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Abstract

In quantum physics, several concepts have been developed to capture the distinctive
characteristics of quantum states that have no classical equivalent. Among the most
important are non-locality, entanglement and non-classicality, the latter generally identi-
fied with the negativity of quasi-probability distributions in phase space. More recently,
the idea of anticoherence, defined by the isotropy of spin states resulting from quantum
superpositions, has emerged as another distinctive feature of quantum states.

Although these different forms of “quantumness” are becoming increasingly central to
the understanding and development of quantum foundations and quantum technologies,
and are becoming experimentally accessible, their fundamental nature and interconnec-
tions are still only partially understood. The aim of this thesis is two-fold. First, we study
and characterise the quantum nature of spin states through entanglement, non-classicality
and anticoherence, with a particular focus on the relationships between these concepts.
Second, we propose and analyse experimental protocols for estimating the entanglement
of multiqubit states and for generating maximally entangled anticoherent states, thereby
paving the way for their use in future quantum applications.
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Résumé

En physique quantique, plusieurs concepts ont été développés pour saisir les caractéris-
tiques distinctives des états quantiques qui n’ont pas d’équivalent classique. Parmi les
plus importants, on trouve la non-localité, l’intrication et la non-classicité, cette dernière
étant généralement identifiée à la négativité des distributions de quasi-probabilité dans
l’espace des phases. Plus récemment, l’idée d’anticohérence, définie par l’isotropie des
états de spin résultant des superpositions quantiques, est apparue comme une autre car-
actéristique distinctive des états quantiques.

Bien que ces différentes formes de « quanticité » occupent une place de plus en plus
centrale dans la compréhension et le développement des fondements quantiques et des
technologies quantiques, et qu’elles deviennent accessibles expérimentalement, leur na-
ture fondamentale et leurs interconnexions ne sont encore que partiellement comprises.
L’objectif de cette thèse est double. Tout d’abord, nous étudions et caractérisons la na-
ture quantique des états de spin à travers l’intrication, la non-classicité et l’anticohérence,
en mettant particulièrement l’accent sur les relations entre ces concepts. Ensuite, nous
proposons et analysons des protocoles expérimentaux pour estimer l’intrication des états
multiqubits et pour générer des états anticohérents maximallement intriqués, ouvrant
ainsi la voie à leur utilisation dans de futures applications quantiques.
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Introduction

What is... entanglement?

Unknown author

This year 2025, declared the International Year of Quantum Science and Technology
by the United Nations, marks a century since Werner Heisenberg’s groundbreaking paper
that transformed the “old quantum theory” into modern quantum mechanics. It also
coincides with the 90th anniversary of the famous Einstein-Podolsky-Rosen (EPR) paper
[1], widely regarded as the first to explicitly raise the question of non-locality in multi-
partite quantum systems. Yet, despite decades of study, the very nature of entanglement
remains only partially understood. More intriguingly, a variety of other concepts, such
as quantum discord, contextuality, magic, EPR steering and non-gaussianity, have since
been introduced to capture the departure of quantum states from classicality. These no-
tions have enriched our understanding of the quantum world, but they have also blurred
the boundaries of what we truly mean by quantumness.

The persistence of such foundational questions on the nature of the quantum world,
however, has not hindered the rapid development of quantum experiments and technolo-
gies. On the contrary, the rise of quantum information science has created new opportu-
nities to illuminate quantum foundations themselves [2, 3], revealing a constant dialogue
between theory and experiment, each nourishing and challenging the other. For entan-
glement, Bell inequalities and their experimental verifications constitute an emblematic
illustration of this dialectical interplay. In this spirit, the present thesis, although theo-
retical in nature, pursues both new theoretical insights and original protocols aimed at
making extreme form of quantumness experimentally accessible.

It is not new that quantum physics has shaped real-world technologies. The first
quantum revolution, which led to the development of semiconductors, transistors, lasers,
magnetic resonance imaging, and atomic clocks, was largely rooted in the exploitation of
quantised energy levels of single quantum systems. In contrast, the emerging second quan-
tum revolution relies on quantum resources such as coherence and superpositions of states
in individual and multipartite quantum systems. The experimental platforms enabling
this revolution include, among others, superconducting qubits and qudits, quantum dots,
polarised photons, the (hyper)fine structure of atoms and energy levels of molecules, all
examples of systems sharing the common feature of being finite-dimensional. Following
this path, the present thesis explores single spin and multiqubit systems as paradigmatic
finite-dimensional systems. We will focus on three distinct quantum features: entangle-
ment, negativity of probability quasidistributions (that we will denote as non-classicality
throughout this thesis) and anticoherence.
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2 Introduction

Entanglement

Entanglement in multipartite quantum systems is fundamentally characterised by the im-
possibility of describing the global state as a simple factorisation of its subsystems states.
In other words, certain properties of the whole system do not reside in the individual
subsystems taken separately, but emerge from their intercorrelations. For this reason,
entanglement is often regarded as a genuinely non-local feature, exhibiting correlations
stronger than any achievable within classical physics. The study of entanglement in mul-
tiqubit systems already has a long and rich history, with many profound results [4]. For
instance, determining and quantifying entanglement is known to be an NP-hard problem
[5], with a complete solution available only in the simplest cases [6, 7]. Consequently, the
complete characterisation of the boundary of the set of entangled states, or, equivalently,
of the set of separable states, remains unresolved.

In parallel, entangled states have become indispensable resources across virtually all
areas of quantum physics, including quantum communication [8], quantum computing
and quantum metrology [9]. This operational relevance is formally captured within the
framework of quantum resource theories [10], where entanglement is established as a cen-
tral resource. Within this context, a particular class of separable mixed states, known
as Absolutely Separable (AS), is of special interest. AS states are considered free states
in entanglement resource theory since they cannot be transformed into entangled states
under any unitary evolution. From an experimental perspective, where unitary trans-
formations constitute the natural set of accessible operations, absolute separability thus
marks the boundary of mixedness beyond which entanglement can no longer be gener-
ated by unitary controls alone. The characterisation of the set of AS states, though still
incomplete, has recently opened new lines of research and attracted renewed interest [11,
12, 13]. In this thesis, our exploration of quantumness in multiqubit states will naturally
lead us to investigate the boundaries of the AS set.

Non-classicality

Remarkably, a few years before the formulation of the EPR paradox, Eugene Wigner
introduced his celebrated quasiprobability distribution [14], originating from a map from
operators on an infinite-dimensional Hilbert space to functions on phase space. This dis-
tribution, now known as the Wigner function, provides a natural generalisation of classical
probability distributions to quantum systems. More than a mere visualisation tool, the
Wigner function opened a new avenue for studying quantumness: it can take negative
values, and Hudson’s theorem shows that a pure state has an everywhere non-negative
Wigner function if and only if it is Gaussian. Gaussian states and Gaussian operations
are efficiently classically simulable [15], so Wigner negativity is naturally associated with
non-classical behaviour and quantum advantage [16, 17, 18].

Following Wigner, two other phase-space functions became standard for infinite-
dimensional systems. These are the HusimiQ function [19, 20] and the Glauber-Sudarshan
P function [21, 22]. While introduced separately, it is now known that these three phase-
space functions belong to a same family of phase-space representations parameterised by a
continuous parameter s ∈ [−1, 1]. This family can be retrieved by the Stratonovitch-Weyl
(SW) formalism, based on the symmetries of the quantum system, to define covariant
maps from the linear operators space to functions space. For instance, the relevant sym-
metry of a d-mode bosonic system is expressed through the Heisenberg-Weyl group of
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position and momentum translations. The SW covariance then implies that the phase-
space manifold is R2d.

For finite-dimensional systems, both discrete and continuous phase-space construc-
tions exist. On the discrete side, Wootters introduced a discrete Wigner function for
qudits in 1987 [23]. In odd prime dimensions, a discrete version of Hudson’s theorem
holds: a pure state has a non-negative discrete Wigner function if and only if it is a
stabiliser state. Stabiliser states are classically simulable under Clifford dynamics. This
connects discrete Wigner negativity to magic and computational advantage [24]. Discrete
phase-space methods have also powered applications in quantum state tomography.

