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1 L’équation de Cauchy

Définition 1. Une fonction f : R → R est dite additive si elle vérifie l’équation fonc-
tionnelle de Cauchy :

f(x+ y) = f(x) + f(y),

pour tous x, y ∈ R.

Proposition 2. Une fonction additive est Q-linéaire : f(rx) = rf(x) pour tout x ∈ R
et tout r ∈ Q.

Démonstration. On doit avoir f(0) = 0 et, par récurrence, f(nx) = nf(x) pour tout
entier n. De même, on a f(x/n) = f(x)/n pour tout entier n non nul.

Proposition 3 (A. Cauchy). Une fonction additive est soit linéaire, soit discontinue en
chaque point.

Démonstration. Nous savons déjà que toute fonction additive continue doit être linéaire.
Si une fonction additive est continue en x0, on a

lim
h→0

f(x+ h) = lim
h→0

f(x0 + h) + f(x)− f(x0) = f(x),

pour tout x, ce qui suffit.

Proposition 4. Le graphe d’une fonction additive non continue est dense dans R2.

Démonstration. Si une fonction additive n’est pas linéaire, on doit avoir f(x1)/x1 ̸=
f(x2)/x2 pour deux nombres réels non nuls. Dès lors les vecteurs v1 = (x1, f(x1)) et
v2 = (x2, f(x2)) ne sont pas colinéaires. Puisque f est Q-linéaire, sont graphe contient
Qv1 ⊕Qv2, qui est dense dans R2.

Proposition 5. Une fonction additive majorée sur un ensemble de mesure positive est
linéaire.
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Démonstration. Supposons avoir f(x) < C pour tout x ∈ E, où E est de mesure non
nulle. Par un lemme de Steinhaus, il existe un intervalle non trivial I inclus dans E−E.
On a donc f(x) < 2C sur I. Dans ce cas, le graphe de f ne peut être dense.

Proposition 6. Une fonction additive mesurable est linéaire.

Démonstration. Pour une fonction linéaire f , posons Aj = {x : f(x) < j}. Puisque
limj Aj = R, Aj est de mesure positive pour j assez grand.

Soit H une base de Hamel 1 de R : pour tout x ∈ R, on a

x =
∑
(j)

rjxj ,

avec rj ∈ Q, xj ∈ H, et où
∑

(j) signifie que la somme est finie, avec j ∈ N.

Remarque 7. Nous utilisons la base de Hamel en son sens premier, tel que défini
par Hamel lui-même. De nos jours, une base de Hamel désigne simplement une base
algébrique.

Remarque 8. L’ensemble H a la puissance du continu.

Si fH est une fonction définie sur H, posons, avec des notations évidentes,

f(x) =
∑
(j)

rjfH(xj).

Cette fonction définie sur R est additive :

f(x+ y) = f
(∑

(j)

(rj + r′j)xj

)
=

∑
(j)

rjf(xj) +
∑
(j)

r′jf(xj) = f(x) + f(y).

Inversement, toute fonction additive est telle que f(x) =
∑

(j) rjf(xj).
Si une fonction additive est linéaire, alors

f(xj)

xj
=

cxj
xj

= c

est constant pour tout xj ∈ H. Les fonctions additives linéaires sont donc celles pour
lesquelles f(xj)/xj est constant.

Proposition 9 (SN). Au sens de la prévalence, presque toute fonction additive est
discontinue.

Démonstration. À une fonction additive f , associons la fonction

g : H → R xj 7→
f(xj)

xj
.

Les fonctions f linéaires sont associées aux fonctions g constantes, qui constitue un espace
vectoriel de dimension 1. Il suffit alors de considérer un espace de fonctions suffisamment
grand, comme Cb(H), par exemple.

1. Une base de R vu comme Q-espace vectoriel.
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2 L’équation de Fréchet

Définition 10. La différence finie d’écart h de f : R → R est définie par

∆hf(x) = f(x+ h)− f(x).

Grâce à l’opérateur ∆h, on peut écrire l’équation de Cauchy comme suit :

∆yf(x) = f(y).

En posant naturellement ∆n+1
h = ∆h∆

n
h, on constate que toute fonction additive vérifie

∆2
hf = 0. Bien entendu, il existe d’autres solutions que les fonctions additives. Par

exemple, toute polynôme de degré ≤ 1 satisfait cette équation.

Définition 11. L’équation de Fréchet d’ordre m est l’équation

∆m
h f = 0.

Comme l’équation de Cauchy, les solutions de l’équation d’une équation de Fréchet
sont soit régulières, soit extrêmement irrégulières, au sens où elles ne sont pas localement
intégrables.

On peut définir une version locale de l’équation de Fréchet.

