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BGP communities are widely used by operators to encode routing metadata for traffic engineering, policy
enforcement, and operational debugging. However, =90% of observed communities lack public documentation,
limiting their utility for research and operational analysis. Among these, city-level communities offer valuable
geographic insight into routing behavior, yet remain largely untapped. In this paper, we develop a scalable
method to infer the geographic meaning of undocumented city communities using BGP data. We validate
our approach against a ground truth dataset covering 1,482 city communities and through operator feedback.
Applied to data from May 2025, our algorithm infers the locations of 80% of city communities with a precision
of 70 km or better. We publish all code and datasets to support reproducibility and further research.
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1 Introduction

One of the most critical metrics for understanding inter-domain routing is the Autonomous System
Path (AS path), a sequence of ASes that agree to forward traffic toward a destination. The AS path
is used by the Border Gateway Protocol (BGP) when selecting best paths, as BGP prefers routes
with shorter AS paths. However, despite its utility, the AS path lacks geographic context which is a
significant limitation given that neighboring ASes often peer at multiple, geographically distinct
locations. To incorporate geographic context into routing decisions, many network operators tag
routes with city-level information using BGP communities. These communities indicate where
a route was learned and can be leveraged to optimize internal routing strategies. To facilitate
debugging, some ASes export these communities and they are often captured by route collectors.
However, while some networks publicly document their community values, many do not, leaving a
significant portion of this data unexplored. Inferring the locations of unknown city communities
can substantially improve our understanding of inter-domain routing.
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Towards being able to infer the city signaled in communities, in this paper we aim to improve
our understanding of the properties of city communities, by investigating the following research
question: Do prefixes tagged with a city community originate at the same location as the tagging
router? As expected, we find that border routers tag prefixes on ingress originated from all over
the world. However, more importantly, we observe a spatial correlation between large groups of
prefixes tagged with city communities and the location of the tagging router. We leverage this
property and devise an algorithm that identifies the largest geographically cohesive group for
each city community. We validate our method against a ground truth data set covering 1,482 city
communities (defined by 36 ASes) found in public BGP data from May 2025, where it inferred
the location of 80% of city communities with an error of 70 km or less. We also contact network
operators to verify our inferences for city communities for which we have no ground truth. We
further investigate cases where our algorithm fails, derive limitations and conjecture the use of
prefixes in locations different to their geolocated region, e.g., through remote peering. We make
our code and datasets publicly available at https://github.com/tkrenc/conext25-artifacts.

2 Background

The Internet consists of over 80K Autonomous Systems (AS), each identified by an Autonomous
System Number (ASN) [7]. ASNs were 16-bit integers, limiting the number of public ASes to less
than 65535 ASes, so to accommodate more ASes participating in the Internet, the ASN space was
expanded to 32 bits [40] in 2012. ASes exchange traffic based on business relationships, including
peer-to-peer (P2P) and customer-provider (C2P) [12]. Two ASes can have different relationships at
many different geographic locations [16]. In this work, we aim to infer those locations.

BGP Communities: The BGP communities attribute is a variable-length optional extension
that augments BGP announcements with metadata [7]. A 32-bit BGP community has the form
a: f, where « identifies the ASN that defines the meaning of f. To accommodate 32-bit ASNs,
the IETF introduced 48-bit extended communities [39] and 96-bit large communities, the latter
of which follow the form a: :y [33]. With the exception of a few well-known communities (e.g.,
NO_EXPORT, BLACKHOLE [7, 22]), the values («, 5, and y) are not standardized. Hence, operators
assign semantics to otherwise arbitrary values, which other networks must interpret through
documentation (e.g., [2] for AS1299 communities) in order to effectively use them. Operators of
large, multi-regional networks typically use communities to implement complex routing policies
that enable fine-grained control over ingress and egress traffic. Because the community attribute is
transitive, it can be used by other ASes along the AS path. Based on the intended use of communities,
operators distinguish them into two coarse-grained categories—action and information [33].

Action communities encode specific actions that the defining AS supports, such as exporting or
suppressing a route, adjusting the local preference, or prepending the AS path. Additionally, they
can define the intended target of these actions, such as a particular AS or groups of ASes within a
specific location or region. For example, the action community 1299:2569 [2] can be used by a
customer of AS1299 to instruct AS1299 to not export the tagged route to AS3356 in Europe.

