0.149)

D\ C,
avec,
w=Ke
r r=a
c, =1t _b+ﬁ(9__aj
2 b a 4(a b
c, =1tva, 1-ub (0.150)
2 b 2 a
a a)’ b (a)’
DRI CE
4b b a
2
-2 (9) 1421 P
4o [\ b a
Le lecteur vérifiera aisément I'équivalence desstats.
Finalement, la raideur de la plaque encastrée-agagt donnée par I'expression,
167D 1
R = o2 (0.151)

1+y+2Ilnp
p+y

Cette relation nous permet de déterminer la raidaure membrane encastrée a I'extérieur et

simplement appuyée a l'intérieur, dont le rappatteles rayons intérieur et extérieur gst

TP W 27 7 ey

Nous pouvons calculer la raideur asymptotique dent&mbrane, c’est-a-dire lorsque le
parametreo tend vers 0. En effet, nous avons, successivement,

1-p° =1
p*(1-p%)=0 (0.152)
o°Inp=0

Et donc,
lim {2,02 In p+(1— pz) +(1+y:—2lnpj(2p2 Inp+ pz(l—pz))} =1 (0.153)
p-0 o +y

Nous obtenons donc, finalement, pour la raideumasgtique de la membrane non fendue
encastrée-appuyée,
167D

RNF = b2

Nous pouvons encore faire ressortir le terme neaiéet le terme géométrie de I'expression de
la raideur, en exprimant la valeur De

(0.154)

41 E W

Ry —?(1_—[}2)? (0.155)
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Cette raideur asymptotique correspond a la raidleuda membrane non percée. Nous
constatons d’ailleurs que la dimensmre diamétre du trou intérieur, n’intervient plus.

L’expression nous montre clairement que, le parem@atériau étant déterminé, il est plus
intéressant de diminuer I'épaisseur de la membraree d'augmenter son encombrement.
C’est intéressant dans le cas de la micromécarétprég donné que I'on ne peut augmenter
indéfiniment les dimensions. Cependant, il estr a@’il existe une limite inférieure a
I'épaisseur que I'on peut donner & la membraney pl@s raisons technologiques et pour
eviter le déchirement de la membrane sous char¢g@®du montage.

Membrane fendue

Une méthode possible afin de diminuer un peu pusideur membranaire est de fendre
radialement la membrane, comme illustré a la fi@ire

Dans ce cas, pour le calcul, il faut distinguerpesties fendues et non fendues. Comme la
partie fendue est moins rigide, elle va reprendrasgnent I'ensemble de la déformation.
Nous pouvons alors néegliger la partie non-fendues da modélisation.

Figure 30 : géométrie de la membrane découpée

Soit n le nombre de fentes, pour autant gqu'’il soffisamment grand, nous pouvons assimiler
la membrane a n poutres consoles dont la largélinéairement croissante avec le rayon.

La membrane étant chargée par un efprine section de rayan mesuré a partir du centre,
subira un moment donné par,

M (r) =E(r -a) (0.156)
n
L’inertie de la poutre variera avec le rayon,
2mrh®
1(r) = 0.157
(r) o ( )
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Le déplacement total de la poutre est donné par,

j—dr j P(r-a) 12n , _ 6P Ta_rdr (0.158)

n 2mrh’E T EY

a
En utilisant le rapporb défini précédemment, nous obtenons,
6Pb

a= 1-p+pln 0.159
—sg(lmptpinp) (0.159)
La raideur en rotation est alors,
M 3 _
ReMhs Py e _ME  1-p (0.160)

a n( a)6Pb(1—,0+,oln,0)_ 6n (1-p+p Inp)
La raideur totale estR Elle est donc indépendante du nombre de fentes.

Cependant, c’est la raideur en translation qui nioiésesse. Pour la déterminer, nous partons
de I'expression de la courbure d’une poutre consolenise a un moment de flexibvh

d’v_ M
— = 0.161
dr> El ( )
Une premiére intégration nous donne I'angle detiartan.
6P
a=—==(r-alnr)+ 0.162
ﬂh3E( J+A ( )
La constanté\; est déterminée par la conditi@r(r :b) =0. Nous obtenons alors
6P r
a= r-b)-aln— 0.163
ﬂth(( ) bj ( )

Une seconde intégration nous donne le déplacementa constante d’intégratioA, est
déterminée par la condition(r =b) =0.

