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Abstract

A numerical method is used to compute the flow field corresponding to blast waves of

different incident profiles propagating in air and impinging on free-standing plates.

The method is suitable for the consideration of compressibility effects in the fluid and

their influence on the plate dynamics. The history of the pressure experienced by the

plate is extracted from numerical simulations for arbitrary blast strengths and plate

masses and used to infer the impulse per unit area transmitted to the plate. The

numerical results complement some recent analytical solutions in the intermediate

range of plate masses and arbitrary blast intensities where exact solutions are not

available. The resulting beneficial effect of the fluid-structure interaction (FSI) in

reducing transmitted impulse in the presence of compressibility effects is discussed.

In particular, it is shown that in order to take advantage of the impulse reduction

provided by the FSI effect, large plate displacements are required which, in effect,
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may limit the practical applicability of exploiting FSI effects in the design of blast-

mitigating systems.
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1 Introduction

Recently there has been significant interest in understanding the influence

of fluid-structure interaction (FSI) on the blast loading of structures. It was

shown in the pioneering work of G.I. Taylor, [1], that FSI reduces the amount

of impulse transmitted to free-standing plates and that this effect is more

pronounced for lighter plates. The reduction of transmitted impulse is due to

the pressure relief experienced by the structure caused by its motion. Taylor’s

analysis is restricted to the linear case of incident blast waves of exponential

profile in which the pressure wave does not cause any significant changes in

the fluid density. This assumption is applicable in the case of underwater

explosions, as the pressure level required for water to undergo non-negligible

compressibility effects is in the order of 100 kbar, which exceeds conventional

situations. The beneficial influence of FSI in potentially mitigating the effect of

blast has recently been explored as a basis for the design of sandwich structures

with increased blast resistance, [2–10].

Although the compressible case is not amenable to analytic treatment for the

whole range of plate masses and blast intensities regardless of the blast wave
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profile, the authors have recently derived some results in the asymptotic limits

of very heavy and very light plates for the cases of uniform [11] and exponen-

tial [12] incident blast profiles. It is important to emphasize that although the

uniform profile has some interest due to its analytic tractability and the ex-

ponential profile because it presumably provides a reasonable approximation

to blast waves [13,14], neither profile does actually correspond to the exact

solution of a blast wave caused by a point explosion, which was derived in

closed (implicit) form by J. von Neumann [15]. Although the simplified expo-

nential pressure profile is attractive due to its simplicity, it is not suitable for

initializing the flow in numerical simulations, as it is not clear what the corre-

sponding density and velocity fields consistent with the governing differential

equations of compressible flow are.

In this paper, we use a numerical method to conduct simulations of the interac-

tion between blast waves of different profiles and intensities with free-standing

plates of varying mass. The method is based on a Lagrangian formulation of

the equations of compressible flow. In the Lagrangian framework, the dynamic

response of the plate and its interaction with the flow can be simply modeled

by modifying the governing equations and adding the plate’s mass at the ma-

terial location of the plate. Following the classic approach of von Neumann

and Richtmyer [16], a shock capturing scheme based on artificial viscosity

is adopted. The numerical method is verified by comparisons with exact so-

lutions in the acoustic and nonlinear compressible range in the asymptotic

limits where exact solutions have been derived [12,11]. Special attention is

then paid to the computation of blast-structure interaction in the intermedi-

ate asymptotic range of plate masses where exact solutions are unavailable.

The analysis includes the cases of uniform, exponential and planar explosion
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(von Neumann-Sedov) profiles. The analysis of the role of the structure sup-

ports has been omitted purposely, in an attempt to isolate and highlight the

role of FSI on impulse transmission to structures, as was originally done by

Taylor but in the case of a compressible fluid. Clearly, the role of the sup-

ports is to reduce the momentum acquired by the structure, at the expense of

creating possible large reaction forces.

The numerical calculations play an important role in complementing recent

analytical work [12,11] by providing the necessary values of transmitted im-

pulse which, in combination with the asymptotic results, are used for the

development of practical formula encompassing the whole range of behavior.