By contrast, continuous phase-space representations for finite-dimensional systems
have been comparatively less explored. They are nevertheless compelling as they can
exhibit negativity. While strong evidence suggests that no pure spin state admits an
everywhere-positive continuous Wigner function for finite-dimensional systems, to our
knowledge a general proof remains open. This underlines the subtlety of continuous
phase-space methods in finite dimension induced by the non-trivial manifold S2, i.e.
the 2-sphere, over which these phase-space representations are defined. Interestingly,
the SW formalism also applies to finite-dimensional systems and the counterpart of the
s-parameterised family of phase-space representations, containing the Wigner, Husimi
and Glauber-Sudarshan functions, can also be derived for finite-dimensional systems.
A central goal of this thesis is to deepen our understanding of these three emblematic
functions in finite-dimensional systems and to identify novel ways to exploit them.

Anticoherence

A third manifestation of quantumness investigated in this thesis is the recently introduced
concept of anticoherence [25]. In spin systems, anticoherence is directly tied to the
isotropy of spin expectation values. A paradigmatic example is the Schrödinger spin-cat
state, a superposition of angular momentum states pointing in opposite directions and
for which

⟨J⟩ = 0,

where J is the spin operator, hence not favoring any particular direction. Anticoherence
thus arises as a genuinely quantum feature enabled by superpositions of states. By
constructing increasingly complex superpositions, one can further increase the isotropy
of a spin state, in a way that can be formally quantified through anticoherence measures.

Anticoherent states have already found promising applications in quantum metrol-
ogy [26–28], quantum computation [29], and the broader characterisation of quantum-
ness [30]. Counterintuitively, the usefulness of anticoherent states in quantum metrology
stems from the fact that they maximise the total variance of the spin operator J, thereby
maximising quantum uncertainty, exactly the opposite of coherent states. This stands in
sharp contrast to spin-squeezed states, which are exploited in metrology precisely because
they minimise uncertainty along a chosen degree of freedom. This capability of antico-
herent states stems from their high degree of symmetry, often associated with Platonic
solids, which makes them particularly advantageous when the direction of the applied
transformation is unknown. Some anticoherent states have already been experimentally
generated in multiphoton systems, where their utility for quantum rotosensing has been
demonstrated [31]. However, their generation in atomic platforms has so far remained an
open challenge.
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Given the recent definition of anticoherence, it is reasonable to expect that new the-
oretical properties and practical applications will continue to emerge. Some of these
advances are presented within this thesis.

Aim of this thesis

While conceptually distinct, one of the main goals of this work is to uncover and clarify
the interconnections between these three features of quantumness (entanglement, non-
classicality and anticoherence) and to show how one can be used to characterise another.
A second major goal is to find new ways to experimentally generate, measure and exploit
these forms of quantumness.

The manuscript is organised as follows.
Chapter 1 introduces single spin and multiqubit systems (restricted to their sym-

metric Hilbert subspace) together with some of their emblematic states, along with the
mathematical tools required to study them. We present both continuous and discrete
phase-space representations derived from the Stratonovich-Weyl formalism and recall the
properties of the Wigner, Husimi, and Glauber-Sudarshan functions. We also highlight a
possible generalisation of these phase-space representations that will be exploited later.
Finally, we briefly recall the notions of entanglement and separability and discuss the
entanglement criteria and measures which will be used throughout the manuscript.

Chapter 2, based on [32, 33], investigates spin states whose SW phase-space rep-
resentations remain everywhere-positive under any unitary transformations, namely the
Absolutely Stratonovich-Weyl Positive (ASP) states. While the discussion mainly focuses
on continuous phase-space, we also show how the results extend to the discrete case. We
completely characterise the sets of ASP states for any spin quantum number j, which
appear as polytopes in the simplex of mixed state eigenvalues. Exploiting the connec-
tion between positivity of the Glauber-Sudarshan function and separability, we identify
new symmetric absolutely separable (SAS) multiqubit states. Furthermore, we develop
explicit nonlinear generalisations of SW phase-space representations whose existence was
previously known but never exploited, allowing us to further enlarge the set of known
SAS states.

Chapter 3, based on [34], explores the use of the Husimi phase-space representation
to quantify entanglement in multiqubit systems. We begin by establishing an analytical
relation between the moments of the Husimi function and the geometric measure of
entanglement (GME) of symmetric multiqubit states. Inspired by this relation, we employ
modern machine learning tools to propose a new protocol that would allow to estimate
the GME of symmetric multiqubit states from only partial information about the state,
namely from the moments of the Husimi function. Finally, exploiting the concept of
spherical designs, we show how these moments can be experimentally accessed from
Stern-Gerlach projections.

Chapter 4, mainly based on [35], focuses on anticoherent states. We first recall the
concept of anticoherence of pure states and illustrate its relation with delocalisation on
phase-space representations. We then recall properties of anticoherent states for quan-
tum metrology and show that they also are promising states for quantum error-correction.
Next, we establish a precise relation between the degree of anticoherence of a state and its
entanglement, which we then use to generalise anticoherence measures to mixed states.
Finally, we propose a pulse-based protocol, relying solely on rotation and squeezing pulses,
to generate anticoherent states in atomic platforms. Unlike a black-box approach, the
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effectiveness of this protocol admits an intuitive explanation, and it is directly imple-
mentable with current experimental capabilities.

Chapter 5, mainly based on [36], studies the decoherence of multiqubit systems under
a collective depolarisation master equation. Using the analytical solution of the mixed
state dynamics, we show that anticoherent states are particularly fragile against collective
depolarisation. We also demonstrate that entanglement is a necessary condition for the
decoherence rate to scale quadratically with the number of qubits, a phenomenon known
as superdecoherence. Finally, we show how these results may be exploited in dynamical
dissipative quantum metrology, where the aim is to estimate dissipative rates. In this
context, we identify the entangled states that are optimal for quantum thermometry and
noisy magnetometry.

This manuscript concludes with a global summary, synthesising the results presented
across the different chapters, followed by perspectives that I find particularly compelling.

The numerical simulations for this thesis were performed in the Julia programming
language [37], with most figures generated using the Makie package [38]. Analytical
derivations were performed with the assistance of Mathematica.



6 Introduction



Chapter 1

Spin systems, phase space and
entanglement

In this first chapter, we present the key concepts and known results that will serve as
the foundation for the remainder of this thesis. Section 1.1 begins with an introduction
to quantum spin systems (or, equivalently, multiqubit systems whose Hilbert space is
restricted to the symmetric subspace), which constitute the central framework of our
study. We describe the experimental platforms where such systems naturally arise and
highlight several emblematic spin states that will play a central role in later chapters.
In addition to the standard spin basis, we also introduce the multipolar tensor operator
basis, which proves particularly useful for analysing spin systems. We end the section by
introducing the Majorana representation which constitutes a convenient way to visualise
symmetric multiqubit states.

Since one of the main objectives of this thesis is to explore the interplay between phase-
space representations of spin states and their entanglement properties, Section 1.2 intro-
duces a family of continuous phase-space representations derived from the Stratonovich-
Weyl formalism. This family encompasses the well-known Husimi, Wigner, and Glauber-
Sudarshan representations. To illustrate the broader scope of our following results, we
also briefly discuss discrete phase-space representations.

Finally, in Section 1.3, we turn to the concept of entanglement, with a focus on
symmetric multiqubit states. We discuss the criteria for characterising entanglement
versus separability, and introduce the entanglement measures that will be used throughout
this work to quantify quantum correlations.

1.1 Spin systems and where to find them

In this thesis, we investigate the most elementary quantum systems, that is individual
quantum spin systems. They may originate from both the (rotational-)spatial structure
of physical configurations and intrinsic particle properties such as spin. These systems are
ubiquitous in nature, appearing in diverse contexts including atomic electronic structures,
light polarisation, and Bose-Einstein condensates. The central objective of this section
is to describe the unifying feature of these systems: their description in terms of quan-
tum angular momentum operators {Jx, Jy, Jz} which obey the canonical commutation
relations

[Jα, Jβ] = iϵαβγJγ (1.1)

7
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where ϵαβγ is the Levi-Civita symbol. Rather than focusing on a specific physical realisa-
tion, the approach adopted in this work is intentionally abstract. The analysis is based
solely on the mathematical structure common to all spin systems, thereby ensuring that
the results are broadly applicable across various physical platforms.