2
v=P [arf1-int )+ e[ Lob)+p[2-a (0.164)
7TEh b 2 2
On calcule alors la raideur comme auparavant.
R= P/n _ ER 1 (0.165)

vl_, ©3nk? 1- 4p+p?(3- 2Inp)
Et, pour I'entiereté de la membrane,
TER’ 1

= nR= 0.166

A 3p° 1-4p+p°(3- 2Inp) ( )
Celle-ci peut étre retrouvée en utilisant I'énemdgedéformation. En effet,

Ug =N3 J-_dr (0.167)

Et
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du

—t —y 0.168
dP ( )
Finalement,
r=F (0.169)
Y]

On retrouve bien la méme expression.

Calculons la valeur de la raideur, pour un rappdendant vers 0, nous avons,

: B 2 (o B
urpo[l 4p+p*(3-2Inp)|=1 (0.170)
Et donc, la raideur asymptotique de la membranéuers’exprime par,
TER’
R = e (0.171)

Nous pouvons faire les mémes constatations queldaas de la membrane non fendue. En
effet, afin de diminuer la raideur, il faut jouarrdes parameétres matériau et géometrique,
sachant qu'il est plus intéressant de diminueraiggeur que d’augmenter le diametre
extérieur.

Cette raideur est de nouveau indépendante du nodebfentes. Il est cependant nécessaire
d’avoir un nombre de fente suffisant afin de gardfdabsence d’effets membranaires qui
introduiraient alors un terme supplémentaire dgidité de la membrane.

Faisons enfin remarquer, que dans le cas du guitiagelution de la membrane non percée,
méme fendue, n’a pas beaucoup d’intérét, commetens bien la figure 31, sauf dans le cas
ou I'on peut coller la membrane a la piece a guider

] il

I Appui simple

e r

Axe a guider en translation

Membrane

g

Encastrement

7

Figure 31 : montage d’une membrane encastrée-appuyée

7
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Coefficients de correction

Ainsi qu’il vient d’étre fait remarqué, la solutiate la membrane non percée n’a d’'intérét que
dans de rare cas. En pratique, il faut tenir cengyan trou dans la membrane, et donc le
rapport 0 ne peut plus étre assimilé a 0. Il est alors sggiee de revenir aux relations
completes donnant la raideur. Comme dans le casoticirculaire, celles-ci ne sont
cependant pas facilement applicables. Nous avoms kcherché une méthode permettant de
déterminer plus facilement la raideur des membrésretues et non fendue.

La démarche est la méme que dans le traitementraldsur du col circulaire. Nous
multiplions la forme asymptotique par un coeffitcieorrecteur qui est calculé a partir de la
relation globale et nous recherchons une loi sinapigrochant ce coefficient correcteur, en
fonction des parameétre principaux.

Membrane non fendue
Reprenons la relation asymptotique (0.151) de lmnbmane non fendue,
167D 1

RNF = 0’ Try+ 2|np (0172)
20*Inp+(1-47) +(pz+y]( 20" Ino-+ p*(1- %))
Afin de simplifier la lecture, nous pouvons mettaeaideur sous la forme,
3
R, =K, 2 _E N (0.173)

NF?(l—UZ)F

Nous calculons alors la valeur du coeffici&Rg, pour différentes valeurs geLe coefficient

de poisson intervient dans la valeurkdg. Nous I'avons listé dans le tableau XI, poucds

de l'acier et du titane, dont le coefficient degsan est 0.3 et pour le cas de I'aluminium,
avec un coefficient de poisson de 0.33.

