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Abstract

Most wall shear stress models assume the boundary layer to be fully turbulent, at
equilibrium, and attached. Under these strong assumptions, that are often not veri-
fied in industrial applications, these models predict an averaged behavior. To address
the instantaneous and non-equilibrium phenomenon of separation, the Mixture Den-
sity Network (MDN), the neural network implementation of a Gaussian Mixture
Model, initially deployed for uncertainty prediction, is employed as a wall shear
stress model in the context of wall-modeled Large Eddy Simulations (wmLES) of
turbulent separated flows. The MDN is trained to estimate the conditional proba-
bility p(7Tw|x), knowing certain entries x, to better predict the instantaneous wall
shear stress T, (which is then sampled from the distribution). In this work, an MDN
is trained on a turbulent channel flow at the friction Reynolds number Re, of 1,000
and on the two-dimensional periodic hill at the bulk Reynolds number of 10,595.
The latter test case is known to feature a massive separation from the hill crest. By
construction, the model outputs the probability distribution of the two wall-parallel
components of the wall shear stress, conditioned by the model inputs: the instan-
taneous velocity field, the instantaneous and mean pressure gradients, and the wall
curvature. Generalizability is ensured by carefully non-dimensionalizing databases
with the kinematic viscosity and wall-model height. The relevance of the MDN model
is evaluated a posteriori by performing wmLES using the in-house high-order Dis-
continuous Galerkin (DG) flow solver, named Argo-DG, on a turbulent channel flow
at Rer = 2,000 and on the same periodic hill flow. The data-driven WSS model
significantly improves the prediction of the wall shear stress on both the upper and
lower walls of the periodic hill compared to quasi-analytical WSS models.

Keywords: Wall-modeled Large Eddy Simulation, Wall shear stress model, Machine
Learning, Turbulent boundary layer, Separated flows, Conditional probability distribution



1 Introduction

Large Eddy Simulation (LES) is an effective tool for simulating turbulent flows. LES
lies at the border between Direct Numerical Simulation (DNS), which resolves all scales,
and Reynolds Averaged Navier-Stokes (RANS), which models all turbulent scales.
However, LES is still computationally unfeasible for real engineering applications due
to the rapid increase in resolution required to accurately resolve the small structures
near the wall at high Reynolds numbers as estimated by Choi and Moin (2012). To
reduce the computational cost, the energetic scales of turbulence in the innermost (i.e.,
the near-wall region) 10-20% of the boundary layer are modelled rather than resolved.
Consequently, in a wall-modeled LES (wmLES), the mesh is coarsened near the solid
walls, and a model is defined to relate the external physics to the wall. In the wmLES
framework, models based on the law of the wall, which is valid for attached flow at mod-
erate pressure gradients, are restricted in their ability to address complex, unsteady and
non-equilibrium flow features, including secondary flows and separation. Other effects
relevant to separation, such as pressure gradients, are not included in these models.

In an effort to address these issues, the Two-Layer Model (TLM), proposed by Balaras
et al. (1996), and the Detached Eddy Simulation (DES), introduced by Spalart et al.
(1997), have been developed as hybrid RANS/LES approaches. The main feature of DES
and its modification, Delayed DES (DDES) (Spalart et al., 2006b), is that a significant
part of the boundary layer is treated by Reynolds-Averaged Navier-Stokes (RANS),
while the separated flow regions are treated by LES. However, both TLM and DES have
their own limitations. Although TLM has been successfully applied to simulate various
scenarios, such as square ducts, rotating channels, and backward-facing steps, it still
encounters two main issues: the log-layer mismatch and the resolved Reynolds stresses
inflow. Additionally, TLM struggles with managing strong pressure gradients and flow
separation effectively. Breuer et al. (2007) used the approach of artificial viscosity to
build a simple analytical model if an appropriate definition of the relative thickness of
the viscous sublayer is obtained. Encouraging results were obtained on the two-dimen-
sional periodic hill at Re, = 10595. Cadieux et al. (2016) addressed the separation
problem using an integral wall model for LES with additional non-equilibrium terms.
An analytically tractable integral formulation was obtained and successfully applied to
a flat plate subjected to an adverse pressure gradient. Krank et al. (2019) used a turbu-
lent boundary layer velocity profile model to enrich the Discontinuous Galerkin (DG)
solution in the near wall region. Such a model has been applied to turbulent channel and
periodic hill flows with encouraging results. Although much progress has been achieved
in this field, most existing equilibrium wall models (Piomelli, 2008; Bose and Park,
2018) are still unable to predict flow separation and reattachment (e.g., boundary layer
misalignment). The use of Deep Learning (DL) techniques offers a great opportunity
to avoid making strong assumptions about the data, to incorporate the effects of the
pressure gradient, and to predict the wall-parallel components of the wall shear stress
(i.e., to cope with boundary layer misalignment), allowing non-equilibrium conditions
such as turbulent separated flows to be addressed.

The advent of new hardware, such as GPUs and TPUs, combined with the exponen-
tial generation and accumulation of data, has made it possible to train deeper neural
networks to support the generation of new engineering models. A deep neural network
consists of a large number of parameters (up to = 100 billion for the largest neural
network trained in 2024 and used in the field of large language models) combined with
non-linear activation functions that enable it to learn complex relationships between its
inputs and outputs and to recognize features automatically through data assimilation.



Since the birth of the first neural network by Frank Rosenblatt in 1957, significant efforts
have been made to train neural networks efficiently and to develop new architectures,
such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN),
Long-Short Term Memory (LSTM), Residual Networks (ResNet), and UNet, which are
specifically designed to perform dedicated tasks (Zhang et al., 2023). In recent years, the
fluid dynamics community has increasingly adopted ML and DL techniques for dimen-
sionality reduction, closure models (e.g., RANS closures, wall models, and subgrid-scale
models), and flow control, uncertainty quantification, and optimization (Duraisamy
et al., 2019; Brunton et al., 2020). This work focuses on the use of neural networks to
support the development of new wall shear stress models.

Wall models can be classified into two broad categories: hybrid RANS/LES (e.g.,
Detached Eddy Simulations Spalart et al. (2006a)) and wall stress modeling approaches.
Each of these categories can be further subdivided into standard and data-driven
approaches. The interested reader is referred to Heinz (2020) and references therein.

The rough principle of a wall shear stress model is to establish the local non-linear
relationship between a set of entries (e.g., the velocity) and the wall shear stress. Most
wall shear stress models take as input a single point located at a certain height A,
in the wall-normal direction, or slightly shifted downstream, as proposed by Piomelli
et al. (1989). Subsequently, the predicted wall shear stress is then imposed as a Neu-
mann boundary condition. The reader is referred to the literature reviews by Piomelli
and Balaras (2002), Piomelli (2008), and Larsson et al. (2016) for more details on the
standard wall shear stress modeling approaches.