This paper is organized as follows: In Section 2, the continuum problem is

formulated and the numerical method employed is described. Section 3 is

devoted to the presentation of numerical results including verification cases

and applications. The paper concludes in Section 4 with a summary of findings

and conclusions.

2 Problem Statement and Numerical Approach

[Fig. 1 about here.]

The problem of interest concerns the interaction of a shock wave traveling in

compressible medium with a free-standing plate of thickness hp and density ρp

(Figure 1). The plate is positioned initially at x = 0 while the fluid medium

on its left side is assumed to be an ideal calorically-perfect gas at rest with

density ρ0 and pressure p0. A constant pressure p0 is applied on the right (free)

side of the plate at all times in order to balance the loading until the arrival
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of the wave. Three different wave shapes are considered: uniform, exponential

and planar explosion. The quantities of interest are the pressure histories on

the plate’s surface, the displacement, velocity and impulse of the plate.

In order to facilitate the description of the dynamics of the plate a Lagrangian

formulation for the fluid motion is adopted. In the Lagrangian framework, the

continuum equations governing the problem are:

• The kinematic relations for the material velocity and acceleration:

V =
∂x

∂t
and (1)

A =
∂V

∂t
, (2)

where the Eulerian coordinate x , the velocity V and acceleration A of a

material particle are functions of the Lagrangian coordinate X and the time

t.

• The momentum conservation equation:

ρ0A = −
∂p

∂X
, (3)

where ρ0 is the initial density of the particle with Lagrangian coordinate X

and p is the pressure.

• The equation of state, which is modified to include a viscous dissipation

term Q:

p = ρRT − Q = (γ − 1)ρ0
e

F
− Q, (4)

where R is the ideal gas constant, T is the absolute temperature, γ = Cp

Cv
is

the specific heat ratio, where Cp and Cv are the specific heats at constant

pressure and volume, e = CvT is the internal energy and F = ∂x
∂X

is the

deformation gradient. The viscous dissipation term is required for stabiliza-

tion of the numerical scheme and consists of the original quadratic term of
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von Neumann and Richtmyer [16] and a linear term due to Kuropatenko

[17]:

Q =































−ρ0(K1D∆)2 − ρ0a0K2|D|∆, D < 0

0, D ≥ 0

, (5)

where D = 1
F

∂F
∂t

is the deformation rate, K1 and K2 are artificial viscosity

coefficients, a =
√

γ(γ − 1)e is the local speed of sound and ∆ is the width

of the smeared shock which must be of the order of the grid spacing for

numerical stability.

• The energy conservation equation, including the viscous dissipation term:

∂e

∂t
=

[

(1 − γ)e +
Q

ρ

]

D, (6)

where ρ is the current density of the particle.

Following Taylor [1], the plate is treated as a rigid body on the grounds that the

time scales of the elastic wave propagation within the plate are several orders of

magnitude smaller than the time scale of the fluid structure interaction. With

this assumption, the motion of the plate is described by Newton’s second law:

d2ξ

dt2
=

pp

mp

, (7)

where ξ is the location of the plate, mp = ρphp is the mass of the plate and pp

is the overpressure acting on it. The initial conditions for the plate position

ξ are ξ(t = 0) = 0 and dξ
dt

(t = 0) = 0, while the initial conditions for the gas

particles are x(X, t = 0) = X and V (X, t = 0) = 0.

The numerical discretization is based on the original finite difference method

proposed by von Neumann and Richtmyer [16]. Following closely the algorith-

mic approach in [18], we discretize the domain of interest into N + 1 equally
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spaced points. The coordinates of these points are given by x
(n)
0 = X(n) =

(n − N)∆X where n = 1, 2, ..., N is the point number and ∆X is the grid

spacing. Time is discretized into variable time steps ∆tj , j = 1, 2, ... and the

discretized solution is obtained at times t0 = 0, t1, ..., tj−1, tj = tj−1 + ∆tj , ....