TABLEAU XI
COEFFICIENTKNE

P 0,01 0,02 0,05 0,1 0,2 0,25
Acier, Titane 0,989 0,972 0,921 0,872 0,914 1
Aluminium 0,988 0970 0,915 0,860 0,896 0,979

La figure 32 donne un apercu de l'allure généraeladvariation du coefficienKys pour
différentes valeurs du coefficient de poisson,a@rcfion du rapport des diametres intérieur et
extérieur de la membrane. Nous limitons ce rapp@25, ce qui nous semble étre plus que
suffisant étant donné que nous désirons de la ssspldans la membrane. Cette souplesse
étant d’autant plus grande que le rapport estdaibl
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KNF membrane encastrée-appuyée
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Figure 32 : CoefficientKyg de la membrane encastré-appuyée

Nous voyons sur cette figure que le coefficiEqt, peut encore étre exprimé sous la forme
d'une relation simple du second degré en fonctien ol les coefficients dépendants
directement de,

K =(5.0+7,30°-(4+ L)lp+ . (0.174)
Le tableau XII donne les valeurs du coefficiéit, pour différentes valeurs du rappg@it

dans les cas de I'acier, du titane et de I'alunmmiu

TABLEAU XII
COEFFICIENTKNE ESTIME

yo, 0,01 0,02 0,05 0,1 0,2 0,25
Acier, Titane 0.977 0,955 0,902 0,851 0,886 0,973
Aluminium 0,978 0,958 0,908 0,861 0,903 0,992

Evidement, cette relation simplifiée introduit ueeur sur la raideur, mais qui est toujours
limitée, comme l'indique le tableau XIllI, ou I'etreest indiquée en calculée en pourcentage
de la valeur réelle du coefficient.
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TABLEAU XIlI
ERREUR SUR LE COEFFICIENKyr ESTIME (%)

o) 0,01 0,02 0,05 0,1 0,2 0,25
Acier, Titane 1,20 1,54 1,38 1,16 1,11 0,64
Aluminium 1,17 1,53 1,49 1,36 1,26 0,84

Signalons enfin qu’il existe un optimum, comme lentne bien la figure 32. Nous pouvons
alors calculer la valeur ge a I'optimum,

1 dv+11

=Sl el 0.175
Pon =55 0+ 7,2 ( )
Et donc, le coefficienKyg, a 'optimum,
_ 2
_ -lév°+14,& + 2¢ (0.176)

eop: = 4(5,v+7,3

Les valeurs particuliéres, pour I'acier, le titagtel’aluminium sont reprises dans le tableau
XIV.

TABLEAU XIV
VALEUR OPTIMALE DE pET Ky

pOpt KNFopt
Acier, Titane 0,127 0,854
Aluminium 0,131 0,842

Membrane fendue

De nouveau, nous pouvons mettre I'expression ((.f@&urant la raideur de la membrane
fendue, sous une forme plus lisible qui met edeéwe le coefficient de correction,

m_h

=K. = E—

Les valeurs du coefficienKe sont reprises dans le tableau XV, il ne dépend plus
coefficient de poisson, nous ne distinguons douos |[@ matériau.

(0.177)

TABLEAU XV
COEFFICIENTKE

Yo, 0,01 0,02 0,05 0,1 0,2 0,25
Kr 1,040 1,082 1,216 1,479 2,228 2,772

La figure 33 illustre I'allure de ce coefficient.
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K|= membrane encastrée appuyée
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Figure 33 : CoefficientKg de la membrane encastré-appuyee

Le coefficient de correction ayant une tendancelpimue, la relation trouvée sera de forme
guadratique,

K. =16,40% + 2,8+ 1,0: (0.178)

Nous retrouvons, dans le tableau XVI, les valeursakfficientKe données par cette derniére
relation. La figure 33 illustre également la bormoeacordance entre le coefficient réel et celui
estime.

TABLEAU XVI
COEFFICIENTKE ESTIME

P 0,01 0,02 0,05 0,1 0,2 0,25
Kr 1,060 1,083 1,202 1,466 2,24 2,750

Enfin, nous avons calculé I'erreur commise parptaximation, afin de montrer que celle-ci
est valable. Le tableau XVII reprend les différanéereurs calculées, toujours exprimées en
pourcentage du coefficient réel.