The last decade has seen the emergence of data-driven wall models due to the increase
in computational resources for the generation of high-quality databases and the training
of ML and DL techniques. Research was initially conducted on fully turbulent boundary
layers for comparison with existing wall models, which have already proven successful
under such equilibrium conditions. Yang et al. (2019) developed a physics-informed
data-driven wall model for the channel flows by training MLPs on filtered DNS data of
the channel flow at a friction Reynolds number Re, (defined as Re, = u.h/v, where
u, is the friction velocity, h is the channel half height and v the kinematic viscosity) of
1,000. The non-dimensionalization is inspired by the vertically integrated thin boundary
layer equations and the eddy population density scaling to ensure a less aggressive
extrapolation when increasing Re, in the a posteriori test. Radhakrishnan et al. (2021)
focus on a wall shear stress model for channel flows using Gradient Boosted decision
trees. Their model is trained on dimensionless features extracted from two channel flows
(Re; = 180 and Re, = 1,000) and data synthetically generated by rescaling the instan-
taneous channel velocity fields. Their model performs similarly to the Equilibrium Wall
Model (EQWM) on a channel at Re, = 2,005 and fails to predict the streamwise velocity
and stress profiles on a wall-mounted hump. Jamaat and Hattori (2023) a priori assess
the performance of convolutional neural networks (CNN) for predicting the wall shear
stress in channel flows. The model predicted the wall shear stress with high correlation
coefficients for small y* values (defined as y* = yu,/v, where y is the wall-normal
distance), making the model unsuitable for realistic configurations. Furthermore, the
non-local approach is not the most appropriate for massively parallel computations.

These wall shear stress models target the channel flow configuration and attempt to
match or exceed the standard Law-of-the-wall (LOTW). Recent research also aims to
overcome the existing weaknesses of standard wall models using ML and DL techniques.



Zhou et al. (2021) targets the turbulent separation by training a feed-forward neural
network on the DNS of multiple geometries of the periodic hill (i.e., modification of
the streamwise length). Although they obtained satisfactory a priori results, the a
posteriori test fails in predicting the mean velocity profile on the nominal geometry at
Rep = 10,595. The work of Lozano-Durdan and Bae (2023) is based on the hypothesis
that any complex flow can be decomposed as a non-linear combination of simpler flows,
called building-block flows. They developed a wall-flux-based wall model for LES using
a self-critical machine-learning approach, which was successfully trained on DNS data
(e.g., turbulent channel flows, turbulent Poiseuille-Couette flow with a strong adverse
mean pressure gradient, or turbulent channel flow suddenly subjected to a spanwise
pressure gradient). However, when applied to the NASA Juncture Flow, the model fails
to predict the separation correctly. The lack of separated flows in the training data may
be the origin of this failure. Dupuy et al. (2023a) focuses on data-driven wall models
for separated flows by training a multi-layer perceptron (MLP) on filtered and sampled
(according to Leonard’s LES formalism) DNS data of two turbulent channel flows and the
Stanford three-dimensional diffuser. The model is made invariant to the Mach number,
Galilean invariant, and rotationally invariant. By increasing the spatial information (i.e.,
the input stencil size), the model can discriminate between separated and non-separated
flow regions. A posteriori, their model performs better than the standard LOTW on the
backward step, but there is still a misprediction in the recirculation bubble.

Dupuy et al. (2023b) continue their work on developing new wall shear stress (WSS)
models by using Graph Neural Networks (GNN), which are appropriate tools for
encoding unstructured data. The DNS data of three channel flows, a three-dimensional
diffuser, a backward-facing step, an adverse pressure gradient test case, and a NACA
blade at two angles of incidence are filtered onto coarser meshes (i.e., representative of
LES meshes). The model is made orthogonal invariant, equivariant under rotation and
reflection, independent of the coordinate system, Galilean invariant, and Mach number
invariant. The authors observe that message passing steps (i.e., the capability of a
GNN to exchange and aggregate information among the nodes) N > 3 are necessary to
correctly predict wall shear stress and discriminate among the various flow configura-
tions. The backward-facing step is simulated with their GNN-WSS model. Although the
predictions are improved by increasing the message passing steps, the size of the recircu-
lation bubble is still underestimated. Finally, their model is applied to the NACA65-009
blade at 7° of the angle of incidence and shows a clear improvement over to the stan-
dard LOTW. Lee et al. (2023) took a different direction in defining the input data for
the model. The input variable used by standard LOTW can lead to poor performance
when the configuration has complex flow physics. To circumvent this observation, they
used the Fukagata-Iwamoto-Kasagi (FIK) identity to predict the skin friction coefficient
coupled with an artificial neural network (ANN). A posteriori, the mean velocity profile
agrees well with the DNS results at the lowest Re,. At higher Reynolds numbers, a
log-layer mismatch is observed, which becomes even more pronounced when the mesh
is coarsened. The model is also applied to the separated turbulent boundary layer flow
in a periodic domain, where the upper wall is subjected to blowing and suction. The
model shows relatively good agreement with the DNS reference for the separation and
reattachment points. Zhideng et al. (2023) trained an MLP on DNS data of the two-
dimensional periodic hill and synthetic data extracted from the LOTW to predict the
two-wall parallel components of the wall shear stress. Although the model is trained on
separated flows, it is only tested a posteriori on turbulent channel flows (Re, = 103 to
1.2 x 10%). They showed that as a standard wall model, the behavior of a data-driven
wall model is also influenced by the numerical method (e.g., subgrid-scale model).



Existing data-driven wall models do not address the statistical aspect of the turbulent
wall shear stress. These models are treated as a regression problem, where the network
is trained using Mean Square Error (MSE) loss. However, most MSE-trained neural
networks make a strong assumption about the conditional distribution of the output.
Consequently, many authors have observed that the predicted WSS exhibits a lower
variance than the actual or filtered DNS values. To address this issue, our work incor-
porates the prediction of the probability density function (PDF) of the wall shear stress
instead of predicting a single-point estimate. For this purpose, a Mixture Density Net-
work (MDN) is trained to predict the probability distribution as a linear combination
of K Gaussian distributions. To the authors’ knowledge, this work is the first attempt
to develop a statistically-based wall shear stress model.

