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1 L’'équation de Cauchy

Définition 1. Une fonction f : R — R est dite additive si elle vérifie I’ équation fonc-
tionnelle de Cauchy :

flz+y) = f(z)+ fy),

pour tous z,y € R.

Proposition 2. Une fonction additive est Q-linéaire : f(rz) = rf(x) pour tout x € R
et tout r € Q.

Démonstration. On doit avoir f(0) = 0 et, par récurrence, f(nz) = nf(x) pour tout
entier n. De méme, on a f(x/n) = f(x)/n pour tout entier n non nul. O

Proposition 3 (A. Cauchy). Une fonction additive est soit linéaire, soit discontinue en
chaque point.

Démonstration. Nous savons déja que toute fonction additive continue doit étre linéaire.
Si une fonction additive est continue en xg, on a

lim f(2 + 1) = lim f(wo + 1) + f(2) = f(wo) = f(=),

pour tout z, ce qui suffit. O
Proposition 4. Le graphe d’une fonction additive non continue est dense dans R?.

Démonstration. Si une fonction additive n’est pas linéaire, on doit avoir f(z1)/z1 #
f(x2)/zo pour deux nombres réels non nuls. Dés lors les vecteurs vy = (1, f(z1)) et
vy = (w2, f(x2)) ne sont pas colinéaires. Puisque f est Q-linéaire, sont graphe contient
Qui @ Que, qui est dense dans R2. O

Proposition 5. Une fonction additive majorée sur un ensemble de mesure positive est
linéaire.



Démonstration. Supposons avoir f(z) < C pour tout x € E, ou F est de mesure non
nulle. Par un lemme de Steinhaus, il existe un intervalle non trivial I inclus dans £ — E.
On a donc f(x) < 2C sur I. Dans ce cas, le graphe de f ne peut étre dense. O

Proposition 6. Une fonction additive mesurable est linéaire.

Démonstration. Pour une fonction linéaire f, posons A; = {x : f(x) < j}. Puisque
lim; A; =R, A; est de mesure positive pour j assez grand. ]

Soit H une base de Hamel! de R : pour tout € R, on a
xr = Z TjCCj,
(9)
avec r; € Q, x; € H, et ol Z(j) signifie que la somme est finie, avec j € N.

Remarque 7. Nous utilisons la base de Hamel en son sens premier, tel que défini
par Hamel lui-méme. De nos jours, une base de Hamel désigne simplement une base
algébrique.

Remarque 8. L’ensemble H a la puissance du continu.

Si fy est une fonction définie sur H, posons, avec des notations évidentes,

F@) =" rfulay).
(4)

Cette fonction définie sur R est additive :

Pty = (3 +r)a) = S riflag) + D) = f@) + f().
() () @)
Inversement, toute fonction additive est telle que f(xz) = 3= 7 f(z;).
Si une fonction additive est linéaire, alors

flzy) _exj

Lj L
est constant pour tout x; € H. Les fonctions additives linéaires sont donc celles pour
lesquelles f(x;)/x; est constant.

Proposition 9 (SN). Au sens de la prévalence, presque toute fonction additive est
discontinue.

Démonstration. A une fonction additive f, associons la fonction

g:H—->R xzj— f(x])
Zj

Les fonctions f linéaires sont associées aux fonctions g constantes, qui constitue un espace
vectoriel de dimension 1. Il suffit alors de considérer un espace de fonctions suffisamment
grand, comme C},(H), par exemple. O

1. Une base de R vu comme Q-espace vectoriel.



2 L'équation de Fréchet

Définition 10. La différence finie d’écart h de f : R — R est définie par

Anf(x) = f(x+h) = f(2).

Grace a 'opérateur Ay, on peut écrire I’équation de Cauchy comme suit :

Ayf(x) = f(y)-

En posant naturellement AZH = A, AT, on constate que toute fonction additive vérifie
A?f = 0. Bien entendu, il existe d’autres solutions que les fonctions additives. Par
exemple, toute polynome de degré < 1 satisfait cette équation.

Définition 11. L’équation de Fréchet d’ordre m est ’équation
nr=o.

