Modeling ship collisions against spar floating offshore wind turbines
using machine learning
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ABSTRACT: With the growing deployment of offshore wind turbines (OWTs), assessing ship collision conse-
quences is crucial for ensuring structural safety. This study presents a metamodel that combines a neural net-
work (NN) with the MCOL external dynamics solver to efficiently predict the damage of a spar-like floating
wind turbine collided by a ship. By varying parameters such as OWT geometry, impact location, and ship mass
and velocity, a comprehensive dataset is first generated using finite element simulations of collisions between
rigid ships and fixed monopile-supported OWTs. A Transformer-based NN learns force-penetration relation-
ships from these simulations. To handle floating wind turbines, the model is then coupled with the MCOL
solver to account for hydrodynamic forces. Results demonstrate that this method can predict the impact response
of the floating offshore wind turbine (FOWT) while significantly reducing computational costs compared to
conventional non-linear finite element analysis (NLFEA). It offers a promising solution for real-time collision
damage assessment, with future applications including deformable ship models and multi-physics interactions.
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1 INTRODUCTION
1.1 Context

The offshore wind energy sector is experiencing rapid
growth as part of the global transition to renewable
energy. Offshore wind farms offer a sustainable solu-
tion to meet rising energy demands, with Europe aim-
ing to reach 10 GW of floating wind energy by 2030
(WindEurope, 2022). However, the expansion of off-
shore wind farms presents challenges related to their
deployment, particularly in terms of maritime safety.
Over recent years, collisions between ships and off-
shore wind turbines (OWTs) have already been re-
ported. For instance, a rudderless cargo ship drifted
into the Hollandse Kust Zuid wind farm in the Dutch
North Sea during a storm (Figure 1), and another
cargo ship collided with an OWT in the German Gode
Wind farm (Figure 2). With the increasing presence
of floating offshore wind turbines (FOWTs), the risk
of such accidents is expected to rise. The conse-
quences can be severe, leading to environmental haz-
ards such as oil spills or even explosions in the case
of methane or hydrogen-fueled vessels. On the wind
farm side, structural damage may result in tower col-
lapse, mooring line failure, and potential drifting of
the platform, causing further collisions within the
wind farm. Therefore, preventing these outcomes is

essential, and the structural design of OWTs must en-
sure their crashworthiness based on collision acci-
dental limit states (ALS) defined in the standards and
guidelines established by different certification insti-
tutions, such as Bureau Veritas (BV) and Det Norske
Veritas (DNV). These assessments follow a risk-
based approach, introducing the need for rapid and
accurate collision damage predictions to account for
a wide range of design parameters and collision sce-
narios when estimating the probability of failure.

Figure 1. Damaged monopile foundation from the impact of a
drifting cargo vessel (Dutch North Sea) - From (Hollandse
Kust, 2022)



Figure 2. Cargo ship Petra L. stroke an offshore wind turbine at
Gode Wind 1 wind farm (Germany), 2023 - From (Offshore-
energy.biz, 2023)

1.2 Challenges

Modeling ship-FOWT collisions presents unique
challenges due to the complexity of physics involved.
These include impact loads leading to large structural
deformations, hydrodynamic forces (e.g., added
mass, drag, wave radiation and hydrostatic forces),
mooring loads, and wind forces. In practice, non-lin-
ear finite element analysis (NLFEA) has been widely
used to predict the structural damages, capturing
complex phenomena such as elastoplastic defor-
mations, ruptures, and fluid-structure interactions
(Figure 3) as performed in (Echeverry, 2021), (Zhang
et al., 2021) and (Yu et al., 2022). While such an ap-
proach usually provides reliable results, it is compu-
tationally demanding and requires significant exper-
tise, making it impractical for large-scale risk
assessments or real-time applications. Simplified
methods are thus needed for rapid damage estimation,
particularly in the early design stage, which may in-
volve thousands of collision scenarios with different
striking ships and impact conditions.
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Figure 3. Forces involved in ship-FOWT collision

