The diversity of the catalytic properties of class A β -lactamases

André MATAGNE,* Anne-Marie MISSELYN-BAUDUIN,† Bernard JORIS,‡ Thomas ERPICUM,* Benoît GRANIER* and Jean-Marie FRÈRE*§

*Laboratoire d'Enzymologie, Université de Liège, Institute de Chimie, B6, B-4000 Sart Tilman (Liège 1), Belgium, †Laboratoire de Chimie Moléculaire Structurale, Facultés Universitaires Notre-Dame de la Paix, 61 Rue de Bruxelles, B-5000 Namur, Belgium, and ‡Service de Microbiologie, Université de Liège, Institut de Chimie, B6, B-4000 Sart Tilman (Liège 1), Belgium

The catalytic properties of four class A β -lactamases were studied with 24 different substrates. They exhibit a wide range of variation. Similarly, the amino acid sequences are also quite different. However, no relationships were found between the sequence similarities and the substrate profiles. Lags and bursts were observed with various compounds containing a large sterically hindered side chain. As a group, the enzymes could be distinguished from the class C β -lactamases on the basis of the k_{cat} values for several substrates, particularly oxacillin, cloxacillin and carbenicillin. Surprisingly, that distinction was impossible with the k_{cat}/K_m values, which represent the rates of acylation of the active-site serine residue by the β -lactam. For several cephalosporin substrates (e.g. cefuroxime and cefotaxime) class A enzymes consistently exhibited higher k_{cat} values than class C enzymes, thus belying the usual distinction between 'penicillinases' and 'cephalosporinases'. The problem of the repartition of class A β -lactamases into sub-classes is discussed.

INTRODUCTION

A large number of β -lactamases (EC 3.5.2.6) have already been described, and every year new members of that family are discovered. It is thus not surprising that various attempts have been performed to group those enzymes according to their structural or catalytic properties. Ambler (1980) has proposed a classification that relies on the primary structures of the proteins. On that basis four classes have now been identified. Classes A, C and D contain serine enzymes, and seem to represent the vast majority of β -lactamases, including those that pose the most threatening clinical problems. Class B contains a small number of Zn²⁺ enzymes, among which two closely related proteins produced by bacilli have been completely sequenced (Kato *et al.*, 1985; Hussain *et al.*, 1985).

Class C enzymes are chromosome-encoded and synthesized by Gram-negative bacteria, mainly Enterobacteriaceae and closely related species. The known sequences are highly conserved (Galleni *et al.*, 1988*a*), and surveys of the catalytic properties indicate very similar substrate profiles (Galleni & Frère, 1988; Galleni *et al.*, 1988*b*).

Although clearly homologous, the sequences of class A β -lactamases exhibit a much larger degree of variability. Alignments demonstrate that only a small number of residues are conserved throughout the dozen known primary structures.

Class A and C enzymes have the reputation to be 'penicillinases' and 'cephalosporinases' respectively, but the kinetic properties of class A β -lactamases also appear to be very variable. Rigorous comparisons are often difficult to perform since the kinetic parameters were not determined under identical conditions, the same substrates were not studied and purified preparations were not always utilized.

Data about the three-dimensional structures of the B. licheniformis and the Strep. albus G enzymes are available (Kelly et al., 1986; Dideberg et al., 1987). The first of these is considered as the archetype of class A enzymes. Both its sequence and properties are very similar to those of β -lactamase I of *Bacillus cereus*, another well-studied enzyme. The sequence of the Strep. albus G enzyme is very different from that of the *B. licheniformis* enzyme, and, surprisingly, from that of the *Strep. cacaoi* enzyme, which is produced by a closely related organism (Dehottay et al., 1987; Lenzini et al., 1988). The gene coding for the Actinomadura R39 β -lactamase has recently been cloned (Piron-Fraipont et al., 1989) and sequenced (Houba et al., 1989). The deduced amino acid sequence exhibited 50 % identities with that of the *B. licheniformis* enzvme.

Our comparison thus involves four class A β -lactamases of various degrees of relatedness.

MATERIALS AND METHODS

Determination of protein and enzyme activity

Routinely, protein concentrations were estimated by measuring the A_{280} of the solutions. More accurate determinations were performed by total hydrolysis with 6 M-HCl followed by reaction of the free amino groups

We have selected four class A enzymes of known primary structures produced by *Bacillus licheniformis*, *Actinomadura* R39, *Streptomyces cacaoi* and *Streptomyces albus* G. We have studied their catalytic properties on a representative sample of penicillins and cephalosporins. This could help to establish structureactivity relationships in class A and be a complement to the numerous site-directed mutagenesis experiments that have been initiated in various laboratories (Sigal *et al.*, 1984; Schultz & Richards, 1986; Madgwick & Waley, 1987).

[§] To whom correspondence should be addressed.

with dinitrofluorobenzene as described in Duez et al. (1978).

The β -lactamase activity was determined by measuring the hydrolysis of nitrocefin. One unit represents the amount of enzyme that hydrolyses 1 μ mol of nitrocefin/min, at maximal velocity, at pH 7 and 30 °C.

Enzymes

The β -lactamases were purified as follows.

Enterobacter cloacae P99 and 908R β -lactamases. The Sephadex G-50 column in the procedure described by Ross (1975) was replaced by one of Sephadex G-100. The affinity-chromatography method of Cartwright & Waley (1984) was also used.

Bacillus licheniformis 749/C β-lactamases. The procedure rested on that described by Thatcher (1975), but was extensively modified. The bacteria were grown overnight in a 500-litre tank. The conditions were those described by Frère et al. (1974) for Actinomadura R39. The medium contained, per litre: 4 g of peptone IBF, 4 g of casein hydrolysate, 0.25 g of MgSO₄, 0.8 g of K_2HPO_4 , 0.6 g of KH_2PO_4 , 1 mg of $FeSO_4$, 7 H_2O , 1 mg of $ZnSO_4,7H_2O$, 0.1 mg of $MnSO_4,4H_2O$, 0.01 mg of $CuSO_4$, 5H₂O and 4 µg of K₂Cr₂O₇. After centrifugation of the cells, 5 kg of Amberlite CG50 was added to the supernatant and the pH was adjusted to 4.5. After filtration, the ion-exchanger was suspended in 10 mmammonium acetate and the pH was adjusted to 8.5 with conc. NH₃. The supernatant was concentrated to 2 litres with the help of a Millipore Pellicon Cassette device and dialysed against water. The enzyme was adsorbed on a 200 ml column of CM-cellulose previously equilibrated at pH 4.5 in 10 mm-ammonium acetate. The column was then washed with 1 litre of 10 mm-ammonium acetate buffer, pH 8.5, and subsequently eluted with a linear gradient of 10-100 mm-ammonium acetate buffer, pH 8.5, over 1.5 litres. The active fractions were pooled, concentrated and divided into two samples, which were separately filtered through a 1-litre Sephadex G-100 column in 10 mm-Tris/HCl buffer, pH 7.2. A final purification step was performed on a 100 ml DEAE-Sepharose column equilibrated in 10 mm-Tris/HCl buffer, pH 7.2. The enzyme was eluted by applying a linear gradient of 0-200 mm-NaCl in 10 mm-Tris/HCl buffer, pH 7.2, over 500 ml. About 1 g of pure enzyme was thus obtained and the yield was 30%. The final preparation was dialysed against water and conserved at -20 °C, in solution or freeze-dried.

Actinomadura R39 β -lactamase. The enzyme was purified as described by Piron-Fraipont *et al.* (1989).

Streptomyces cacaoi β -lactamase. The enzyme was produced by Strep. albus G strain R2 (Chater & Wilde, 1980) harbouring plasmid pDML51 containing the gene coding for the Strep. cacaoi β -lactamase (Lenzini et al., 1987). The medium contained, per litre: 3 g of yeast extract (Difco 0127–01), 5 g of bactopeptone (Difco 0118–01–8), 3 g of malt extract (Difco 0186–01–5), 10 g of glucose, 340 g of sucrose and 2 g of CaCO₃. Fifteen 1-litre conical flasks each containing 500 ml of medium were stirred at 28 °C during 10 days until a maximum enzyme concentration of 13 mg/l was obtained. The cells were eliminated by centrifugation and the enzyme was

		Strep. cac	<i>aoi β</i> -lactan	lase			Strep. alb	us G β -lacta	mase	
Purification step	Total activity (units)	Total protein (mg)	Specific activity (units/mg)	Purification factor (fold)	Yield (%)	Total activity (units)	Total protein (mg)	Specific activity (units/mg)	Purification factor (fold)	Yielc (° ₀)
Culture supernatant	261 200	84000	3.1	. 1	100	286700	14400	20	I	100
DEAE-cellulose chromatography	146700	3600	41	13	56	236100	1310	180	6	82
Sephadex G-75 chromatography	117400	740	159	51	45	207100	240	863	44	72
O-Sepharose fast-flow chromatography, pH 8	76100	130	586	189	29	148400	50	2970	149	52
O-Sepharose fast-flow chromatography, pH 7	62800	34	1870	600	24	I	i	I	H	I
Chromatofocusing on MonoP	42 200	16.9*	2500	800	16	101 200	19.8*	5100	255	35

Table 1. Purification of the extracellular eta-lactamases from *Strep. cacaoi* and *Strep. albus* G

For experimental details see the Materials and methods section. The activities of both enzymes were measured with nitrocefin as substrate.

