
1 INTRODUCTION 

1.1 Context 

The offshore wind energy sector is experiencing rapid 
growth as part of the global transition to renewable 
energy. Offshore wind farms offer a sustainable solu-
tion to meet rising energy demands, with Europe aim-
ing to reach 10 GW of floating wind energy by 2030 
(WindEurope, 2022). However, the expansion of off-
shore wind farms presents challenges related to their 
deployment, particularly in terms of maritime safety. 
Over recent years, collisions between ships and off-
shore wind turbines (OWTs) have already been re-
ported. For instance, a rudderless cargo ship drifted 
into the Hollandse Kust Zuid wind farm in the Dutch 
North Sea during a storm (Figure 1), and another 
cargo ship collided with an OWT in the German Gode 
Wind farm (Figure 2). With the increasing presence 
of floating offshore wind turbines (FOWTs), the risk 
of such accidents is expected to rise. The conse-
quences can be severe, leading to environmental haz-
ards such as oil spills or even explosions in the case 
of methane or hydrogen-fueled vessels. On the wind 
farm side, structural damage may result in tower col-
lapse, mooring line failure, and potential drifting of 
the platform, causing further collisions within the 
wind farm. Therefore, preventing these outcomes is 

essential, and the structural design of OWTs must en-
sure their crashworthiness based on collision acci-
dental limit states (ALS) defined in the standards and 
guidelines established by different certification insti-
tutions, such as Bureau Veritas (BV) and Det Norske 
Veritas (DNV). These assessments follow a risk-
based approach, introducing the need for rapid and 
accurate collision damage predictions to account for 
a wide range of design parameters and collision sce-
narios when estimating the probability of failure. 

 

Figure 1. Damaged monopile foundation from the impact of a 

drifting cargo vessel (Dutch North Sea) - From (Hollandse 

Kust, 2022) 
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ABSTRACT: With the growing deployment of offshore wind turbines (OWTs), assessing ship collision conse-
quences is crucial for ensuring structural safety. This study presents a metamodel that combines a neural net-
work (NN) with the MCOL external dynamics solver to efficiently predict the damage of a spar-like floating 
wind turbine collided by a ship. By varying parameters such as OWT geometry, impact location, and ship mass 
and velocity, a comprehensive dataset is first generated using finite element simulations of collisions between 
rigid ships and fixed monopile-supported OWTs. A Transformer-based NN learns force-penetration relation-
ships from these simulations. To handle floating wind turbines, the model is then coupled with the MCOL 
solver to account for hydrodynamic forces. Results demonstrate that this method can predict the impact response 
of the floating offshore wind turbine (FOWT) while significantly reducing computational costs compared to 
conventional non-linear finite element analysis (NLFEA). It offers a promising solution for real-time collision 
damage assessment, with future applications including deformable ship models and multi-physics interactions. 
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Figure 2. Cargo ship Petra L. stroke an offshore wind turbine at 

Gode Wind 1 wind farm (Germany), 2023 - From (Offshore-

energy.biz, 2023) 

 
 

1.2 Challenges 

Modeling ship-FOWT collisions presents unique 
challenges due to the complexity of physics involved. 
These include impact loads leading to large structural 
deformations, hydrodynamic forces (e.g., added 
mass, drag, wave radiation and hydrostatic forces), 
mooring loads, and wind forces. In practice, non-lin-
ear finite element analysis (NLFEA) has been widely 
used to predict the structural damages, capturing 
complex phenomena such as elastoplastic defor-
mations, ruptures, and fluid-structure interactions 
(Figure 3) as performed in (Echeverry, 2021), (Zhang 
et al., 2021) and (Yu et al., 2022). While such an ap-
proach usually provides reliable results, it is compu-
tationally demanding and requires significant exper-
tise, making it impractical for large-scale risk 
assessments or real-time applications. Simplified 
methods are thus needed for rapid damage estimation, 
particularly in the early design stage, which may in-
volve thousands of collision scenarios with different 
striking ships and impact conditions. 
 