1.3 State of the art

Despite a promising field of research, the use of Al-
based metamodels in marine accidental events has
been limited in the past years. Metamodels are partic-
ularly valuable in analyses requiring numerous com-
putations, especially when analytical models lack ac-
curacy or are unavailable. Fan et al. (2020) developed
a surrogate model using response surface modelling
to predict the residual compression strength of the
columns of a bridge subjected to barge collisions. Das
et al. (2022) compared different metamodeling tech-
niques, consisting of neural networks (NNs), polyno-
mial regression, and gradient-boosting regression
trees, for building models capable of predicting dam-
age extents and oil outflow in tanker collision acci-
dents. Mauro et al. (2023) investigated both the accu-
racy and calculation time of surrogate models based
on multiple linear regressions, NNs, and decision
trees to assess the breach dimensions after passenger
ship collisions. More recently, Zhang et al. (2025)
proposed a NN-based model to predict ship collision
damage extents under real operational conditions us-
ing Automatic Identification System data. Their met-
amodel, trained by considering the breach sizes ob-
tained from super-element simulations (Le Sourne et
al., 2012), allowed the computational time to reduce
from 10 minutes to under 0.1 second.

1.4 Proposed approach

The present approach aims to provide rapid, data-
driven predictions by incorporating machine learning
techniques, improving collision risk assessment
methodologies for floating wind farms. First, an ex-
tensive series of NLFEA is conducted to build a com-
prehensive database capturing various collision sce-
narios and structural responses. In these simulations,
fixed monopile-supported OWTs are impacted by
rigid striking ships. Approximately one thousand sim-
ulations are performed with varying OWT geome-
tries, impact locations, and impactor masses and ve-
locities. This database serves as the foundation for
training an NN-based model based on Transformer
architecture (Vaswani et al., 2017). The surrogate
model takes the OWT particulars and collision sce-
nario parameters as input, directly providing the cor-
responding force-penetration relationship, while ef-
fectively learning complex patterns from the
simulated data. Then, supposing that the ballast of a
spar-buoy FOWT acts like a "moving" clamped
boundary condition of the tower, the NN-based model
is coupled with MCOL external dynamics solver
which considers the hydrodynamic forces acting on
the wind turbine floater (Le Sourne et al., 2007).



2 FINITE ELEMENT MODEL
2.1 Model description

To generate the dataset, nonlinear finite element sim-
ulations are conducted using LS-DYNA commercial
software. The OWT support structure is simplified as
a cylindrical tower with overall length L uniform ra-
dius R and thickness t as done by (Ladeira et al.,
2023). To represent the rotor nacelle assembly
(RNA), a lumped mass m,,, is applied at the top
while the base of the cylinder is clamped. The OWT
structure is impacted by a ship of mass mgy;,, simpli-
fied as a wedge at an initial velocity v, and vertical
location aL, while the ship movement is constrained
to x-direction (Figure 4).
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Figure 4. Simplified model of OWT and striking ship

Fully integrated shell elements with five through-
thickness integration points are chosen for both the
impactor and the cylindrical tube. In accordance with
the mesh convergence study performed by the authors
and reported in (Ladeira et al., 2023), an element size
of 25 cm is considered for the tube and the impactor
(Figure 5). A bi-linear plasticity constitutive model,
which properties are given in Table 1, is used to
model the tower steel material, while the impactor is
considered rigid. Strain-rate hardening effect is disre-
garded due to its inherent uncertainties and the com-
plexity involved in accurately modeling such phe-
nomenon (Yu and Amdahl, 2018). Finally,
Germanischer Lloyd (GL) failure strain criterion is
included in the model, as proposed by Zhang et al.
(2004), where ¢ is the wall thickness and [, is the ele-
ment size:

t

& = 0056 + 0.54;
e

(1

To be consistent with the chosen criterion, only ten-
sion areas are examined, and no failures were ob-
served in any of the simulated cases, indicating that
the tower retained its local structural integrity in the
impact area for the scenarios studied.
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Figure 5. (Left) Initial FE model - (Right) Example of effective
plastic strain distribution observed after impact

Table 1. Material properties of the cylinder

Property Value Unit
Young modulus (E) 210 000 MPa
Poisson ratio (v) 0.33 -

Yield strength (o) 363.7 MPa
Tangent modulus (E7) 5500 MPa
Density (p) 8500 kg/m’

2.2 Simulation parameters

Ship—OWT collisions simulations are performed var-
ying the tower geometry, the mass of the RNA, and
collision scenario. To efficiently sample the parame-
ter space and ensure broad coverage, Latin Hyper-
cube Sampling (LHS) is used to generate the input
dataset, with values selected within the ranges pro-
vided in Table 2, based on the characteristics of de-
ployed FOWTs.