The final difference approximation for the particle velocity leads to:

x
(n)
j+1 = x

(n)
j + ∆tj+1V

(n)

j+ 1
2

(8)

where the velocity V is computed in the middle of the time intervals, while

the finite difference approximation for the acceleration gives:

V
(n)

j+ 1
2

= V
(n)

j− 1
2

+
1

2
(tj + tj+1)A

(n)
j . (9)

The acceleration needed for the previous equation is obtained from the dis-

cretized momentum conservation equation:

A
(n)
j = −

1

ρ
(n)
0

p
(n+ 1

2
)

j − p
(n− 1

2
)

j

∆X
. (10)

The remaining discretized equations are:
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p
(n+ 1

2
)

j+1 =(γ − 1)ρ0

e
(n+ 1

2
)

j+1

F
(n+ 1

2
)

j+1

− Q
(n+ 1

2
)

j+ 1
2

, (11)

Q
(n+ 1

2
)

j+ 1
2

=−ρ0

(

K1∆x
(n+ 1

2
)

j+ 1
2

D
(n+ 1

2
)

j+ 1
2

)2

−

ρ0K2a
(n+ 1

2
)

j ∆x
(n+ 1

2
)

j+ 1
2

|D
(n+ 1

2
)

j+ 1
2

|, (12)

a
(n+ 1

2
)

j =

√

γ(γ − 1)e
(n+ 1

2
)

j , (13)

D
(n+ 1

2
)

j+ 1
2

=
2

∆tj+1

F
(n+ 1

2
)

j+1 − F
(n+ 1

2
)

j

F
(n+ 1

2
)

j+1 + F
(n+ 1

2
)

j

, (14)

∆x
(n+ 1

2
)

j+ 1
2

=
1

2

(

x
(n+1)
j+1 − x

(n)
j+1 + x

(n+1)
j − x

(n)
j

)

, (15)

e
(n+ 1

2
)

j+1 =

e
(n+ 1

2
)

j +







1−γ
2

e
(n+ 1

2
)

j +
Q

(n+1
2 )

j+1
2

ρ
(n+ 1

2 )

j+ 1
2





∆tj+1D
(n+ 1

2
)

j+ 1
2

1 + γ−1
2

∆tj+1D
(n+ 1

2
)

j+ 1
2

, (16)

ρ
(n+ 1

2
)

j+ 1
2

=
ρ

(n+ 1
2
)

0

2







1

F
(n+ 1

2
)

j+1

+
1

F
(n+ 1

2
)

j





 , (17)

ρ
(n+ 1

2
)

0 =
ρ

(n+1)
0 + ρ

(n)
0

2
, (18)

where the discrete deformation gradient F is given by

F
(n+ 1

2
)

j =
x

(n+1)
j − x

(n)
j

∆X
. (19)

The solution process consists of applying the following sequence of steps to

each node j in the fluid domain j = 0, · · · , N − 1) except the last one j = N

which is treated separately. The first step in each time step iteration is to

compute the stable time step size:

∆tj = α min
n=0,1,...,N−1





x
(n)
j−1 − x

(n−1)
j−1

a
(n−1)
j−1



 , (20)

where 0 ≤ α ≤ 1 is an appropriately chosen time factor. This step is followed

by the computation of the deformation gradient F
(n+ 1

2
)

j (19), the deformation

rate D
(n+ 1

2
)

j+ 1
2

(14) and the Eulerian spacing ∆x
(n+ 1

2
)

j+ 1
2

(15). From these the viscous
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dissipation Q
(n+ 1

2
)

j+ 1
2

(12) and the internal energy e
(n+ 1

2
)

j+1 (16) can be computed.

At the next step the pressure p
(n+ 1

2
)

j+1 is obtained from (11) and substituted in

the expression of the acceleration A
(n)
j (10). A straightforward substitution into

the equations for the material velocity V
(n)

j+ 1
2

(9) and the particle location x
(n)
j+1

(8) completes the cycle for the time step. The motion of node N corresponding

to the plate is computed using a forward Euler scheme:

ξj+1 = ξj + ∆tj+1

(

dξ

dt

)

j

, (21)

(

dξ

dt

)

j+1

=

(

dξ

dt

)

j

+ ∆tj+1

(

d2ξ

dt2

)

j

, (22)

(

d2ξ

dt2

)

j

=
p

(N−

1
2
)

j

mp
, (23)

where the pressure acting on the plate is approximated by the pressure com-

puted in the mid-position of the last fluid element. The boundary condition

on the left end depends on the particular problem and will be discussed op-

portunely. Initial conditions are also problem dependent but in all cases in-

clude the condition that material and spatial coordinates coincide at t = 0:

x(X, t = 0) = X.