Accurately determined by amino acid titration (see the Materials and methods section).

adsorbed on 400 g of DEAE-cellulose previously equilibrated in 10 mm-Tris/HCl buffer, pH 8. The DEAEcellulose was used to prepare a column (7 cm diameter) that was washed with the same buffer containing 5%(v/v) glycerol and 5 % (v/v) ethylene glycol (TGE buffer). The enzyme was eluted with a linear gradient of 0-0.25 M-NaCl in TGE buffer over 1200 ml. The active fractions were pooled and concentrated by ultrafiltration. The sample was filtered through a 1.5-litre Sephadex G-75 column in the same TGE buffer. After concentration, the enzyme was adsorbed on a $2.6 \text{ cm} \times 11 \text{ cm}$ Q-Sepharose fast-flow column included in a Pharmacia f.p.l.c. system. Elution was performed with a linear gradient of 0-0.3 M-NaCl in a 20 mm TGE buffer over 900 ml. This step separated the Strep. cacaoi β -lactamase from the small amount (10 %) of β -lactamase characteristic of the host strain. This chromatography step was repeated under the same conditions except that the pH of the buffer was adjusted to 7.0. Finally, a pure preparation was obtained by chromatofocusing on a MonoP HR5/20 column. The pH gradient went from 5.7 to 4.0. Buffer A was 25 mm-N-methylpiperazine/HCl buffer, pH 5.7, and buffer B was a 10-fold dilution of Polybuffer 74 (Pharmacia) adjusted to pH 4 with HCl and containing 5% (v/v) glycerol and 5% (v/v) ethylene glycol. In addition to inactive u.v.-absorbing material, this step separated four active peaks, three of which exhibited the same specific activity and behaved as homogeneous material upon SDS/polyacrylamide gel electrophoresis. This heterogeneity problem is not discussed further in the present paper. Table 1 summarizes the purification procedure. The final preparation was stored at 4 °C in 50 mmsodium phosphate buffer, pH 7, containing 5% (v/v) glycerol and 5 % (v/v) ethylene glycol.

Streptomyces albus G β -lactamase. The enzyme was produced by Strep. albus G strain R2 harbouring plasmid pDML6. The culture medium was the same as that used above for production of the Strep. cacaoi β -lactamase. After 10 days at 28 °C, a total production of 60 mg was obtained in four conical flasks each containing 300 ml of medium. The purification procedure was the same as that described above except that the second chromatography on the Q-Sepharose fast-flow column at pH 7.0 was not necessary. As already described (Dehottay *et al.*, 1987), chromatofocusing also yielded several peaks of similar specific activity. The purification procedure is summarized in Table 1. The final preparation was conserved in the same buffer as for the Strep. cacaoi enzyme, but at -20 °C.

β -Lactam compounds

Benzylpenicillin was from Rhône-Poulenc (Paris, France), ampicillin and oxacillin were from Bristol Benelux (Brussels, Belgium), 6-aminopenicillanic acid, carbenicillin, cloxacillin, methicillin and ticarcillin were from Beecham Research Laboratories (Brentford, Middx., U.K.), cefotaxime was from Hoechst-Roussel (Romainville, France), cefamandole, cefazolin, cephalexin, cephaloglycin, cephaloridine, cephalosporin C and cephalothin were from Eli Lilly and Co. (Indianapolis, IN, U.S.A.), cephacetrile was from CIBA-GEIGY (Basel, Switzerland), ceftazidime and cefuroxime were from Glaxo Group Research (Greenford, Middx., U.K.) and 7aminodeacetoxycephalosporanic acid was from Gist-Brocades (Delft, The Netherlands). All those compounds were kindly given by the respective companies. Penicillin V and penicillanic acid were gifts from Professor H. Vanderhaeghe and Professor P. Claes (Katholieke Universiteit, Leuven, Belgium). Nitrocefin was purchased from Oxoid (Basingstoke, Hants., U.K.) and 7-aminocephalosporanic acid from Janssen Pharmaceutica (Beerse, Belgium). The structures of the various compounds are shown in Fig. 1.

Determination of the kinetic parameters

Usually, a complete time course of the hydrolysis of the substrate was recorded at 482 nm for nitrocefin, at 260 nm for other cephalosporins, at 260 nm for oxacillin, cloxacillin and methicillin and at 235 nm for other penicillins. The values of $k_{\text{cat.}}$ and K_{m} were derived as described by De Meester *et al.* (1987). When the value of $K_{\rm m}$ was high, initial rates were determined and analysed according to the Hanes equation. In some cases K_m was so high that only the $k_{\text{cat.}}/K_{\text{m}}$ ratio was determined. When the K_{m} value was below 10 μ M it was measured as a K_{i} with 100 μ M-nitrocefin as substrate. In most of those latter cases $k_{\text{cat.}}/K_{\text{m}}$ for the substrate being tested was less than $0.2 k_{\text{cat.}}/K_{\text{m}}$ for the reporter substrate. When that condition was not fulfilled, initial rates were measured so that less than 10% of both tested and reporter substrate were hydrolysed. The interactions between penicillanate and the Strep. cacaoi enzyme, between 7-aminocephalosporanic acid and the B. licheniformis enzyme and between ticarcillin or ceftazidime and the Ent. cloacae P99 enzyme were studied by using the reporter substrate method (De Meester et al., 1987; Galleni & Frère, 1988). Further details are given in the Results section. All incubations were performed at 30 °C in 50 mm-sodium phosphate buffer, pH 7.0 (containing 5% glycerol and 5% ethylene glycol for the Strep. albus G and Strep. cacaoi β -lactamases). Dilutions of the enzymes below a concentration of 0.1 mg/ml were performed with buffer solutions containing 0.1 mg of bovine serum albumin/ml. The Beckman DU8 spectrophotometer was linked to an Apple II microcomputer (De Meester et al., 1987). Standard deviations were computed on the basis of the results of five to ten experiments performed at various substrate and enzyme concentrations.

Thermal stability of β -lactamases

The enzymes were incubated at various temperatures in 50 mM-sodium phosphate buffer, pH 7.0, containing 0.1 mg of bovine serum albumin/ml. The buffer used in the experiments with the *Strep. albus* G and *Strep. cacaoi* β -lactamases also contained 5% glycerol and 5% ethylene glycol. The final enzyme concentrations were about 1 μ g/ml. Samples were withdrawn after various periods of time and the residual activity was determined with nitrocefin as substrate at 30 °C.

RESULTS

To obtain a wide overview of the catalytic profile of the various enzymes, compounds were selected on the basis of their structural characteristics and of their previously determined sensitivity to the various classes of β -lactamases.

In the penicillin family, penicillanic acid and 6-aminopenicillanic acid have no acylamido side chain on C-6. Benzylpenicillin is usually used as the reference com-

Penicillins (penams)

R—	Name
Н—	Penicillanic acid
NH ₂	6-Aminopenicillanic acid
C ₆ H ₅ -CH ₂ -CONH-	Benzylpenicillin
C₀H₅—CH—CONH— │ NH₂	Ampicillin
C₅H₅—CH—CONH— │ CO₂⁻	Carbenicillin
$C_6H_5-O-CH_2-CONH-$	Penicillin V (phenoxymethylpenicillin)
CH-CONH- S CO ₂ - OCH ₃	Ticarcillin
CONH- OCH3	Methicillin
CONH- NO-CH3	Oxacillin

Cloxacillin

Cephalosporins (Δ^3 -cephems)

R	R′—	Name
NH ₂ —	CH ₃ —	7-Aminodeacetoxycephalosporanic acid
NH ₂ —	CH ₃ -CO-O-CH ₂ -	7-Aminocephalosporanic acid
C₀H₅—CH—CONH— │ NH₂	CH3—	Cephalexin
C₅H₅—CH—CONH— │ NH₂	CH ₃ -CO-O-CH ₂ -	Cephaloglycin
N≡C-CH₂-CONH-	$CH_{3}-CO-O-CH_{2}-$	Cephacetrile
[−] O ₂ C CH−[CH ₂]₅−CONH− H ₃ Ň	CH ₃ -CO-O-CH ₂ -	Cephalosporin C

Fig. 1. Structures of the substrate molecules studied

Table 2. Kinetic parameters of β -lactamases for penicillanate and 6-aminopenicillanate

		Penicillana	te	6-A	minopenicil	llanate
β-Lactamase	<i>K</i> _m (μM)	$k_{\text{cat.}}$ (s ⁻¹)	$\frac{10^{-3} \times k_{\text{cat.}}/K_{\text{m}}}{(\text{M}^{-1} \cdot \text{s}^{-1})}$	К _m (μм)	$k_{\text{cat.}} (\text{s}^{-1})$	$\frac{10^{-3} \times k_{\text{cat.}} / K_{\text{m}}}{(\text{M}^{-1} \cdot \text{S}^{-1})}$
Actinomadura R39	63 ± 7	37 ± 4	590 ± 50	57 ± 5	450 ± 25	8000 ± 450
Strep. albus G	3300 ± 300	200 ± 15	61 ± 3	200 ± 10	720 ± 40	3700 ± 130
Strep. cacaoi	• •	*	*	300 ± 15	120 ± 4	400 ± 15
B. licheniformis	490 <u>±</u> 30	21 ± 4	50 ± 10	9 <u>±</u> 0.3†	57 <u>+</u> 2†	6000 <u>+</u> 400†
Ent. cloacae P99	N.D.‡	N.D.‡	N.D.‡	Comple	x branched	pathways§

* Inactivation by acyl-enzyme accumulation. See the text.

† Lag. The $K_{\rm m}$ was obtained by substrate competition by measuring the steady-state rate of nitrocefin hydrolysis. The $k_{\rm cat}$ value was measured directly at 1 mm after establishment of the steady state.
1 Not determined.
2 D. Monnaie, M. Galleni & J.-M. Frère (unpublished work).

pound, and phenoxymethylpenicillin, ampicillin, carbenicillin and ticarcillin are usually considered as fair to good substrates of most 'penicillinases'. On the other hand, cloxacillin, oxacillin and methicillin with their bulky side chains generally appear to be poorer substrates and can also be responsible for substrate-induced inactivation (Citri et al., 1976; Kiener & Waley, 1977; Kiener et al., 1980). Among the many available cephalosporins, we also selected 7-aminocephalosporanic acid and its deacetoxy equivalent, both devoid of acyl substituent on the amino group on C-7. Various compounds were considered as good substrates of class C enzymes: nitrocefin, cephaloridine, cephalothin, cephacetrile, cephaloglycin, cephalosporin C and cefazolin. Cephalexin was also included because it has the same C-7 side chain as cephaloglycin, but, similarly to 7-aminodeacetoxycephalosporanic acid, only a methyl group on C-3. Cefuroxime, cefotaxime and ceftazidime have an oxyimino group on the C-7 side chain and are considered to be ' β -lactamase-resistant'. The chosen compounds represented the three generations of cephalosporins, with cefamandole and cefuroxime for the second and cefotaxime and ceftazidime for the third generations respectively. The results are presented in Tables 2-9. For penicillins and the P99 β -lactamase, some values of the parameters were those measured by Galleni & Frère (1988) at pH 8.2. However, the kinetic parameters of class C β -lactamases did not vary by more than 3-fold (Bicknell et al., 1983; Joris et al., 1986) between pH 8.2 and 7. With cephalexin it appeared that the primary hydrolysis product was not stable under our experimental conditions and decayed with an apparent first-order rate constant of 2×10^{-3} s⁻¹, resulting in an additional decrease of A_{260} . In consequence, the kinetic parameters were deduced from the measurement of initial rates, obtained over very short periods of 2-3 min.