Table 2 Choice of parameters used to generate the dataset
R t L Myna Vg Mgpip a
[m] [mm] [m] [tons] [m/s] [tons] [%]
min 2.5 30 100 250 0.5 3000 20
max 5 90 200 850 5 150000 50

In addition, to limit the NN-based model training
to realistic wind turbines and collision scenarios, the
following conditions are considered for parameter se-
lection:

1. Slenderness: 10 < % <25



2. Wall thickness: 100 < 2% < 250
Collision energy: K, = %mshipvg < 100MJ

4. RNA mass scaling with tower height:

mmax max
rma r™ma
b— z < Myppqg—al < b+

where a and b define a linear relationship between
the tower length and the RNA mass:

max min
Myna — Myna . ,
_ = —qmin 4 qmmin
a = |max _ [min ’ b alL T Mrna

3 NEURAL NETWORK BASED MODEL
3.1 Model description

To model the complex nonlinear force-penetration
behavior observed in ship-OWT collisions, a Trans-
former-based architecture such as the one detailed in
(Vaswani et al., 2017) is adopted. Unlike recurrent
neural networks (RNNs), which process sequential
data step-by-step, the Transformer leverages self-at-
tention mechanisms to capture long-range dependen-
cies and interactions between input features. This is
particularly beneficial for learning force-penetration
relationships, as the impact response is influenced by
multiple factors such as material properties, structural
geometry, and collision dynamics. The Transformer
model takes the parameters listed in Table 2 as inputs
and maps them to multiple output sequences repre-
senting the impact force versus ship penetration (Fig-
ure 6). The multi-head self-attention mechanism ena-
bles the model to focus on different aspects of the
interaction simultaneously, ensuring that critical fea-
tures such as local deformations and global structural
responses are well captured. To ensure numerical sta-
bility and improve training efficiency, layer normali-
zation and dropout are applied throughout the net-
work (Srivastava et al., 2014).
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Figure 6. Inputs-Outputs pair of the NN

3.2 Data preprocessing

To ensure efficient training and stable predictions,
both input and output data are normalized. The input
parameters, defined within the ranges provided in Ta-
ble 2, are normalized as follows:

X - Xmin
X = — 2
norm Xmax - Xmin ( )
For the output variables, the force is normalized
using the plastic moment:

4 03 3
My = 02 (R = (R = D)%) 3
multiplied by the arm lever | = aL, ensuring con-
sistency across different impact scenarios:
Fl

E = — 4
norm Mpl ( )
To improve numerical stability and ensure energy

conservation when coupling with MCOL solver, the
force history is preprocessed to be strictly increasing,
thus neglecting unloading effects. This approach as-
sures convergence in the energy integration scheme.
In addition, to maintain consistency across all sam-
ples, the output sequences are smoothed, ensuring
well-structured input for training.

3.3 Model training and evaluation

The Transformer-based model is trained on the da-
taset generated from nonlinear finite element simula-
tions, where each sample represents a collision sce-
nario with varying FOWT geometry and impact
conditions. The force-penetration curves obtained
from these simulations serve as ground-truth data for
supervised learning. To ensure robust generalization,
the dataset is split into training (80%) and testing
(20%) subsets. The training process minimizes the
Mean Square Error (MSE) loss between predicted and
simulated responses, and the R? score is used to
measure the performance across the testing subset
such as:

X —9)? 5)

Xy —y)?
where 7 is the number of points in the sequence, y; is
the actual value, J; is the predicted value and y is the
mean of the sequence.