Définition 12. Une fonction f : R → R vérifie l’équation de Fréchet d’ordre m au
voisinage de x0 si l’équation

∆m
h f(x0) = 0

est vérifiéee pour h suffisamment petit.

Le résultat classique associé à l’équation de Fréchet (resp. de Cauchy) d’ordre m
stipule que les solutions localement intégrables sont les polynômes de degré ≤ m (resp.
les polynômes homogènes de degré m).

Lemme 13 (A. Molla, SN, J.-P. Schneiders). Si f : R → R est une fonction bornée
presque partout sur ]a, b[ qui satisfait ∆m

h f = 0 sur cet intervalle pour presque tout h
suffisamment petit, alors f est borné sur ]a, b[.

Démonstration. On a

|f(x)| = |
m−1∑
j=0

(−1)j
(
m

j

)
f(x+mh− jh)|

≤ 2m sup{|f(y)| : y ∈ {x+ jh : 1 ≤ j ≤ m}},

pour tout x ∈]a, b[ et presque tout |h| < ϵ. Soit C > 0 et N ⊂]a, b[ un ensemble
négligeable tel que |f(x)| ≤ C pour tout x de ]a, b[\N . Pour 1 ≤ j ≤ m et x ∈]a, b[,
posons

Aj = {h ∈]a− x

m
,
b− x

m
[: x+ jh ∈]a, b[\N}.
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Pour 2 ≤ j ≤ m, on a A1 ⊂ (A1 \Aj)∪Aj , où A1 \Aj est négligeable, puisque partie de
(N − x)/j. On en conclut que A1 est l’ensemble ∩m

j=1Aj presque partout. Remarquons
également que A1∩]− ϵ, ϵ[ est égal à un intervalle presque partout. En conséquence, en
choisissant h tel que x+ jh ∈]a, b[\N pour tout 1 ≤ j ≤ m, on obtient

|f(x)| ≤ 2mC,

pour tout x ∈]a, b[.

Théorème 14 (A. Molla, SN, J.-P. Schneiders). Les solutions f : R → R bornées p.p.
au voisinage de x0 de l’équation de Fréchet d’ordre m au voisinage de x0 pour presque
tout h suffisamment petit sont les polynômes de degré ≤ m− 1.

Démonstration. Considérons m > 1. Vu le lemme, on peut supposer l’existence de η > 0
pour lequel f est borné et satisfait ∆m

h f = 0 sur [x0−η, x0+η] pour presque tout |h| < η.
Nous éviterons la locution presque partout dans la suite. Soit ϵ tel que 0 < ϵ < η/m
et posons δ = η − mϵ. On peut supposer avoir |∆j

hf(x)| ≤ C pour 0 ≤ j ≤ m, x ∈
]x0 − δ, x0 + δ[ et |h| < ϵ.. Montrons que f est continu en un tel x. Étant donné r ∈ N∗,
soit h tel que |rh| < ϵ ; la formule d’interpolation de Newto permet d’écrire

f(x+ qh) =

q∑
j=0

∆j
hf(x)

j!
(q)j ,

pour q ∈ N, où (q)j désigne la factorielle tombante :

(q)j =


1 si j = 0
j−1∏
k=0

(q − k) si j > 0
.

On a aussi, pour q ≥ m,

f(x+ qrh) =

q∑
j=0

∆j
rhf(x)

j!
(q)j ,

ce qui implique
qr∑
j=0

∆j
hf(x)

j!
(qr)j =

q∑
j=0

∆j
rhf(x)

j!
(q)j

En notant s(j, k) le nombre de stirling de première espèce, on peut réécrire cette égalité
comme suit :

qr∑
j=0

∆j
hf(x)

j!

j∑
k=0

s(j, k)(qr)k =

q∑
j=0

∆j
rhf(x)

j!

j∑
k=0

s(j, k)qk.
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Dès lors, on a
qr∑
j=0

∆j
hf(x)

j!
s(j, k) =

q∑
j=0

∆j
rhf(x)

j!
s(j, k)r−k,

pour 0 ≤ k ≤ m− 1. En notant S(j, k) le nombre de Stirling de seconde espèce, l’égalité

m−1∑
k=l

qr∑
j=0

∆j
hf(x)

j!
s(j, k)S(k, l) =

m−1∑
k=l

q∑
j=0

∆j
rhf(x)

j!
s(j, k)r−kS(k, l),

donne
∆l

hf(x)

l!
=

m−1∑
k=l

q∑
j=0

∆j
rhf(x)

j!
s(j, k)r−kS(k, l),

pour 0 ≤ l ≤ m− 1, puisque
∑j

k=l s(j, k)S(k, l) = δj,l. On a donc

|
∆l

hf(x)