Penicillanate was not significantly hydrolysed by the Strep. cacaoi enzyme ($k_{cat.} < 4 \times 10^{-4} \text{ s}^{-1}$), but it behaved as an inactivator. The pseudo-first-order rate constant for the inactivation was measured with various penicillanate concentrations, and values of $0.1 \pm 0.01 \text{ s}^{-1}$ and $5.0 \pm 0.05 \text{ mM}$ were found for k_{+2} and K' respectively on the basis of the simple pathway (Fig. 2):

$$E + C \xrightarrow[k_{-1}]{k_{-1}} EC \xrightarrow[k_{+2}]{k_{+2}} EC^*$$

The same phenomenon was observed in the interaction between the P99 β -lactamase and ticarcillin. No hydrolysis was observed ($k_{\rm cat.} < 10^{-4} \, {\rm s}^{-1}$) and the value of $85000 \pm 10000 \, {\rm m}^{-1} \cdot {\rm s}^{-1}$ was measured for k_2/K' .

Lags or bursts were observed for various interactions. In some cases the same phenomenon was suspected but could not be identified with certainty. Under our experimental conditions the mixing dead-time was 5–10 s, and any lag or burst that would be completed within a shorter time could not be detected. With methicillin such a non-classical behaviour had already been reported for the *B. cereus* serine β -lactamase and various class C enzymes (Citri *et al.*, 1976; Galleni & Frère, 1988).

Surprisingly, instead of the expected behaviour, i.e. substrate-induced inactivation, a lag, characteristic of substrate-induced activation, was observed upon hydrolysis of methicillin by the four class A β -lactamases studied in the present work (Fig. 3). For the *B. licheniformis* β -lactamase and after reaching the steady state, a

		Benzylpenic	zillin		Ampicilli	- C	Phen	oxymethylp	enicillin		Carbenicilli	Ľ
<i>β</i> -Lactamase	<i>K</i> _m (μM)	$k_{\rm cat.}$ (s ⁻¹)	$\frac{10^{-3} \times k_{\mathrm{cat.}}/K_{\mathrm{m}}}{(\mathrm{M}^{-1} \cdot \mathrm{S}^{-1})}$	<i>K</i> _m (μM)	$k_{\rm cat.}$ (s ⁻¹)	$10^{-3} \times k_{cat.}/K_{m} / (M^{-1} \cdot S^{-1})$	<i>K</i> _m (μM)	$k_{\rm cat.}$ (s ⁻¹)	$10^{-3} \times k_{cat.}/K_{m}$ (M ⁻¹ ·S ⁻¹)	<i>K</i> _m (μM)	$k_{\rm cat.} (\rm s^{-1})$	$10^{-3} imes k_{ ext{cut}}/K_{ ext{m}}$ $(ext{M}^{-1} \cdot ext{S}^{-1})$
Actinomadura R39 Strep. albus G Strep. cacaoi B. licheniformis Ent chorcoe P99+	$\begin{array}{c} 50\pm5\\ 50\pm5\\ 1000\pm60\\ 96\pm6\\ 76\pm5\\ 0.6\pm0.1\end{array}$	370 ± 30 2800 ± 200 1050 ± 130 2200 ± 100 14 ± 1.5	$\begin{array}{c} 7500\pm1000\\ 2800\pm100\\ 11000\pm1000\\ 29000\pm2000\\ 23000\pm5000\end{array}$	$120\pm20\\650\pm50\\52\pm4\\143\pm8\\0.4+0.05$	1900 ± 200 3900 ± 200 310 ± 25 1500 ± 100 0.7+0.05	$16000\pm1500\\6100\pm400\\5700\pm600\\11000\pm600\\1800+400$	85 ± 10 85 ± 10 50 ± 6 39 ± 3 4 ± 0.2	$\begin{array}{c} 830\pm35\\ 2800\pm450\\ 770\pm100\\ 1000\pm70\\ 8\pm0.4\end{array}$	9900 ± 900 2900 ± 300 15000 ± 1500 26000 ± 2000 2000 ± 100	$250 \pm 20 \\ > 10000 \\ 100 \pm 10 \\ 51 \pm 2 \\ \simeq 0.01$	$220 \pm 15 > 1000 920 \pm 50 400 \pm 10 \approx 2 \times 10^{-3}$	$\begin{array}{c} 870\pm25\\ 100\pm15*\\ 8800\pm800\\ 8100\pm200\\ 260\pm30\end{array}$
* Determined by † Data obtained competition and th	y using a firs by Galleni & e k value	st-order time & Frère (1981 was determi	e course at [S] < 8) at pH 8.2, exc ined by measur	$\leq K_m$. The t sept for phe- ing the initi	ime course 1 noxymethyl ₁ ial rate at 2	emained first-c penicillin, for w mM.	order up to hich data w	the concenti ere obtained	ration given in I at pH 7. In this	the K _m colu s case the K	ımn. " was obtain	ed by substrate

Table 3. Kinetic parameters of $m{eta}$ -lactamases for benzylpenicillin, ampicillin, phenoxymethylpenicillin and carbenicillin

1	3	7
-	~	

Table 4. Kinetic	parameters of	β -lactamases for	oxacillin	, cloxacillin	and	ticarcillin
	•					

		Oxacilli	n		Cloxacill	in		Ticarcil	lin
β-Lactamase	К _m (μм)	$k_{\rm cat.} ({\rm s}^{-1})$	$\frac{10^{-3} \times k_{\text{cat.}} / K_{\text{m}}}{(\text{M}^{-1} \cdot \text{S}^{-1})}$	<i>K</i> _m (μм)	$k_{\text{cat.}}$ (s ⁻¹)	$\frac{10^{-3} \times k_{\text{cat.}}/K_{\text{m}}}{(\text{M}^{-1} \cdot \text{S}^{-1})}$	<i>K</i> _m (μм)	k _{cat.} (s ⁻¹)	$\frac{10^{-3} \times k_{\text{cat.}} / K_{\text{m}}}{(\text{M}^{-1} \cdot \text{s}^{-1})}$
Actinomadura R39 Strep. albus G Strep. cacaoi B. licheniformis Ent. cloacae P99	$\begin{array}{c} 160 \pm 15^{*} \\ 430 \pm 50 \\ 700 \pm 80 \\ 8 \pm 0.2\$ \\ 4 \times 10^{-4} \ \end{array}$	$\begin{array}{c} 940 \pm 50^{*} \\ 270 \pm 40 \\ 2000 \pm 150 \\ 10 \pm 0.58 \\ 5 \times 10^{-3} \ \end{array}$	$5900 \pm 600^{*}$ 630 ± 60 2800 ± 120 1200 ± 100 $7000 \pm 500 \parallel$	$25 \pm 3^{*}$ 450 ± 60 $220 \pm 25^{*}$ $11 \pm 0.5^{*}$ 4×10^{-4}	$\begin{array}{c} 150 \pm 10^{*} \\ 190 \pm 10 \\ 630 \pm 50 \\ \$.5 \pm 0.3 \\ 5 \times 10^{-3} \\ \ \end{array}$	$\begin{array}{c} 6200 \pm 750^{*} \\ 440 \pm 40 \\ 3000 \pm 350 \\ 775 \pm 25 \\ 11000 \pm 700 \ \end{array}$	$240 \pm 40 > 500^{\dagger}$ 130 ± 20 46 ± 2 ¶	$ \begin{array}{r} 190 \pm 25 \\ > 60 \dagger \\ 1200 \pm 120 \\ 220 \pm 10 \\ \P \end{array} $	$800 \pm 65 \\ 125 \pm 15^{\dagger} \\ 9500 \pm 800 \\ 4700 \pm 400 \\ \P$

* Lag. Values were obtained by neglecting the non-linear part of the curve.

† Determined by using a first-order time course at $[S] \ll K_m$. The time course remained first-order up to the concentration given in the $K_{\rm m}$ column.

‡ Possible lag. Any lag shorter than 10 s remains difficult to see with the method utilized in this study.

§ See the text. $K_{\rm m}$ values were determined as $K_{\rm i}$ values by substrate competition. $k_{\rm cat.}$ values were determined by measuring the initial rate at [S] $\gg K_{\rm m}$. \parallel Data obtained by Galleni & Frère (1988) at pH 8.2.

¶ Inactivation by acyl-enzyme accumulation. See the text.