The discussion begins with the qubit, the simplest and most familiar spin-1/2 system,
characterised by its two-dimensional Hilbert space. From this foundation, we develop
a general theoretical framework for arbitrary spin quantum numbers (qudits). We then
turn to the most prominent examples of spin systems encountered in atomic physics
experiments, illustrating their relevance and experimental realisations.

1.1.1 A qubit as the smallest spin

A qubit is a quantum system with two-dimensional Hilbert space H ≃ C2. From the
Stern-Gerlach experiment, it is deduced that some particles have a property, called spin,
whose observables are associated with the vector of angular momentum operators J =
(Jx, Jy, Jz). The smallest spin measured has quantum number j = 1/2 with two possible
projections m = ±1/2, thus representing a two-level system, i.e. a qubit. For this case,
the angular momentum operators are defined by 2× 2 matrices given by

J =
ℏ
2
σ (1.2)

where σ = (σx, σy, σz) is the vector of Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

These matrices form a basis for the space of 2× 2 Hermitian matrices over R and satisfy
the commutation relations

[σα, σβ] = 2iϵαβγσγ.

The factor ℏ in (1.2) ensures that J has the correct units of angular momentum . Through-
out this thesis, we will adopt the natural units convention ℏ = 1. In this setting, the
unitary operator representing a rotation of the spin of amplitude ϕ around an axis defined
by a unit vector n ∈ R3 is

Un (ϕ) = e−iϕn·σ/2 = I cos
ϕ

2
− i (n · σ) sin ϕ

2
. (1.3)

where I is the identity operator. To confirm that this operator represents a proper
rotation, one must verify that for any state |ψ⟩ ∈ H, the expectation value of the spin
operator J (or equivalently σ) transforms under Un as

⟨ψ|U †
n (ϕ)σUn (ϕ) |ψ⟩ = ⟨ψ|Rn (ϕ)σ |ψ⟩

where Rn (ϕ) represents the corresponding rotation matrix in three dimensions acting on
the vector σ. Since this must hold for all |ψ⟩, we can express this equivalently as an
operator identity

U †
n (ϕ)σUn (ϕ) = Rn (ϕ)σ.

Expanding the right-hand side using (1.3) and using the following Pauli matrix identities

[n · σ,σ] = −2in× σ (n · σ)σ (n · σ) = 2n (n · σ)− σ
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one obtains

U †
n (ϕ)σUn (ϕ) = σ cosϕ+ (1− cosϕ)n (n · σ) + n× σ sinϕ (1.4)

which is indeed the expression of the rotation of a three-dimensional vector [39].
An interesting phenomenon arises when applying a 2π rotation to a qubit. In this

case, the rotation operator becomes

Un (2π) = −I

implying that the quantum state acquires a global phase factor of −1, and is not strictly
restored to its original form. However, since physical observables are unaffected by global
phases, the expectation values of angular momentum operators remain unchanged

⟨ψ|σ |ψ⟩ = ⟨ψ|U †
n (2π)σUn (2π) |ψ⟩ .

This phase factor has been experimentally observed, for instance, by splitting a qubit
ensemble into two subsets, applying a 2π rotation to only one of them, and detecting
interference effects due to the relative phase shift [40, 41]. This implies that for each
physical rotation Rn (ϕ) ∈ SO(3), there exists two distinct operators in SU(2), i.e. Un (ϕ)
and Un (ϕ+ 2π). In fact, while SO(3) represents rotations in three-dimensional space,
SU(2) is the group of spinor representations of such rotations. Each element of SO(3) cor-
responds to two elements of SU(2), making SU(2) a double cover of SO(3). As such, SU(2)
is often considered the more fundamental symmetry group for describing spin systems.
This phenomenon, while inherently quantum mechanical for point particles like electrons,
can also be observed in certain classical systems with spatial extent. Such systems may
require a full 4π rotation to return to their initial configuration [42]. Notable examples
include the Dirac belt trick [43] and polarisation states of classical electromagnetic fields
[44].

In the following subsection, we will formalise the concept of an abstract spin system
based on the group structure of its rotation symmetry. As discussed above, this group is
SU(2). We will focus on the definition of rotation operators for general spin-j systems,
their generators, namely the spin angular momentum operators Jα, and demonstrate that
these satisfy the canonical angular momentum commutation relations (1.1).

1.1.2 Systems with arbitrary spin quantum numbers

Let us consider a quantum system described by a Hilbert space H that is invariant under
spatial rotations. This rotational invariance means that the set of probabilities of mea-
surement outcomes remain unchanged when the entire system is subjected to a rotation.
According to Wigner’s theorem [45], any symmetry transformation that preserves transi-
tion probabilities is implemented on the Hilbert space by either a unitary or antiunitary
operator. In the case of continuous symmetries such as rotations, the representation must
be unitary [45, 46].

Thus, for any rotation Rn (ϕ), there exists a unitary operator Un (ϕ) acting on H,
such that for all |ψ1⟩ , |ψ2⟩ ∈ H we have

|⟨ψ1|ψ2⟩|2 = |⟨Un (ϕ)ψ1|Un (ϕ)ψ2⟩|2 .

Experimentally, this expresses the fact that the physical predictions, such as measurement
probabilities, are unaffected by applying a global rotation to the entire system. At first
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glance, one might expect the operators Un (ϕ) to form a representation of the rotation
group SO(3), which describes physical rotations in three-dimensional space. However,
as we saw in the qubit case, the operators Un (ϕ) actually form a representation of the
group SU(2) instead. This is due to the fact that quantum states are defined only up to
a global phase, and physical predictions, such as transition probabilities, depend only on
the modulus squared of the inner product∣∣〈eiα1ψ1

∣∣ eiα2ψ2

〉∣∣2 = |⟨ψ1|ψ2⟩|2 ∀α1, α2 ∈ R.

Therefore, symmetry operations in quantum mechanics only need to preserve transition
probabilities, not the inner product itself. Wigner’s theorem then implies that symme-
try operators are only defined up to a global phase, which means that the operators
Un (ϕ) form a projective representation of SO(3). These projective representations cor-
respond precisely to the ordinary representations of the group SU(2) [47]. Consequently,
rotational symmetry in quantum mechanics is described using unitary representations of
SU(2), rather than SO(3). For integer spin quantum numbers j, corresponding to odd-
dimensional representations, the irreducible representations of SU(2) are isomorphic to
that of SO(3). Therefore, rotations of quantum systems with spatial extension, such as
orbital angular momentum states, are represented by SO(3), as expected.

To define spin systems explicitly, we now seek the form of the unitary operators
Un (ϕ). The irreducible representations of SU(2) have dimension 2j + 1 where j =
1/2, 1, 3/2, 2, . . . . According to Stone’s theorem [47], any strongly continuous one-parameter
unitary group {U (ϕ)}ϕ∈R, such as the subgroup of rotations around a fixed axis n, is gen-
erated by a self-adjoint operator A, so that

U (ϕ) = eiϕA.

Denoting by Jn = J · n the operator associated with rotations around axis n, we thus
have

Un (ϕ) = eiϕJn ∀ϕ ∈ R.

Our next objective is to determine the algebraic structure of the generators Jn for different
directions n. These operators define the spin observables, and their commutation relations
encode the angular momentum structure of the system. A known result from Lie theory
tells us that a rotation Rm (ϕ) of amplitude ϕ around an axis m given by

Rm (ϕ) = Rn1 (ϕ1)Rn2 (ϕ2)R
−1
n1

(ϕ1)R
−1
n2

(ϕ2)

verify to first order in angles [47]

m =
n1 × n2

∥n1 × n2∥
ϕ = ϕ1ϕ2 ∥n1 × n2∥ . (1.5)

Now consider the corresponding unitary evolution up to first order in ϕ

Um (ϕ) ≃ (1 + iϕ1n1 · J) (1 + iϕ2n2 · J) (1− iϕ1n1 · J) (1− iϕ2n2 · J)
≃ 1− ϕ1ϕ2 [n1 · J,n2 · J]

and the expansion of the rotation around axis m at first order

Um (ϕ) ≃ 1− iϕ1ϕ2 (n1 × n2) · J.
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Equating both expressions, we obtain the commutation relation

[n1 · J,n2 · J] = (n1 × n2) · J.