TABLEAU XVII
ERREUR SUR LE COEFFICIENKg ESTIME

0 001 002 005 01 02 025
Er (%) 091 01 1,14 089 052 0,78
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Comparaison des deux types de membrane

Nous pouvons comparer la raideur des membranesderet non fendues.

2
R - K170 (0.179)

RNF KNF 4
Les valeurs de ce rapport sont tabulées dans|kataXVIII.

TABLEAU XVIII
RAPPORT DES RAIDEURS

Yo, 0,01 0,02 0,05 0,1 0,2 0,25
Acier, titane 0,239 0,253 0,3 0,386 0,555 0,630
Aluminium 0,234 0,248 0,296 0,383 0,554 0,631

Ce tableau montre l'intérét d’utiliser des membgfendues lorsque cela est possible. En
effet, I'effort a développer, pour une méme coussea moindre.

La figure 34 donne un apercu d'autres découpes’'quepeut envisager afin de réduire de
facon drastique la raideur de la membrane.

Vincent Van Daele [21] a étudié par éléments fieis déformations de la premiéere et la
guatrieme membrane et les a comparées avec la rmeenhon découpée. Il a montré que,
dans ces cas, les raideurs sont divisées par teufaton négligeable.

Figure 34 : types de découpes
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Aspects de fabrication

La figure précédente présente des solutions paniate diminuer drastiquement la raideur
en translation des membranes, comme Van Daeledfarn[21].

Dans ce travail, ou I'on cherche clairement a psapades solutions pratiques permettant
d’intégrer ces systemes de guidage a des ensemiglesniques complexes, il convient de
discuter des possibilités de fabrication de cesdyge membranes.

En effet, le lecteur doit garder a I'esprit que d@®ensions envisagées ici sont de I'ordre du
millimeétre. Le diametre extérieur d'une membrafexcédera donc pas, dans les cas les plus
larges, une dizaine de millimetre. Ainsi, comme m@&mlans le tableau XIV, le diamétre du
trou intérieur sera d’environ 1,25 mm. Si nouspres le cas de la premiere membrane de la
figure, par exemple, nous pouvons compter 3 réseauentes a des diametres croissants,
compris entre 1,25 et 10 mm. Van Daele [21] amojgi la position de ces fentes afin
d’obtenir la raideur la plus faible. Il a ainsiteiéniné les 3 diametres suivants (aux
approximations pres, le but, ici, étant d’illustteréflexion), 5,5 mm, 6,2 mm et 7 mm, pour
une largeur de fente de 0,2 mm et une épaissenredebrane de 0,1 mm. Il est évident que
de telles découpes ne peuvent étre facilement oésepas des procedes classiques de mise a
forme.

Tentons d’'imaginer le résultats obtenu avec le gutécle plus utilisé pour découper des
rondelles : le poingonnage. Cette technique elagdéabrication d’'un poingon et d'une
matrice. Ceux-ci doivent nécessairement étre faBgqdans un matériau plus dur que la
matiere choisie pour les membranes. D’une margémgérale, ils sont réalisés en acier
trempé, la trempe étant effectuée apres usinagéodess. Dans notre cas, le poincon doit
comporter de fines lamelles dont I'épaisseur efgrieure a 0,2 mm pour tenir compte de
I'épaisseur de coupe. Ces lamelles doivent dépadsee longueur supérieure a I'épaisseur
de membrane. Sil'on envisage d'usiner ces lameldns la masse et de tremper le poingon
par apres, on doit 6ter énormément de matieregpgoort a la matiere brute. L’opération de
trempe risque d’induire des déformations catasitpm@s pour ces fines lamelles élancées.

Nous pouvons imaginer d’'inverser I'ordre des opénat c'est-a-dire utiliser de la matiére

brute trempée et revenue afin d’éliminer au maxinesncontraintes résiduelles. Cependant,
il faut encore usiner des formes complexes trégegetdans une matiere durcie a HRC 50 ou
plus. Parmi les procédés d’'usinage capable d'eféeates opérations, nous pouvons trouver
l'usinage a grande vitesse, permettant d'utilises draises de dimensions de l'ordre de
0,1 mm et capable d’usiner de la matiére trempg#lasade HRC 50.