Table 5. Kinetic parameters for β -lactamases for nitrocefin, cephaloridine and cephalothin

		Nitrocefi	in		Cephalori	dine		Cephalo	thin
β-Lactamase	К _т (µМ)	$k_{ ext{cat.}} \ (ext{s}^{-1})$	$\frac{10^{-3} \times k_{\text{cat.}} / K_{\text{m}}}{(\text{M}^{-1} \cdot \text{S}^{-1})}$	К _т (µМ)	$k_{\text{cat.}} (s^{-1})$	$\frac{10^{-3} \times k_{\text{cat.}} / K_{\text{m}}}{(\text{M}^{-1} \cdot \text{S}^{-1})}$	К _т (µМ)	$k_{\text{cat.}}$ (s ⁻¹)	$\frac{10^{-3} \times k_{\text{cat.}}/K_{\text{m}}}{(\text{M}^{-1} \cdot \text{S}^{-1})}$
Actinomadura R39 Strep. albus G Strep. cacaoi B. licheniformis Ent. cloacae P99	$70 \pm 51100 \pm 1401300 \pm 12038 \pm 575 \pm 5$	$\begin{array}{c} 600 \pm 65 \\ 2500 \pm 300 \\ 1050 \pm 100 \\ 470 \pm 20 \\ 800 \pm 60 \end{array}$	$\begin{array}{c} 8500 \pm 400 \\ 2400 \pm 110 \\ 800 \pm 70 \\ 13000 \pm 400 \\ 10500 \pm 1000 \end{array}$	$38 \pm 3320 \pm 251050 \pm 200135 \pm 690 \pm 5$	$\begin{array}{r} 440 \pm 45 \\ 200 \pm 10 \\ 260 \pm 40 \\ 630 \pm 30 \\ 500 \pm 20 \end{array}$	$11600 \pm 700 \\ 620 \pm 50 \\ 250 \pm 17 \\ 5000 \pm 500 \\ 5600 \pm 300$	$54 \pm 3720 \pm 40960 \pm 5020 \pm 129 \pm 4$	$200 \pm 25 \\ 260 \pm 20 \\ 11 \pm 0.5 \\ 48 \pm 2 \\ 160 \pm 8$	$\begin{array}{c} 3700 \pm 300 \\ 370 \pm 20 \\ 11.5 \pm 0.6 \\ 2500 \pm 30 \\ 5500 \pm 200 \end{array}$

 $K_{\rm m}$ of $1.3\pm0.03\,\mu{\rm M}$ was measured by substrate competition and a k_{cat} of 11 ± 0.2 s⁻¹ at substrate saturation (1 mm). With the Actinomycetes enzymes it was estimated that the k_{cat} value was larger than 10 s⁻¹, which was always much larger than what was observed with the class C enzymes $(0.01-0.1 \text{ s}^{-1} \text{ after completion of the})$ 'burst').

Oxacillin and cloxacillin also induced a lag with the three Actinomycetes enzymes. After the progressive increase in the hydrolysis rate was completed, remarkably high $k_{\text{cat.}}$ values were measured (Table 4). With the B. *licheniformis* enzymes the two K_m values were obtained by substrate competition and the k_{cat} values by measuring the initial rate at a 1 mm concentration of substrate (i.e. approx. 100 K_m). However, under those conditions a slight progressive slowdown of the reaction was observed when a complete hydrolysis time course was recorded, but that phenomenon was not further investigated.

Thermal stability

Surprisingly, and as observed by Schultz et al. (1987), the half-lives of the enzymes decreased when their concentrations increased. For instance, with the Strep. albus G β -lactamase at 45 °C the half-lives were respectively 30 min at 1 mg/ml and 53 min at 1 μ g/ml. With the Escherichia coli K12 chromosome-encoded class C β -lactamase at 53°C the half-life was 30 min at 0.4 mg/ml and 41 min at 4 μ g/ml. In both cases the halflives of the diluted samples did not depend upon the presence of bovine serum albumin (0.1 mg/ml) in the dilution buffer. The surprising concentration effect was thus more probably due to the β -lactamase concentration itself than to the total protein concentration.

Table 10 compares the stabilities of seven class A and five class C enzymes at various temperatures. The data for the Citrobacter diversus, B. licheniformis and Esch. coli RTEM class A β -lactamases were taken from previously published work (Amicosante et al., 1988; De Meester et al., 1987; Schultz et al., 1987). Inactivation of the P99 β -lactamase did not obey first-order kinetics. Fig. 4 compares the inactivations of the P99 and 908R β lactamases.

DISCUSSION

To complement our analysis, Table 11 summarizes the published values of the kinetic parameters for three other class A β -lactamases.

After a cursory examination of Tables 2–9 and 11, one might be tempted to conclude that little useful information can be obtained by comparing the kinetic parameters of the various class A enzymes. Indeed, each enzyme appears to exhibit a very individual behaviour. The available sequences were compared with the help of statistical methods (Table 12), which showed, as expected, a strong similarity between the B. licheniformis and Actinomadura R39 enzymes (55% identical residues, no insertions). Conversely, the RTEM-2 and Staphylococcus

ex.
hal
epl
2
and
icid
iic 2
ran
Spo
ğ
phí
Ce
DO I
Ē
7-a
5
cid
ā
ці.
ra
6
los
hal
epl
Š
X
et
ac
Ř
Ĕ.
Ĩ
7-8
5
sf
Se
ma
tai
ac
٩
Jo
2
fei
me
rai
pa
<u>с</u>
Jet
Kii
ē
ap.
- F

i.

	7-Amino	deacetoxycephal	losporanic acid	7-Amin	ocephalospor	anic acid	•	Cephalexin*	
β -Lactamase	$egin{array}{c} K_{\mathrm{m}} \ (\mu\mathrm{M}) \end{array}$	$k_{\mathrm{cat.}\atop (\mathrm{S}^{-1})}$	$rac{10^{-3} imes k_{ m cat}/K_{ m m}}{({ m M}^{-1}\cdot{ m S}^{-1})}$	K_{m} (μM)	$k_{cat.}$ (s ⁻¹)	$\frac{10^{-3} \times k_{\text{cal.}}/K_{\text{m}}}{(\text{m}^{-1} \cdot \text{s}^{-1})}$	$\stackrel{K_m}{(\mu M)}$	$k_{\text{cat.}}$ 10 (s^{-1})	$0^{-3} imes k_{ ext{cat.}}/K_{ ext{m}} (M^{-1} \cdot S^{-1})$
Actinomadura R39 Strep. albus G Strep. cacaoi B. lichenformis Ent. cloacae P99	> 200† > 200† > 200† 2000¶ 2200 ± 200¶	$ \begin{array}{c} > 0.061 \\ > 10^{-3}1 \\ > 10^{-3}1 \\ < 5 \times 10^{-3}1 \\ 0.08 \pm 0.021 \end{array} $	$\begin{array}{c} 0.29\pm0.02 \dagger\\ 0.29\pm0.02 \times 10^{-3} \dagger\\ (6\pm0.6)\times10^{-3} \dagger\\ < 20\times10^{-3} \Vert\\ (17\pm3)\times10^{-3} \Vert\\ (17\pm3)\times10^{-3} \Vert\end{array}$	> 2000† > 3000† > 2001 220±20***	> 5† > 0.5† > 0.01† 0.07±0.004** 0.2±0.05‡	$\begin{array}{c} 2.6\pm0.2 \\ 0.17\pm0.01 \\ 0.06\pm0.004 \\ 0.33\pm0.03** \\ 0.2\pm0.1 \\ \end{array}$	$1300 \pm 100 \ddagger 7300 \pm 400 \$ > 2000 \ddagger 120 \pm 5 \ddagger 95 \pm 5 \ddagger$	$\begin{array}{c} 285 \pm 15 \\ 12 \pm 18 \\ 12 \pm 18 \\ > 2 \\ 5 \pm 0.2 \\ 85 \pm 5 \\ \end{array}$	220±20‡ 1.7±0.1§ 0.9±0.1† 40±5‡ 875±50‡
Il values were determined etermined by using a first	by measuring t-order time co	initial rates. urse at [S] $\ll K_n$	n. The time course 1	remained fir	st-order up to	the concentrati	on given in t	he $K_{\rm m}$ colur	nn.

+

 \ddagger Values determined by using the Hanes plot. § Lag. Values obtained by neglecting the non-linear part of the curve and using Hanes' plot. [] 0.02 mg of *Strep. cacaoi* β -lactamase in 500 μ l of 200 μ m-7-aminodeacetoxycephalosporanic acid gave no detectable hydrolysis after 1 h at 30 °C. With nitrocefin as substrate, [] 0.02 mg of *Strep. cacaoi* β -lactamase in 500 μ l of 200 μ m-7-aminodeacetoxycephalosporanic acid.

no inhibition was detected in the presence of 1 mm-7-aminodeacetoxycephalosporanic acid. f_{m} values were determined as K_1 values by substrate competition. k_{cai} values were determined by measuring the initial rate at $[S] = K_m (B. licheniformis enzyme)$ or $f_{m}(S) = K_m/2$ (*Ent. cloacae* P99 enzyme). ** k_{cai} , K_m was determined as k_{+2}/K' by using the reporter substrate method. Only partial inactivation was observed. From the steady state the value of K_m could be measured. The k_{cai} , value was determined by monitoring directly the 7-aminocephalosporanic acid hydrolysis and measuring the initial rate at $[S] \ge K_m$. The $k_{\text{cat.}}$

ζ	ر
and a second sec	cepnalosporm
	and
•	cephaloglycin
	cephacetrile,
	<u>5</u>
•	<i>B</i> -lactamases
1	5
	parameters
	Kinetic
	1
	Table

			Cephacetrile			Cephaloglyci	u	C	ephalosporin	U
	β -Lactamase	K _m (μM)	$k_{\text{cat.}}(s^{-1})$	$\frac{10^{-3} \times k_{\text{cat.}}/K_{\text{m}}}{(\text{M}^{-1} \cdot \text{S}^{-1})}$	<i>K</i> _m (μM)	$k_{\mathrm{cat.}}(\mathrm{s}^{-1})$	$\frac{10^{-3} \times k_{\text{cat.}}/K_{\text{m}}}{(\text{M}^{-1} \cdot \text{S}^{-1})}$	<i>K</i> _m (<i>μ</i> M)	$k_{\mathrm{cat.}}(\mathrm{s}^{-1})$	$10^{-3} \times k_{\text{cat.}}/K_{\text{m}}/(M^{-1} \cdot S^{-1})$
	Actinomadura R39 Strep. albus G Strep. cacaoi B. licheniformis B. cloacae P99	$190 \pm 15 \\ \ge 6000 \\ 3500 \pm 400 \\ 10 \pm 1 \\ 140 \pm 10 \\ 140 \pm 10 \\ 100 \\ $	$\begin{array}{c} 500\pm25\\ \geq 450\\ \geq 1\pm2\\ 28\pm2\\ 143\pm8\end{array}$	$\begin{array}{c} 2700\pm80\\ 76\pm3\\ 6\pm0.15\\ 2900\pm400\\ 1000\pm20\end{array}$	$\begin{array}{r} 940\pm80\\ >\ 3000*\\ >\ 3000*\\ 39\pm3\\ 2\pm0.2\\ \end{array}$	$\begin{array}{c} 2500\pm130\\ >\ 100^{*}\\ >\ 100^{*}\\ 34\pm0.8\\ 0.9\pm0.08 \end{array}$	$\begin{array}{c} 2700\pm100\\ 32\pm1^{*}\\ 3.5\pm0.3^{*}\\ 900\pm80\\ 430\pm35\end{array}$	$1200 \pm 150 \\ 4500 \pm 1000 \\ > 2000^{*} \\ 98 \pm 5 \\ 400 \pm 20$	500±50 170±30† > 1* 14±2 1100±100	420±20 40±1† 0.5±0.05* 150±20 2700±200
* Deterr † Possib	nined by using a first- le lag. Any lag shorte	order time court than 10 s rer	urse at [S] ≪ . nains difficult	$K_{\rm m}$. The time co t to see with the	urse remaine method util	ed first-order ized in this st	up to the conce udy.	entration given	in the K_m colu	ımn.

t Lag. Values were obtained by neglecting the non-linear part of the curve. $\begin{cases} K_m \\ x$ values were determined as K_1 values by substrate competition. k_{est} values were determined by measuring the initial rate at $[S] \ge K_m$.