By choosing n1,n2 ∈ {ex, ey, ez}, this leads to the standard commutation relations for
spin operators

[Jα, Jβ] = iϵαβγJγ, α, β, γ = x, y, z, (1.6)

where ϵαβγ is the Levi-Civita symbol. These relations define the Lie algebra su(2), which
underpins the structure of spin systems.

From the commutation relations of the su(2) algebra, it is well known that the total
angular momentum operator

J2 = J2
x + J2

y + J2
z

commutes with all components of the spin operator[
J2,J

]
= 0.

This means that J2 and any component of J, typically Jz, can be simultaneously di-
agonalised. As a result, the Hilbert space H = C2j+1 of a spin-j system admits an
orthonormal basis consisting of the simultaneous eigenstates of J2 and Jz. This is the
standard spin basis, denoted by

{|j,m⟩ : m = −j,−j + 1, . . . , j} .

These states satisfy the eigenvalue equations [48]

J2 |j,m⟩ = j (j + 1) |j,m⟩ Jz |j,m⟩ = m |j,m⟩ .

Transitions between neighboring states in the spin basis are mediated by the ladder
operators

J± = Jx ± iJy

which raise or lower the magnetic quantum number m by one

J± |j,m⟩ =
√

(j ∓m) (j ±m+ 1) |j,m± 1⟩ .

1.1.3 Miscellaneous of spin systems

Spin systems play a central role in quantum physics and appear across a wide range
of physical platforms. They provide a versatile framework for encoding and manipulat-
ing quantum information, and they serve as fundamental models for studying quantum
entanglement and non-classical states.

Experimentally, spin systems can be realised in a variety of ways. For instance,
using the orbital angular momentum of light [49], the polarisation of light in multiphoton
systems [31], the electronic spin of magnetic atoms [50], the internal levels of trapped ions
[51], superconducting circuits [52] or the rotational degree of freedom in molecules [53].
In the following, we focus on three representative types of spin systems that are widely
used in experiments to generate non-classical spin states. These systems not only provide
a high degree of quantum control but also constitute excellent experimental platforms for
realising and exploring the phenomena discussed in the subsequent chapters.
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1.1.3.1 Angular momentum in atoms

Atoms possess several angular momentum degrees of freedom. There is the orbital angular
momentum L, which arises from the motion of electrons around the nucleus. Each electron
also possesses an intrinsic angular momentum under the form of a spin S. In addition,
the nucleus itself carries an angular momentum I due to its internal structure. Under
their potential coupling, these different angular momentum degrees of freedom will give
rise to the angular momenta [48]

J = L+ S and F = J+ I,

associated with the fine and hyperfine structures, respectively. Depending on the atomic
species, this structure give rise to multilevel spin systems that can be used for various
quantum control protocols.

In the absence of external fields, the magnetic sublevels with magnetic quantum num-
ber m within a given fine or hyperfine manifold remain degenerate due to the rotational
symmetry of the system. To lift this degeneracy and to gain precise control over the
spin dynamics, it is necessary to apply an external magnetic field. This field breaks the
rotational symmetry and defines a quantisation axis, which makes the magnetic sub-
levels energetically distinguishable (see Appendix 1.A). Such a field is crucial not only for
enabling coherent manipulation of the spin but also for preventing decoherence. Other-
wise, even a weak, uncontrolled magnetic field could induce unwanted transitions between
degenerate sublevels, degrading quantum coherence.

To initialise the atom in a well-defined spin state, a process known as optical pumping
is typically employed [54]. In this method, polarised laser light is tuned to a specific
atomic transition, and through repeated cycles of absorption and spontaneous emission,
the atom is driven into a target sublevel that is no longer coupled by the light. This
dissipative process allows the atomic population to accumulate in a pure quantum state
aligned with the quantisation axis. Once initialised, the atom can then be subjected to
coherent quantum control protocols to generate the desired spin dynamics.

1.1.3.2 Orbital angular momentum of light

In the absence of charged sources, it is known that an electromagnetic field carries a
linear momentum given by [55]

P =

∫
R3

p (r) dr = ϵ0

∫
R3

E×B dr

where E and B are the electrical and magnetic fields, respectively, p (r) is the momentum
density vector field and the integral is taken over the entire space R3. Associated with
this momentum is the total angular momentum of the electromagnetic field, given by

JT =

∫
R3

r× p dr = ϵ0

∫
R3

E× (∇×A) dr

where we used B = ∇×A with A the vector potential. This total angular momentum
can be decomposed as

JT = ϵ0

∫
R3

∑
α=x,y,z

Eα (r×∇)Aα dr︸ ︷︷ ︸
≡J

+ ϵ0

∫
R3

E×A dr︸ ︷︷ ︸
≡S

,
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where J corresponds to the orbital angular momentum (OAM), and S to the spin angular
momentum (SAM) of the field.

The SAM is associated with the polarisation of light. For example, circularly polarized
light carries spin angular momentum of ±ℏ per photon (left- or right-handed), while
linearly polarized light carries zero SAM. In contrast, the OAM arises from the spatial
distribution of the electromagnetic field and can take on an unbounded number of integer
values of angular momentum, making it a useful resource for high-dimensional quantum
information processing [56, 57] and optical multiplexing in telecommunication systems
[58].

The OAM enables the definition of an effective spin system for individual photons.
In this manner, a photon whose quantum state is entirely confined to the Hilbert space
C2j+1 corresponding to a single OAM mode, defined by the eigenvalue of the total angular
momentum operator J2, can be associated with a single spin-j system. In such a simu-
lated spin system, the ladder operators J±, which raise or lower the magnetic quantum
number m, can be physically implemented using Q-plates [59]. These devices couple the
photon’s polarisation to its OAM, enabling controlled transitions between OAM states
that simulate the action of spin-raising and lowering operators.

1.1.3.3 Two-mode systems

Another class of systems in which spin operators and their commutation relations nat-
urally emerge is that of two-mode bosonic systems. A first example is provided by a
two-beam interferometer, such as a Fabry-Pérot or Mach-Zender interferometer, where
annihilation operators a0 and a1 are associated with the two arms of the interferom-
eter [60]. Similarly, in Bose-Einstein condensates (BECs) where only the two lowest
energy levels are significantly populated, the effective Hilbert space can be truncated and
mapped to a spin system. Two physically distinct realisations of such two-mode dynam-
ics are common [61]: a BEC confined in a double-well potential, where the two modes
correspond to the lowest orbital in the left and right wells and a single-well BEC where
atoms possess a two-level hyperfine structure for which the two modes are associated
with the hyperfine ground and excited states. These systems are illustrated in Figure
1.1. A further example is an ensemble of indistinguishable photons, where the two modes
may correspond to orthogonal polarisation states, such as left |L⟩ and right |R⟩ circular
polarisations, or to OAM modes, such as |l = 0⟩ and |l = 1⟩.

To each mode i = 0, 1, we associate bosonic annihilation and creation operators ai
and a†i , which satisfy the canonical commutation relations[

ai, a
†
j

]
= δij. (1.7)

The number operators for each mode are defined as

N0 = a†0a0 N1 = a†1a1

and the total number operator is

N = N0 ⊗ I+ I⊗N1.

In what follows, we assume particle number conservation, so the total number N is a
conserved quantity. A basis state with N −k particles in mode 0 and k particles in mode
1 can then be written in the Fock basis as

|N − k⟩0 ⊗ |k⟩1 .



14 Chapter 1. Spin systems, phase space and entanglement

Figure 1.1: Representations of the different two-modes systems equivalent to a single spin
j = N/2. In the case of a BEC, the rotations around any axis are obtained by applying
a magnetic field. For two-beam interferometers, rotations around x and y are obtained
by using beamsplitters, rotations around z are obtained by a phase shifter or an optical
path length and photodetectors measure the operator Jz.

We can then define spin operators using the Schwinger-Jordan representation [62],
which maps bosonic operators to angular momentum operators as

Jx =
a†0a1 + a†1a0

2
Jy =

a†0a1 − a†1a0
2i

Jz =
a†0a0 − a†1a1

2
.