 
Figure 3. Forces involved in ship-FOWT collision 

1.3 State of the art 

Despite a promising field of research, the use of AI-
based metamodels in marine accidental events has 
been limited in the past years. Metamodels are partic-
ularly valuable in analyses requiring numerous com-
putations, especially when analytical models lack ac-
curacy or are unavailable. Fan et al. (2020) developed 
a surrogate model using response surface modelling 
to predict the residual compression strength of the 
columns of a bridge subjected to barge collisions. Das 
et al. (2022) compared different metamodeling tech-
niques, consisting of neural networks (NNs), polyno-
mial regression, and gradient-boosting regression 
trees, for building models capable of predicting dam-
age extents and oil outflow in tanker collision acci-
dents. Mauro et al. (2023) investigated both the accu-
racy and calculation time of surrogate models based 
on multiple linear regressions, NNs, and decision 
trees to assess the breach dimensions after passenger 
ship collisions. More recently, Zhang et al. (2025) 
proposed a NN-based model to predict ship collision 
damage extents under real operational conditions us-
ing Automatic Identification System data. Their met-
amodel, trained by considering the breach sizes ob-
tained from super-element simulations (Le Sourne et 
al., 2012), allowed the computational time to reduce 
from 10 minutes to under 0.1 second. 

1.4 Proposed approach 

The present approach aims to provide rapid, data-
driven predictions by incorporating machine learning 
techniques, improving collision risk assessment 
methodologies for floating wind farms. First, an ex-
tensive series of NLFEA is conducted to build a com-
prehensive database capturing various collision sce-
narios and structural responses. In these simulations, 
fixed monopile-supported OWTs are impacted by 
rigid striking ships. Approximately one thousand sim-
ulations are performed with varying OWT geome-
tries, impact locations, and impactor masses and ve-
locities. This database serves as the foundation for 
training an NN-based model based on Transformer 
architecture (Vaswani et al., 2017). The surrogate 
model takes the OWT particulars and collision sce-
nario parameters as input, directly providing the cor-
responding force-penetration relationship, while ef-
fectively learning complex patterns from the 
simulated data. Then, supposing that the ballast of a 
spar-buoy FOWT acts like a "moving" clamped 
boundary condition of the tower, the NN-based model 
is coupled with MCOL external dynamics solver 
which considers the hydrodynamic forces acting on 
the wind turbine floater (Le Sourne et al., 2007). 



2 FINITE ELEMENT MODEL 

2.1 Model description 

To generate the dataset, nonlinear finite element sim-
ulations are conducted using LS-DYNA commercial 
software. The OWT support structure is simplified as 
a cylindrical tower with overall length 𝐿 uniform ra-
dius 𝑅 and thickness 𝑡 as done by (Ladeira et al., 
2023). To represent the rotor nacelle assembly 
(RNA), a lumped mass 𝑚𝑟𝑛𝑎 is applied at the top 
while the base of the cylinder is clamped. The OWT 
structure is impacted by a ship of mass 𝑚𝑠ℎ𝑖𝑝 simpli-
fied as a wedge at an initial velocity 𝑣0 and vertical 
location 𝛼𝐿, while the ship movement is constrained 
to x-direction (Figure 4). 

 

 
Figure 4. Simplified model of OWT and striking ship 

 
 
Fully integrated shell elements with five through-

thickness integration points are chosen for both the 
impactor and the cylindrical tube. In accordance with 
the mesh convergence study performed by the authors 
and reported in (Ladeira et al., 2023), an element size 
of 25 cm is considered for the tube and the impactor 
(Figure 5). A bi-linear plasticity constitutive model, 
which properties are given in Table 1, is used to 
model the tower steel material, while the impactor is 
considered rigid. Strain-rate hardening effect is disre-
garded due to its inherent uncertainties and the com-
plexity involved in accurately modeling such phe-
nomenon (Yu and Amdahl, 2018). Finally, 
Germanischer Lloyd (GL) failure strain criterion is 
included in the model, as proposed by Zhang et al. 
(2004), where t is the wall thickness and 𝑙𝑒 is the ele-
ment size:  

𝜀𝑓 = 0.056  +  0.54
𝑡

𝑙𝑒
   (1) 

To be consistent with the chosen criterion, only ten-
sion areas are examined, and no failures were ob-
served in any of the simulated cases, indicating that 
the tower retained its local structural integrity in the 
impact area for the scenarios studied. 

 

 
Figure 5. (Left) Initial FE model - (Right) Example of effective 

plastic strain distribution observed after impact 

 
 

Table 1. Material properties of the cylinder 

Property Value Unit 

Young modulus (𝐸) 210 000 MPa 

Poisson ratio (𝜈) 0.33 - 

Yield strength (𝜎) 363.7 MPa 

Tangent modulus (𝐸𝑇) 5 500 MPa 

Density (𝜌) 8500 kg/m3 

 

2.2 Simulation parameters 

Ship–OWT collisions simulations are performed var-
ying the tower geometry, the mass of the RNA, and 
collision scenario. To efficiently sample the parame-
ter space and ensure broad coverage, Latin Hyper-
cube Sampling (LHS) is used to generate the input 
dataset, with values selected within the ranges pro-
vided in Table 2, based on the characteristics of de-
ployed FOWTs. 