3 Numerical Results

In this section the numerical method is verified against known exact solutions

for uniform shocks reflecting on fixed boundaries and then used for simulating

the interaction of blast waves of different incident profiles and intensities with

plates of varying mass. In all cases, the time profiles of pressure experienced by

the plate and the transmitted impulse Ip are extracted from the simulations

and analyzed in order to reveal the influence of FSI. The gas properties for air
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are assumed throughout, i.e. specific heat ratio γ = 1.4, initial density ρ0 =

1.225 kg/m3 and initial temperature T0 = 298 K, which give p0 = 1.048 bar =

1 atm and a reference sound speed a0 = 346 m/s.

3.1 Verification of the numerical method: Normal reflection of uniform pla-

nar shocks on a fixed boundary

[Fig. 2 about here.]

The case of the normal reflection of uniform shocks on a fixed boundary pro-

vides a good basis for verification of the numerical method. One of the basic

implications of gas compressibility is the nonlinear dependence of the pres-

sure reflected from a fixed rigid wall on the magnitude of the incident shock

pressure. In the case of air, the reflected pressure is [19]:

pr = 2ps
7p0 + 4ps

7p0 + ps
(24)

where ps and pr are the incident and reflected pressures, respectively. A pres-

sure reflection coefficient CR may be defined as:

CR =
pr

ps
= 2

7p0 + 4ps

7p0 + ps

(25)

It is clear from equations (24) and (25) that the reflected pressure ranges

from a minimum value of twice the incident pressure, which corresponds to

the acoustic range, to a maximum value of eight times the incident pressure,

which is the limit of increasingly strong shocks for which the ideal gas equation

of state with constant γ is valid:

2 ≤ CR ≤ 8 (26)
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In order to generate a uniform shock, a constant piston velocity VL(X = 0, t ≥

0) = us, where us is the velocity of the particles behind the shock, is applied

as boundary condition at the left end of the fluid domain, i.e. v
(0)

j+
1
2

= us(ps)

for all time steps j = 0, · · · . For a desired shock overpressure, us is computed

from the expression:

us = a0
5

7

ps

p0

1
√

6 ps

p0
+ 1

(27)

where a0 is the reference speed of sound of air. The domain size is 8 m dis-

cretized with N = 5000 grid points and the grid node corresponding to the

plate has been fixed.

The results obtained are shown in Figure 2, where the values of the reflected

pressures obtained numerically have been normalized with the incident shock

pressures ps and compared with the exact values of the reflected coefficients

given by equation (25). As it can be observed in the plot, the numerical results

are in agreement with the Rankine-Hugoniot theory for a wide range of shock

intensities.

3.2 Reflection of uniform shocks on free-standing plates

In this section, we consider the FSI problem of an incident uniform shock

of arbitrary intensity reflecting on a free-standing plate. The simulations are

set up in the same way as in the previous example except that the boundary

condition on the right end of the domain is removed and the motion of the end

grid node corresponds to the dynamics of the plate, as described in Section 2.

This example provides a good basis for numerical verification of the theory

presented in [11] which presents exact solutions for the asymptotic limits of
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very heavy and very light plates interacting with shocks of arbitrary intensities

and for arbitrary plate masses interacting with acoustic waves.

[Fig. 3 about here.]