The Adam optimizer (Kingma et al., 2014) is em-
ployed for efficient weight updates, and a dynamic
learning rate scheduler refines convergence. Each
epoch consists of forward propagation, loss computa-
tion, backpropagation, and weight updates, with total
loss monitored throughout training. To improve nu-
merical stability and prevent overfitting, a low-pass
filter is applied to the model’s output before final er-
ror computation.

During evaluation, the trained model is tested
against unseen LS-DYNA simulations, and perfor-
mance metrics are recorded. The convergence plot in
Figure 7 illustrates the stability and effectiveness of
the training process. After 3000 epochs, the model
achieves a R? score of 97.82%, demonstrating strong
agreement with simulation results while significantly

R*=1
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Figure 7. Convergence of the loss and of the R? score

reducing computational costs compared to full-scale
finite element models.

3.4 Coupling of NN-based model with MCOL

As the spar-like FOWT is concerned, its floater and
tower are idealized as a uniform cylindrical column,
clamped at its base to the rigid ballast tank, which
serves as a “moving” clamped boundary condition -
see Fig. 8. This simplification is made not only in the
NN-based simulations, but also in LS-DYNA/MCOL
numerical simulations that are conducted to validate
the proposed data-driven approach.

The contact force F, predicted by the NN-based
model is coupled with MCOL rigid-body dynamics
solver to simulate the spar-like floating wind turbine
response when impacted by a ship. The motion of the
spar-buoy floater is influenced by hydrostatic restor-
ing (Fy), waves (Fy,), viscous damping (F;,) and wa-
ter inertial forces acting on the floater. In MCOL,
these hydrodynamic forces are calculated to solve the

six-degree-of-freedom equation of motion, (Le
Sourne et al., 2007):
My+ Gy =I[F +Fy +KIyx)+F (6)

where, M = Mgyt + M., represents the total mass
matrix, G = Groyr + Go 1s the total gyroscopic ma-
trix, and x and y denote the earth-fixed position and
body-fixed translational/angular velocity vectors of
the FOWT’s center of mass, respectively.

Beforehand, the hydrodynamic characteristics of
the spar-buoy floater (i.e. water added mass M, hy-
drostatic restoring and wave damping matrices) have
been determined using HYDROSTAR seakeeping
code (Bureau Veritas, 2018) and stored in a dedicated
MCOL datafile (FOWT.mco in Fig.9).

The NN-based predictions of the contact force
F¢ dynamically influence the structural response, cre-
ating a strong interaction between the tower internal
mechanics and the floater external dynamics. The
overall step-by-step algorithm which couples the NN-
based model and MCOL solver is illustrated in Fig. 9.
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Figure 8. Simplified representation of the FOWT support struc-
ture and boundary conditions
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4 VALIDATION OF THE DATA-DRIVEN
APPROACH

4.1 Presentation of the validation case

To validate the developed approach, non-linear finite
element simulations are performed using *BOUND-
ARY MCOL card in LS-DYNA. The OC3-Hywind
wind turbine, a widely documented and well-estab-
lished FOWT design, is chosen as the case study. It
consists of a spar-buoy structure with a cylindrical
tower, a cylindrical floater including a ballast in its
lower part, and a 350-tons RNA. Data used to set up
the finite element model, including geometric and
material properties are retrieved from (Jonkman et al.,
2010) and presented in Table 3, Figure 10 and Table
4.

Table 3. Structural properties of the simplified model

Property Value Unit
Mass of the RNA 350 tons
Cylinder radius 3.5 m

Cylinder thickness 30 mm

Tower:
R, 1
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Cone:
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Figure 10. Diagram with the main dimensions of the OC3-
Hywind

Table 4. Main particulars of the OC3-Hywind

Structure Notation Position [m]
Water depth - 320
Tower top A 90
Spar depth B 120
Center of gravity C 78
Mooring line location D 70
Center of buoyancy E 62.9
Taper bottom F 12
Taper top G 4

These values are kept constant in the simulations and
only the mass and the velocity of the striking ship are
varied. Finally, as the collision lasts only a few sec-
onds, the tensile forces exerted by the catenary moor-
ing lines used for this type of floating wind turbine do
not have time to develop and are therefore neglected
(Echeverry, 2021).