These operators satisfy the usual spin commutation relations (1.6). The total spin oper-
ator squared is related to the total number of particles by

J2 =
N

2

(
N

2
+ 1

)
I

which remains conserved. It can be shown from the action of the bosonic operators that
the two-mode Fock states |N − k⟩0 ⊗ |k⟩1 are simultaneous eigenstates of J2 and Jz

J2 |N − k⟩0 ⊗ |k⟩1 =
N

2

(
N

2
+ 1

)
|N − k⟩0 ⊗ |k⟩1

Jz |N − k⟩0 ⊗ |k⟩1 =
(
k − N

2

)
|N − k⟩0 ⊗ |k⟩1 .

Finally, any spin eigenstate can be written compactly in terms of creation operators acting
on the vacuum

|j,m⟩ =

(
a†1

)j−m (
a†0

)j+m
√

(j −m)! (j +m)!
|0⟩ ,

where |0⟩ is the vacuum of both modes. Thus, the states |j = N/2,m = k −N/2⟩ span
a spin-j representation of dimension 2j + 1 = N + 1.

A directly related family of systems is the ensemble of symmetric multiqubit systems
for which a basis of the Hilbert space is provided by the symmetric Dicke states, defined
as

|D(k)
N ⟩ = 1√

Ck
N

∑
π

| 0 . . . 0︸ ︷︷ ︸
N−k

1 . . . 1︸ ︷︷ ︸
k

⟩,
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Figure 1.2: Representation of the isomorpism between a symmetric multiqubit system
and a single spin.

where the sum runs over all distinct permutations π of the qubits. These states correspond
exactly to the two-mode Fock states of the form

|D(k)
N ⟩ = |N − k⟩0 ⊗ |k⟩1 .

This identification is more than just notational as the symmetric qubit states and two-
mode bosonic states share the same algebraic structure. For instance, denoting σ(i)

α the
Pauli operators acting on the i-th qubit, the collective spin operators can be written as

Jα =
N∑
i=1

σ
(i)
α

2
, α = x, y, z

which satisfy the standard su(2) commutation relations. From a mathematical perspec-
tive, the correspondence is underpinned by a structural isomorphism between the sym-
metric subspace HS of the full Hilbert space H = C2N of a multiqubit system and the
Hilbert space of a two-mode system. For example, consider a BEC consisting of N two-
level atoms. Since particles in a BEC are indistinguishable bosons, the global quantum
state must be fully symmetric under particle exchange. This symmetrisation restricts the
Hilbert space to the symmetric subspace HS, which is spanned by the Dicke states.

By extension, the Hilbert space of a single spin-j = N/2 system is also isomorphic
to HS, as illustrated in Figure 1.2. Under this correspondence each Dicke state |D(k)

N ⟩
maps to a spin state |j = N/2,m = k −N/2⟩. From a mathematical standpoint, these
two descriptions are equivalent, and any concept, operation, or measure defined for one
system can be directly translated to the other. Throughout this thesis, we will freely
move between the language of spin systems and that of multiqubit systems restricted to
HS, using this isomorphism as a foundational bridge (see Table 1.1).

For instance, in a two-beam interferometer, rotations of the associated spin system
around the x- and y-axes can be implemented using beam splitters, while rotations around
the z-axis can be realised via phase shifters or differences in optical path length [60]. In
this framework, interferometry becomes equivalent to performing a sequence of rotations
on a spin system, where the photodetectors at the output effectively measure the expec-
tation value of the spin operator Jz, as illustrated in Figure 1.1.
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Single spin-j Multiple qubits in symmetric subspace
spin quantum number j = N

2
number of qubits N = 2j

spin operators Jα collective spin operators
∑N

i=1
σ
(i)
α

2

standard spin basis {|j,m⟩}
with m = −j, . . . , j

symmetric Dicke basis {|D(k)
N ⟩}

with k = 0, . . . , N
magnetic quantum number

m = N
2
− k

number of excitations
k = j −m

full space symmetric subspace
(absolutely) classical (absolutely) separable

spin coherent state |n⟩ pure symmetric separable state |ϕ⟩⊗N

pure anticoherent
state of order t

pure maximally entangled symmetric state
(state with maximally mixed t-qubit
reductions in the symmetric sector)

rotation symmetric local unitary transformation

Table 1.1: Dictionary of correspondence between spin-j states and symmetric states of
N spin-1/2 or qubits.

1.1.4 Remarkable spin states

Among the infinite family of spin states, certain specific states play a central role in the
study of spin systems. In this subsection, we introduce the properties of these states that
will be essential for the developments that follow.

1.1.4.1 Coherent states

In a spin-j system, a coherent state |n⟩ is defined as a pure state whose mean value of
the spin operator projection along a given direction n ∈ R3, with |n| = 1, is maximal,
i.e. [63]

n · J |n⟩ = j |n⟩ .

Equivalently, coherent states can be characterized by either of the following two properties∑
α=x,y,z

⟨Jα⟩2 = j2
∑

α=x,y,z

(∆Jα)
2 = j

where (∆Jα)
2 denotes the variance of Jα. The second condition shows that spin coherent

states minimise the total spin uncertainty, saturating the Heisenberg uncertainty bound.
Because of this, they are often regarded as the “most classical” pure states of a spin system,
much like coherent states of the harmonic oscillator in infinite-dimensional Hilbert spaces
(e.g., light modes in quantum optics).

Spin coherent states are typically parameterised by spherical coordinates (θ, φ) and de-
noted |θ, φ⟩ ≡ |Ω⟩, with the unit vector n given by n = (cos θ cosϕ, cos θ sinϕ, sin θ). One
can construct a coherent state pointing in any direction by rotating the state |j, j⟩, which
points along the z-axis, and rotate it to the desired direction n, as it is represented in
Figure 1.3. This rotation is implemented by the rotation operator U (θ, φ) = e−iφJze−iθJy ,
i.e.

|θ, φ⟩ = U (θ, φ) |j, j⟩ .
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In the standard spin basis, the coherent state has the explicit expansion

|θ, φ⟩ =
j∑

m=−j

√
Cj+m

2j

(
cos

θ

2

)j+m(
sin

θ

2

)j−m
e−i(j−m)φ |j,m⟩ . (1.8)

In the context of multiqubit systems, the analogue of a spin-coherent state in the
symmetric subspace of N qubits is a symmetric product state of the form

|Ω⟩ = |ϕ⟩⊗N (1.9)

where each qubit points in the same direction Ω on the Bloch sphere. These symmetric
product states are the only pure symmetric spin states that are separable, making them
particularly important for studying entanglement of symmetric multiqubit states.

Interestingly, the family of coherent states {|n⟩}n∈S2 is an infinite dimensional family
of spin states which forms an overcomplete basis of the Hilbert space H = C2j+1. That
is, any spin state can be represented as a continuous superposition of coherent states
and the number of elements is higher than in an orthogonal basis. Thus, they are not
necessarily orthogonal among each other. In fact, their mutual overlap is given by [64]

|⟨n1|n2⟩| =
(
1 + n1 · n2

2

)j
. (1.10)

Nevertheless, they satisfy the identity

2j + 1

4π

∫
|Ω⟩ ⟨Ω| dΩ = I

where dΩ = sin θdθdφ is the uniform measure on the sphere. It turns out that any pure
or mixed spin state ρ can be decomposed as

ρ =

∫
Pρ (Ω) |Ω⟩ ⟨Ω| dΩ (1.11)

where Pρ is known as the Glauber-Sudarshan P function. This function is not unique
as coherent states form an overcomplete basis. This decomposition plays a central role
in the phase-space representation of spin systems and will be further explored in Section
1.2 and in Chapter 2.

1.1.4.2 Cat states

Another emblematic spin state used throughout this thesis is the spin cat state, named
after Schrödinger’s famous thought experiment. It is defined as a coherent superposition
of two spin coherent states pointing in opposite directions on the Bloch sphere. For a
given direction Ω, the spin cat state reads

|ψcat⟩ =
1√
2
(|Ω⟩+ |−Ω⟩) ,

where |−Ω⟩ denotes the antipodal coherent state to |Ω⟩. Spin cat states are central in the
study of quantumness and quantum metrology and are directly analogous to Schrödinger
cat states in quantum optics.
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Figure 1.3: Representation of a coherent state |θ, φ⟩ on the S2 sphere as a rotated version
of the state |j, j⟩.