Information communities are set by the defining AS and describe neighboring ASes, AS relation-
ships, ROV status, or attributes of BGP sessions and routers to support functions such as preventing
route leaks through relationship-aware policies. Geographic communities, the set of information
communities that we focus on in this paper, identify peering facilities, cities, countries, or continents
where a route is learned. For example, 3356:2073 [5] indicates that AS3356 received the route in
London (GB). Operators can use geographic communities to implement cold-potato routing [36],
where traffic is carried across the network to the location closest to the destination before handoff.
In contrast, hot-potato routing hands traffic off at the nearest exit point. Cold-potato routing thus
provides the key intuition for our city community inference method, which we elaborate on in §5.
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3 Related Work

Over the past two decades, BGP communities have gained increasing attention from network
operators. Between 2004 and 2007, the number of ASes defining communities grew from =400
to =1K, while unique communities increased from =3K to =7K [11]. This trend continued: from
2010 to 2018, ASes defining communities nearly doubled from =2.5K to =5K, while unique values
grew from =19K to =63K [38]. This increase has attracted interest also in the research community
for BGP-related studies [3, 10, 12, 15, 16, 18—-20, 23, 27], infrastructure research [1, 18, 24, 30], and
security [14, 17, 21, 38].

Efforts to compile a BGP community dictionary from published documentation date back to
2002, when Quoitin et al. [32] provided a taxonomy of early community uses based on the RIPE
whois database. Later, Donnet et al. [11] manually built a dictionary of BGP communities using
information published on network operator websites and in Internet Routing Registry records,
which covered 22% of =7K communities observed in BGP data. In 2024, Liu et al. [26] proposed the
first automated method to build a dictionary of BGP communities using public information. They
reported that their dictionary covered 11% of =89K communities observed in BGP data, leaving
significant potential for automatically inferring community semantics.

In an effort to automatically infer unknown BGP communities, Krenc et al. [25] and da Silva
Jr et al. [8] introduced methods to distinguish information from action communities, using the
observation that action communities often appear off-path. Similarly, da Silva Jr et al. [9] proposed a
method to automatically infer whether a community signals geographic information. They coarsely
label any such community with “location,” covering cases from a specific link or router up to an
entire continent. In contrast, our goal is to infer the specific location itself, at city-level.

4 Datasets and Preprocessing

In this work, we use three datasets: a dictionary of communities that signal city information, BGP
routing data, and prefix geolocation data. We preprocess and combine these into a single dataset
used to evaluate our inference method.

City communities dictionary (CITY): We manually compiled a list of city communities that
encode city-level information. We searched registries [31], bgp.tools [6], the NLNOG Git reposi-
tory [37], and operator websites for BGP community descriptions. We used available descriptions
to determine whether a community signals a city or a PoP/peering facility within a city, and
considered only those with descriptions that explicitly state city names. For example: we consider
“1299:35400,Los Angeles (Customer)” a city community while “3356:70 Set BGP Local Pref to 70”
not. For each city community, we recorded the city name and determined latitude and longitude
coordinates. Our community dictionary comprises 3,133 city communities from 50 ASes, signaling
638 cities in 134 countries.

Routing data (BGP): We downloaded BGP data recorded by RouteViews [35] and RIPE RIS [34]
collectors. Our method relies on RIB dumps (i.e., snapshots of stable routing state) taken at midnight
UTC for each date considered in this work, since transient BGP churn (e.g., path exploration) can
reveal less-preferred paths that are poorly correlated with the actual location where a prefix is
learned. To avoid such transient noise, we exclude BGP updates and use only RIBs as cleaner input
for route tagging. From each session in these RIB dumps, we extracted route entries containing
only the prefix, AS path, and BGP communities. We focus on IPv4 routes, which comprise the
majority of entries in BGP data, and leave IPv6 for future work. As of May 1, 2025, we collected
BGP snapshots from 1,035 sessions, yielding a total of =439.5M routes. To test the stability of our
algorithm over time, we also obtained yearly routing data dating back to 2017.
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Fig. 1. Distribution of documented communities across selected autonomous systems (ASes) observed in
BGP data from May 2025 (AGG). For each AS, bars indicate the number of unique communities, cities,
and countries, highlighting operator-specific differences in how geographic granularity is encoded in BGP
communities.