l!
| ≤ C ′

m−1∑
k=l

r−k,

pour une constante C ′. Maintenant, étant donné 0 < |h| < ϵ, soit r le nombre naturel
tel que r|h| < ϵ ≤ (r + 1)|h|. La dernière inégalité donne

|
∆l

hf(x)

l!
| ≤ C ′

m−1∑
k=l

|h|k

(ϵ− |h|)k
,

pour 0 ≤ l ≤ m− 1. En particulier, ∆hf(x) tend vers 0 avec h.
Pour 0 < |h| < δ/m. il existe un polynôme unique Ph de degré m − 1 au plus tel

que Ph(x0 + jh) = f(x0 + jh), pour 0 ≤ j ≤ m. Pour r ∈ N, le même argument que
dans la première partie assure l’existence d’un polynôme Ph/r tel que Ph/r(x0+ jh/r) =
f(x0+jh/r), pour 0 ≤ j ≤ mr. Puisque Ph et Ph/r sont égaux en m points, il sont égaux
sur la droite. Ainsi, Ph est égal à f sur

{x0 + qh : q ∈ Q, 0 ≤ q ≤ m},

ce qui permet de conclure, par continuité.

Remarque 15. Si la fonction f est supposée mesurable, la démonstration se simplifie
considérablement.

L’équation de Fréchet peut se généraliser à Rn en considérant l’équation

∆m
h f = 0,

pour f : Rn → R et h ∈ Rn.

Corollaire 16. Les solutions f : Rn → R bornées p.p. au voisinage de x0 de l’équation
de Fréchet d’ordre m au voisinage de x0 pour presque tout h suffisamment petit sont les
polynômes de degré ≤ m− 1.
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Définition 17. L’équation de Cauchy d’ordre m est l’équation

∆m
h f(x) = m!f(h).

Corollaire 18. Les solutions f : Rn → R bornées p.p. de l’équation de Cauchy d’ordre
m sont les polynômes homogènes f(x) =

∑
|α|=m cαx

α.

3 Le cas des distributions

Nous posons ici X = Rn. On peut définir les différences finies pour les distributions
via leur action sur les fonctions test.

Définition 19. La différence finie d’écart h à l’ordre m de T ∈ D′(X) est définie par

∆m
h T (φ) = T (∆m

−hφ),

pour φ ∈ D(X).

Théorème 20 (A. Molla, SN, J.-P. Schneiders). Les solutions de l’équation ∆m
h T = 0

pour presque tout h, avec T ∈ D′(E), sont les distributions associées à un polynôme de
degré ≤ m− 1.

Comme conséquence, on obtient le résultat classique suivant :

Corollaire 21. Les solutions f ∈ L1
loc(X) de l’équation de Fréchet d’ordre m pour

presque tout h sont les polynômes de degré ≤ m− 1.

Pour l’équation de Fréchet, rappelons que, étant donné deux ouverts U ⊂ Rm et
V ⊂ Rn et une application f : U → V d’ordre C∞ dont la différentielle en x est
surjective pour tout x ∈ U , il existe une application

f∗ : D′(V ) → D′(U)

telle que f∗T = T ◦ f pour T ∈ C(V ).

Définition 22. L’application f∗ définie plus haut est appelée 2 le pullback de f .

Nous utiliserons un anglicisme pour désigner f∗ plutôt que l’application réciproque.
Notons

pj : X
2 → X (x, y) 7→ x+ jy et qj : X

2 → X (x, y) 7→ jx+ y.

Ainsi p0 et q0 sont des projections orthogonales et

∆m
h f(x) =

m∑
j=0

(−1)m−j

(
m

j

)
p∗jf(x, h),

pour tout f ∈ C(X). On peut ainsi définir l’application linéaire continue différence finie.

2. Plus classiquement, on appelle f∗T le pullback de T par f .

6



Définition 23. La différence finie ∆m à l’ordre m est l’application

∆m : D′(X) → D′(X2) T 7→
m∑
j=0

(−1)m−j

(
m

j

)
p∗jT.

Considérons maintenant l’équation

∆mT = m!q∗0T.

Cette équation est symétrique au sens du lemme suivant. Posons

Λm : D′(X) → D′(X2) T 7→
m∑
j=0

(−1)m−j

(
m

j

)
q∗jT.

Lemme 24. Une distribution T ∈ D′(X) satisfait ∆mT = m!q∗0T si et seulement si on
a ΛmT = m!p∗0T .

Théorème 25 (A. Molla, SN, J.-P. Schneiders). Les solutions de l’équation ∆mT =
m!q∗0T sont les distributions associées aux polynômes homogènes

∑
|α|=m cαx

α.

Corollaire 26. Les solutions f ∈ L1
loc(X) de l’équation ∆mf = m!q∗0f sont les po-

lynômes homogènes
∑

|α|=m cαx
α.