 
Table 2 Choice of parameters used to generate the dataset 

 𝑅 

[m] 

𝑡 

[mm] 

𝐿 

[m] 

𝑚𝑟𝑛𝑎 

[tons] 

𝑣0 

[m/s] 

𝑚𝑠ℎ𝑖𝑝 

[tons] 

𝛼 

[%] 

min 2.5 30 100 250 0.5 3000 20 

max 5 90 200 850 5 150000 50 

 
 

In addition, to limit the NN-based model training 
to realistic wind turbines and collision scenarios, the 
following conditions are considered for parameter se-
lection: 

1. Slenderness: 10 ≤
𝐿

2𝑅
≤ 25 



2. Wall thickness: 100 ≤
2𝑅

𝑡
≤ 250 

3. Collision energy: 𝐾0 =
1

2
𝑚𝑠ℎ𝑖𝑝𝑣0

2 ≤ 100𝑀𝐽 

4. RNA mass scaling with tower height:  

𝑏 −
𝑚𝑟𝑛𝑎

𝑚𝑎𝑥

5
 ≤  𝑚𝑟𝑛𝑎 − 𝑎𝐿 ≤  𝑏 +

𝑚𝑟𝑛𝑎
𝑚𝑎𝑥

5
 

where a and b define a linear relationship between 

the tower length and the RNA mass:  

𝑎 =
𝑚𝑟𝑛𝑎

𝑚𝑎𝑥 − 𝑚𝑟𝑛𝑎
𝑚𝑖𝑛

𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛
,     𝑏 = −𝑎𝐿𝑚𝑖𝑛 + 𝑚𝑟𝑛𝑎

𝑚𝑖𝑛 

3 NEURAL NETWORK BASED MODEL 

3.1 Model description 

To model the complex nonlinear force-penetration 
behavior observed in ship-OWT collisions, a Trans-
former-based architecture such as the one detailed in 
(Vaswani et al., 2017) is adopted. Unlike recurrent 
neural networks (RNNs), which process sequential 
data step-by-step, the Transformer leverages self-at-
tention mechanisms to capture long-range dependen-
cies and interactions between input features. This is 
particularly beneficial for learning force-penetration 
relationships, as the impact response is influenced by 
multiple factors such as material properties, structural 
geometry, and collision dynamics.  The Transformer 
model takes the parameters listed in Table 2 as inputs 
and maps them to multiple output sequences repre-
senting the impact force versus ship penetration (Fig-
ure 6). The multi-head self-attention mechanism ena-
bles the model to focus on different aspects of the 
interaction simultaneously, ensuring that critical fea-
tures such as local deformations and global structural 
responses are well captured. To ensure numerical sta-
bility and improve training efficiency, layer normali-
zation and dropout are applied throughout the net-
work (Srivastava et al., 2014).  
 

 
Figure 6. Inputs-Outputs pair of the NN 

 

3.2 Data preprocessing 

To ensure efficient training and stable predictions, 
both input and output data are normalized. The input 
parameters, defined within the ranges provided in Ta-
ble 2, are normalized as follows: 

𝑋𝑛𝑜𝑟𝑚 =
𝑋 −  𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (2) 

For the output variables, the force is normalized 
using the plastic moment:  

𝑀𝑝𝑙 = 𝜎
4

3
(𝑅3 − (𝑅 − 𝑡)3) (3) 

multiplied by the arm lever l =  αL, ensuring con-
sistency across different impact scenarios: 

𝐹𝑛𝑜𝑟𝑚 =
𝐹𝑙

𝑀𝑝𝑙
 (4) 

To improve numerical stability and ensure energy 
conservation when coupling with MCOL solver, the 
force history is preprocessed to be strictly increasing, 
thus neglecting unloading effects. This approach as-
sures convergence in the energy integration scheme. 
In addition, to maintain consistency across all sam-
ples, the output sequences are smoothed, ensuring 
well-structured input for training. 

3.3 Model training and evaluation 

The Transformer-based model is trained on the da-
taset generated from nonlinear finite element simula-
tions, where each sample represents a collision sce-
nario with varying FOWT geometry and impact 
conditions. The force-penetration curves obtained 
from these simulations serve as ground-truth data for 
supervised learning. To ensure robust generalization, 
the dataset is split into training (80%) and testing 
(20%) subsets. The training process minimizes the 
Mean Square Error (MSE) loss between predicted and 
simulated responses, and the 𝑅2 score is used to 
measure the performance across the testing subset 
such as: 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖

 (5) 

where n is the number of points in the sequence, 𝑦𝑖 is 
the actual value, 𝑦̂𝑖 is the predicted value and 𝑦̅ is the 
mean of the sequence. 