The derivation of the asymptotic behavior of the impulse transmission coeffi-

cient for light plates derived in [11] is based on the assumption that the max-

imum velocity is reached instantaneously at time t = 0+. The validity of this

assumption may be assessed by conducting numerical simulations and extract-

ing from them overpressure profiles recorded on the plate surface (point N)

for different values of βs. The profiles obtained for overpressure ps/p0 = 4.49

are shown in Figure 3. The dependence on the mass of the plate is given in

terms of the compressible non-dimensional parameter proposed in the same

reference:

βs =
ρsUsti
ρphp

(28)

where ρs is the gas density behind the shock, Us the shock speed, ti the du-

ration of the shock pulse considered and ρp and hp the plate density and

thickness, respectively. The duration of the uniform shock ti is defined as the

time elapsed since the shock reached the plate. It may be observed in this fig-

ure that for all values of βs, the initial overpressure is the same pp(t = 0) = pr.

However, for increasing βs, the overpressure profiles decay faster with time.

In the limit βs → ∞, the overpressure drops to zero instantly after shock

impact, in which case the pressure profile corresponds to a generalized delta

function multiplied by a constant. As shown in [11], integration of equation

(7) results in a constant plate velocity which is independent of the plate mass

and achieved instantaneously, which validates the assumption in [11]. This is

confirmed by the plate velocities obtained for large values of βs = 6730, 673
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and 67.3 which are up = 1005.5 m/s, 1005.6 m/s and 1006.5 m/s, respectively.

[Fig. 4 about here.]

The independence of the plate velocity from its mass in the case of light

plates has an immediate consequence on the impulse transmission: it becomes

directly proportional to the mass of the plate, Ip ∝ mp, and is lower for lighter

plates, in direct contrast with the case of the heavy plate limit in which the

impulse is independent of the mass. This can be observed in Figure 4 where the

time histories of the transmitted impulse are shown. For heavy plates (small

βs) the evolution of the linear momentum of the plate with time has almost a

constant slope, which corresponds to a constant force acting on the plate. On

the contrary, for light plates (large βs) the force acting on the plate decreases

with time giving lower values of the transmitted impulse.

[Fig. 5 about here.]

Figure 5 summarizes and compares normalized transmitted impulse obtained

numerically for a wide range of plate masses and shock intensities against the

results of the theory presented in [11]. The figure shows a plot of the normalized

transmitted impulse Ip

CRIi
vs. the combination of parameters βs

fR
where Ii = psti

is the impulse carried by the shock wave through the point x = 0 were the

plate not there and fR is defined in equation (30). The analytical solution of

the transmitted momentum was developed in [11]:

Ip

CRIi

=
1 − e−βs/fR

βs/fR

(29)

The parameter

fR =

(

6
ps

p0
+ 7

)

√

√

√

√

√

(6 + CR) ps

p0
+ 7

(

ps

p0
+ 7

) (

(1 + 6CR) ps

p0
+ 7

) (

CR
ps

p0
+ 7

) (30)
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characterizes the compressibility effect occurring during the wave expansion

associated with the motion of a light plate acting like a free surface [12,11].

As it can be seen in Figure 5, an excellent agreement is found between the

numerical results and the theory. This verifies the accuracy of the numerical

method in the asymptotic limits of heavy and light plates for arbitrary shock

intensity as well as the acoustic solution for arbitrary plate weights. In partic-

ular, for βs → 0 the curve becomes horizontal supporting the correctness of

the assumption that heavy plates behave as fixed walls and therefore absorb

the same impulse independently of the plate mass. For βs → ∞ the curve has

slope −1 which is consistent with the assumption that all plates acquire the

same maximum velocity (specifically Ip/Ii ∝ mp while βs ∝ 1/mp, so that

Ip/Ii ∝ 1/βs). In addition and most importantly, the numerical results com-

plement the exact theory, support the predictions of the empirical formula in

the intermediate asymptotic range, and confirm the collapse of the impulse

onto a single curve when normalized in terms of the parameter βs

fR
.

[Fig. 6 about here.]

The reduction of the impulse transmitted from blast wave to light structures

has been used as a basis for the design of sandwich panels with increased

resistance to underwater explosions, [2–10]. It should be noted that impulse

reduction is achieved owing to the motion of the plate away from the shock

wave. However, in the case of air explosions, the displacement ξ can become

extremely large for light plates. The time evolution of ξ for different values of

βs is shown in Figure 6 for the somewhat mild overpressure of ps/p0 = 4.49.