MaxMind’s prefix geolocation data (GEO): We obtained the GeoLite2 geolocation database
from MaxMind [29], a free, open, and regularly updated source of geolocation information that
enables reproducibility. It provides geolocation data for the currently routed address space observed
in BGP. The snapshot for May 2025 contains =3.36M non-overlapping IPv4 prefixes. For each prefix,
the dataset includes geographic coordinates, i.e., a (latitude, longitude) pair, and an accuracy radius,
among other fields. As with the routing data, we collected yearly snapshots of this database dating
back to 2017. We acknowledge that GeoLite2 may be inaccurate at fine granularity (<50 km), and
its accuracy radius information is not independently validated by peer-reviewed work. Accordingly,
we treat MaxMind locations as heuristic approximations rather than ground truth.

Aggregated dataset (AGG): We combined the three datasets—CITY, BGP, and GEO—into a new
dataset called AGG. CITY, our community ground truth dictionary, was used to filter routes in BGP
containing city communities and assign each the corresponding latitude, longitude, and city name.
GEO was then used to match prefixes in BGP and assign each the latitude, longitude, and accuracy
radius. Because BGP and GEO may cover the same address space with different prefix lengths, we
matched more specific prefixes in BGP with less specific ones in GEO, discarding BGP prefixes that
were less specific than their GEO counterparts. The resulting AGG dataset, used to evaluate our
inference method under different parameter settings in §6.2, was derived from =111.5M routes
(25%) across 561 sessions (54%) and contained 936,918 geolocated IPv4 prefixes tagged with 1,595
unique city communities.

Fig. 1 shows the distribution of unique communities as well as the signaled cities and countries
in the AGG dataset. The 1,595 city communities are defined by 36 ASes and signal 394 unique cities
across 69 countries. AS13335 (Cloudflare, Content) and AS6461 (Zayo, Tier 1 Carrier/ISP) yield
351 and 303 unique cities, respectively, with both using multiple communities to signal identical
cities. Almost half of the ASes are represented with 20 or more unique city communities. AS28329
(Megatelecom, Eyeball) shows city communities within a single country only (Brazil). Three ASes
are represented with a single city community. Table 1 summarizes the network types and inference
results for each AS.

5 Motivating Analysis

In this section, we investigate the spatial correlation between the geolocation of tagged prefixes and
their tagging router, which could help infer the locations indicated by unknown city communities.
Consider the scenario illustrated in Fig. 2. A customer network connects to its upstream provider,
AS3356, via London (R1—R7) and Rome (R2—R8). Further, the customer originates the prefix P/16
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Fig. 3. Motivating analysis: Distances between tagging routers and
tagged prefix origins grouped in 50 km bins, using ground truth city
communities, prefix geolocation data, and BGP prefixes from May 2025.
CDFs show relative cumulative share of those prefixes. Challenge:
Tagged prefixes originate near and far in relation to the tagging router
(left). We devise and apply our method to accentuate local prefixes
from other prefixes (right).

in London (R0) and exports it to AS3356 at both peering locations, London and Rome, to ensure
connectivity in case one link fails. The customer offloads the traffic sourced at router RO at the
nearest exit point, London, to minimize internal transit time and cost, following a hot-potato routing
policy. To keep inbound traffic symmetric and cost-efficient, the customer wants return traffic
to reach RO via London rather than Rome. In this scenario, the customer can rely on cold-potato
routing offered by AS3356. This can be achieved in two ways. 1) AS3356 can prefer the route
that was learned the closest to the destination P/16, by matching P/16’s geolocation against city
communities set by R7 and R8. Since R7 is located closer to P/16, AS3356 will prefer that route. 2)
If AS3356 does not perform the above by default, the customer can apply action communities, e.g.,
3356:90 [5] to remotely decrease the local preference to 90 (default 100) in R8 for P/16. In BGP, the
route with the highest local preference is preferred. In either case, router R9 will prefer prefix P/16
tagged with the city community 3356:2073 [5], which we will likely observe at route collectors:

| Session | Peer | AS Path
| R9 | 3356 | 3356 Customer | 3356:2073

Prefix
P/16

| Community

Next, we substantiate this intuition with empirical data. Fig. 3 shows histograms of the distances
between tagged prefixes and their tagging routers, based on the aggregated dataset AGG (§4). We
group distances into 50 km bins. The plots display both the frequency of tagged prefixes (left axis)
and their relative cumulative share (right axis). The left plot shows prefixes from all routes available
in AGG. While we observed that over 600K prefixes were located within 50 km of their tagging
router (local prefixes), they made up less than 5% of all tagged prefixes. Overall, prefixes were
geolocated across a wide range—from near the tagging router to as far away as 20,000 km. Notably,
distance bins between 2,000 and 10,000 km contain between 400K and 800K tagged prefixes. The
right plot shows prefixes from a subset of routes in AGG that, overall, are located closer to the
tagging router. §6 details our method for selecting local prefixes and additional fine-tuning steps,
which enabled us to geolocate 80% of city communities with ground truth locations at an error of
70 km or less.