The development of novel data-driven WSS models into a high-order flow solver intro-
duces a number of design constraints (or limitations). Firstly, the model must be
instantaneous, i.e., the prediction of the wall shear stress at time ¢ is based only on
the volume data extracted at the same time ¢. This constraint prevents the storage
of the flow history, which can be expensive in higher-order flow solvers. Secondly, the
model must be local. Only the immediate vicinity of the prediction point can be used
to infer the wall shear stress. This design constraint aims to reduce the amount of
communication between partitions in highly scalable flow solvers. Thirdly, an important
consideration related to the wall model robustness is its ability to predict the two
wall-parallel components of 7, rather than making the prediction dependent on the
velocity direction. This constraint is of interest for skewed and separated boundary lay-
ers. Fourthly, the model must be height-independent. By definition, the wall shear stress
should remain constant regardless of the height at which the input data is measured in
the boundary layer. Fifthly, a final constraint is that the model should be independent
of the flow solver used to generate the database. This final constraint dictates that
the model should not learn the numerical error. This last constraint is very difficult to
satisfy because both DNS and wall-resolved LES (wrLES) are not perfect. Since this
constraint is very strong, it is first relaxed to the constraint that the model should be
independent of the polynomial order p. This last constraint is validated in Section 3.2.

The remainder of the paper is structured as follows. Section 2 describes the methodology
employed to train the neural network and is subdivided into Section 2.1, which describes
the generation and preprocessing of the database, and Section 2.2, which presents the
selected neural network. Section 3 presents the a priori (Section 3.1) and a posteriori
(Section 3.2) tests on both turbulent channel flows and the turbulent separated flow.

2 Methodology

This section discusses the development of a data-driven wall model, from data gener-
ation to neural network training. Emphasis is placed on the Mixture Density Network
architecture and its loss function, which differs from the standard Mean Square Error loss.

2.1 Databases

Database generation is a crucial step in training data-driven WSS models. It directly
impacts the model’s ability to discriminate between different flow physics. The challenge
is to identify test cases that best represent the complexity of fluid flows, which may
feature laminar and turbulent boundary layers, transition, shock, and separation. The
present objective focuses on the phenomenon of separation. For this purpose, a database
of four test cases has been constructed, including both turbulent boundary layers (at



equilibrium and subjected to moderate adverse pressure gradients) and separated regions.
Each test case provides three-dimensional time-dependent data, including the velocity,
pressure gradient,, and wall shear stress. Three are obtained using the Argo-DG flow
solver, and one is downloaded from the Johns Hopkins Turbulence Databases (JHTDB)
website (Perlman et al., 2007; Li et al., 2008).

2.1.1 Simulation details

The turbulent channel flow and the two-dimensional periodic hill are simulated with the
in-house code Argo-DG, developed at Cenaero. This code is a high-order Discontinuous
Galerkin (DG) flow solver that solves the compressible Navier-Stokes equations. This
solver (Hillewaert, February 2013) implements the Discontinuous Galerkin method with
the Symmetric Interior Penalty (SIP) method for the discretization of diffusive terms.
The code can operate on large cases due to the high scalability of the DG method. It
implements a hybrid parallelism based on Message Passing Interface (MPI) and Open
Multi-Processing (OpenMP). DG methods (DGM) are a specific class of the Galerkin
finite element method (FEM) in which the shape functions defined in each element are
not required to be continuous at the interfaces, leading to a compact and local set of
discretized equations on the element. On the element interfaces, a Riemann solver treats
the convective terms, while the SIP method controls the diffusive terms. Regarding time
discretization, the BDF2 scheme, which is an implicit method, is employed. At each
time step, a non-linear problem resulting from the implicit integration is solved by a
Newton/GMRES method, preconditioned with an elementwise block-Jacobi technique.
In terms of turbulence modeling, Argo-DG relies on the implicit LES (ILES) approach,
for which the numerical dissipation of the underlying high-order DG scheme spectrally
acts similarly to the explicit subgrid-scale models traditionally used in classical LES
methods (Carton de Wiart et al., 2014).

2.1.2 Test cases

The development of a novel WSS model is classified as supervised learning. In this cat-
egory, it is necessary to create an explicitly labeled database containing pairs of inputs
and outputs. Consider a joint probability distribution px y, where X represents the input
(i-e., usually a vector of features or descriptors € R?) and Y is the output (i.e., a real
value or a category). The database is drawn from this distribution as,

(@i, yi) ~ Pxy

where z; € X, y; € ¥,i =1,...,N. The training data d = {(x;,y;)|i = 1,..., N} are
generated identically and independently distributed (i.i.d.) with a finite size N. It is
important to note that in practice, there is no prior information available about this
joint probability. In the present case, the process behind this joint probability is the
wall-resolved LES (wrLES) using Argo-DG, which approximates the solutions of the
compressible Navier-Stokes equations for various test cases.

Turbulent channel flow at Re, = 950. The geometry of the turbulent channel flow is
periodic and homogeneous in the streamwise and spanwise directions. The flow evolves
between two non-slip adiabatic walls separated by a distance 2§ (Hoyas and Jimenez,
2008). The computational domain sizes are L,/d = 27 and L./é = 7 in the stream-
wise and spanwise directions, respectively. A uniform pressure gradient drives the flow
to impose the exact friction Reynolds number. To ensure a fair comparison with the
existing literature, the simulation is conducted at a low Mach number of M = 0.1, i.e.,
it can be considered almost incompressible. The simulation is performed with a mesh



resolution comparable to a wrLES: Az™ ~ 90 and Az™ ~ 46, where the superscript +
denotes the wall unit normalization (i.e., AzT = u,Ax/v). The Lagrange polynomial
order p of the DG scheme is set to 3, resulting in an effective resolution of Ax™ ~ 30
and Azt ~ 15. Close to the wall, the effective resolution is set such that Ay™ ~ 1.
After the numerical transient has been evacuated, the statistics are accumulated for
approximately 13.9¢T, where tT is defined as t u2 /v. It corresponds to 45.8 flow-through
time (t.), defined as t up/ L., where u;, is the bulk velocity. The database is accumulated
over a structured grid of probes of size (N, x N, x N,) = (192 x 6 x 192). The six
wall-normal positions are located at y™ = {10, 20,50, 100, 150,200}. This test case is
subject to further analysis and validation in Boxho et al. (2022).

Turbulent channel flow at Re, = 1,000 (JHTD, 2019). This test case is very
similar to the previous one, but was obtained from a different flow solver. This test case
has two objectives. The first is to get a wider range of y* values and the second is to
briefly evaluate the last constraint discussed in Section 1 regarding the independence of
the model on the flow solver. This test case is part of the Johns Hopkins Turbulence
Databases (Graham et al., 2016). A DNS of turbulent channel flow is performed in a
domain of size 87h x 2h x 3mwh. The incompressible Navier-Stokes equations are solved
with a pseudo-spectral method in the two periodic and homogeneous directions (z and
z), while a 7" order B-spline collocation method is applied in the wall-normal direction.
The simulation has required 2048 x 512 x 1536 nodes. The channel flow is first driven
by a bulk velocity of 1 and then switched to impose a uniform and constant pressure
gradient. After accumulating the statistics, the friction velocity reaches the value of
0.0499. It corresponds to a friction Reynolds number of 999.35 with a kinematic viscosity
of 5 x 1075 [m?/s]. From this online database, 16 snapshots of size 112 x 35 x 15 of the
velocity and the wall shear stress are extracted on both the upper and lower walls, for a
total of 1,881,600 input/output pairs. Compared to the previous test case, the number
of wall-normal positions has been extended to cover a wider range of y values. The wall
shear stress is scaled with the kinematic viscosity to get a friction velocity of 1 as follows,

VTLE’LU 2
= () (1)
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where Ve, = 1/Re,. The velocity is scaled accordingly as uf = (V00 /v)u.