. •

		Cefuroxime			Cefotaxime			Ceftazidime	
actamase	<i>K</i> _m (μM)	$k_{\rm cat.} (\rm s^{-1})$	$10^{-3} \times k_{cat.}/K_{m} / (M^{-1} \cdot S^{-1})$	<i>K</i> _m (μM)	$k_{\text{cat.}}(\mathbf{s}^{-1})$	$\frac{10^{-3} \times k_{\text{cat.}}/K_{\text{m}}}{(\text{M}^{-1} \cdot \text{s}^{-1})}$	<i>K</i> _m (μM)	$k_{\rm cat.}$ (s ⁻¹)	$0^{-3} \times k_{\text{cat.}}/K_{\text{m}}$ $(M^{-1} \cdot S^{-1})$
tinomodura P30	170 + 20	110+10	640+70	680+70	280 + 40	400 + 40	> 1000*	> 13*	13+1*
en albus G	> 1000*	> 25*	$25 + 2^*$	> 1000*	* 1 ^	$1 \pm 0.05*$	> 1000	$< 10^{-3}$	$< 10^{-3+}$
en cacaoi	> 1000*	> 2*	$1.8 \pm 0.1^{*}$	> 1000*	> 0.5*	$0.5 \pm 0.05*$	> 1000*	> 3*	$3.5 \pm 0.3*$
cp. cucuo licheniformis	93 + 5	16 + 1	170 ± 30	205 ± 5	6.7 ± 0.2	33 ± 8	1400 ± 150	15±1	9 ± 0.2
cloacae P99	0.01 ± 0.001	0.06 ± 0.01	6000 ± 1000	0.033 ± 0.008	0.035 ± 0.006	$1100 \pm 200 \ddagger$	4 ± 0.45	0.012 ± 0.003	2.5 ± 0.2 §
ned by using a firs	t-order time c	ourse at [S] ≪	K_{m} . The time	course remaine	ed first-order up	p to the concen	tration given	in the $K_{\rm m}$ column	1. Sistifica modelation
of Strep. albus G β -L	actamase in 4($00 \ \mu l$ of 1 mm-	cettazidime gav	e no detectable	hydrolysis alte	J- US IN AL AL	. with nitroce	IIII as suosifale n	ט וחחוטונוטוו אמצ טכוכנו
nce of 1 mm-ceftazic	dime.			_			to stor [sitini	<u>را ~ 1</u>	
cloacae P99 ined by using a firs of <i>Strep.</i> albus $G \beta$ -lice of 1 mM-ceftazic	0.01 ± 0.001‡ t-order time c actamase in 4(time.	0.06±0.01‡ course at [S] ≪ 00 µl of 1 mm-	6000 ± 1000 ; $\& K_{m}$. The time ceftazidime gav	0.033±0.008‡ course remaint e no detectable	0.035±0.006 the first-order up hydrolysis after docemined by	1100 <u>∔</u> p to the r 5 min	= 200 ‡ : concen at 30 °C	$=200$; 4 ± 0.4 % concentration given i at 30 °C. With nitroce	= 2007 4 ± 0.4 % 0.012 ± 0.00 % the concentration given in the K_m column at 30 °C. With nitrocefin as substrate n

 K_{ext} values were determined as K_1 values by substrate competition. k_{ext} values were determined by measuring the initial rate at [S] $\gg K_{\text{m}}$. value was determined by monitoring directly the ceftazidime hydrolysis and measuring the initial rate at [S] $\gg K_{\rm m}$. in th

 $E + S \xrightarrow[k_{-1}]{k_{+1}} ES \xrightarrow[k_{+2}]{k_{+2}} ES^* \xrightarrow[k_{+3}]{k_{+3}} E + P$

Scheme 1. Interaction between a serine β -lactamase and substrate

ES* represents the acyl-enzyme,
$$K' = (k_{-1} + k_{+2})/k_{+1}$$
 and $k_{\text{cat.}}/K_{\text{m}} = k_{+2}/K'$.

aureus β -lactamases appear to be further relatives of the four enzymes studied here. Strikingly, these two enzymes are also very different from each other.

The 'central' position of the *B. licheniformis* β -lactamase is also remarkable, since it is consistently the protein that exhibits the highest score with any other one.

Fig. 5 presents an attempt to depict graphically the relationships between the four class A β -lactamases studied here.

There does not seem to be a clear relationship between those sequence similarities and the specificity profiles of the different enzymes: a pairwise comparison fails to detect any particular pattern in the values of $k_{\rm cat.}$ and $k_{\rm cat.}/K_{\rm m}$.

However, a careful study of our data reveals several interesting details, deserving further discussion. The analysis rests on the model shown in Scheme 1, which is widely accepted for serine β -lactamases.

Variability in class A β -lactamases

The range of variation of the kinetic parameters for a given β -lactam is generally quite wide, but it is much wider for cephalosporins than for penicillins. Strikingly, the $k_{\text{cat.}}/K_{\text{m}}$ values for all tested cephalosporins span two or three orders of magnitude with only four enzymes! The behaviour of the same enzymes towards penicillins is much more homogeneous, and all the tested penicillins are good substrates, including cloxacillin and oxacillin. The only striking exception is the interaction between penicillanic acid and the Strep. cacaoi β -lactamase, in which the antibiotic behaves as a rather inefficient inactivator $(k_2/K' = 20 \text{ M}^{-1} \cdot \text{s}^{-1} \text{ and } k_3 \leq 10^{-4} \text{ s}^{-1})$. The $k_{\text{cat.}}/K_{\text{m}}$ values for the hydrolysis of carbenicillin and ticarcillin by the Strep. albus G enzyme are also distinctively lower (about $100\,000 \text{ M}^{-1} \cdot \text{s}^{-1}$) than for the three other enzymes. If one includes the published values presented in Table 11, these general conclusions are not modified. The RTEM-2 enzyme exhibits higher values of $k_{\rm cat}/K_{\rm m}$ with most penicillins, mainly because of its lower $K_{\rm m}$ values. Of the few available values for the Staph. aureus enzyme, two are strikingly lower than those reported for the enzymes studied here: the $k_{\text{cat}}/K_{\text{m}}$ ratios for 6-aminopenicillanic acid and cloxacillin.

Comparison with class C β -lactamases

The inclusion of the *Ent. cloacae* P99 β -lactamase in the comparison yields the most surprising result of the analysis: the $k_{cat.}/K_m$ values for this enzyme nearly always fall within the range of variation of the same parameter for the class A enzymes. When it does not (with ampicillin, cephalothin, cephalexin, cephalosporin C, cefuroxime and cefotaxime) it is never distant from the nearest class A value by more than 10-fold. This result indicates that, if one considers the rate of acylation, there is no clear distinction between both classes of β -lactamases. With cephalosporins, that observation is certainly correlated to the wide range of variation of the

Table 8. Kinetic parameters of β -lactamases for cefuroxime, cefotaxamine and ceftazidime

ndo	0))	ļ)))	J	0	l	ł	Ø	((l	۱	1	۱	1	1	1	1	1	1	1	(¢	(1	Ì	Ì	1	1	1	1	Ì	l	l	l	l	Ì	۱	1	1	1	۵	ľ	J	U	3	8	l	۱	1	n	ľ	ľ	J	Ľ	ł	ľ	1	e	1	c	(1	6	n	aı	;	l	j	ł	D	(L	7	8	8	ľ	1	e	C	(ľ	Fo	1	s	e	5	S	L	a	1	n	1	I	ı	8	ta	t	Ľ	C	1	ł	a	8	Ŀ	ŀ	-	3	þ	1	ľ	í)	D	C	(í.	5	S	n	r	1)	e	6	k	t	1	e	e	(I	ł	1	п
Ì	nd	ndo	ndo	Indo	ndo	ndo	nda	ndo	nde	nd	nc	n	n	n	n	I	I	ľ	I	n	n	n	I	I	n	n	ın	n	I	I	I	I	n	n	I	I	n	n	n	n	I	I	I	I	l	l	l	l		1	8	l	۱	1	n	ľ	ľ	J	Ľ	ł	ľ	1	e	1	c	(1	6	n	aı	;	l	j	ł	D	(L	7	8	8	ľ	1	e	C	(ľ	Fo	1	s	e	5	S	L	a	1	n	1	I	ı	8	ta	t	Ľ	C	1	ł	a	8	Ŀ	ŀ	-	3	þ	1	ľ	í)	D	C	(í.	5	S	n	r	1)	e	6	k	t	1	e	e	(I	ł	1	п

		Cefazolin			Cefamando	ole
β-Lactamase	К _т (μм)	$k_{\rm cat.} ({\rm s}^{-1})$	$\frac{10^{-3} \times k_{\text{cat.}}/K_{\text{m}}}{(\text{M}^{-1} \cdot \text{S}^{-1})}$	К _m (μм)	$k_{\rm cat.} ({\rm s}^{-1})$	$\frac{10^{-3} \times k_{\text{cat.}} / K_{\text{m}}}{(\text{M}^{-1} \cdot \text{S}^{-1})}$
Actinomadura R39	70 ± 2	260 ± 15	3700 ± 300	310 ± 30	720 ± 35	2300 ± 200
Strep. albus G	$2800 \pm 200*$	$1500 \pm 100*$	560 ± 20*	$1600 \pm 200^{+}$	$800 \pm 100^{+}$	500 ± 30†
Strep. cacaoi	≥ 3000	≥ 100	33 ± 3	$1550 \pm 150 \ddagger$	65 ± 2	43±4‡
B. licheniformis	12 ± 2	300 ± 10	25000 ± 2000	12 ± 1	58 ± 3^{-1}	4800 ± 80
Ent. cloacae P99	3200 ± 200	1800 ± 200	560 ± 100	19 ± 3	11 ± 0.5	600 ± 50

* Also determined by the Hanes plot.