6 Methodology

This section outlines our approach for inferring the locations signaled by city communities and
evaluates the impact of different parameter settings.
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Fig. 4. Performance evaluation using precision (error distance in km) and recall (number of communities
with results). Each parameter is tested with different values while the others are fixed at their default setting,
indicated by the “<” symbol in the legends.

6.1 Approach Overview

We infer the city associated with each community by analyzing the geographic distribution of BGP
prefixes tagged with it. The approach consists of three main steps.

(Step I) Obtain tagged and geolocated BGP routes: Obtain BGP route information and select
those prefixes that are tagged with city communities and geolocated with geographic coordinates
(i.e., latitude and longitude).

(Step II) Cluster geographic locations of tagged prefixes: Cluster the coordinates of prefixes
associated with each city community using a two-dimensional geographic frequency matrix, where
the axes represent latitude and longitude and each cell value corresponds to the number of prefixes
at that location. Use equal-distance bins that account for the Earth’s curvature and non-uniform
degree spacing.

(Step III) Extract densest location: Identify the center coordinates of the densest cluster for
each city community by selecting the element in the matrix with the highest frequency. These
coordinates then serve as the basis for determining the closest city.

6.2 Individual Parameters

We evaluated the performance of our approach under different parameter settings for route repre-
sentation (§6.2.1), prefix selection (§6.2.2), and city inference (§6.2.3). Performance is measured by
precision (the error distance between the inferred and ground truth city locations) and recall (the
number of inferred city communities out of 1,595 in AGG). Fig. 4 shows results for each parameter
with the others fixed at their optimal default settings (indicated by the “<” symbol in the legends).
Applied to data from May 1, 2025, our method achieves an 80th-percentile error of =70 km and a
recall of 1,482 out of 1,595 communities.

6.2.1 Route representation. We evaluate how alternative representations of BGP routes in AGG
affect prefix counts in the matrix and the resulting precision.
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Deduplicating sessions: Since we consider all IPv4 sessions from the various RouteViews and
RIPE RIS collectors, we observe prefixes tagged by the same community in different sessions. For
example, the prefix P/16 tagged with community T:CITY can occur on multiple paths:

Prefix | Session | Peer | AS Path | Community
P/16 | 192.0.2.1 | A | ABTO | T:CITY
P/16 | 192.0.2.2 | B | BTO | T:CITY
P/16 | 192.0.2.3 | C | CTO | T:CITY

where 0 is the origin AS, T is the tagging AS, and A, B, C are three different peers. In this example,
we count the prefix three times, once per session, reflecting our default approach. In addition, we
test an approach that focuses only on distinct P/16-T:CITY pairs, assigning a count of 1 in the
frequency matrix and effectively deduplicating sessions that provide the same information.

Deaggregating prefixes: Since our approach relies on the highest frequency cell in the matrix,
simply counting tagged prefixes may be misleading when a network aggregates hundreds of prefixes
into a single one, e.g., 256 /24s into a /16. Hence, we also evaluate performance when we instead
count the number of /24s covered by the BGP prefixes.

Fig. 4a shows the results of deduplicating sessions (blue dashed line) as well as by deaggregating
prefixes into /24 blocks (green dotted line), contrasted against the original routes (red solid line)
provided in AGG. We find that both approaches improve the inferences for some communities,
but the overall performance decreases. The error increases in particular at the upper percentiles,
e.g., from 100 km to 500 km. We conclude that the precision of our approach relies on BGP routes
without deduplication or deaggregation. The recall is not impacted.