4.2 Results

Figure 11 compares the impact force F¢ as a func-
tion of the ship penetration J (i.e. the difference be-
tween ship and FOWT displacements at the impact
point), the time history of ship penetration 6, FOWT
pitch as well as energy distribution over time, includ-
ing ship kinetic energy Ksnp, FOWT Kkinetic energy
Kfowi, FOWT deformation energy Upoyr and FOWT
hydrostatic restoring energy Eyaro. Two different col-
lision scenarios are considered: a 6000-tons vessel
impacting the FOWT at 2 m/s (Figure 11a) and a
24000-tons vessel colliding with the FOWT at 1 m/s
(Figure 11b), both corresponding to an initial kinetic
energy of 12 MJ. NN-based model / MCOL results
are represented by solid lines and LS-DYNA/MCOL
results by dashed lines. The discrepancies between
the two approaches are calculated by Eq. (7).

di max(FEM) — max(NN) 100 ;
Lse max(FEM) ' 2
The data-driven model overestimates the penetra-

tion by 5% in case (a) and 10% in case (b). The largest
discrepancy is observed on the FOWT kinetic energy,
which is overestimated by 27% in case (a) by the NN-
based model. This suggests that although the model
generally provides good predictions, its accuracy var-
ies depending on the impact scenario.

It is also worth noting that as the FOWT pitch angle
is small (less than 0.5°), the hydrostatic restoring en-
ergy is neglectable compared to the other energies.
The effectiveness of the NN-based model in capturing
the key physical interactions is also illustrated in Ta-
ble 5, where the R? score (in %) is given for each re-
sult. We note that the lowest R? score corresponds to
the FOWT kinetic energy in case (a), which agrees
with the observation made above.

Table 5. Comparison of predicted and reference results for
impact scenarios a) and b) using the R? score (in %)

Case (a) Case (b)
Force 98.2 98.6
Pitch 95.7 95.2
o 99.6 97.8
Ksnip 99.9 99.8
Ufowt 99.8 98.5
Krowt 85.3 89.9
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Figure 11. Results comparison between LS-DYNA/MCOL and the NN-model/MCOL simulations

5 CONCLUSION

The proposed approach based on machine learning
demonstrates significant advantages in predicting the
structural response of a spar-like FOWT in case of
ship collision. By leveraging a trained NN-based
model, we achieve good accuracy while drastically
reducing computational time compared to traditional
NLFEA. Indeed, an LS-DYNA/MCOL simulation
takes approximately 18 hours on a parallel 12 CPUs
Intel core 17 computer and up to 1 hour if hydrody-
namic effects are not accounted for. In contrast, once
the training of the surrogate model is completed, an
NN-based model/MCOL simulation lasts less than 5
seconds, mainly due to MCOL file reading and writ-
ing operations. If hydrodynamic effects are disre-
garded, as in the case of a fixed monopile supported
wind turbine, the NN-based model can be used alone,
providing results in less than 0.01 seconds. In both
cases, the ability of the NN-based model to capture
complex non-linear interactions makes it a promising
alternative to conventional simulation methods, par-
ticularly for real-time assessments and rapid sensitiv-
ity analyses.

However, some limitations remain. The NN-based
model is trained from a set of numerical simulations,
meaning its accuracy is inherently dependent on the

reliability of the finite element models. In other
words, all the shortcomings and limitations of the fi-
nite element simulations will be reflected in the NN’s
predictions. Moreover, the current study considers a
rigid striking ship, whereas real-world scenarios in-
volve deformable ship structures that may drastically
change the energy and force distributions during the
collision. Although this is a strong assumption, mod-
eling the impactor as perfectly rigid is a first step to
demonstrate the feasibility of the proposed methodol-
ogy. Future research work will aim to extend the
model to incorporate ship deformability and jointly
evaluate ship-OWTs collision risks.

ACKNOWLEDGEMENTS

A part of this work was performed within the frame-
work of the West Atlantic Marine Energy Community
(WEAMEC) and granted by ICAM Engineering
School, Pays de la Loire Region, and Europe (Euro-
pean Regional Development Fund).