Two-dimensional periodic hill at Re, = 10,595. This flow consists of a bi-periodic
flow between two walls with a streamwise constriction, as shown in Figure 1. This test
case is carefully designed to allow for a flow separation from the hill crest, followed by
a massive recirculation bubble and the reattachment of the free shear layer on the flat
bottom surface. The streamwise periodicity is fixed to L,/h =9 with a first hill located
at /h =0 and a second at x/h = L,. The spanwise periodicity is fixed to L,/h = 4.50
to ensure sufficient decorrelation between the two periodic planes (Mellen et al., 2000).
A uniform pressure gradient whose magnitude is controlled to match the bulk Reynolds
number (Re, = uph/v) drives the flow. This procedure was initially proposed by Benocci
and Pinelli (1990), but minor modifications were introduced by Carton de Wiart et al.
(2015) to account for compressibility effects. This test case is the UFR 3-30 reference in
the ERCOFTAC KB Wiki (ERCOFTAC, 2010) and has been extensively studied both
numerically (Gloerfelt and Cinnella, 2015; Breuer et al., 2009), and experimentally (Song
and Eaton, 2004). The reader is referred to Frohlich et al. (2005) and Gloerfelt and
Cinnella (2015) for a detailed description of the 3D extruded geometry and a compre-
hensive analysis of the flow behavior.
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Fig. 1: Visualization of the instantaneous velocity field for the two-dimensional periodic
hill generated with a dedicated plugin for the visualization of high-order fields with
ParaView Rasquin et al. (2019); the hyperbolic probe grid used to interpolate the three-
dimensional time-dependent flow fields is represented by the black dots; the corresponding
surface probe grid, on which the wall shear stress is interpolated, is shown as black stars.

x/h

In the near-wall regions, where no-slip wall boundary conditions are imposed, repre-
senting approximately 10% of the hill height, the mesh is structured with a geometric
progression to enforce a first cell size of y*+ = 1. The averaged grid sizes are discussed and
shown in Figure 6b in Bose and Moin (2014). The rest of the mesh is unstructured with
a refinement region located near the separation and in the free shear layer. The mesh is,
therefore, composed of 445,000 hexahedra. The simulation is carried out using a polyno-
mial Finite Element space of order p = 3, leading to 28 million degrees of freedom (dof)
per equation. Considering the bulk velocity up, the spatial resolution of the mesh near
the separation, the polynomial order, and the imposed time step, the convective CFL
is maintained at about 0.3, which ensures that turbulence-related time structures are
properly resolved. The flow was simulated at a low bulk Mach number of M, = 0.1, and
statistical data have been accumulated over about 40 flow-through times ¢. (defined as
t. = up/L,). This test case has been subjected to further analysis in Boxho et al. (2022).

This test case can be divided into two databases: (i) the lower wall and (ii) the upper wall.
The lower wall is subjected to a strong separation leading to the development of a free
shear layer which reattaches further downstream at x/h ~ 4.2. This separation creates a
pressure gradient that acts on the upper wall. The upper wall can therefore be considered
as a turbulent boundary layer subject to a moderate pressure gradient. The database is
extracted on a structured grid of probes composed of (N¢ x N, x N.;) = (180,40,100), as
illustrated in Figure 1. The lower wall grid is generated by a hyperbolic grid generator
instead of just propagating straight lines normal to the wall. The velocity field and
pressure gradient are interpolated on this grid and projected in the local reference frame
(i.e., in curvilinear coordinates). The inset graph of Figure 1 shows a closer view of the
hyperbolic probe grid. The volume fields are extracted on the black points, while the
two wall-parallel components of the wall shear stress 7, ¢ and 7, . are interpolated on
the black stars obtained from the projection of the probe grid onto the surface.

Table 1 lists all the test cases. Some of the test cases are used both for training and the
a posteriori tests. It is erroneous to assume that satisfactory training on a test case will
necessarily lead to accurate predictions in the subsequent a posteriori test on the same



Table 1: Summary of the simulations employed for the training and
validation, as well as for both the a priori and a posterior: tests.

Test cases Training/Validation A piori tests A posteriori tests

TC950 X v X
TC1000 v X X
TC2000 X X v

PHL10595 v X v
PHU10595 v X v

test case. Indeed, the a posteriori environment (i.e., a high-order flow solver) is very dif-
ferent from the training environment. In the a posteriori environment, the wall model
begins to produce new values that will interact with the flow solver.

2.1.3 Preprocessing of the database

Database preprocessing is the set of procedures that prepares the three-dimensional
time-dependent flow fields for the subsequent machine learning process. This step
includes a number of operations, including filtering, cleaning, non-dimensional pro-
cedures, data structuring into an appropriate format, and data augmentation. The
preprocessing stage will influence the capacity of the trained neural network to gener-
alise to previously unseen configurations. It can also bring desired invariances into the
data (such as Mach number invariance and rotational invariance, to name a few). The
filtering process is frequently employed to ensure that the flow field resembles the one
observed during the wmLES (Dupuy et al., 2023b). However, the data is not explicitly
filtered in this work, as the interpolation onto the probe grid already acts as a filtering
process. Even if filtering is implicitly applied, the non-dimensionalization is explicitly
applied to both the inputs and the outputs.

In fluid dynamics, non-dimensional variables that use integral or non-local flow quanti-
ties (e.g., the boundary layer height, the freestream velocity, etc.) are frequently utilized.
Unfortunately, these quantities may not be the most relevant for generalization pur-
poses and are not always available during the computation. The inner scaling of the
boundary layer is an excellent choice for the non-dimensionalization. Nonetheless, the
wall shear stress is not available to scale the input. However, the result of the product
yTuT is independent of u, and can be used to scale the input data. Moreover, the rela-
tion between yTu™ and y is almost linear for a turbulent boundary layer. Frere (2018)
employed a similar trick to tabulate the Reichardt LOTW and get a faster evaluation
of the model in the high-order flow solver Argo-DG. The product y*u™ is nothing else
than a local Reynolds number. This non-dimensionalization only requires the kinematic
viscosity v [m?/s] and the wall model height A, [m], two quantities that are directly
available for the wall model. Hence, h,,,, and v serve as a velocity scale (i.e., v/hym) to
scale the velocity field accordingly. The scaled velocity u* is defined as,

U*:iv (2)

where u is the velocity extracted at h..m,, and projected into the curvilinear coordinates
(&,m, z) of the probe grid. The wall-model height is not used as a model input because
it is implicitly defined in the non-dimensional velocity. Regarding the pressure gradient,



we first define it as a velocity u, and then, this velocity is scaled as in Equation 2 to get,

up h

y 1/3
u, = where u, = (pr) . (3)
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Concerning the outputs, the two-wall parallel components of wall shear stresses are scaled

as a signed version of y¥,
. y [Tl
T, = sign (1) . ;)" . (4)

The interesting fact behind using a square root for the non-dimensionalization of the
wall shear stress is that this variable transformation reduces the skewness of the distribu-
tion. Although a Gaussian mixture network can recover the skewness of the underlying
distribution, it may struggle to correctly predict this third statistical moment if the
skewness is large. It is therefore of interest to reduce the skewness before training.