† Lag. Values were obtained by neglecting the non-linear part of the curve.

[‡] Possible lag. Any lag shorter than 10 s remains difficult to see with the method utilized in this study.

Fig. 2. Inactivation of the Strep. cacaoi β -lactamase by penicillanate

Plot of C/k_i versus C, where C is the concentration of penicillinate and k_i is the pseudo-first-order inactivation rate constant. Nitrocefin was the reporter substrate. To 450 μ l of 100 μ M-nitrocefin in 50 mM-sodium phosphate buffer, pH 7.0, containing various concentrations of penicillinate, 0.06-0.14 μ g portions of enzyme were added. The value of k_i was computed by analysing the progressive decrease of the nitrocefin hydrolysis rate. $K' = (k_{-1}+k_{+2})/k_{+1}$.

class A $k_{cat.}/K_m$ values. But this is not a sufficient explanation. Indeed, and although the class A $k_{cat.}$ values are also widely variable, the $k_{cat.}$ values of the class C enzymes (Galleni & Frère, 1988; Galleni *et al.*, 1988b) are consistently lower than those of class A for the following compounds: benzylpenicillin, ampicillin, oxacillin, carbenicillin, cefuroxime, cefotaxime and, if one excepts the *C. diversus* enzyme, cloxacillin, the difference being particularly large with oxacillin, cloxacillin and carbenicillin. This is also probably true for methicillin, but the comparison is more difficult for that compound since the lags observed did not allow us to measure the kinetic parameters accurately. It is particularly interesting to compare the behaviour of the *Strep. albus* G and P99 enzymes towards carbenicillin. Although the $k_{cat.}/K_m$

Fig. 3. Time course of the hydrolysis of methicillin by the *Strep*. *albus* G β -lactamase

values are similar (100000 and 260000 M⁻¹·s⁻¹ respectively), the enzymes exhibit respectively a very high $(> 1000 \text{ s}^{-1})$ and a very low $(2 \times 10^{-3} \text{ s}^{-1}) k_{\text{cat.}}$ value. Accordingly, the respective K_m values are extremely high and extremely low. One can thus conclude that the major difference between class A and class C enzymes is at the level of the deacylation step. Poor substrates of class C enzymes always appear to form stable acyl-enzyme intermediates, a property similar to those of penicillinsensitive enzymes. With the class A enzymes, low values of k_{cat} appear to be more exceptional and, at least with the three Actinomycetes enzymes, are often correlated to high $K_{\rm m}$ values. This indicates high K' values (in the millimolar range or higher) and suggests that one should probably not expect severely rate-limiting deacylations in those cases. The K_m values are further discussed in a following paragraph. At this point, however, it may be noted that the only compounds for which a distinctly slower acylation has been demonstrated for class C β -lactamases are the inactivators β -iodopenicillanate (De Meester et al., 1986) and clavulanate (Reading & Farmer, 1981). However, a detailed analysis of the interaction between the latter compound and class C β -lactamases has not been performed.

Influence of the structures of the side chains

All the class A enzymes hydrolyse benzylpenicillin, penicillin V and ampicillin with a high efficiency, where the rates of both acylation and deacylation appear to be high. The amino group of ampicillin does not appear to

Table 10. Half-lives of various class A and class C β-lactamases at different temperatures

Data for the *B. licheniformis* enzyme were obtained from De Meester *et al.* (1987), those for the *C. diversus* enzyme from Amicosante *et al.* (1988), and those for the *Esch. coli* RTEM enzyme from Schultz *et al.* (1987). The error on the different values is usually lower than 10%.

				Ha	lf-life (min)	I		
β-Lactamase	Femperature	40 °C	45 °C	50 °C	55 °C	60 °C	65 °C	70 °C
Class A								
Actinomadura R3	9	11	2					
Streptomyces albu	ıs G	≥ 300	55	7				
Streptomyces caco	aoi	-	53	15				
Bacillus lichenifor	mis		> 60*	> 60*	> 60*	> 60*	45 (64 °C)	1.3
Klebsiella pneumo	niae		50	17	2.3			
Citrobacter divers	us	29	10	< 3				
Escherichia coli R	TEM		> 1200*	500	13	1.5		
Class C								
Serratia marcesce	ns				31	5		
Escherichia coli K	12				10	2.5		
Enterobacter cload	cae 908R				> 120*	29		
Pseudomonas aeru	ıginosa				3			
Citrobacter freund	<i>t</i> ii				14	< 2		

have a specific effect. Although the k_{eat} values are generally somewhat lower, carbenicillin and ticarcillin are also good substrates. The distinctly lower $k_{\text{cat.}}/K_{\text{m}}$ value of the Strep. albus G β -lactamase for these substrates is due to a high K_m , as discussed above. Thus in class A the presence of an amino or carboxylate group on the side chain does not appear to significantly modify the acylation and deacylation rates. In class C, by contrast, the amino group decreases the k_{+3} value by one and the carboxylate group by three or four orders of magnitude. A similar observation can be made with oxacillin, cloxacillin and methicillin, which have large, sterically hindered, side chains. With class C enzymes, these compounds exhibit large $k_{cat.}/K_m$ and very low $k_{cat.}$ values, which makes them transient inactivators. Conversely, they are fair or good substrates of the class A enzymes $(k_{\text{cat.}} \ge 8 \text{ s}^{-1})$ with the exception of the C. diversus β lactamase and cloxacillin. The very low k_{cat}/K_m value observed with the *Staph. aureus* enzyme (800 M⁻¹ s⁻¹) is, in fact, due to an extremely high $K_{\rm m}$ value.

The removal of the acyl group on the C-6 or C-7 side chain of penicillins or cephalosporins respectively has a very different consequence. With penicillins, 6-aminopenicillanic acid remains a good substrate, with rather high acylation and deacylation rates. For the Actinomadura R39 β -lactamase 6-aminopenicillanic acid is an even better substrate than benzylpenicillin. This is in sharp contrast with the situation that prevails with most penicillin-binding proteins, for which 6-aminopenicillanic acid is a very poor inactivator. It may be noted, however, that with the Staph. aureus β -lactamases the $k_{\text{cat.}}/K_{\text{m}}$ value for 6-aminopenicillanic acid is only 0.1% of that observed with benzylpenicillin.

With cephalosporins, the situation is quite different. A comparison of the pairs ampicillin/6-aminopenicillanic acid, cephalexin/7-aminodeacetoxycephalosporanic acid and cephaloglycin/7-aminocephalosporanic acid shows that the removal of the C_6H_5 -CHNH₂-CO side chain decreases the k_{eat}/K_m values for the cephalosporins in a

dramatic way for all the enzymes, whereas for the penicillins a comparable effect is only observed with the *Staph. aureus* enzyme.

Class A β -lactamases: penicillinases or cephalosporinases?

Class A and class C enzymes are generally considered to be 'penicillinases' and 'cephalosporinases' respectively. If one compares the behaviour of class A enzymes

Fig. 4. Thermal inactivation of the P99 β -lactamase (\bigcirc) and 908R β -lactamase (\bigcirc) at 60 °C

 A_0 and A_t represent the activities at times 0 and t respectively. The enzymes were incubated at a concentration of $3 \mu g/ml$ in 50 mM-sodium phosphate buffer, pH 7.0, containing 0.1 mg of bovine serum albumin/ml. After various periods of time samples were withdrawn and the residual activity was measured at 30 °C with 100 μ M-nitrocefin as substrate.

	R	TEM-2 β -lac	stamase	Ū.	diversus β -lact	tamase	Staph	i. aureus β -lac	tamase*
ubstrate	<i>K</i> _m (μM)	$k_{\mathrm{cat.}}(\mathrm{s}^{-1})$	$\frac{10^{-8} \times k_{\mathrm{cat.}}/K_{\mathrm{m}}}{(\mathrm{M}^{-1} \cdot \mathrm{S}^{-1})}$	$K_{\rm m}$ $(\mu {\rm M})$	$k_{\rm cat.}$ (s ⁻¹)	$10^{-3} \times k_{\rm cat}/K_{\rm m}$ $({\rm M}^{-1} \cdot {\rm S}^{-1})$	<i>K</i> _m (μM)	$k_{\rm cat.}$ (s ⁻¹)	$10^{-3} \times k_{\text{cut.}}/K_{\text{m}}$ $(M^{-1} \cdot S^{-1})$
enicillanic acid		40							
-Aminopenicillanic acid							70	40	009
tenzylpenicillin	15-20	2000	100000-140000	70	570	8300	ν, t	400	80 000
enicillin V	10	1300	130 000				-	440	00000
Ampicillin	22	1900	87000	22	120	5400	17†	750	50000
Carbenicillin	6	220	25000	100	6 0	009			
Ticarcillin	7	220	30000						
Dxacillin	S	90	20000	230	206	006			
Cloxacillin	10	26	2600	< 100	0.04	> 400	10 000	8	0.8
Aethicillin		7					10000	9	0.6
Vitrocefin	55	550	10 000				1 (0 °C)	2.6 (0 °C)	2600 (0 °C)
Cenhaloridine	2100	6300	3000	740	006	1250	500	40‡	80
Cephalothin	350	540	1500	50	63	1300			
Cephaloglycin	400	420	1000						
Jefazolin	680	680	1000	20	170	8300			
Cefamandole	670	1800	3000						
Cephalosporin C				130	41	300	100	5	50
Cefuroxime	1000	ŝ	ę	70	54	170			
Cefotaxime	3000	7	2.1						

Table 11. Published kinetic parameters of some other class A β -lactamases

Data for the RTEM-2 enzyme were obtained from Fisher *et al.* (1981) (for penicillanic acid) and Labia *et al.* (1979) (for all other substrates), those for the *C. diversus* enzyme from Amicosante *et al.* (1988), and those for the *Staph. aureus* enzyme from R. Virden (personal communication) (for nitrocefin) and Richmond (1975) (for all other substrates).