REFERENCES

Bureau Veritas. 2018. HYDROSTAR SOFTWARE, Powerful
Hydrodynamic Solver.



Das, T., Goerlandt, F., & Tabri K. 2022. An optimized meta-
model for predicting damage and oil outflow in tanker colli-
sion accidents. Proceedings of the Institution of Mechanical
Engineers Part M: Journal of Engineering for the Maritime
Environment, 236(2), 412-426.

Echeverry, S. 2021. Numerical and analytical study of a spar-
like floating offshore wind turbine impacted by a ship. PAD
thesis, University of Liege, 1-179.

Fan, W., Sun, Y, Yang, C., Sun, W. & He, Y. 2020. Assessing
the response and fragility of concrete bridges under multi-
hazard effect of vessel impact and corrosion. Engineering
Structures, 225, 111279.

Hollandse Kust. 2022. Rudderless Julietta D causes damage to
foundation of wind farm Hollandse Kust. Zuid. https://ti-
nyurl.com/ycywdkuw.

Jonkman, J., 2010. Definition of the Floating System for Phase
IV of OC3. Technical Report, National Renewable Energy
Lab. (NREL), Golden, CO (United States).

Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic
Optimization. arXiv preprint arXiv:1412.6980.

Ladeira, 1., Echeverry, S. & Le Sourne H. 2023. A simplified
method to assess the elasto-plastic response of standalone
tubular Offshore Wind Turbine supports subjected to ship
impact. Ocean Engineering 279 114313

Le Sourne, H. 2007. A ship Collision Analysis Program Based
on Super-Element Method Coupled with Large Rotational
Ship Movement Analysis. Proceedings of the 4th
International Conference on Collision and Grounding of
Ships, 131-138.

Le Sourne, H., Besnard, N., Cheylan, C. & Buannic, N. 2012. A
ship collision analysis program based on upper bound solu-
tions and coupled with a large rotational ship movement
analysis tool. Journal of Applied Mathematics 2012.

Mauro, F., Conti, F. & Vassalos, D. 2023. Damage surrogate
models for real-time flooding risk assessment of passenger
ships. Ocean Engineering, 285, 115493

Offshore-Energy.biz 2023. Cargo ship strikes turbine at Orsted’s
Gode Wind 1 offshore wind farm, suffers massive damage.
https://www.offshore-energy.biz/

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., & Sa-
lakhutdinov, R. (2014). Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. Journal of Machine
Learning Research, 15(56), 1929—1958.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N, Kaiser, L., & Polosukhin, I. 2017. Attention
Is All You Need. CoRR, abs/1706.03762.

WindEurope. 2022. Europe can expect to have 10 GW of float-
ing wind by 2030. https://windeurope.org/newsroom/
news/europe-can-expect-to-have-10-gw-of-floating-wind-
by-2030/

Yu, Z., & Amdahl, J., 2018. A review of structural responses and
design of offshore tubular structures subjected to ship
impacts. Ocean Engineering, 154, 177-203.

Yu, Z., Amdahl, J., Rypestel, M. & Cheng, Z. 2022. Numerical
modelling and dynamic response analysis of a 10 MW semi-
submersible floating offshore wind turbine subjected to ship
collision loads. Renewable Energy 184, 677—699.

Zhang, L., Egge, E.D., Bruhns, H, 2004. Approval procedure
concept for alternative arrangements. Proceedings of the 3rd
International Conference on Collision and Grounding of
Ships, Izu, Japan, pp. 87-96.

Zhang, Y., Hu, Z., Ng, C., Jia, C. & Jiang, Z. 2021. Dynamic
responses analysis of a 5 MW spar-type floating wind turbine
under accidental ship-impact scenario. Marine Structures 75,
102885.

Zhang, M., Wang, H., Conti, F., Manderbacka, T., Remes, H. &
Hirdaris, S. 2025. A hybrid deep learning method for the
real-time prediction of collision damage consequences in op-
erational conditions. Engineering Applications of Artificial
Intelligence 145, 110158.



https://tinyurl.com/ycywdkuw
https://tinyurl.com/ycywdkuw