6.2.2  Prefix selection. To select local prefixes, we test three parameters: prefix overlap, AS distance
between the origin and tagging AS, and accuracy radius. These parameters influence recall by
affecting the number of selected prefixes tagged with a city community that are available in AGG
for inference.
Overlapping prefixes: MaxMind’s geolocation database (GEO) provides geolocation for non-
overlapping prefixes. We define three matching types for BGP prefixes:
BGP | GEO | match type

P/16 | P/16 | Exact (E)
P/24 | P/16 | Exact / Covered (EC)
Q/24 | Q/16 | Not-Exact / Covered (NEC)

In the example, BGP contains the prefixes P/16, P/24, and Q/24, while GEO contains P/16 and
Q/16. Here, P and Q denote two non-overlapping prefixes; P/16 covers P/24, and analogously Q/16
covers Q/24. P/16 in BGP is exactly matched by P/16 in GEO; the match type is E. P/24 in BGP is
covered by P/16, which in turn matches P/16 in GEO; the match type is EC. Q/24 in BGP is covered
by Q/16 in GEO, but Q/16 itself is not present in BGP; the match type is NEC. For the more specific
BGP prefixes P/24 and Q/24, we simply transfer the geolocation information from the respective
less specific GEO prefix. In AGG, E-matched prefixes account for 24% of all matched prefixes. We
do not consider BGP prefixes that are less specific in relation to GEO (§4).

Fig. 4b shows a comparison of performance results for combinations of the three different match
types. We find that using only E matches (default) yields the best performance, while adding NEC
slightly decreases precision, but increases recall (+44). Further, using EC has no significant impact,
while using only covered prefixes (EC+NEC) yields the worst precision and recall (-263).

Maximum AS distance: The AS distance corresponds to the number of AS hops from the origin
AS 0 and the tagging AS T. Intuitively, the further away these two ASes are, the less likelier it is that
the prefix is geolocated near the tagging router. Fig. 4c shows that the increase of the maximum
AS distance 1 (default) to 2 increases the recall (+23), but decreases the precision of the upper
percentiles, e.g., from =80 km to =150 km for the 80th percentile.
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Fig. 5. Regional maps showing the functioning of our clustering approach using the geographic frequency
matrix (step Il), by the example of 10 city communities for AS3356 in North America (left) and AS2914 in
Europe (right) each. The size of the circle is normalized per community and indicates the number of clustered
prefixes, i.e., the frequency. We use the largest cluster to predict the location signaled in the respective
community (step Il1).

Maximum accuracy radius: The accuracy radius is a parameter specific to MaxMind’s geoloca-
tion database used along with the geolocation coordinates to constrain the mapped geolocation
area [28]. The possible radii are 5, 10, 20, 50, 100, 200, 500, and 1000 km. For example, an accuracy
radius of 20 km indicates that MaxMind believes the geolocation is constrained within a radius of
20 km from the geolocated coordinates. MaxMind assigns an accuracy radius of 1,000 km and uses
the geographic coordinates of the country’s center where the owning company is headquartered for
prefixes it could not geolocate. Fig. 4d shows that a maximum accuracy radius of 100 km (default)
yields the best performance. While higher radii increase the recall (e.g. +7 for 200 km), they decrease
the precision. Interestingly, a maximum radius of 1000 km—which is equivalent to disregarding
this parameter for prefix selection—performs better then a maximum radius of 5 or 10 km, which
yield the worst performance. Our results suggest that MaxMind derives the 5 and 10 km radii using
a methodology that does not align with our inference approach. The limitations of lower accuracy
radii are examined further in §7, where we conduct a longitudinal study using historical MaxMind
data.

6.2.3 City Inference. We test the last two parameters, i.e., the bin size of the frequency matrix and
the closest city radius. While they can affect the precision, they do not affect the recall.

Frequency matrix binning: The binning size of the geographic space (step II) can impact the
frequency and thus the selection of the densest areas (step III). We test different numbers of bins,
i.e., 100, 200, 300, 400 and 500 (default). Increasing the number of bins decreases the area covered
by each bin. Fig. 4e shows that increasing the number of bins improves inference precision up to
approximately the 80th percentile (i.e., for errors of 200 km or less).

Finding the closest city: Because the clustering process can produce multiple dense regions
within or near a city (step IIl), we implement a k-d tree [4] to efficiently locate the most populated
city center within a given radius of the inferred coordinates. We use a global city database covering
all cities with at least 1,000 inhabitants [13]. Fig. 4f shows that radii between 20 and 100 km yield
the best precision (default is 50 km) compared with not applying any radius (0 km). Radii above
100 km are detrimental to performance.