In addition to the non-dimensionalization, the data must be scaled for the training. The
scaling constrains a given feature ¢ to lie between 0 and 1 by using the minimum and
the maximum values of that feature as ¢t = nmf%% Assuming that the feature ¢
follows a normal distribution, it can be standardized using its mean p and its standard
deviation o to obtain a rescaled distribution with zero mean and unit variance.

2.2 Neural Network Architecture

Artificial Neural Networks (ANNs) are a subset of ML and the core of deep learning
algorithms. These learning algorithms aim to produce a function f : X — Y that maps
the inputs to the outputs using a set of non-linear transformations (Zhang et al., 2023).
The present task of predicting the wall-parallel components of the shear stress, knowing
a set of inputs, can be categorized as a regression problem. In this context, inference
involves estimating the conditional probability p(Y = y|X = x) for any new pair (x,y).

In the case of standard regression problems, this conditional probability is modeled by a
Gaussian distribution with a fixed variance o2:

plylz, f) = N(ylf(x),0%), (5)

where f(x) describes the expected value function. The prediction of this function/model
f can be evaluated through a loss function £ : Y x Y — R* so that L(y, f(z)) > 0
measures how close the predictions f(x) are to the actual value y. Under Equation 5,
the well-known Mean Square Error (MSE) loss is obtained by maximizing the likelihood
of the data over f.

Instead of considering a fixed variance, the variance can be, as the mean, a function of
the input data such that,

pylz, p.0) = Nylu(x), o*(x)), (6)
where y(z) and o?(x) are parametric functions to be learned. For each input, the model

does not predict a point estimate but a distribution of the output. The objective is to
maximize the likelihood of the data over y and o:

arg max p(d|ys, o) = argmax || plyilxi s o)
M0 o xi,y.cd
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= arg max H N (yil (i), xi(a))

e xi,y; €d
1 (i — M(Xi))2>
= arg max H —————exp <—2'
e ed 27T0'(X1) 202(x;)
= arg mln Z 202 ) + log(o(x;)) + const.
xuvted

In this last expression, a trade-off exists between the first and second terms. If the
estimated value p(x;) is far from the true value y;, the difference in the numerator will
be large and this term will drive the loss. To reduce the loss, the variance appearing in
the denominator may increase. The second term serves to prevent an infinite variance
and to maintain it within acceptable limits.

It can be assumed that any general distribution can be approximated by a mixture of sim-
pler distributions. Consequently, the conditional distribution p(y|z) can be modelled as
a mixture of K Gaussian components (i.e., multi-modal Gaussian). In general, any prob-
ability distribution may be employed. However, the Gaussian distribution is frequently
adopted due to its favorable mathematical properties and computational performance.
Under this assumption, p(y|x) is written as,

K
Pl g, o) =Y N (yluw(), 0f (), (7)

k=1
where 0 < 7, < 1 for all £ and Z,[f:l mp = 1. A mixture density network is the neu-
ral network implementation of the Gaussian mixture model, and it is schematized in

Figure 2. This figure shows a network composed of one head of K components, each
producing a mean py, a standard deviation oy, and a mixture coefficient 7.

OAKEAFOTIO

Fig. 2: Schematic of the architecture of a Mixture Density Network with K modes.

The aforementioned head can be connected to any neural network (denoted as NN in
Figure 2), such as a multi-layer perceptron (MLP) or a convolutional neural network
(CNN), to name a few. Following space-time correlations analysis (Boxho et al., 2022)
of turbulent and separated boundary layers, the input stencil has to be enlarged in the
streamwise direction to capture the shifted correlation between the input features and
the wall shear stress. Instead of just a single point, a series of streamwise locations will
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be used to predict 7,. The insert graph of Figure 1 illustrates a possible enlargement
of the input stencil. The red cross indicates where the points are extracted at a given
wall-normal location. The positioning of the points in the stencil is important and needs
to be encoded in the network. The whole network is trained end-to-end using backprop-
agation applied to the Negative Log Likelihood.

Table 2 summarizes the parameters associated to the CNN-skip-GMH network. The
CNN is composed of convolutional layers combined with residual blocks (i.e., one imple-
mentation of skip connections, originally proposed by He et al. (2015) in their ResNet),
allowing for smoother gradients and better training. The network is consists of three
convolutional blocks, two residual blocks, a linear block to switch from the convolutional
part to the MDN, and two Gaussian Mixture Heads. One GMH is dedicated exclusively
to the prediction of the conditional distribution of 7,, ¢ and one for 7, ., respectively.
Such construction imposes the independence between 7, ¢ and 7, . Although no corre-
lation between 7, ¢ and 7, , have been observed (Boxho et al., 2022), this assumption
could still be debated for 2D extruded configurations. However, it may fail for more
realistic three-dimensional configurations. One potential solution is to join the two
GMHs by employing bivariate Gaussian distributions.

Table 2: Neural network hyperparameters (databases, pairs
of input/output, size of the input stencil along the streamwise
direction, optimizer, learning rate, activation function, batch size,
number of Gaussian per head, etc.).

Architecture = CNN-skip-GMH

Train/Test data Tab.1

* * *
Inputs u*, v*, w*, u

;;7 U;7w;7 ;;7 v;;? w;;7 ’C*
Input size [—5:10]
Nb. of hwm  5,5,35
Outputs 77 ., 7 .

Batch size 512

Learning rate 1073

‘Weight regularization 107°
Number of epochs 103

Training size =~ 410°

Validation size ~ 410°

Optimizer torch.optim.Adam()

Activation fct. Sigmoid
Nb. of Gaussian/head K =2
Tot. nb. params 10,212

The model is trained on a stencil size of 16 with 5 points taken upstream and 10 points
taken downstream, plus the current point at index 0. The analysis of the space-time
correlations Boxho et al. (2022) has shown that the instantaneous and local wall shear
stress is more correlated with the downstream velocity than with the upstream velocity
at the same time step. Therefore, the input stencil is enlarged in the streamwise direc-
tion. Although this choice may seem counter-intuitive, it is not based on the concept
of causality. This observation is also consistent with the work of Dupuy et al. (2023b),
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where the prediction improved as the size of the message passing increased. With more
points, the model can better discriminate between different flow physics.