The lightest plate shown in the figure moves approximately 0.8 m in ti = 0.001

s, which might be a significant distance for some applications. Any obstacle

to the motion of the plate will increase the transmitted impulse considerably.
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3.3 Exponential blast profiles

The case of exponential profiles is of interest as they are commonly adopted

to approximate realistic blast waves [13,14]. However, this approximation of

the incident loading does not provide a consistent means of initializing the gas

flow, which leads to some numerical problems, especially for high-intensity

blast waves. This case was discussed in analytical and numerical detail in [12].

For completeness, we summarize the results in this section.

The simulations are initialized by imposing an exponential spatial pressure

distribution with a peak pressure pi and decay distance di. The initial velocity

is defined from relation (27), whereas the initial density is defined from the

Rankine-Hugoniot relation

ρs = ρ0
7p0 + 6ps

7p0 + ps
(31)

At the initial location of the blast front, the pressure is ramped linearly from

p0 to pi across 10 grid points in order to minimize the initial viscous overheat-

ing. The domain size and stand-off distance d are chosen so that undesirable

interference of waves reflecting from the left boundary and the blast-wave in-

teraction is avoided. In combination with the stand-off distance, the initial

blast peak pressure pi and di determine the peak pressure and decay time at

the point of impact on the plate ps and ti, respectively.

Simulations of a blast wave interacting with a free-standing plate were con-

ducted for different blast intensities and plate masses for the purpose of com-

puting the transmitted impulse. Figure 7 shows a summary of the results

presented in [12] and a comparison with the empirical formula giving the nor-

malized transmitted impulse as a function of the blast intensity and normalized
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plate mass proposed in this reference:

Ip

Ii

= γR

(

CRfR

γR

)
βs

1+βs

β
βs

1−βs
s (32)

[Fig. 7 about here.]

As it may be observed in this figure, the numerical results accurately match

their theoretical counterparts. However, for higher intensities, the numerical

simulations suffer from spurious wave reflections stemming from the initial

conditions which do not correspond to the actual solution of a blast wave

propagating in air.

3.4 Exact blast profiles corresponding to Point Explosion

Real explosions consist of a fast localized release of a large amount of energy

and/or mass usually in the form of a gas at very high temperature. A useful

idealization of such process is a point energy release for which exact solutions

of the equations of fluid motion have been derived by von Neumann [15] and

Sedov [20]. The solutions presented in these references only apply to the case

of very intense air blasts, as long as the peak pressure of the generated blast

wave remains above 10 atm [21]. The case of low intensity blast waves has been

treated by Bach et al [22,23]. The von Neumann-Sedov solution in the partic-

ular case of one-dimensional flow is given implicitly in terms of a parameter

0 ≤ θ ≤ 1 as:
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X =K1t
2
3 θ

γ
2γ−1

(

θ + 1

2

)

−

2
3
(

(2 − γ)θ + 2γ − 1

γ + 1

)
5γ2+γ−4

3(2−γ)(2γ−1)

, (33)

x =K1t
2
3 θ

γ−1
2γ−1

(

θ + 1

2

)

−

2
3 γ + θ

γ + 1

(

(2 − γ)θ + 2γ − 1

γ + 1

)

−

5γ2+γ−4
3(2γ−1)(γ+1)

, (34)

ρ =
γ + 1

γ − 1
ρ0θ

1
2γ−1

(

(2 − γ)θ + 2γ − 1

γ + 1

)
5γ2+γ−4

(2−γ)(2γ−1)(γ+1)

, (35)

u =
4K1

3(γ + 1)
t−

1
3 θ

γ−1
2γ−1

(

θ + 1

2

) 1
3
(

(2 − γ)θ + 2γ − 1

γ + 1

)

−

5γ2+γ−4
3(2γ−1)(γ+1)

, (36)

p =
8K2

1

9(γ + 1)
ρ0t

−

2
3

(

θ + 1

2

) 2
3
(

(2 − γ)θ + 2γ − 1

γ + 1

)
5γ2+γ−4

3(2−γ)(γ+1)

. (37)

[Fig. 8 about here.]