Une autre technique est I'électro-érosion par egdge, procédeé qui « dissout » la matiere par
décharge électrigde Ce procédé exige cependant, au préalable, dafiage d’'une électrode,
négatif de la piece a réaliser. Le procédé n’gpplnt pas d’effort sur la piece a usiner, il n'y
a pas d’exigence particuliére sur la dureté etsistance de I'électrode. La seule nécessité
est qu’elle soit conductrice. Geénéralement, lextébdes sont réalisées en cuivre ou en
graphite. |l faut donc, tout de méme, réaliser éleetrode dont la forme est le négatif du
poincon. Cette électrode ne doit pas nécessaiteéien réalisée d'une seule piece, nous
pouvons donc envisager toute sorte d’inserts é¢cleique de maintien de ceux-ci.

Il est évident que la réflexion doit étre égalenmaenée pour l'usinage de la matrice, qui est
de forme inverse du poingon. Cette remarque cortlitgttement au fait que la technique de

2|l s’agit, ici, d’'une présentation trop simpliste procédé d’usinage par électro-érosion. Cepénliabut de
ce travail n’étant pas d’exposer en détails lebrigpies de fabrication, nous renvoyons le lectdarliftérature
spécialisée pour de plus amples explications coacgrcette méthode de mise a forme.
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I'électro-érosion par enfoncage permet égalemenbtdhir directement la membrane de

forme voulue, sans passer par le poingonnage. €egplus avantageux étant donné qu’il n’'y

a pas, comme mentionné précédemment, d’effort guplsur la piece a mettre a forme. En

effet, dans le cas du poingonnage, I'effort de dpeodu matériau aurait tendance a déformer
les lamelles et donc a rendre rapidement inutileskbpoincon.

Une derniere technique qu’il nous parait intérelssamvestiguer est la découpe Laser. Les
seuls paramétres limitant cette technique estrigela du faisceau ainsi que son cbne, qui
limite le rapport largeur sur profondeur de la éniDe nouveau, cette technique n’applique
aucun effort sur la piéce a usiner. |l faut cepenmidprendre garde a I'échauffement qui
pourrait induire des déformations importantes.

Conclusion

Nous avons, grace a la théorie des plaques cireslaoumises a des efforts normaux
symétriques, déduit des relations donnant la raides membranes percée et non découpées.
Les membranes fendues ont été, elles, résoludegpauations classiques de la mécanique
des matériaux appliquées aux poutres a largeuablari

De nouveau, des formes asymptotiques ont d’ab@dréuvées avant de leur appliquer un

coefficient correcteur afin de tenir compte du fgite les cas pratiques ne sont quasiment
jamais des cas dans lesquels les formes asympstspnt valables. Des formes simples et
originales des coefficients correcteurs ont étéerd@hées, faisant intervenir le parametre

géomeétrique sans dimension principal, le rappdrede diamétre intérieur du percage central

et le diamétre extérieur de la membrane.

Nous avons également comparé les raideurs obtefamessles 2 cas précités, c'est-a-dire la
membrane intacte et la membrane découpée, pourendimtérét de fendre radialement les
membranes afin de diminuer la raideur, source de p&nergie.

D’autres exemples de solutions ont été succincteprésentés. Celles-ci ne sont absolument
pas dénuées d’intérét, mais leur étude sort dueadefini pour ce travail.

Enfin, nous avons discuté rapidement sur les ptiéceua prendre lorsque I'on imagine une
forme de découpe permettant de diminuer la raideda membrane. Cette découpe n’est pas
nécessairement réalisable d’'un point de vue pratejul convient des lors d’envisager une
conception intégrée qui tient compte des moyenfalecation existant. La question de la
fabrication des membranes reste en grande partiertey quelques essais ayant déja été
effectués pour le travail de Van Daele [21].