3 Results

The CNN-skip-GMH network is trained for a predefined number of epochs and stopped
at the minimum of the validation loss (i.e., early stop). At epoch 934, the validation loss
(not shown here) starts to increase, indicating that the model is overfitting the train-
ing data, reducing its ability to generalize to the validation set. Therefore, the model
parameters are frozen at epoch 934 and used for both the a priori (Section 3.1) and a
posteriori (Section 3.2) tests, where the capabilities of the model once implemented in a
high-order flow solver are evaluated.

3.1 A priori tests on the CNN-skip-GMH model

A priori evaluation on the lower wall. The model is first validated on the lower wall
of the two-dimensional periodic hill. Figure 3a shows the mean and standard deviation
of the prediction at one height (hym,m/h = 0.115). The other four heights give similar
results and are not shown here for the sake of brevity. Since the validation set is small,
the target values and their corresponding predictions appear slightly noisy. The mean
and the variance of the true wall shear stress are accurately captured by the model. The
model is also capable to predict the large variance at locations z/h € [0,0.7], which sug-
gests that it is able to recognize that the separation point can vary within these specified
bounds. The graph (y,u"), shown in Figure 4a, is plotted based on the instantaneous
wrLES data and the corresponding predictions. The four colored regions in green, cyan,
pink, and yellow represent the distribution of (y*,u™) for the separation, recirculation,
recovery, and acceleration regions, respectively. The recirculation region is located below
Reichardt’s profile with negative values, while the recovery region is above. These two
regions appear to mirror each other. The separation is located in the highest y*, cor-
responding to the part of the flow that accelerated strongly on the hill. Many points
reach high u* values because the friction velocity tends to zero faster. The accelerated
region slightly coincides with the separation and barely aligns with Reichardt’s mean
velocity profile. This graph reinforces the observation about the capability of the model
to successfully predict the variance and that a WSS model based on the Reichardt’s
profile would have a hard time correctly predicting the separation location.

A priori evaluation on the upper wall. Figure 3b shows the mean and standard
deviation of the prediction on the upper wall. Predicting the wall shear stress on the
upper wall turns out to be difficult. The wall shear stress 7,,¢ is more correlated with
the pressure gradient than with the velocity field. Therefore, the pressure gradient input
greatly helps the network to closely match the ground truth for all streamwise positions.
Figure 4b shows the graph (y™,u") for the upper wall. The trend is different from a
turbulent channel flow due to the impact of a moderate pressure gradient. The instan-
taneous pairs (y*,u") are asymmetrically distributed around Reichardt’s profile, with
a trail of points extending over larger ut values. The data-driven model successfully
captures the instantaneous trend compared to a quasi-analytical WSS model.

A priori test on TC950. The model is trained on the test case TC1000 and is evaluated
on TC950 obtained with Argo-DG at three heights: 100, 150, and 200 in wall units.
Although the two test cases are almost identical, the objective is to evaluate a priori
the independence of the model with respect to the flow solver (and therefore to some
extent to the numerical errors). Table 3 summarizes the first three statistical moments
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Fig. 3: A priori validation on two dimensional periodic hill at Re, = 10,595. The target
wall shear stress is plotted as a dashed black line, while the blue line represents the
predictions averaged along the time and spanwise samples of the validation set; the gray
area corresponds to one standard deviation and the predicted o is plotted in dashed blue.

of the predicted wall shear stress. The predicted streamwise wall shear stress is in good
agreement with the wrLES one. Although the model is not explicitly trained to match the
skewness, this third moment of the distribution is also recovered. Predicting the spanwise
wall shear stress appears more challenging for the network. It is possible that the non-
zero spanwise wall shear stress is the result of a potential bias in the training database.
This indicates the need for careful attention to the generation of the database. Although
the database was generated over a sufficiently large number of flow-through times to
allow the statistics to converge, subsampling could introduce bias into the statistics over
the subset. This observation is a potential area for improvement.
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Fig. 4: A priori validation: Instantaneous representation of the (y*,u™) graph, where
the empty black circles correspond to the wall-resolved data and the blue '+’ signs
correspond to the (y*, u™) computed based on the predicted wall shear stress; Reichardt’s
mean velocity profile is shown in red. The left graph also identifies the different physics
encountered on the lower wall (i.e., separation, acceleration, recovery and recirculation).

Table 3: Three first statistical moments of the wrLES
(Tw.¢, Tw,z) and predicted (7 ¢, Tw,») wall parallel compo-
nents of the wall shear stress. The unit of measurement of
the data is the Pascal.

Statistics Tw,& Tw,& Tw,z Tw,z
o 1.000 0.965 0.000 0.013
o 0.424 0.423 0.284 0.352
S 1.008 0.936 -0.067 0.285

3.2 A posteriori tests on the CNN-skip-GMH model

The new Mixture Density Network wall model is assessed a posteriori by implement-
ing the CNN-skip-GMH network described in Section 2.2 in the Argo-DG flow solver
presented in Section 2.1.1. The two-dimensional periodic hill at Re, = 10,595 and the
turbulent channel flow at Re, = 2,000 are simulated with the new wall model.

3.2.1 Turbulent channel flow at Re, = 2,000

This friction Reynolds number is selected because it has a logarithmic layer 135 < 300
included in the training y* values (Marusic et al., 2013). The domain size is the same
as the channel flow at Re, = 950, described in Section 2.1. The mesh is regular and
uniform and composed of (N, N,, N;) = (20,24,20) cells. The wmLES is performed
at a polynomial degree p = 4. The effective resolution in the three directions is thus
(6%, AyT, Azt) ~ (160,42,80). The instantaneous data are extracted at y™ = 180
which is located in the second grid cell. The time step is fixed at dt(u,/h) =1 x 1073 to
match a CFL number of 0.28.

After evacuating the initial transient, statistical data is collected over about 30t.. The

mean and Reynolds stress profiles are shown in Figures 5a and 5b, respectively. They are
compared with the DNS data of Hoyas and Jimenez (2008) and to the wmLES of Dupuy
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et al. (2023b) and of Radhakrishnan et al. (2021). The former used a Graph Neural
Network to predict the wall shear stress, and the latter used Gradient Boosted Decision
Tree. Dupuy et al. (2023b) used the same wall unit mesh refinement as for Re, = 950.
Therefore, the input velocity is extracted at hZ,,, ~ 110. Our results are compared with
the finer mesh of Radhakrishnan et al. (2021) with a wall-normal height of hf, = 31.