* The values of Richmond (1975) were apparently computed on the basis of an incorrect absorption coefficient and should be divided by 2 (R. Virden, per \dagger A. L. Fink & R. Virden (personal communication) report a $K_{\rm m}$ value of 200 μ M at 0 °C. \ddagger These values should be considered with caution since progressive inactivation was detected by De Meester *et al.* (1986) and Carrey *et al.* (1984).

Table 12. Analysis of the sequence similarities between six class A β -lactamases

In addition to the four enzymes examined in our study, the RTEM-2 and *Staph. aureus* β -lactamases have been included in the analysis. In each column, the best and worst scores are underlined with continuous and discontinuous lines respectively. The comparisons were performed by using the Goad & Kanehisa (1982) procedures as done before by Joris *et al.* (1988) and were initiated at residue 31 in the Ambler (1980) numbering, where the active-site serine residue is in position 70. This type of analysis involves a penalty for the introduction of deletions or insertions. The lower the score, the higher the similarity. The proteins were also aligned pairwise and the numbers of identical amino acids determined. As expected, the *B. licheniformis* and *Actinomadura* R39 β -lactamases had the highest number of identical residues (55%), whereas only 32% and 33% of the *Staph. aureus* enzyme residues were identical with those of the *Strep. albus* G and RTEM-2 β -lactamases, respectively. All other comparisons yielded 37-48% of identical residues.

	RTEM-2	Staph. aureus	Strep. albus G	Strep. cacaoi	Actinomadura R39	B. licheniformis
RTEM-2		-370	-446	428_	409_	491
Staph. aureus	<u> </u>		<u>332</u>	- 444	-462	- 592
Strep. albus G	- 446	<u>-332</u>		470	-460	-512
Strep. cacaoi	-428	- 444	-470			- 555
Actinomadura R39	- 409	-462	-460	-531		<u> </u>
B. licheniformis	<u>-491</u>	<u> </u>	-512	<u> </u>	<u>-754</u>	

Fig. 5. Graphical representation of the distances between the four class A β -lactamases studied here

Key: A, B. licheniformis enzyme; B, Actinomadura R39 enzyme; C, Strep. cacaoi enzyme; D, Strep. albus G enzyme. The distances have been arbitrarily computed as 10000/|y|, where y is the value found in the pairwise comparisons of Table 12. In this representation the Staph. aureus enzyme would be on the reader's side of plane ABC, thus far away from the Strep. albus G enzyme (30), and the RTEM-2 β -lactamase would be on the opposite side of plane BCD, far away from the Staph. aureus enzyme (27) and somewhat closer to the B. licheniformis enzyme (20) than to the three other ones (22, 23 and 24).

towards ampicillin and cephaloglycin or cephalexin, that assumption might appear justified: the two cephalosporins are usually poorer substrates, although the differences with the Actinomadura R39 β -lactamase are not extremely large. However, cephaloridine and nitrocefin are good substrates of all the enzymes, and again the individual behaviour of the class A β -lactamases is striking. The $k_{cat.}/K_m$ values for the Strep. cacaoi β lactamase are consistently much lower for the cephalosporins, but conversely cephaloridine, cephalothin, cephacetrile, cephaloglycin, cefazolin and cefamandole are excellent substrates of the Actinomadura R39 β -lactamase, better than carbenicillin and ticarcillin. The

Actinomadura R39	GΟ	КТG	GG
Strep. albus G	GΟ	КТG	AG
Strep. cacaoi	ΕD	KSG	αν
B. licheniformis	A D	КТG	ΑΑ
RTEM-1,2	A D	KSG	AG
RTEM-3	A D	KSG	AS
Staph. aureus	A D	KSG	QA
Consensus class A	D	K T/S G	
Consensus class C	νн	КТG	A/S T

Fig. 6. Sequences around the conserved 'KTG' triad of β -lactamases

The RTEM-3 enzyme differs from RTEM-2 only by substitutions at residues 104 and 238 [Ambler's (1980) numbering]. It has a strongly increased activity against cefotaxime (Sougakoff *et al.*, 1988). K is residue 234 in Ambler's (1980) numbering.

relatively high efficiency of the same enzyme against cefuroxime and cefotaxime is also noteworthy, and we have already mentioned the fact that for the same oxyiminocephalosporins the $k_{\text{cat.}}$ values are consistently much higher with class A enzymes than with class C.

It is thus quite dangerous to consider class A β lactamases indiscriminately as poor cephalosporinases. In fact, with some substrates, they are better cephalosporinases than class C enzymes!

K_m values

Like the other parameters, the K_m values for class A enzymes exhibit a very wide range of variation. Two of the most striking examples are carbenicillin (> 10 mM with the Strep. albus G enzyme and $8 \,\mu$ M with the RTEM-2 enzyme) and cephacetrile (> 6 mM with the Strep. albus G enzyme and 10 μ M with the B. licheniformis enzyme). Each enzyme, however, appears to present a more coherent pattern : with the Strep. albus G enzyme the K_m values are always large, none of the values being below 200 μ M, and many being larger than 1 mM. The behaviour of the Strep. cacaoi enzyme is similar, but the K_m values are distinctly lower with many penicillins. The results obtained with the two Streptomyces enzymes, particularly with the Strep. albus G β -lactamase, suggest that high K' values might be general properties of those enzymes. The

 $K_{\rm m}$ values of the Actinomadura R39 β -lactamase are somewhat lower, around 100 μ M, although values larger than 1 mm are still observed with some cephalosporins. The majority of the K_m values for the *B*. licheniformis β lactamase are below 100 μ M, but three values larger than 1 mm are observed. Martin & Waley (1988) have measured the individual values of k_{+2} and k_{+3} for β -lactamase I of B. cereus and found that acylation and deacylation occurred at similar rates for several substrates. The kinetic parameters of the B. licheniformis and Actinomadura R39 β -lactamases towards many penicillins are very similar to those of β -lactamase I of B. cereus, and one is tempted to conclude that the individual rate constants are also similar for the three enzymes. With some cephalosporins, however, such as ceftazidime and cefotaxime, the behaviours of the B. licheniformis and Actinomadura R39 enzymes seem to be closer to those of the Streptomyces β -lactamases, with high K' values. The RTEM-2 enzyme, finally, probably exhibits the most clear-cut pattern: the K_m values are low with all penicillins and high with the cephalosporins, if one excepts nitrocefin. With that enzyme the values of k_{+2} and k_{+3} for benzylpenicillin are also similar (S. G. Waley, personal communication), and the low K_m reflects a low K' value. Some penicillins also exhibit low K_m values with the Staph. aureus enzyme, and the same situation (similar k_{+2} and k_{+3} values) appears to prevail (S. G. Waley, personal communication), implying K' values in the micromolar range, although the results obtained by S. G. Waley are not in agreement with those reported by Pratt et al. (1988), who concluded that deacylation was ratelimiting in the hydrolysis of benzylpenicillin by the Staph. aureus enzyme. In contrast, the K_m values of the same enzyme for cloxacillin, methicillin, cephaloridine and cephalosporin C are significantly higher, indicating high K' values.

This high degree of diversity in class A again contrasts with the behaviour of class C, where most K_m values are below 100 μ M, with the striking exceptions of 7aminocephalosporanic acid, 7-aminodeacetoxycephalosporanic acid and cefazolin. At the present stage it remains difficult to draw firm conclusions from those comparisons, but it can safely be assumed that the large $K_{\rm m}$ values reflect high K' values. In class C, low $K_{\rm m}$ values often (or always) reflect rate-limiting deacylation, but this is certainly not true in class A. The relative con-tributions of K', k_{+2} and k_{+3} to the K_m values must await the determination of the individual values of those parameters, which still presents many experimental difficulties, but the analysis of the available data demonstrates that one should expect a wide dispersion of the K' values of class A β -lactamases.

Residues following the 'KTG box'

Most serine penicillin-recognizing enzymes sequenced so far contain a Lys-Thr-Gly sequence between the active-site serine residue and the *C*-terminus. In the *Streptomyces* R61 extracellular DD-peptidase lysine is replaced by histidine, and in some class A β -lactamases threonine is replaced by serine. However, in all enzymes whose three-dimensional structure has been studied, those three residues are part of the external strand of a β pleated sheet adjacent to the substrate-binding pocket. Various mutations in the two residues that follow this (nearly) conserved triad have been shown to modify the specificity of the enzymes. The sequences around the triad of the enzymes studied here is shown in Fig. 6. It is quite clear that the variations of the two residues that follow the triad fail to explain the similarities and the differences in the specificity profiles. In particular, the identical alanine and glycine residues in the RTEM-2 and *Strep. albus* G enzymes are associated with enzymes of extremely different behaviour. Similarly, the glutamine residue found in both the *Strep. cacaoi* and the *Staph. aureus* enzymes cannot be correlated with similar specificities. One must conclude that other residues around the binding pocket also play a key role in determining the substrate profiles of the enzymes, although the residues following the 'KTG box' certainly contribute to those properties.

Thermal stability

Again the results presented in Table 10 indicate a clear contrast between the homogeneity of class C and the diversity of class A. Strikingly, the Actinomadura R39 β lactamase is the most unstable of all, whereas the B. licheniformis enzyme is significantly more stable than all class C enzymes. Surprisingly, that pair of enzymes had obtained the highest score in the sequence comparisons! Two additional points are worth noting. (i) As observed earlier by Schultz et al. (1987) with the RTEM-1 β lactamase, the enzymes were more stable at low than at high concentrations. Although the differences were not spectacular, this was rather unexpected and remains unexplained. If specific bimolecular interactions were playing a role in this phenomenon, one would expect the concentration effect to be much more drastic. (ii) Inactivation of the P99 β -lactamase did not obey first-order kinetics. There are only four amino acid substitutions between the P99 and 908R β -lactamases (Galleni et al., 1988a), and they did not appear to influence any of the properties of the enzymes, if one excepts the space groups in which the two proteins crystallize. A reasonable hypothesis would be that the substitutions confer rather different surface properties to the two proteins.