The constant K1, which depends on the energy release E0 and the initial fluid

density ρ0, is given by

K1 = 1.22904 3

√

E0

ρ0
. (38)

In simulations, the field variables are initialized using the exact solution and

adopting a finite radius of the explosion such that the steep field profiles can

be resolved with enough accuracy with the chosen discretization. The compu-

tation proceeds by integrating the flow equations in time following the method

described in Section 2. Figure 8 shows snapshots of the pressure profiles com-

puted for an explosion with an energy E0 = 5 × 108 kg/s−2 corresponding to

111 kg/m2 of TNT. In this simulation, the blast front is initially located at

a radius R = 22.5 m. The pressure profiles feature two strong discontinuities

propagating to the left and to the right with the discontinuous jumps being

about three times larger than the pressure at the explosion center. The figure

includes a comparison with the exact solution corresponding to the same en-

ergy release but at the point when the front has reached a radius R = 81.2

m. It may be seen in the comparison that the simulation preserves the shape
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of the pressure profile as it evolves in time.

[Fig. 9 about here.]

Representative temperature and density profiles corresponding to this simu-

lation are shown in Figure 9. As it may be seen in this figure, the accuracy of

the numerical solution near the center of the explosion decreases due to the

singular character of the solution at the explosion center, which is manifested

by the temperature growing unboundedly and the density tending to zero. The

numerical solution exhibits a flat density distribution, whereas the tempera-

ture peak is finite and clearly unresolved. Refining the solution at the origin

only improves the accuracy for a short time in the simulation, as the grid cell

at the origin grows substantially faster than its neighboring elements also due

to the singularity. However, convergence studies showed that this does not

affect the solution far from the origin. In particular, the fluid-plate interaction

and the resulting dynamics of the plate remained ostensibly unaffected by the

grid resolution at the origin.

[Fig. 10 about here.]

[Fig. 11 about here.]

The computation of the interaction between the blast wave described above

and two plates with the density of steel (ρp = 7, 800 kg/m3) and thicknesses

hp = 2 mm and 20 mm resulted in the plate displacement and pressure histo-

ries shown in Figures 11 and 10. As concluded in previous work [12,11], the

instantaneous peak pressure on the plate surface is the same regardless of the

plate thickness, but the lighter plate accelerates faster away from the blast

wave, which relieves the pressure on the surface. This can be clearly seen in
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Figure 10 where the pressure on the 2 mm-thick plate decays significantly

faster than the pressure on the 20 mm-thick plate. It should be emphasized,

however, that this pressure relief comes at the expense of large displacements

of the plate whose motion must be unconstrained for the impulse reduction

to be realized. As it can be seen from Figure 11 the required displacements

can be significant (on the order of tens of meters) which practically defeats

the ambition of exploiting FSI for the purpose of designing blast-protective

structures. This statement is confirmed by the unrealistically large velocities

reached by the plates (Figure 11)

4 Conclusions

A numerical method has been used to simulate the interaction of linear and

nonlinear one-dimensional waves propagating in air with the dynamics of a

plate hereby represented by a concentrated mass. The interest of this anal-

ysis is in evaluating the amount of momentum imparted by the blast to the

structure which, owing to the FSI effect, can be substantially reduced. The

method has been verified against well-known and recently-derived exact re-

sults for blast profiles with uniform and exponential profiles in the limits of

either acoustic waves with arbitrary plate mass or arbitrary blast intensity but

very heavy or very light plates. More realistic blast profiles initially given by

the exact point-source explosion of von Neumann and Sedov have also been

considered.

Similarly to what has been found before, the use of lighter plates has the

benefit of reducing the transmitted impulse, which potentially can be exploited

in structural designs with improved blast resistance, e.g. sandwich plates with
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light front sheets. However, such designs need to take into account the large

displacements of the front face sheet required in order for the impulse reduction

to take place.
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