7 Analysis

Prefix clusters: To examine the effectiveness of our clustering approach, we analyze prefixes
tagged with ten selected city communities from Tier-1 ASes 3356 and 2914 (Fig. 5). The largest
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clusters correspond to local prefixes that align with the geographic locations signaled by their
respective communities. We also observe notable clusters geolocated in Mexico tagged as San Diego,
in the Caribbean and Central America tagged as Washington DC, in Moscow or St. Petersburg
tagged as Stockholm, and in Israel tagged as Marseille. These cases may be artifacts of the two
networks’ limited peering presence in those remote regions, with connectivity likely established
through undersea cables or remote peering.

Individual BGP sessions: In §6.2.1, we found that our method benefits from combining many
views from different vantage points and that deduplicating the routes decreases the precision. To
further investigate the potential of individual sessions, we applied our method to each of the 561
individual sessions. Fig. 6 shows the number of unique communities (recall) on the x-axis and
the 80th percentile error (precision) on the y-axis. No one session provided the necessary data to
infer the location of all 1,482 communities. However, we find that half of the sessions yield an 80th
percentile error of =50 km or less (blue line), compared to =70 km for the combined sessions (red
line), highlighting the potential for more efficient use of individual sessions. Hence, we consider a
hypothetical scenario in which the optimal session is known for each community, providing an
upper-bound estimate of inference performance based on the datasets used in this study. In Fig. 7
we show the performance results for such a scenario where for each inferred community we pick
the minimum error distance across all sessions (blue dashed line), and compare it against the results
of our default approach (red solid line). This hypothetical scenario reduced the 80th percentile error
from =70 km to =25 km.

Longitudinal Analysis: To investigate the stability of the algorithm, we evaluate its performance
using different historical data sets with the same default parameter settings as for May 2025. We
find that performance from 2022 to 2025 is comparable and gradually improves. For example, the
80th percentile prediction error decreases from =200 km to =70 km, while the number of inferred
communities increases from 1,030 to 1,482. Surprisingly, we find that inference performance from
2017 to 2021 is significantly worse across all quantiles. Investigating possible root causes, we found
that the accuracy radius distribution in MaxMind’s geolocation database changed after 2021. We
provide an overview of those changes in Table 2 of the appendix. We note that the databases
included an accuracy radius of 1 km, which was discontinued in 2022. Subsequently, the number
of entries with a 20 km accuracy radius increased. This aligns with our finding that a maximum
accuracy radius of 10 yields the worst results (see Fig. 4), underscoring the importance for users of
MaxMind’s geolocation database to understand how accuracy radii are derived.
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# ASN Type Num Median P80 ‘ # ASN Type Num Median P80
1 8708  Eyeball 2 0.33 0.53 | 18 8359  Eyeball 29 1.92 167.72
2 20473 Content 24 0.41 435 | 19 6667  Carrier 9 0.19 179.70
3 14840  Carrier 12 1.77 4.76 | 20 6730  Eyeball 1 190.09 190.09
4 2914  Tier-1 39 0.44 6.11 | 21 31133  Eyeball 64 1.72 190.52
5 35280 Carrier 23 0.63 7.09 | 22 3303  Eyeball 35 43.99 200.31
6 13335  Content 336 113 1112 | 23 12956  Tier-1 30 4.50 220.43
7 20764  Carrier 9 0.66 18.61 | 24 6461  Tier-1 268 2.01 229.62
8 5511  Tier-1 22 0.93 2521 | 25 28329 Eyeball 7 232.67 440.78
9 15412  Carrier 13 6.16 31.77 | 26 16735  Eyeball 8 22.49 519.94
10 3356  Tier-1 95 0.61 36.07 | 27 6762  Tier-1 40 2.58 595.13
11 8220  Carrier 42 1.21 38.41 | 28 37721 Eyeball 2 399.07 637.51
12 1764  Carrier 6 1.26 4042 | 29 6453  Tier-1 78 7.71 926.18
13 3257  Tier-1 84 0.70 45.01 | 30 3292  Eyeball 2 617.33 987.63
14 5617  Eyeball 13 0.41 12845 | 31 37468  Carrier 13 6.07  1055.07
15 1299  Tier-1 123 127 14224 | 32 47147  Carrier 11 40.42  1186.15
16 61423  Content 3 4042  162.18 | 33 3491  Tier-1 18 929.26  2877.41
17 3216  Eyeball 5 042 16632 | 34 34309 Content 16 340.67  5264.34

Table 1. Breakdown of results by ASN, ordered by 80th percentile error in km.
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Fig. 9. Inference results for city communities of two Tier-1 ISPs, AS6453 and AS2914. Green asterisks show
inferred locations; blue circles indicate ground truth (CITY); red dashed lines (great circles) represent inference
errors.