Cette partie concernant les membranes percées,dlétre exhaustive, indique déja une
tendance générale permettant d’envisager I'empli ndembranes simples, avec une
estimation de la force a déployer afin d’obtenidéplacement déterminé.
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Conclusion

Le guidage d’élements de micromécanique n’est paschose aisée. Au cours d’un projet de
recherche, nous avons été assez tét confrontéaax @dlnne méthode de guidage efficace en
micromécanique. Les procédés classiques sont pgaras difficilement applicables et nous
avons du nous tourner vers des méthodes moins ctoneelles. Les procédés de guidage
élastique ont montrés de grandes qualités, powanaujue I'on se contente d’'une course
limitée et qu'une énergie d’'actuation suffisantéspe étre développée.

Nous avons ainsi investigué deux systemes, I'uvaillant en rotation, le col circulaire, et
lautre en translation, la membrane. La littératme donnant pas de régles applicables
directement lors d’un prédimensionnement, nous isonsmes penché sur le fonctionnement
de ces systemes afin d’en faire ressortir dessioiples d’application et originales. Celles-ci
permettent de prendre une décision rapide concetagoertinence ou non de l'un de ces
systemes de guidage. Nous pensons, en effet, dpgsden premier d’'un designer n’est pas de
développer de grandes équations ni d’'user sansgegmnt des éléments finis, mais de
pouvoir faire un choix aisé parmi toutes les sohsipossibles qui s’offrent & lui. Libre a lui,
apres, de mener toutes les études complémentaiiegigera nécessaires.

Les lois simples concernant les raideurs des sgst@anvisagés ont été rassemblées sur une
page de formulaire située a la fin de cet ouvragt illustre bien leur caractere condense,
gage de facilité d'utilisation.

Nous terminerons par rappeler que le sujet, lo&trd’ entierement couvert par cette étude,
mérite encore d’étre développé. Un certain nombee pistes de travail ont déja été

mentionnées, rappelons les tests a effectuer swals circulaires, I'étude des découpes de
membranes ou encore les moyens de fabrication deéldments. Le lecteur avisé ne
manquera pas d’en découvrir d’autres encore. Fimale, nous pensons que ce travall
constitue une contribution intéressante a I'étués dols circulaires et des membranes
employés comme systeme de guidage flexible, cariob permettant I'application des

guidages a faible débattement et a raideur comtidd@s un cas concret.

La fonction guidage en micromécanique, P. Merkdrg, 2006 58



Nomenclature

2R

2V O™

Angle de rotation autour de I'axe

Angle de rotation autour de I'axe

Angle de rotation autour de I'axe

Rapporthy/2R

Rapportb/2R

Azimuth, selon I'axer

Angle de rotation selon I'axe du a I'excentrement de la force appliquée

Rapporthy/R, dans les cols circulaire et rapport des diamétr&Esieur et extérieur,

ans les membranes trouées

o Contrainte dans le col circulaire

Onax  Contrainte maximale dans le col circulaire

v Coefficient de poisson

a Rayon intérieur dans la théorie des membranes

b Rayon extérieur dans la théorie des membranesssspaidans la théorie des cols
D Rigidité en flexion des plaques

E Module élastique (Module de Young)

G Module de torsion

h Epaisseur de membrane

ho Epaisseur minimale du col circulaire

I Moment d’inertie de la section transversale du col

K Coefficient multiplicateur dans la théorie de SnattChetwynd

K1 Coefficient correcteur en flexion dans la théaleeMerken et Debongnie

Kz Coefficient correcteur en extension dans la tleéde Merken et Debongnie

Ks Coefficient correcteur en cisaillement dans latleede Merken et Debongnie

Ka Coefficient correcteur en déplacement dans lartbéle Merken et Debongnie

Kr Coefficient correcteur pour la membrane fendue dienghéorie de Merken et
Debongnie

Kne  Coefficient correcteur pour la membrane fendue dienghéorie de Merken et
Debongnie

Kr Coefficient correcteur en état de surface datisdarie de Merken et Debongnie

M Couple de flexion des membranes

M Couple de flexion autour de I'axe
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My Couple de flexion autour de I'axe
My Couple de torsion autour de I'axe