4 Le cas des groupes de Lie

Tous les résultats ont été obtenus ici en collaboration avec Arman Molla.
Nous considérerons ici que G est un groupe de Lie connexe. Posons

Lx : y 7→ xy et Rx : y 7→ yx,

pour définir les différence finies

∆h = R∗
h − I et h∆ = L∗

h − I.

On pose ∆2
h1,h2

= ∆h1 ◦∆h2 et noterons

∆m+1
h = ∆m+1

h1,...,hm+1
= ∆m

h1,...,hm
◦∆hm+1 .

Nous allons considérer l’équation

∆m+1
h f(x) = 0,

avec f : G → R. On peut considérer cette équation globalement (pour tout x ∈ G
et h ∈ Gm+1), ou localement (au voisinage de x et pour h ∈ Gm+1 au voisinage de
l’identité).
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Lemme 27. Une fonction f est solution de ∆m+1
h f = 0 si et seulement si elle est

solution de h∆
m+1f = 0.

Définition 28. Une solution de ∆m+1
h f = 0 est appelée un polynôme.

Posons g(1) = [g, g] et
g(j+1) = [g, g(j)].

Il existe un nombre N tel que

g(1) ⊃ g(2) ⊃ · · · ⊃ g(N) = g(N+1).

Ce nombre est appelé le stabilisateur de la série centrale descendente. On a donc

{0} ⊂ (g(1))⊥ ⊂ · · · ⊂ (g(N))⊥ ⊂ g∗.

Définition 29. On définit M(g) comme l’ensemble des fonctions additives f : g → R
telles que g(N) ⊂ ker(f). De même, M∞(g) est l’ensemble des fonctions linéaires f : g →
R telles que g(N) ⊂ ker(f). On définit alors P (G) comme l’espace des germes en 1 des
fonctions f : G → R telles que f ◦ exp appartient à l’algèbre des fonctions générées par
M(g). De même, P∞(G) est l’espace des germes en 1 des fonctions f : G → R telles que
f ◦ exp appartient à l’algèbre des fonctions générées par M∞(g).

Théorème 30. Les éléments de P (G) sont solution de l’équation de Fréchet pour tous
x et h au voisinage de l’identité.

Théorème 31. Les solutions régulières de l’équation de Fréchet pour tous x et h au
voisinage de l’identité sont les éléments de P∞(G).

Pour h ∈ G, posons
∆m+1

h = ∆m+1
h,...,h.

Pour un groupz commutatif, l’équation ∆m+1
h f = 0 est équivalente à ∆m+1

h f = 0.

Définition 32. Une solution de l’équation ∆m+1
h f = 0 est appelée un semi-polynôme.

Un polynôme est trivialement un semi-polynôme et un résultat très général permet
de montrer qu’un semi-polynôme est un polynôme, mais l’odre m+1 de l’équation n’est
pas nécessairement le même.

On ne sait pas si ce résultat général reste valide localement (conjecture : oui). Aussi,
puisque ∆

m+1
h f = 0 implique ∆m+1

h f = 0, on peut s’interroger sur la relation entre m
et m. Conjecture : On a m = m+N pour une large classe de groupes de Lie.
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Rappels sur les groupes de Lie

Un groupe de Lie G est un groupe muni d’une structure de variété différentiable telle
que les opérations

(x, y) 7→ xy et x 7→ x−1

sont des applications différentiables. Par définition, un groupe de Lie de dimension n
est localement difféomorphe à un ouvert de Rn. L’espace tangent en 1 de G constitue
l’algèbre de Lie associée au groupe G ; il est noté g. L’algèbre de Lie est un espace
vectoriel réel de dimension n, muni d’une opération bilinéaire antisymétrique

[·, ·] : g2 → g (X,Y ) 7→ [X,Y ]

vérifiant l’identité de Jacobi :

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

Cette opération est le corchet de Lie. Chaque X ∈ g représente une direction infi-
nitésimale du groupe et [X,Y ] mesure le défaut de commutation entre les déplacements
infinitésimaux dans les directions X et Y . Autrement dit, l’algèbre de Lie fournit une
version linéarisée du groupe au voisinage de l’identité, et encode les interactions infi-
nitésimales via le crochet de Lie.

L’application exponentielle relie l’algèbre de Lie au groupe de Lie. Pour tout X ∈ g,
on définit la courbe intégrale γX : R → G telle que γX(0) = 1 et γ′X(t) = X · γ(t). On
pose

exp : g → G X 7→ γX(1).

L’exponentielle permet de reconstruire la structure globale à partir de la structure infi-
nitésimale, que représente l’algèbre de Lie. Pour les groupes de Lie connexes ou simple-
ment connexes, la structure de groupe est entièrement déterminée par son algèbre.
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