26 ‘ 3.0
24 2.5 \
22
20 2.01
+ T |
S 18 5 1.5
161 —=~". Reichardt's velocity profile 1.0
14 Hoyas et Jimenez, 2008 (Re. = 2,000)
—— Radhakrishnan et al., 2021 (Re; = 2,005)
12 —— Dupuy et al.,, 2023 (Re; =2,000) 0~57
—— wmLES, Argo-DG (Re; = 1986)
10 : 0. ‘ ‘ ‘ ‘
102 103 %.0 0.2 0.4 0.6 0.8 1.0
y* yih
(a) Mean streamwise velocity profile u™ (b) Reynolds stresses profile u/*

Fig. 5: A posteriori test on the turbulent channel flow at Re, = 2,000; in plain black
line, the data-driven wall model; in gray dash-dotted line, the DNS of Hoyas and Jimenez
(2008); in circle symbols, the wmLES of Radhakrishnan et al. (2021); in dark star sym-
bols, the wmLES of Dupuy et al. (2023b); and in dashed line, the Reichardt’s mean
velocity profile; the gray area indicates the size of the first grid cell.

Mean velocity profile. The mean profile agrees with the DNS results, except in the
second cell (166 < y* < 333), where a relative error of 2% is measured. The oscillations
of the mean velocity profile in the first cell (i.e., the under-resolved region) are directly
linked to the DG method, as discussed in the thesis of Frére (2018). The mean profile
of Radhakrishnan et al. (2021) is overestimated near the wall and underestimates the
wake, while the one of Dupuy et al. (2023b) overestimates the DNS at every wall-normal
coordinate. Regarding the mean velocity profile, our WSS model demonstrates competi-
tive performance against existing data-driven models.

Mean Reynolds stresses. The Reynolds stress profile u/* is underestimated. However,
such an underestimation has already been reported by Frére (2018) when using the WSS
model based on Reichardt’s velocity profile. The u'™ profile of Dupuy et al. (2023b)
underestimates the DNS with a smaller offset. Firstly, their wmLES grid is finer than ours.
Secondly, their input velocity is extracted closer to the wall. Therefore, their boundary
layer is better resolved, resulting in a better fit of u'* close to the wall.

3.2.2 Two-dimensional periodic hill flow at Rep = 10,595

The CNN-skip-GMH model is a posteriori assessed on the two-dimensional periodic hill
at the same bulk Reynolds number (Re, = 10,595). At first sight, this task appears
straightforward, since the model was trained on this specific test case. However, the pro-
duction environment differs from the training environment as the wall model will interact
with the resolved volume data. According to the best practices section of UFR 3-30!!/,
the flow physics is highly sensitive to the grid resolution and the numerical scheme,

Yhttps:/ /kbwiki.ercoftac.org/w/index.php/UFR_3-30_Best_Practice_Advice
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which should not be too dissipative to ensure appropriate resolution of the scales and
not to damp them. Moreover, the reattachment location is very sensitive to small errors.
Accurate resolution of the free shear layer is of high importance. The non-equilibrium
boundary layer within the recirculation bubble necessitates the accurate resolution of
all terms in the Navier-Stokes equations to yield correct results. For these reasons, the
wmLES mesh is very similar to the wrLES one, except cells within 0 < n/h < 0.1 that
are removed on both the upper and lower walls. The lower half of the mesh is refined to
accurately capture the free shear layer, which is a region of high gradients.

Several experiments have been conducted and are summarized in Table 4. The param-
eters changed from one experiment to another are: (i) the WSS model, (i) the
alignment of the predicted wall shear stress, (iii) the polynomial order, and (iv) the
wall model height. The objective is to verify that the constructed model satisfies the
constraints listed in Section 1, and that the model produces satisfactory results in terms
of mean wall shear stress, mean velocity, and Reynolds stress profiles.

(i) The WSS model. The CNN-skip-GMH data-driven wall model is compared to the
Analytical WSS model based on Reichardt’s velocity profile (AWSSR).

(ii) The alignment of the predicted wall shear stress to the velocity. The
AWSSR predicts the magnitude of the wall shear stress and aligns it with the velocity
extracted at hp,. Our neural network predicts the wall-parallel components of the
wall shear stress. Therefore, there is no explicit alignment of the predicted wall shear
stress. For the test DD-A-612-p4, 7, ¢ and T, . are sampled from their respective
distributions, the magnitude is evaluated, and then the wall shear stress is aligned
with the velocity projected in the local frame of reference made by the solid wall.

(iii) The polynomial order. According to Frere (2018), the WSS model in Argo-DG
gives better results for even polynomial degrees. Since the model was trained on data
collected at p3, the data-driven wmLES is run at both p3 and p4. The p4 simulation
is run on a slightly coarser mesh which allows an equivalent number of dof.

(iv) The wall model height. To ensure that the model is independent of the matching
location, two h..,/h are tested. A change in the matching location results in an
adjustment of the first cell size.

Since the model has not been trained to capture the numerical transient, the simulation
is restarted from a coarse wrLES of the same test case. The simulation Rcht-A-512-p4
is also restarted from the same coarse wrLES for a fair comparison. For each wmLES,
the time step is fixed at dt(up/h) =5 x 1073, The Mach number is maintained at the low
value of 0.1, and a pressure gradient is imposed to ensure the bulk Reynolds number, as
previously mentioned in Section 2.1.

Table 4: Summary of the numerical experiments carried out on the two-
dimensional periodic hill at Re, = 10,595, where NA stands for No Alignment,
and A stands for Alignment; t. corresponds to the number of flow through time.

‘WSS model Align. p DOF hwm/h Accum.
DD-NA-512-p3  CNN-skip-GMH X 3 25,473,600 0.1 ~ 36t
DD-NA-512-p4  CNN-skip-GMH X 4 28,788,750 0.08 ~ 25tc
DD-A-512-p4  CNN-skip-GMH v 4 28,788,750 0.1 ~ 19,
Rcht-A-512-p4 AWSSR v 4 28,788,750 0.1 ~ 15t.
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Mean friction coefficient. The four wmLES are compared to the wrLES reference
used to train the data-driven wall model. Figure 6a shows the wall shear stress obtained
on the lower wall. The mean separation location (Table 5) is correctly predicted by
DD-NA-512-p3 and DD-NA-512-p4. As also observed in the work of Krank et al. (2019)
and Zhou et al. (2022), the friction is overestimated in the separation vicinity. The fric-
tion peak and the tiny separation before the windward foot of the next hill are also well
captured. These two simulations show a good agreement with the reference, except near
the reattachment. By imposing the alignment, DD-A-512-p4 and Rcht-A-512-p4 result
in a delay of the mean separation line. DD-A-512-p4 better predicts the friction peak
while Rcht-A-512-p4 misses the strong acceleration on the hill and underpredicts the
peak. The mean reattachment location is underestimated by the four wmLES (Table 5),
as also reported by Dupuy et al. (2023b) on the backward-facing step. The faster
reattachment allows the flow to recover over a larger part of the flat bottom surface, gen-
erating a higher friction for x/h € [4,7], at least for DD-NA-512-p3 and DD-NA-512-p4.