Comme I’équation de Cauchy, les solutions de I’équation d’une équation de Fréchet
sont soit régulieres, soit extrémement irrégulieres, au sens ot elles ne sont pas localement
intégrables.

On peut définir une version locale de I’équation de Fréchet.

Définition 12. Une fonction f : R — R vérifie I’équation de Fréchet d’ordre m au
voisinage de xg si I’équation
AR f(zo) =0

est vérifiéee pour h suffisamment petit.

Le résultat classique associé a I’équation de Fréchet (resp. de Cauchy) d’ordre m
stipule que les solutions localement intégrables sont les polynéomes de degré < m (resp.
les polynomes homogenes de degré m).

Lemme 13 (A. Molla, SN, J.-P. Schneiders). Si f : R — R est une fonction bornée
presque partout sur |a,b] qui satisfait AY'f = 0 sur cet intervalle pour presque tout h
suffisamment petit, alors f est borné sur |a,b].

Démonstration. On a

m—1 m
:1;‘ = —_ '] .'1: m - ]
@1 =120 D<j>ﬂ T mh — jh)
< sup{|f()| sy € {a b jh:1<j<m}),

pour tout x €a,b| et presque tout |h| < €. Soit C' > 0 et N Cla,b] un ensemble
négligeable tel que |f(z)| < C pour tout z de Ja,b[\N. Pour 1 < j < m et z €|a,b],

posons

A;=1{h e]“;f, b;nx[; @+ jh €]a,b\N}.

3



Pour 2 <j <m,ona Ay C (A1 \ Aj)UA;, ou A; \ A; est négligeable, puisque partie de
(N —x)/j. On en conclut que A; est ’ensemble ﬂ}”:lAj presque partout. Remarquons
également que A1N| — ¢, €[ est égal & un intervalle presque partout. En conséquence, en
choisissant h tel que = + jh €]a,b[\N pour tout 1 < j < m, on obtient

[f(z)] <2™C,
pour tout x €|a, bl. O

Théoréme 14 (A. Molla, SN, J.-P. Schneiders). Les solutions f : R — R bornées p.p.
au voisinage de xg de l’équation de Fréchet d’ordre m au voisinage de xg pour presque
tout h suffisamment petit sont les polynomes de degré < m — 1.

Démonstration. Considérons m > 1. Vu le lemme, on peut supposer l'existence de nn > 0
pour lequel f est borné et satisfait AJ* f = 0 sur [xg—1, z9+n] pour presque tout |h| < 7.
Nous éviterons la locution presque partout dans la suite. Soit € tel que 0 < € < n/m
et posons § = 7 — me. On peut supposer avoir |A} f(z)| < C pour 0 < j < m, z €
Jzo — &, 20 + &[ et |h| < e.. Montrons que f est continu en un tel z. Etant donné r € N,,
soit h tel que |rh| < €; la formule d’interpolation de Newto permet d’écrire

fle+qh)=) Ahﬁ(x)

J=0

(@)

pour g € N, ot1 (¢); désigne la factorielle tombante :

1 sij=0
_ ) il
(0); = [Tk sij>o
k=0
On a aussi, pour g > m,
A, f (=)
fla+qrh) = Z ’}7!(61)]',
§=0

ce qui implique
qr A]
> h]].e!(x) (ar); = Z ’3{( (@)
j=0 J=0

En notant s(j, k) le nombre de stirling de premiere espéce, on peut réécrire cette égalité
comme suit :

qr j J q j T J
>SS Gt =30 S S

j=0 ’ k=0 j=0



Des lors, on a

qr Aj q Aj
> hf,(x)s(j, =) ’;"f 9.y
=0 =0 7

pour 0 < k < m — 1. En notant S(j, k) le nombre de Stirling de seconde espece, I’égalité

donne

pour 0 <[ < m — 1, puisque Zf;:l s(j,k)S(k,1) = 6;;. On a donc

ALf(@) _ iR -
‘ hl! ’ < C/ Z r k7
k=l

pour une constante C’. Maintenant, étant donné 0 < |h| < €, soit r le nombre naturel
tel que r|h| < € < (r + 1)|h|. La derniére inégalité donne

Al f(z T |n)k
k=l
pour 0 <! < m — 1. En particulier, Ay, f(z) tend vers 0 avec h.