In the case of N qubits, spin cat states correspond to the well-known Greenberger-
Horne-Zeilinger (GHZ) symmetric states [65]

|GHZ⟩ = 1√
2

(
|0⟩⊗N + |1⟩⊗N

)
where |0⟩ and |1⟩ represent the ground and excited states of a single qubit, respectively.
The GHZ state is highly sensitive to decoherence, making it a prototypical example of
fragile quantum coherent superposition of states. Another analog to the spin cat state
which appears in the context of a double-well Bose-Einstein condensate is the NOON
state

|NOON⟩ = 1√
2
(|N, 0⟩+ |0, N⟩)

which describes all N particles being coherently delocalised between the two wells.

1.1.4.3 Anticoherent states

In the search for highly non-classical spin states, Zimba introduced in 2006 the concept
of anticoherent spin states. These states were initially defined as the opposite of spin
coherent states, in the sense that their spin expectation value is completely isotropic.
That is, for an anticoherent state [25]

⟨J⟩ = 0. (1.12)

While coherent states minimise the total spin uncertainty, anticoherent states maximise
it. For a spin-j system, the total variance of the spin operator of an anticoherent state is
given by ∑

α=x,y,z

∆J2
α =

〈
J2
α

〉
− ⟨Jα⟩2︸ ︷︷ ︸

=0

= j (j + 1) .

which is the maximal possible value for any pure spin-j state. One can go beyond the
first-order condition (1.12), and impose isotropy on higher statistical moments of the spin
components. This leads to the definition of anticoherent states of order t (t-AC states),
which are defined such that

∂

∂n
⟨(J · n)k⟩ = 0 ∀k = 1, 2, . . . , t. (1.13)
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This means that the expectation value of (J · n)k is independent of the direction n, for
all k = 1, 2, . . . , t. By definition, a t-AC state is also t′-AC for all t′ ≤ t. For example, a
2-AC state not only has vanishing mean spin but also isotropic spin variance, i.e.

〈
J2
x

〉
=
〈
J2
y

〉
=
〈
J2
z

〉
=
j (j + 1)

3
⟨JαJβ + JβJα⟩ = 0 (1.14)

∀α, β = x, y, z with α ̸= β. Hence, anticoherence quantifies the degree of isotropy in the
spin components statistics of a spin state, and is related to quantumness as it is made
possible only by quantum superposition. As shown in [66], AC states often exhibit in
the Majorana representation (see Subsection 1.1.6) non-trivial point-group symmetries,
making them interesting both geometrically and physically.

It is known that, for pure states, any order of anticoherence can be attained provided
the spin number j is large enough [67]. However, determining which orders are attainable
for a given finite j remains an open problem. The first known examples of 2-AC and 3-AC
states appear at j = 2 and j = 3, respectively. To reach anticoherence of order 4 or 5,
a spin number of at least j = 6 is required. Numerical studies have further indicated
that the minimum spin number j needed to support a t-AC state scales approximately
as j ∝ t2, suggesting that the maximum attainable order of anticoherence is proportional
to the square root of the spin number j.

In this thesis, we refer to the known pure states that achieve the highest possible
order of anticoherence for a given spin j as Highest-Order Anticoherent Pure (HOAP)
states. For j = 2 and 3, the unique HOAP states (up to rotation) are 2-AC and 3-AC,
respectively, and are given in the spin basis by∣∣ψHOAP

t=2

〉
=

1

2

(
|2, 2⟩+ i

√
2 |2, 0⟩+ |2,−2⟩

)
and ∣∣ψHOAP

t=3

〉
=

1√
2
(|3, 2⟩+ |3,−2⟩) .

Anticoherent states are extremal examples of non-classicality and will play a key role in
our study of spin systems.

1.1.4.4 Maximally mixed state

When there is uncertainty about the actual quantum state |ψ⟩ of a system, due either to
imperfect state preparation or interaction with an environment, the system is no longer
described by a pure state but by a mixed state, represented by a density matrix

ρ =
∑
i

pi |ψi⟩ ⟨ψi|

where pi ≥ 0 and
∑

i pi = 1. The degree of mixedness can be quantified by the purity of
the state

R (ρ) = Tr
(
ρ2
)
.

A pure state |ψ⟩ satisfies R (|ψ⟩ ⟨ψ|) = 1, while the least pure state, called the Maximally
Mixed State (MMS), has minimal purity. The MMS and its purity are given by

ρ0 =
I
d
, R (ρ0) =

1

d
,
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where d is the dimension of the Hilbert space. Since the MMS contains no coherence or
entanglement, it is considered the most classical quantum state with the highest entropy.
For this reason, it often serves as a reference point in the analysis of non-classicality,
entanglement, and decoherence.

1.1.5 Multipolar operator basis

In order to study spin systems, it is often useful to represent their states in a basis that
reveals their angular structure and symmetries more naturally than the standard spin
basis {|j,m⟩}jm=−j. The spin tensor multipolar basis (MPB) provides precisely such a
framework.

For a spin-j system with Hilbert space H = C2j+1, the MPB is composed of irreducible
tensor operators {TL} of rank L = 0, 1, . . . , 2j. Each tensor TL contains 2L+1 elements
{TLM} where M = −L, . . . , L. They can be defined by the condition that the rank of a
given tensor TL is preserved under rotation as we have [68]

[Jz, TLM ] =MTLM and [J±, TLM ] =
√

(L∓ 1) (L±M + 1)TLM±1,

for all M = −L, . . . , L. The expansion of the multipolar tensor operators in the spin
basis gives

TLM =

j∑
m,m′=−j

(−1)j−M
√
2L+ 1

(
j L j

−m M m′

)
|j,m⟩ ⟨j,m′|

=

√
2L+ 1

2j + 1

L∑
m,m′=−L

Cjm′

jm,LM |j,m′⟩ ⟨j,m| (1.15)

where
(
j1 j2 j3
j4 j5 j6

)
is the 6j-symbol and CL3M3

L1M1,L2M2
are Clebsch-Gordan coefficients

[69]. Interestingly, the MPB forms an orthonormal basis of the set B (C2j+1) of bounded
linear operators acting on the spin Hilbert space C2j+1. These operators are in general
non-Hermitian, and satisfy the orthonormality relations [69, 70]

Tr
(
TLMT

†
L′M ′

)
= δLL′δMM ′ TLM = (−1)M T †

L−M . (1.16)

As a result, any spin state ρ can be expanded in the MPB as

ρ =

2j∑
L=0

L∑
M=−L

ρLMTLM ,

where the expansion coefficients ρLM = Tr
(
ρT †

LM

)
are called the state multipoles and,

due to the Hermiticity of ρ and to (1.16), these coefficients satisfy ρLM = (−1)M ρ∗L−M .
Physically, the multipolar expansion of a spin state is analogous to the multipolar

expansion in classical electrodynamics, where a charge distribution is described in terms
of monopole, dipole, quadrupole, and higher-order moments. Similarly, the MPB breaks
down a quantum spin state into components of increasing angular complexity. The lowest-
rank term, corresponding to L = 0, is proportional to the identity operator and captures



1.1. Spin systems and where to find them 21

the isotropic part of the state, playing a role similar to the classical monopole. The
rank-1 components are associated with the expectation value of the spin operator ⟨J⟩,
thus characterising the net orientation of the spin and serving as the quantum analogue
of the dipole moment. Rank-2 terms describe the anisotropy on the variances of the spin
operator J. Higher-rank components, with L > 2, encode subtler quantum features of
pure quantum states such as high-order correlations. These higher-rank components are
small for spin coherent states but become significant for non-classical states like spin cat
states or anticoherent states.

Moreover, the connection between the MPB and spherical harmonics becomes explicit
for spin coherent states. For a coherent state ρθφ = |θ, φ⟩ ⟨θ, φ|, we have [70]

Tr
(
ρθφT

†
LM

)
=

√
4π (2j)!√

(2j − L)! (2j + L+ 1)!
Y ∗
LM (θ, φ) , (1.17)

where the YLM ’s are spherical harmonics. As we shall see in Section 1.2, since coherent
states form an overcomplete basis of B (C2j+1), this expression gives a direct geometric
picture of the angular structure of a spin state in terms of spherical harmonics.