The Adam optimizer (Kingma et al., 2014) is em-
ployed for efficient weight updates, and a dynamic 
learning rate scheduler refines convergence. Each 
epoch consists of forward propagation, loss computa-
tion, backpropagation, and weight updates, with total 
loss monitored throughout training. To improve nu-
merical stability and prevent overfitting, a low-pass 
filter is applied to the model’s output before final er-
ror computation.  

During evaluation, the trained model is tested 
against unseen LS-DYNA simulations, and perfor-
mance metrics are recorded. The convergence plot in 
Figure 7 illustrates the stability and effectiveness of 
the training process. After 3000 epochs, the model 
achieves a R2 score of 97.82%, demonstrating strong 
agreement with simulation results while significantly 



reducing computational costs compared to full-scale 
finite element models.  

3.4 Coupling of NN-based model with MCOL 

As the spar-like FOWT is concerned, its floater and 
tower are idealized as a uniform cylindrical column, 
clamped at its base to the rigid ballast tank, which 
serves as a “moving” clamped boundary condition - 
see Fig. 8. This simplification is made not only in the 
NN-based simulations, but also in LS-DYNA/MCOL 
numerical simulations that are conducted to validate 
the proposed data-driven approach.   

The contact force 𝐹𝑐 predicted by the NN-based 
model is coupled with MCOL rigid-body dynamics 
solver to simulate the spar-like floating wind turbine 
response when impacted by a ship. The motion of the 
spar-buoy floater is influenced by hydrostatic restor-
ing (𝐹𝐻), waves (𝐹𝑊), viscous damping (𝐹𝑉) and wa-
ter inertial forces acting on the floater. In MCOL, 
these hydrodynamic forces are calculated to solve the 
six-degree-of-freedom equation of motion, (Le 
Sourne et al., 2007):  

𝑀𝑦̇ + 𝐺(𝑦)𝑦 = [𝐹𝑤 + 𝐹𝐻 + 𝐹𝑉](𝑦, 𝑥) + 𝐹𝐶 (6) 

where, 𝑀 = 𝑀𝐹𝑂𝑊𝑇 + 𝑀∞ represents the total mass 
matrix,  𝐺 = 𝐺𝐹𝑂𝑊𝑇 + 𝐺∞ is the total gyroscopic ma-
trix, and 𝑥 and 𝑦 denote the earth-fixed position and 
body-fixed translational/angular velocity vectors of 
the FOWT’s center of mass, respectively.  

Beforehand, the hydrodynamic characteristics of 
the spar-buoy floater (i.e. water added mass 𝑀∞, hy-
drostatic restoring and wave damping matrices) have 
been determined using HYDROSTAR seakeeping 
code (Bureau Veritas, 2018) and stored in a dedicated 
MCOL datafile (FOWT.mco in Fig.9). 

The NN-based predictions of the contact force 
𝐹𝐶  dynamically influence the structural response, cre-
ating a strong interaction between the tower internal 
mechanics and the floater external dynamics. The 
overall step-by-step algorithm which couples the NN-
based model and MCOL solver is illustrated in Fig. 9.  

 
 

 
Figure 8. Simplified representation of the FOWT support struc-

ture and boundary conditions  

 
 

 
Figure 9. Scheme describing the algorithm to couple the NN-

based surrogate model with MCOL solver 

Figure 7. Convergence of the loss and of the R² score 

 



4 VALIDATION OF THE DATA-DRIVEN 
APPROACH 

4.1 Presentation of the validation case 

To validate the developed approach, non-linear finite 
element simulations are performed using *BOUND-
ARY_MCOL card in LS-DYNA. The OC3-Hywind 
wind turbine, a widely documented and well-estab-
lished FOWT design, is chosen as the case study. It 
consists of a spar-buoy structure with a cylindrical 
tower, a cylindrical floater including a ballast in its 
lower part, and a 350-tons RNA. Data used to set up 
the finite element model, including geometric and 
material properties are retrieved from (Jonkman et al., 
2010) and presented in Table 3, Figure 10 and Table 
4.  

 
Table 3. Structural properties of the simplified model 

Property Value Unit 

Mass of the RNA 350 tons 

Cylinder radius 3.5 m 

Cylinder thickness 30 mm 

 
 

 
Figure 10. Diagram with the main dimensions of the OC3-

Hywind 

 
 

Table 4. Main particulars of the OC3-Hywind 

Structure Notation Position [m] 

Water depth - 320 

Tower top A 90 

Spar depth B 120 

Center of gravity C 78 

Mooring line location D 70 

Center of buoyancy E 62.9 

Taper bottom F 12 

Taper top G 4 

These values are kept constant in the simulations and 
only the mass and the velocity of the striking ship are 
varied. Finally, as the collision lasts only a few sec-
onds, the tensile forces exerted by the catenary moor-
ing lines used for this type of floating wind turbine do 
not have time to develop and are therefore neglected 
(Echeverry, 2021).   