Pour 0 < |h| < §/m. il existe un polynéme unique P}, de degré m — 1 au plus tel
que Pp(xo + jh) = f(xo + jh), pour 0 < j < m. Pour r € N, le méme argument que
dans la premiere partie assure l'existence d'un polynoéme P, tel que Py, ,.(zo +jh/r) =
f(wo+jh/r), pour 0 < j < mr. Puisque P, et Py, sont égaux en m points, il sont égaux
sur la droite. Ainsi, P}, est égal a f sur

{zo+qh:q€Q,0<q<m},
ce qui permet de conclure, par continuité. O

Remarque 15. Si la fonction f est supposée mesurable, la démonstration se simplifie
considérablement.

L’équation de Fréchet peut se généraliser a R™ en considérant 1’équation
nf=0,
pour f:R™ - Ret h € R".

Corollaire 16. Les solutions f : R™ — R bornées p.p. au voisinage de xq de I’équation
de Fréchet d’ordre m au voisinage de xg pour presque tout h suffisamment petit sont les
polynomes de degré < m — 1.



Définition 17. L’équation de Cauchy d’ordre m est ’équation

mf(x) = mlf(h).

Corollaire 18. Les solutions f : R™ — R bornées p.p. de l’équation de Cauchy d’ordre
m sont les polynémes homogeénes f(x) = Z‘M:m cat®.

3 Le cas des distributions

Nous posons ici X = R". On peut définir les différences finies pour les distributions
via leur action sur les fonctions test.

Définition 19. La différence finie d’écart h a 'ordre m de T' € D'(X) est définie par
AR'T(p) = T(ATye),
pour ¢ € D(X).

Théoréme 20 (A. Molla, SN, J.-P. Schneiders). Les solutions de l’équation AY'T = 0
pour presque tout h, avec T € D'(E), sont les distributions associées d un polynéme de
degré <m — 1.

Comme conséquence, on obtient le résultat classique suivant :

Corollaire 21. Les solutions f € Li _(X) de l’équation de Fréchet d’ordre m pour

loc
presque tout h sont les polynomes de degré < m — 1.

Pour I'équation de Fréchet, rappelons que, étant donné deux ouverts U C R™ et
V C R” et une application f : U — V d’ordre C'° dont la différentielle en z est
surjective pour tout x € U, il existe une application

f*:D'(V)— D'(U)
telle que f*T'=To f pour T € C(V).
Définition 22. L’application f* définie plus haut est appelée? le pullback de f.

Nous utiliserons un anglicisme pour désigner f* plutot que I’application réciproque.
Notons

pj:X2—>X (x,y) = x+ jy et qj:X2—>X (z,y) — jx +y.
Ainsi pg et go sont des projections orthogonales et
m '
Piw) =30 () )
§=0

pour tout f € C(X). On peut ainsi définir ’application linéaire continue différence finie.

2. Plus classiquement, on appelle f*T le pullback de T par f.



Définition 23. La différence finie A™ & 'ordre m est 'application
A™:D'(X) = D'(X?* T+~ Z(—l)m—9< ,)p;T.
j=0 J
Considérons maintenant 1’équation
A™T = mlgyT.
Cette équation est symétrique au sens du lemme suivant. Posons
m m
A™:D'(X) = D'(X?) T+~ Z(—l)m_]< ,>q;T.

i=0 J

Lemme 24. Une distribution T € D'(X) satisfait A™T = mlg{T si et seulement si on
a AT = mlpiT.

Théoréme 25 (A. Molla, SN, J.-P. Schneiders). Les solutions de l’équation A™T =
mlgyT sont les distributions associées aux polynomes homogénes Z|a|:m Cax®.