In Appendix 1.B, we show that, given a system of N qubits in a mixed symmetric
state ρ, the state ρt of the subsystem composed only of t qubits, i.e. the t-qubit reduced
state1, can be expressed in the MPB as

ρt =
t∑

L=0

L∑
M=−L

t!
N !

√
(N−L)!(N+L+1)!
(t−L)!(t+L+1)!

ρLMT
(t)
LM . (1.18)

It follows that the purity of a t-qubit reduced state is given by

R
(
ρ2t
)
=

t∑
L=0

L∑
M=−L

(t!)2

(N !)2
(N−L)!(N+L+1)!
(t−L)!(t+L+1)!

|ρLM |2 . (1.19)

1.1.6 Majorana representation

The Majorana representation provides a geometric way to visualise symmetric quantum
states of N qubits. In this framework, a symmetric state |ψ⟩ is represented by a set of N
points on the Bloch sphere, analogously to how single-qubit states are represented [71].
This construction relies on the fact that any symmetric N -qubit state can be written as
[72, 73]

|ψ⟩ = N
(

Np∑
k=1

∣∣Ωπk(1)

〉
⊗
∣∣Ωπk(2)

〉
⊗ · · · ⊗

∣∣Ωπk(N)

〉)
(1.20)

where each |Ωi⟩ = µi|0⟩ + νi|1⟩ is a single-qubit state and N is a normalisation factor.
Here, the sum is taken over all Np = (N + 1)! permutations πk ∈ SN+1 of the symmetric
group on N+1 elements. Each component |Ωi⟩ corresponds to a point on the Bloch sphere
defined by spherical coordinates Ωi = (θi, φi). Hence, the state |ψ⟩ can be represented
by a configuration of N such points, often referred to as the Majorana constellation.

To construct the Majorana representation explicitly, we analyse the expression

⟨D(N)
N |R−1 (Ω) |ψ⟩ (1.21)

1As the state ρ is symmetric under permutation of its subsystems, the different ways to partition the
system of N qubits all give the same reduced state of t qubits. Hence, we can talk about the unique
t-qubit reduced state ρt.
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where R (Ω) = Rz (φ)Ry (θ) is a collective rotation operator acting on all qubits. Since
the state is symmetric, this global rotation is equivalent to applying the same single-qubit
rotation r (Ω) to each qubit

R (Ω) =
N⊗
i=1

r (Ω) .

The key idea is that for each qubit state |Ωi⟩, there exists a rotation r−1 (Ωi) such that
r−1 (Ωi) |Ωi⟩ = |0⟩. If the state |ψ⟩ is expressed in the form of (1.20), then applying the
inverse rotation R−1 (Ωi) will align one of the Majorana points with the north pole of the
Bloch sphere. In this case, since

∣∣∣D(N)
N

〉
= |1, 1, . . . , 1⟩, the overlap with |ψ⟩ will vanish,

i.e. 〈
D

(N)
N

∣∣R−1 (Ωi)
∣∣ψ〉 = 0.

To identify the Majorana points Ωi, we thus search for the N directions at which this
overlap vanishes. Expanding |ψ⟩ in the Dicke basis

|ψ⟩ =
N∑
k=0

dk

∣∣∣D(k)
N

〉
we have 〈

D
(N)
N

∣∣R−1 (Ω)
∣∣ψ〉 =

N∑
k=0

dk

〈
D

(N)
N

∣∣R−1 (Ω)
∣∣D(k)

N

〉
=

N∑
k=0

dk

〈
D

(N)
N |Ry (−θi)Rz (−φi)|D(k)

N

〉
=

N∑
k=0

dk

〈
D

(N)
N |Ry (−θi)|D(k)

N

〉
eiφ(N/2−k)

The rotation matrix elements can be expressed using the Wigner D-matrix as〈
D

(N)
N |Ry (−θi)|D(k)

N

〉
= D

N/2
−N/2,N/2−k (θ, φ) e

iφ(N/2−k)

with the explicit form

D
N/2
−N/2,N/2−k = (−1)k

√
Ck
N sinN−k

(
θ

2

)
cosk

(
θ

2

)
.

Introducing the variable z = cot
(
θ
2

)
eiφ, the overlap becomes proportional to the following

Majorana polynomial of degree N
N∑
k=0

(−1)kdk

√
Ck
Nz

k.

The complex roots zi of this polynomial define the N Majorana points on the Bloch
sphere through the mapping

zi = cot

(
θi
2

)
eiφi . (1.22)

These roots fully determine the symmetric quantum state |ψ⟩, completing the Majorana
representation. From a geometrical perspective, the relation (1.22) corresponds to the
stereographic projection of the point (θi, φi) on the Bloch sphere, projected from the
North pole onto the complex plane C, as illustrated in Figure 1.4.
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Figure 1.4: Illustration of the stereographic projection used in the Majorana represen-
tation. Colored points on the sphere represent the Majorana points Ωi = (θi, φi), which
are projected onto the complex plane C via stereographic projection (1.22) from the
North pole (shown in black). The corresponding colored crosses on the plane indicate the
intersection points between the projection lines and the complex plane.

1.2 Non-classicality of spin systems

In classical and statistical physics, the phase-space formalism has provided deep insights
into the behavior of classical systems and offers a natural framework to visualise their dy-
namics. In this section, we present the extension of the phase-space concept to quantum
systems, with a particular focus on spin systems. We begin by outlining the desirable
properties of a quantum phase-space representation and then specialise our discussion
to the Stratonovich-Weyl correspondence, which provides a unifying framework for con-
structing a family of phase-space representations, including the Husimi, Wigner, and
Glauber-Sudarshan functions. The relevance of phase-space methods in this thesis lies in
their role as a foundation for defining and analysing the non-classicality of spin systems.
One of the central goals of this work is to investigate this non-classicality and explore its
connection to quantum entanglement.

1.2.1 From classical to quantum phase-space

To introduce the concept of phase-space for quantum spin systems, we begin by con-
sidering a particle in a 1-dimensional space, the simplest example of a physical system
with a well-defined phase-space. Despite its simplicity, this case will help us illustrate
some general and important features of quantum phase-space formulations. In classical
statistical physics, a particle in one-dimensional space is not described by a single posi-
tion x and momentum p, but rather by a probability distribution over phase-space. This
distribution is a positive-valued function fc : (x, p) → R+ such that the probability of
finding the system within a region [x1, x2]× [p1, p2] in phase space is given by

P (x1, x2, p1, p2) =

∫ x2

x1

∫ p2

p1

fc (x, p) dpdx.

If we are interested only in the position or momentum, we can define the marginal
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distributions over x and p by integrating out the momentum or the position, respectively

f (x) =

∫ ∞

−∞
fc(x, p)dp, f (p) =

∫ ∞

−∞
fc(x, p)dx

so that the probability of finding the particle in the position interval [x1, x2] or momentum
interval [p1, p2] is

P (x1, x2) =

∫ x2

x1

fX (x) dx, P (p1, p2) =

∫ p2

p1

fP (p) dp. (1.23)

More generally, the expectation value of any classical observable O (x, p) is given by [74]

⟨O⟩ =
∫ ∞

−∞

∫ ∞

−∞
O (x, p) fc (x, p) dpdx.

In quantum mechanics, we can also define marginal probability distributions over
position and momentum via the density operator ρ. Specifically, the probability densities
for measuring position x or momentum p are given by

fX (x) = ⟨x| ρ |x⟩ , fP (p) = ⟨p| ρ |p⟩

where |x⟩ and |p⟩ are eigenstate of the position and momentum operators, respectively.
However, these functions are not phase-space distributions in the true sense, as they
depend on only one of the phase-space variables, either x or p, but not both.

In analogy with classical statistical mechanics, we now seek to construct a function
fO : x → R that represents any operator O ∈ B (H), especially the density matrix
ρ, over a phase-space. This function should allow us to compute expectation values of
observables for a system in state ρ, without requiring direct access to the density matrix.
We consider here a general phase-space manifold M, whose geometry depends on the
underlying quantum system and whose point coordinates are denoted x. Several natural
conditions can be imposed on a phase-space function [75, 76]:

1. Informational-completeness: There exists a one-to-one correspondence O ↔
fO, such that any operator O ∈ B (H) can be uniquely reconstructed from its
phase-space representation. The mapping need not be linear in O, but it must be
invertible. In many standard formulations, the mapping is linear and defined via a
family of self-adjoint operators {∆(x)}x∈M such that

fO (x) = Tr (O∆(x)) , ∀x ∈ M.