4.2 Results 

Figure 11 compares the impact force 𝐹𝐶  as a func-
tion of the ship penetration δ (i.e. the difference be-
tween ship and FOWT displacements at the impact 
point), the time history of ship penetration δ, FOWT 
pitch as well as energy distribution over time, includ-
ing ship kinetic energy Kship, FOWT kinetic energy 
Kfowt, FOWT deformation energy 𝑈𝐹𝑂𝑊𝑇  and FOWT 
hydrostatic restoring energy Ehydro. Two different col-
lision scenarios are considered: a 6000-tons vessel 
impacting the FOWT at 2 m/s (Figure 11a) and a 
24000-tons vessel colliding with the FOWT at 1 m/s 
(Figure 11b), both corresponding to an initial kinetic 
energy of 12 MJ. NN-based model / MCOL results 
are represented by solid lines and LS-DYNA/MCOL 
results by dashed lines. The discrepancies between 
the two approaches are calculated by Eq. (7).  

𝑑𝑖𝑠𝑐. =
𝑚𝑎𝑥(𝐹𝐸𝑀) − 𝑚𝑎𝑥(𝑁𝑁)

𝑚𝑎𝑥(𝐹𝐸𝑀)
∗ 100 (7) 

The data-driven model overestimates the penetra-
tion by 5% in case (a) and 10% in case (b). The largest 
discrepancy is observed on the FOWT kinetic energy, 
which is overestimated by 27% in case (a) by the NN-
based model. This suggests that although the model 
generally provides good predictions, its accuracy var-
ies depending on the impact scenario. 

It is also worth noting that as the FOWT pitch angle 
is small (less than 0.5°), the hydrostatic restoring en-
ergy is neglectable compared to the other energies.  
The effectiveness of the NN-based model in capturing 
the key physical interactions is also illustrated in Ta-
ble 5, where the R² score (in %) is given for each re-
sult. We note that the lowest R² score corresponds to 
the FOWT kinetic energy in case (a), which agrees 
with the observation made above. 
 

Table 5. Comparison of predicted and reference results for 

impact scenarios a) and b) using the R² score (in %)  

 Case (a) Case (b) 

Force 98.2 98.6 

Pitch 95.7 95.2 

δ 99.6 97.8 

𝐾𝑠ℎ𝑖𝑝 99.9 99.8 

𝑈𝑓𝑜𝑤𝑡 99.8 98.5 

𝐾𝑓𝑜𝑤𝑡 85.3 89.9 



5 CONCLUSION 

The proposed approach based on machine learning 
demonstrates significant advantages in predicting the 
structural response of a spar-like FOWT in case of 
ship collision. By leveraging a trained NN-based 
model, we achieve good accuracy while drastically 
reducing computational time compared to traditional 
NLFEA. Indeed, an LS-DYNA/MCOL simulation 
takes approximately 18 hours on a parallel 12 CPUs 
Intel core i7 computer and up to 1 hour if hydrody-
namic effects are not accounted for. In contrast, once 
the training of the surrogate model is completed, an 
NN-based model/MCOL simulation lasts less than 5 
seconds, mainly due to MCOL file reading and writ-
ing operations. If hydrodynamic effects are disre-
garded, as in the case of a fixed monopile supported 
wind turbine, the NN-based model can be used alone, 
providing results in less than 0.01 seconds. In both 
cases, the ability of the NN-based model to capture 
complex non-linear interactions makes it a promising 
alternative to conventional simulation methods, par-
ticularly for real-time assessments and rapid sensitiv-
ity analyses. 

However, some limitations remain. The NN-based 
model is trained from a set of numerical simulations, 
meaning its accuracy is inherently dependent on the 

reliability of the finite element models. In other 
words, all the shortcomings and limitations of the fi-
nite element simulations will be reflected in the NN’s 
predictions. Moreover, the current study considers a 
rigid striking ship, whereas real-world scenarios in-
volve deformable ship structures that may drastically 
change the energy and force distributions during the 
collision. Although this is a strong assumption, mod-
eling the impactor as perfectly rigid is a first step to 
demonstrate the feasibility of the proposed methodol-
ogy. Future research work will aim to extend the 
model to incorporate ship deformability and jointly 
evaluate ship-OWTs collision risks. 
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