Per ASN Analysis: Table 1 presents the inference results for 1,482 city communities, broken
down by individual ASNs and ordered by 80th percentile error. Notably, no specific network type
consistently performs particularly well or poorly. Extreme deviations for some ASes (e.g., 80th
percentile > 1,000 km) highlight limitations for inferring unknown city locations, but when analyzed
alongside ground truth data they can also reveal special routing configurations within the network.
Fig. 9 illustrates this with AS6453 (Tier-1), which receives large clusters of prefixes from cities such
as Melbourne and Brisbane (Australia) and Seoul (South Korea) via the US west coast, as well as
prefixes from Praia and Dakar (West Africa) via Lisbon, and from Jerusalem via Marseille, among
other cases. This stands in stark contrast to AS2914, another Tier-1 provider, where the largest
clusters correspond to local prefixes, i.e., those originated near the tagging router.

Operator validation: To test our approach on communities without ground truth, we applied
it to communities from eight ASes that we believed with high confidence signal city-level infor-
mation. We then reached out the network operators of those ASes for which we obtained contact
information through private channels. We asked whether they could validate the city name of five
city communities that we selected randomly. We shared all our mappings with those operators. Five
out of eight operators—4 Tier-1 and one eyeball—replied and generously explained their community
schema to us. While our ground truth dataset shows that city communities are used across various
network types (see Table 1), we acknowledge our limited operator outreach.
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Operators A and B confirmed all 10 communities to be correct, with the note that one community
signaling Gardena (60K inhabitants) was misclassified as Los Angeles (3.9M inhabitants). We note
that Gardena, as part of the Greater Los Angeles metropolitan area, is closely linked to Los Angeles
through shared infrastructure. Operator C confirmed 4 out of 5 communities to be correct. One
community signaling Boston MA was misclassified as Worcester MA, =60 km away. Operator D
reported that we inferred only 2 out of 5 city communities correctly. The remaining 3 communities
were misclassified with an error distance of =80, =190 and =240 km, respectively. Overall, we
consider 16 out of 20 communities to be inferred correctly. Finally, operator E (Tier-1) responded
that the five communities we asked for feedback on actually identified individual customers rather
than cities.

8 Conclusions

In this work, we introduced a novel method for clustering geo-cohesive prefixes tagged with
the same city community, enabling finer-grained analysis of routing preferences as well as the
identification of local prefixes to infer the geographic location signaled by city communities. Using
ground truth data, we validated our method and were able to predict locations for 80% of 1,482
ground truth communities within a 70 km margin of error. We further applied our approach to
city communities for which no ground truth is available and evaluated the results in collaboration
with network operators from five ASes. While our method does not always pinpoint the exact
location, it represents an important first step toward a better understanding of routing behavior at
the city level. Future work includes the exploration of alternative geolocation databases, as well as
improving the reliable identification of city-level communities in the wild.
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A Historical MaxMind Geo-Databases

Year Prefixes 1 5 10 20 50 100 200 500 1000
2017 2,949,311 297,335 267,346 274,273 340,639 413,535 207,505 308,705 193,941 644,516
2018 3,073,411 150,475 237,124 278,544 379,868 444,609 291,326 343,094 205,566 740,822
2019 3,209,492 182,092 245,099 311,912 478,900 531,299 414,125 391,918 227,448 424,794
2020 3,153,099 193,575 257,286 333,893 492,789 516,774 445,279 374,954 197,513 339,457
2021 3,446,025 204,877 272,368 340,993 519,912 560,158 527,061 449,167 207,044 362,651
2022 3,552,723 - 381,054 286,932 1,183,956 402,237 409,804 357,644 218,664 310,315
2023 3,734,440 - 393,814 279,390 1,301,957 418,320 433,953 363,472 213,671 329,747
2024 2,409,296 - 378,609 218,220 818,217 203,358 204,453 142,913 106,025 337,044
2025 3,363,963 - 327,880 226,760 1,435,531 276,561 277,990 336,023 149,360 333,465

Table 2. Prefix total and accuracy radius counts per year (2017-2025).
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