N Tension selon 'ax&

O Tension de cisaillement selon I'axe
P Tension de cisaillement selon I'axe
R Rayon du col circulaire

Ra Rugosité arithmétique

Rp Rugosité totale

Ry Raideur en torsion du col selon I'axe
t; Durée d’impulsion en WEDM

u Déplacement selon 'axe

Ui Tension de circuit ouvert en WEDM

v Déplacement selon I'axe

Viead Deéplacement mesuré par le capteur

w Déplacement selon l'axe

X Axe X du systeme de coordonnées, aligné avec I'axe détagndu col circulaire

Y Axe Y du systeme de coordonnées, aligné sur la ligneatdses des 2 arcs définissant
le col circulaire

z Axe z du systeme de coordonnées, perpendiculaire auxxeates
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Annexes

Mesures sur les cols circulaires

Résultats des mesures

Epaisseurs en mm

a; déplacement angulaire, en degrés

M; Couple de reaction, en Nmm

col 1: 0,066 col2: 0,072 col 3: 0,146 colG175
at Mg at Mg a; Mg at Mg as Mg as Mg at M¢
0.0011 -0.0188 1.1660 0.8146 -0.0003 0.0094 0.7172 0.7252 0.0002 -0.0188 0.5528 83.7435 0.0001 -0.0188
0.0006 -0.0141 1.1660 0.8146 -0.0011 0.0188 0.7176 0.7204 -0.0001 -0.0141 0.5522 3.7529 -0.0004 -0.0094
0.0006 -0.0141 1.1660 0.8146 -0.0003 0.0094 0.7176 0.7204 -0.0004 -0.0094 0.5539 3.7247 -0.0001 -0.0141
0.0533 0.0518 1.2773 0.8900 0.0532 0.0848 0.7726 0.7770 0.0540 0.0800 0.5960 1.0213 0.0444 0.2543
0.0528 0.0565 1.2773 0.890( 0.0532 0.0848 0.7730 0.77722 0.0523 0.1083 0.5948 4.0402 0.0489 0.1742
0.0533 0.0518 1.2773 0.890( 0.0536 0.0800 0.7730 0.77722 0.0548 0.0659 0.5954 1.0307 0.0505 0.1460
0.1085 0.0942 1.3887 0.9653 0.1083 0.1413 0.8277 0.8835 0.0950 0.3955 0.6369 1.3368 0.0801 0.6781
0.1080 0.0989 1.3892 0.9606 0.1083 0.1413 0.8285 0.8240 0.0941 0.4097 0.6377 4.3227 0.0852 0.5886
0.1085 0.0942 1.3892 0.9606 0.1087 0.1366 0.8288 0.8193 0.0933 0.4238 0.6377 4.3227 0.0849 0.5933
0.1642 0.1318 1.5000 1.0406 0.1638 0.1931 0.8831 0.8853 0.1373 0.6875 0.1169 1.0830
0.1637 0.1366 1.5005 1.0359 0.1638 0.1931 0.8843 0.8f11 0.1356 0.7157 0.1214 1.0030
0.1642 0.1318 1.5005 1.0359 0.1642 0.1884 0.8843 0.8711 0.1384 0.6686 0.1222 0.9888
0.2198 0.1695 1.6123 1.1066 0.2188 0.2496 0.9386 0.9871 0.1783 1.0030 0.1547 1.4691
0.2198 0.1695 1.6113 1.1160 0.2192 0.2449 0.9397 0.9229 0.1772 1.0218 0.1585 0.4032
0.2198 0.1695 1.6118 1.1113 0.2196 0.2401 0.9390 0.9823 0.1791 0.9888 0.1595 1.3844
0.2755 0.2072 1.7236 1.1819 0.2747 0.2967 0.9936 0.9936 0.2195 1.3138 0.1923 0.8600