Corollaire 26. Les solutions f € LIIOC(X) de Uéquation A™f = mlqyf sont les po-
lynémes homogenes Zm‘:m Cax®.
4 Le cas des groupes de Lie

Tous les résultats ont été obtenus ici en collaboration avec Arman Molla.
Nous considérerons ici que G est un groupe de Lie connexe. Posons

Ly:y—xy et Rp:yw— yz,
pour définir les différence finies
Ap=R;—1 et p,A=1L;—1.
On pose A,Qll,hQ = Ap, o Ap, et noterons
At = A = AR 0 D
Nous allons considérer I’équation
Ayt f(z) =0,

avec f : G — R. On peut considérer cette équation globalement (pour tout x € G
et h € G™*1), ou localement (au voisinage de x et pour h € G™*! au voisinage de
I'identité).



Lemme 27. Une fonction f est solution de AZLHf = 0 si et seulement si elle est
solution de ybA™H f =0.

Définition 28. Une solution de A;’;‘H f =0 est appelée un polynome.

Posons gV = [g, g] et ‘ ‘
gUu+h = [979(3)]‘

Il existe un nombre N tel que

gD 5 g® 5.5 g = gV,

Ce nombre est appelé le stabilisateur de la série centrale descendente. On a donc
{0} c (@)t c-c (@)t cgn

Définition 29. On définit M (g) comme ensemble des fonctions additives f : g — R
telles que g™ C ker(f). De méme, M>°(g) est I’ensemble des fonctions linéaires f : g —
R telles que g™) C ker(f). On définit alors P(G) comme P'espace des germes en 1 des
fonctions f : G — R telles que f o exp appartient a l'algebre des fonctions générées par
M(g). De méme, P*°(G) est 'espace des germes en 1 des fonctions f : G — R telles que
f o exp appartient a l’algebre des fonctions générées par M>°(g).

Théoréme 30. Les éléments de P(G) sont solution de l'équation de Fréchet pour tous
x et h au voisinage de l’identité.

Théoréme 31. Les solutions régulieres de l’équation de Fréchet pour tous x et h au
voisinage de l'identité sont les éléments de P*°(QG).

Pour h € GG, posons

m+1 __ m+1
éh - Ah,...,h'

Pour un groupz commutatif, I’équation AZHFI f =0 est équivalente a A;”H f=0.
Définition 32. Une solution de I’équation é}f‘“ f =0 est appelée un semi-polynome.

Un polynéme est trivialement un semi-polynome et un résultat tres général permet
de montrer qu'un semi-polynoéme est un polynoéme, mais ’odre m + 1 de I’équation n’est
pas nécessairement le méme.

On ne sait pas si ce résultat général reste valide localement (conjecture : oui). Aussi,
puisque Aherl f = 0 implique AZ‘H f =0, on peut s’interroger sur la relation entre m
et m. Conjecture : On a m = m + N pour une large classe de groupes de Lie.



Rappels sur les groupes de Lie

Un groupe de Lie GG est un groupe muni d’une structure de variété différentiable telle
que les opérations

(z,y)—~zy et x>z !

sont des applications différentiables. Par définition, un groupe de Lie de dimension n
est localement difféomorphe a un ouvert de R™. L’espace tangent en 1 de G constitue
I’algebre de Lie associée au groupe G; il est noté g. L’algebre de Lie est un espace
vectoriel réel de dimension n, muni d’une opération bilinéaire antisymétrique

["']:92%9 (va)’_}[XaY]
vérifiant I'identité de Jacobi :
(X, [, Z]] + [V, [Z,X]] + [Z,[X, Y]] = 0.

Cette opération est le corchet de Lie. Chaque X € g représente une direction infi-
nitésimale du groupe et [X, Y] mesure le défaut de commutation entre les déplacements
infinitésimaux dans les directions X et Y. Autrement dit, 'algebre de Lie fournit une
version linéarisée du groupe au voisinage de l’identité, et encode les interactions infi-
nitésimales via le crochet de Lie.

L’application exponentielle relie 'algebre de Lie au groupe de Lie. Pour tout X € g,
on définit la courbe intégrale yx : R — G telle que vx(0) = 1 et v (¢) = X - v(¢). On
pose

exp:g— G X — yx(1).

L’exponentielle permet de reconstruire la structure globale a partir de la structure infi-
nitésimale, que représente l'algebre de Lie. Pour les groupes de Lie connexes ou simple-
ment connexes, la structure de groupe est entierement déterminée par son algebre.
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