Table 5: Mean position of the separation and reattachment lines for the
two-dimensional periodic hill at Re, = 10,595.

DD-NA-512-p3  DD-NA-512-p4 DD-A-512-p4 Rcht-A-512-p4 Expe.

ZTsep/h 0.217 0.216 0.573 0.538 0.19
Zreatt/h 3.690 3.589 3.935 3.652 4.21

Figure 6b shows the friction on the upper wall of the periodic hill. Since the friction
on this wall is more correlated with the pressure gradient than with the velocity, the
friction imposed by Rcht-A-512-p4 does not match the reference. The predicted friction
of DD-NA-512-p3 and DD-NA-512-p4 is in good agreement with the reference. However,
DD-A-512-p4 overestimates the friction on the upper wall at every location.

Mean velocity profiles. The mean velocity profiles are shown in Figure 7 at ten
stations (z/h = 0.05, 0.5, 1, 2, 3, 4, 5, 6, 7, 8). Overall, good agreement with the ref-
erence is observed for the four wmLES. DD-NA-512-p3 and DD-NA-512-p4 accurately
predict the mean velocity profile at the separation, even in the first cell (the grey area
in Figure 7), compared to DD-A-512-p4 and Rcht-A-512-p4 which underestimate the
acceleration at the hill top. Other minor discrepancies were identified due to the early
reattachment of the free shear layer for DD-NA-512-p3 and DD-NA-512-p4. The faster
reattachment allows the flow to recover over a larger portion of the flat bottom surface,
as shown by the slight overestimation of the velocity for 3 < z/h < 7. Conversely,
the velocity profiles near the reattachment are better captured by DD-A-512-p4 and
Rcht-A-512-p4, although u is overestimated on the upper wall, which is consistent with
the overestimation of the friction coefficient in Figure 6b.

Mean Reynolds stresses. The most significant discrepancy in the Reynolds stress
v/ profiles (Figure 8) is within the recirculation bubble (1 < x/h < 4). DD-NA-

512-p3 and DD-NA-512-p4 overestimate w/u/, while DD-A-512-p4 underestimates this
component of the Reynold stress. Although Rcht-A-512-p4 mispredicts the friction
on both the lower and upper walls, it accurately predicts v/’ throughout the domain
except in the near-wall region on the lower wall where it overpredicts this component.
Regarding the covariance u/v’ in Figure 9, all simulations are in agreement with the
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Fig. 6: Mean streamwise wall shear stress measured on the solid walls of the two-
dimensional periodic hill at Re, = 10,595; in black solid line, the reference wrLES
obtained with Argo-DG; in cyan triangle symbols, the wmLES using the WSS model
based on Reichardt’s velocity profile; in green diamonds, the DD-A-512-p4; in red circles,
the DD-NA-512-p3; in blue stars, the DD-NA-512-p4.

reference, except inside the recirculation bubble where a slight deviation is observed.

Summary. It is difficult to determine the origin of the discrepancy in the pre-
dicted reattachment location in this specific configuration. Similarly, it is unclear why
Rcht-A-512-p4 produces better results for the mean velocity profiles and Reynolds
stresses even though it mispredicts the wall shear stress. Compensation errors may exist
between different terms that allow for such results, but these have not yet been quan-
tified. Nevertheless, the principal distinction between (DD-NA-512-p3, DD-NA-512-p4)
and (DD-A-512-p4, Rcht-A-512-p4) is the imposition of the alignment with the velocity.
Many standard WSS models in the literature naturally align the wall shear stress with
the velocity extracted at the matching location. At the separation, there is a strong mis-
alignment between 7, and u. In wall models, the magnitude of the wall shear stress is
not the only relevant factor, and misalignment issues should be treated differently.
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Fig. 7: Mean velocity profiles of the two-dimensional periodic hill at Re, = 10,595 (see
legend of Figure 6a).

10u'u'/u} + x/h
Fig. 8: Reynolds stress u/u’ profiles of the two-dimensional periodic hill at Re, = 10,595
(see legend of Figure 6a).

4 Conclusion and perspectives

To the authors’ knowledge, this work is the first attempt to create a statistically based
WSS model to address separated flows. The model consists of a CNN connected to
a Mixture Density Network to predict the wall shear stress distribution as a linear
combination of K Gaussians. This network satisfies the design constraints stated in
Section 1 and predicts the conditional probability distribution of the wall-parallel com-
ponent of the wall shear stress. The model was trained on the turbulent channel flow at
Re, = 1,000 and data extracted from the lower and upper walls of the two-dimensional
periodic hill at Re, = 10,595, two computationally feasible test cases with turbulent
boundary layers, one at equilibrium, one subjected to a moderate pressure gradient,
and one featuring a massive separation. The data collected during the scale-resolved
simulations of these test cases is not fed directly into the network. The preprocessing
of the databases and their in-depth analysis (Boxho et al., 2022) constituted a crucial
step towards a new data-driven WSS model. For this purpose, the input/output pairs
are non-dimensionalized using local quantities directly available to the model.
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Fig. 9: Covariance between u and v of the two-dimensional periodic hill at Re, = 10,595
(see legend of Figure 6a).

The model is a posteriori tested on two configurations: a turbulent channel flow at
Re,; = 2,000 and the periodic hill at Re, = 10,595. The results for both configurations
are promising. Regarding the periodic hill, a clear improvement over the analytical WSS
model based on Reichardt’s velocity profile is observed in the prediction of the wall
shear stress on the upper and lower walls. Although the separation point is accurately
predicted, the reattachment location is shifted upwards compared to the DNS predic-
tions. Such an underestimation of the recirculation bubble size is also observed in other
studies applying data-driven wall shear stress models to separated flows (Zhou et al.,
2021; Lozano-Durdn and Bae, 2021; Dupuy et al., 2023b).

Perspectives. A first short-term perspective is to combine the two Gaussian heads into
a single bivariate Gaussian head. This approach avoids the strong assumption of inde-
pendence between the two wall-parallel components of the wall shear stress, discussed
in Section 2.2. A second short-term perspective is to extend the input stencil in the
spanwise direction. The input is then transformed into a two-dimensional image. This
extension is consistent with the spanwise space-time correlations presented in Boxho
et al. (2022). A third perspective is the use of Graph Neural Networks (GNNs), a pow-
erful type of neural network designed to encode unstructured data. The use of GNNs
eliminates the need for an additional probe grid on which to interpolate the input data
by directly exploiting the connectivity of the computational mesh. Dupuy et al. (2023b)
have already trained this type of network, but they still observed an underestimation of
the recirculation bubble size, suggesting that further improvement is possible.
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