0.2755 0.2072 1.7231 1.1866 0.2743 0.3014 0.9948 0.9794 0.2190 1.3232 0.1963 1.7893
0.2755 0.2072 1.7236 1.1819 0.2747 0.2967 0.9944 0.9841 0.2203 1.2996 0.1961 1.7941
0.3869 0.2825 1.8349 1.2572 0.3298 0.3532 1.0487 1.0501 0.2613 1.6151 0.2297 2.2555
0.3869 0.2825 1.8344 1.262( 0.3298 0.3532 1.0502 1.0812 0.2599 1.6387 0.2334 2.1896
0.3869 0.2825 1.8349 1.2572 0.3298 0.3532 1.0499 1.0859 0.2621 1.6010 0.2337 2.1849
0.4988 0.3532 1.9466 1.3279 0.3852 0.4050 1.1045 1.0972 0.3028 1.9212 0.2681 2.6322
0.4978 0.3626 1.9461 1.3326 0.3860 0.3955 1.1053 1.0877 0.3028 1.9212 0.2710 2.5804
0.4983 0.3579 1.9461 1.3326 0.3852 0.4050 1.1053 1.0877 0.3037 1.9071 0.2723 2.5569
0.6102 0.4285 2.0564 1.4173 0.4407 0.4568 1.1596 1.1537 0.3443 2.2273 0.3054 3.0278
0.6092 0.4379 2.0579 1.4032 0.4407 0.4568 1.1604 1.1442 0.3449 2.2178 0.3080 2.9807
0.6097 0.4332 2.0564 1.4173 0.4411 0.4520 1.1604 1.1442 0.3457 2.2037 0.3099 2.9477
0.7211 0.5086 2.1671 1.4974 0.4961 0.5086 1.2146 1.21102 0.3859 2.5333 0.3440 3.3998
0.7206 0.5133 2.1681 1.4880 0.4961 0.5086 1.2154 1.2007 0.3864 2.5239 0.3459 3.3668
0.7206 0.5133 2.1681 1.4880 0.4965 0.5038 1.2154 1.2007 0.3870 2.5145 0.3478 3.3338
0.8324 0.5839 2.2799 1.5586 0.5512 0.5651 1.2674 1.2949 0.4277 2.8347 0.3832 3.7623
0.8319 0.5886 2.2804 1.5539 0.5512 0.5651 1.2685 1.2808 0.4282 2.8253 0.3848 3.7341
0.8319 0.5886 2.2799 1.5586 0.5516 0.5603 1.2685 1.2808 0.4277 2.8347 0.3861 3.7105
0.9438 0.6592 2.3911 1.634( 0.6067 0.6169 0.4697 3.1314 0.4216 4.1390
0.9433 0.6639 2.3916 1.6292 0.6070 0.6121 0.4695 3.1361 0.4224 4.1249
0.9438 0.6592 2.3916 1.6292 0.6070 0.6121 0.4692 3.148 0.4243 4.0919
1.0052 0.7346 0.6617 0.6734 0.5112 3.4374 0.4595 4.5252
1.0547 0.7393 0.6621 0.6686 0.5107 3.4468 0.4613 4.4922
1.0547 0.7393 0.6625 0.6639 0.5112 3.4374 0.4621 4.4781
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Formulaire

Col circulaire

i 1370 |R
a, =——— | —
» K, 4 E\'h

Torsion, axex

5/2

a 91 R

I L Flexion transverse, axe/

== =K 9
PR a, 127\ R
K,=0,137p+ 1
K,=1+0,9%/p Cgsalllen;ent techr;cz)loglque, axe
K =1t0.% —:Ka—Eb(ﬁj
L= 1 Cisaillement technologique, axe
1+0.% P 1 EF [R
R —=Ke o
K :{1—5—p w 127 R VR
' h,
Déplacement de I'extrémité du col
Flexion, axez v—& RY? 1o < 6\/E
M, 2 K Eb 7| K2 VR
—=K,—Eb
a, a7 R
Membrane

b
K =(5:0+7,30°-( 4+ L)lp+
K. =16,40° + 2,8+ 1,02
Membrane non-fendue

_ ., 4T E IR
RNF_ NF?WF

Membrane fendue

T _he
R =g By
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