Lags and bursts

Bursts, first described with a class A enzyme by Citri et al. (1976), appear to be rather common phenomena with β -lactamases (Joris et al., 1986; Amicosante et al., 1988; Galleni et al., 1988b). These phenomena can be interpreted by assuming that the acyl-enzyme can slowly isomerize into an inactive or less active structure. In various cases, however, we also observed lags with methicillin, cloxacillin or oxacillin. To our knowledge, it is the first time that such a result has been recorded for β -lactamases. These observations, suggesting the isomerization of the acyl-enzyme into a more active form, certainly deserve further investigation.

CONCLUSIONS

It is quite safe to conclude that the diversity of the properties of class A β -lactamases will make the task quite difficult for anybody who attempts to divide them into sub-classes. This is made even more complicated by the fact that, quite often, the data found in the literature are unreliable or incomplete. Bush (1989*a*,*b*,*c*) has recently performed a very careful and thorough survey of the properties of these enzymes and proposed a new classification based on the substrate profiles and the inhibition by various β -lactams, EDTA and *p*-chloro-

mercuribenzoate. On the basis of the available data, Bush (1989*a,b,c*) has distinguished 'penicillin-hydrolysing β -lactamases (Pen-Y, group 2a)' from 'broad spectrum β -lactamases (BDS-Y, group 2b)', and included the three Actinomycetes, the *Staph. aureus* and the *B. licheniformis* enzymes in the first group and the RTEM-2 and the *C. diversus* enzymes in the second. Our study, which involves a large number of compounds, demonstrates that the 'spectrum' of the *B. licheniformis* and Actinomycetes β -lactamases might be just as 'broad' as those of the TEM and *C. diversus* enzymes!

As already discussed (Galleni *et al.*, 1988*b*), the most usually measured value is unfortunately the 'relative rate of hydrolysis' at a given β -lactam concentration. Depending upon the K_m value, this 'relative rate' can represent an estimation of either $k_{cat.}$ or $k_{cat.}/K_m$ and its widespread utilization does not simplify the problem. The sensitivity to *p*-chloromercuribenzoate might also be a misleading factor: in some experiments the concentrations were so large that the specificity of the reagent can be considered as doubtful. In addition, various enzymes contain a cysteine residue next to the active-site serine residue, and the inactivation by *p*-chloromercuribenzoate might only reflect steric hindrance.

The substrate profile might also be significantly altered by a very small number of residue substitutions. This is exemplified by the RTEM-2 and RTEM-3 β -lactamases, where two substitutions confer a vastly increased activity against cefotaxime and ceftazidime to the latter enzyme. This demonstrates the difficulty (if not the impossibility) of establishing classification criteria that would reconcile the structural and catalytic aspects.

Although we do not wish to sound pessimistic, we believe that, when carefully determined, the catalytic properties of class A β -lactamases will present a continuum, where only the extremes will fall into clearly distinct groups. Any classification based on a well-chosen number of β -lactams will be liable to modifications upon addition of new compounds. High-resolution three-dimensional structures of three of the enzymes discussed above (those of *Strep. albus* G, *B. licheniformis* and *Staph. aµreus*) will probably become available in the near future. Those results will certainly help us to understand the specificity profiles of those enzymes, but it is quite doubtful that they will bring any definite solution to the classification problem.

This work was supported in part by the Fonds de la Recherche Scientifique Médicale (Contract n° 3.4507.83), an Action Concertée with the Belgian Government (Convention 86/91–90), the Fonds de Recherche de la Faculté de Médecine, Université de Liège, and a contract with the E.E.C. (BAP-0197-B). A. M. is fellow of the I.R.S.I.A. A.-M.M.-B. was an Aspirant of the F.N.R.S. between 1984 and 1988.

REFERENCES

- Ambler, R. P. (1980) Philos. Trans. R. Soc. London B 289, 321–331
- Amicosante, G., Oratore, A., Franceschini, N., Maccarrone, M., Strom, R., Galleni, M. & Frère, J.-M. (1988) Biochem. J. 254, 885–890
- Bicknell, R., Knott-Hunziker, V. & Waley, S. G. (1983) Biochem. J. 213, 61–66
- Bush, K. (1989a) Antimicrob. Agents Chemother. 33, 259-263
- Bush, K. (1989b) Antimicrob. Agents Chemother. 33, 264-270

- Bush, K. (1989c) Antimicrob. Agents Chemother. 33, 271–276 Carrey, E. A., Virden, R. & Pain, R. H. (1984) Biochim. Bio-
- phys. Acta **785**, 104–110 Costumiet S. J. & Waley, S. C. (1984) Biochim. Bio-
- Cartwright, S. J. & Waley, S. G. (1984) Biochem. J. 221, 505-512
- Chater, K. F. & Wilde, L. C. (1980) J. Gen. Microbiol. 116, 323-334
- Citri, N., Samuni, A. & Zyk, N. (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 1048–1052
- Dehottay, P., Dusart, J., De Meester, F., Joris, B., Van Beeumen, J., Erpicum, T., Frère, J.-M. & Ghuysen, J.-M. (1987) Eur. J. Biochem. 166, 345–350
- De Meester, F., Frère, J.-M., Waley, S. G., Cartwright, S. J., Virden, R. & Lindberg, F. (1986) Biochem. J. 239, 575–580
- De Meester, F., Joris, B., Reckinger, G., Bellefroid-Bourguignon, C., Frère, J.-M. & Waley, S. G. (1987) Biochem. Pharmacol. 36, 2393-2403
- Dideberg, O., Charlier, P., Wéry, J. P., Dehottay, P., Dusart, J., Erpicum, T., Frère, J.-M. & Ghuysen, J.-M. (1987) Biochem. J. 245, 911–913
- Duez, C., Frère, J.-M., Geurts, F., Ghuysen, J.-M., Dierickx,
 L. & Delcambe, L. (1978) Biochem. J. 175, 793-800
- Fisher, J., Charnas, R. L., Bradley, S. M. & Knowles, J. R. (1981) Biochemistry 230, 2726–2731
- Frère, J.-M., Moreno, R., Ghuysen, J.-M., Delcambe, L., Dierickx, L. & Perkins, H. R. (1974) Biochem. J. 143, 233-240
- Galleni, M. & Frère, J.-M. (1988) Biochem. J. 255, 119-122
- Galleni, M., Lindberg, F., Normark, S., Cole, S., Honore, N., Joris, B. & Frère, J.-M. (1988*a*) Biochem. J. **250**, 753-760
- Galleni, M., Amicosante, G. & Frère, J.-M. (1988b) Biochem. J. 255, 123-129
- Goad, W. B. & Kanehisa, M. T. (1982) Nucleic Acids Res. 10, 247-263
- Houba, S., Willem, C., Duez, C., Molitor, C., Dusart, J., Frère, J.-M. & Ghuysen, J.-M. (1989) FEMS Microbiol. Lett., in the press
- Hussain, M., Carlino, A., Madonna, M. J. & Lampen, J. O. (1985) J. Bacteriol. 164, 223-229
- Joris, B., De Meester, F., Galleni, M., Masson, S., Dusart, J., Frère, J.-M., Van Beeumen, J., Bush, K. & Sykes, R. B. (1986) Biochem. J. 239, 581–586
- Joris, B., Ghuysen, J.-M., Dive, G., Renard, A., Dideberg, O., Charlier, P., Frère, J.-M., Kelly, J. A., Boyington, J. C., Moews, P. C. & Knox, J. R. (1988) Biochem. J. 250, 313–324
- Kato, C., Kudo, T., Watanabe, K. & Horikoski, K. (1985) J. Gen. Microbiol. 131, 3317–3324
- Kelly, J. A., Dideberg, O., Charlier, P., Wéry, J. P., Libert, M., Moews, P. C., Knox, J. R., Duez, C., Fraipont, C., Joris, B., Dusart, J., Frère, J.-M. & Ghuysen, J.-M. (1986) Science 231, 1429–1431
- Kiener, P. A. & Waley, S. G. (1977) Biochem. J. 165, 279-285
- Kiener, P. A., Knott-Hunziker, V., Petursson, S. & Waley, S. G. (1980) Eur. J. Biochem. 109, 575-580
- Labia, R., Barthelemy, M., Fabre, C., Guionie, M. & Peduzzi, J. (1979) in β -Lactamases (Hamilton-Miller, J. M. T. & Smith, J. T., eds.), pp. 429–442, Academic Press, New York and London
- Lenzini, M. V., Nojima, S., Dusart, J., Ogawara, H., Dehottay, P., Frère, J.-M. & Ghuysen, J.-M. (1987) J. Gen. Microbiol. 133, 2915–2920
- Lenzini, M. V., Ishihara, H., Dusart, J., Ogawara, H., Joris, B., Van Beeumen, J., Frère, J.-M. & Ghuysen, J.-M. (1988) FEMS Microbiol. Lett. 49, 371-376
- Madgwick, P. J. & Waley, S. G. (1987) Biochem. J. 248, 657-662
- Martin, M. & Waley, S. G. (1988) Biochem. J. 254, 923-925
- Piron-Fraipont, C., Duez, C., Matagne, A., Molitor, C., Dusart, J., Frère, J.-M. & Ghuysen, J.-M. (1989) Biochem. J. 262, 849–854

- Pratt, R. F., McConnell, T. S. & Murphy, S. J. (1988) Biochem. J. 254, 919–922
- Reading, C. & Farmer, T. (1981) Biochem. J. 199, 779-787
- Richmond, M. H. (1975) Methods Enzymol. 43, 664-672
- Ross, G. W. (1975) Methods Enzymol. 53, 678-687
- Schultz, S. C. & Richards, J. H. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 1588–1592

Received 13 June 1989/2 August 1989; accepted 8 August 1989

- Schultz, S. C., Dalbadie-McFarland, G., Neitzel, J. J. & Richards, J. H. (1987) Proteins Struct. Funct. Genet. 2, 290–297
- Sigal, I. S., De Grado, W. F., Thomas, B. J. & Petteway, S. R., Jr. (1984) J. Biol. Chem. 259, 5327–5332
- Sougakoff, W., Goussard, S., Gerbaud, G. & Courvalin, P. (1988) Rev. Infect. Dis. 10, 879–884
- Thatcher, D. R. (1975) Methods Enzymol. 43, 653-664