However, linearity is not essential for a valid phase-space representation. In this
work, we allow for representations that may depend nonlinearly on the operator O,
and in particular on the density matrix ρ.

2. Expectation value computation: The phase-space function must allow for the
computation of expectation values. This is ensured if

Tr (O1O2) =

∫
M
fO1 (x) fO2 (x) dµ (x) ,
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where dµ (x) denotes the integration measure associated with the manifold, such
that for a state ρ ≡ O1 and an observable O ≡ O2,

⟨O⟩ = Tr (ρO) =

∫
M
fρ (x) fO (x) dµ (x) .

Setting O = I ensures proper normalisation of the state

Tr (ρ) =

∫
M
fρ (x) dµ (x) = 1.

3. Covariance under symmetry transformations: The phase-space function should
transform covariantly under the symmetries of the physical system. For a particle
in a one-dimensional space, this includes spatial and momentum translations. For
instance, a spatial translation x → x + a of any operator O (x), expressed in the
position basis, implies the corresponding shift in the phase-space function

O (x) → O (x+ a) ⇐⇒ fO (x, p) → fO (x+ a, p) .

4. Positivity: The phase-space function associated to a state ρ is real and positive-
valued, i.e. fρ (x) ≥ 0.

Historically, the existence of a phase-space probability distribution satisfying all of these
properties was met with skepticism. This is famously illustrated by a 1945 letter from
Dirac [77]:

I think it is obvious that there cannot be any distribution function which
would give correctly the mean value of any function depending on position and
momentum P.A.M. Dirac.

However, Wigner had already introduced such a function in 1932 [14], now known as the
Wigner function. It satisfies properties 1, 2 , and 3, but notably fails 4 as it can take
negative values for certain quantum states. Wigner later proved that no phase-space
function satisfying both informational completeness and expectation value consistency
can be everywhere positive for pure states. This result implies a fundamental trade-off.
One can construct phase-space functions that yield the correct expectation values, but
they necessarily take negative values in some regions of phase space. Or, it is possible
to define positive-valued phase-space functions, but these fail to reproduce the correct
expectation values. Since neither type of function behaves like a genuine classical proba-
bility distribution, they are referred to as quasiprobability distributions. The appearance
of negative values in such quasidistributions is widely recognised as a signature of the
non-classical nature of quantum states2. From these results, it becomes clear that no
single phase-space function can simultaneously satisfy all desirable properties. Each rep-
resentation entails trade-offs, and different phase-space functions offer distinct advantages
and disadvantages, depending on the specific application.

There are several advantages to studying a quantum system through its phase-space
representation. The most immediate is visualisation as phase-space representations are

2To avoid ambiguity with other manifestations of quantumness, such as entanglement, we will, in this
thesis, use the term non-classicality specifically to refer to the negativity of phase-space quasiprobability
distributions.
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real-valued and therefore more easily visualised and interpreted than complex-valued
wavefunctions or density matrices [78]. Additionally, phase-space representations are of
practical experimental relevance, as they allow for the reconstruction of the density matrix
via quantum tomography [79, 80, 81] and the detection of entanglement in quantum states
[82]. Due to their formal resemblance to classical phase space, phase-space formulations
have also attracted interest in the study of the quantum-to-classical transition, whether
through mathematical limiting procedures or the effects of decoherence [83]. Moreover,
when a quantum state is sufficiently close to the MMS, its phase-space representation can
become everywhere positive, allowing it to be interpreted as a genuine probability distri-
bution. In such cases, the time evolution of the phase-space representation of the state
may be classically simulable, typically through a Fokker-Planck equation and stochastic
simulations [84, 85, 86]. Finally, discrete phase-space functions, which will be discussed
later, have proven especially useful in quantum information theory, particularly in the
study of contextuality and Wigner function negativity [87, 88].

As a final note on general phase-space functions, we emphasise that phase-space for-
mulations constitute a complete and equivalent description of quantum mechanics, on
the same theoretical footing as Hilbert space or path-integral approaches [89, 90, 77].
Uniquely, they offer a real-valued formulation of quantum theory, representing quantum
systems entirely in terms of functions on classical-like phase-spaces.

1.2.2 Stratonovitch-Weyl phase-space representations of quan-
tum spin systems

Since an angular momentum system is invariant under rotations, it is natural to define
its phase-space manifold M = S2 as the surface of a sphere. Physically, this choice
is motivated by the fact that, in classical mechanics, an angular momentum system is
described by the probability that the angular momentum vector points in a given direction
Ω = (θ, φ). To establish a meaningful connection between classical and quantum spin
systems, it is therefore essential that their phase-space representations share the same
underlying manifold.

In this context, we focus on a family of phase-space representations
{
W(s)

ρ : s ∈ [−1, 1]
}

,
constructed through the Stratonovich-Weyl (SW) correspondence and parameterised by
a continuous parameter s ∈ [−1, 1]. This family includes the three most commonly used
quasiprobability functions, namely the Wigner function (s = 0), the Husimi Q function
(s = −1), and the Glauber-Sudarshan P function (s = 1). The latter is often simply
referred to as the P function, a convention we adopt throughout this thesis.

Within the SW formalism, one begins by selecting a reference self-adjoint operator
∆

(s)
0 ≡ ∆(s) (0, 0) associated with the “North pole” of the sphere (θ = 0, φ = 0) [91]. From

this reference operator, one constructs an operator-valued kernel function defined over
the sphere

∆(s) : (θ, φ) → ∆(s) (θ, φ) = R (θ, φ)∆
(s)
0 R† (θ, φ) (1.24)

where the rotation operator is given by R (θ, φ) = eiφJzeiθJy . The SW phase-space repre-
sentation of an operator O is then defined as

W(s)
O (θ, φ) = Tr

(
O∆(s) (θ, φ)

)
. (1.25)

Due to the hermiticity of the kernel ∆(θ, φ), this function is real-valued for any Hermitian
operator O, and in particular for any density matrix ρ ≡ O. Furthermore, the SW
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function transforms covariantly under rotations, a property inherited from the definition
of the kernel.

To ensure conditions 1 and 2, the kernel must satisfy a generalised traciality condition
[79, 92]

O =

∫
S2

W(s)
O (Ω)∆(−s) (Ω) dΩ (1.26)

where the kernel ∆(−s) (Ω) (associated with the dual parameter −s) acts as a resolution
of the operator space, and the function W(s)

O (Ω) serves as a set of expansion coefficients
for the operator O. This relation implies a closure condition, which holds provided the
kernel is normalised

Tr
[
∆(s) (Ω)

]
= 1, ∀s ∈ [−1, 1] .

However, note that this generalised traciality condition does not directly yield the ex-
pectation value of an operator from a single SW function (except for s = 0). Indeed, we
have

⟨O⟩ = Tr (ρO) =

∫
S2

W(s)
ρ (Ω)W(−s)

O (Ω) dΩ, (1.27)

such that both dual SW phase-space representations with parameters s and −s are nec-
essary.

All the conditions required of the SW kernel are satisfied if we choose as reference
operator the spin parity operator [79, 91]

∆
(s)
0 =

2j∑
L=0

√
2L+ 1

2j + 1

(
Cjj
jj,L0

)−s
TL0. (1.28)

The corresponding rotated kernel is then given by

∆(s) (θ, φ) = R (θ, φ)∆
(s)
0 R† (θ, φ) =

√
4π

2j + 1

2j∑
L=0

L∑
M=−L

(
Cjj
jj,L0

)−s
Y ∗
LM (θ, φ)TLM .

(1.29)
With this choice, the s-parameterised SW phase-space representation of a spin-j state ρ
takes the form

W(s)
ρ (θ, φ) =

√
4π

2j + 1

2j∑
L=0

L∑
M=−L

(
Cjj
jj,L0

)−s
YLM (θ, φ) ρLM (1.30)

where the ρLM = Tr
(
ρT †

LM

)
are the state multipoles.

The linearity of the relation (1.25) between the spin state ρ and the SW phase-space
representation W(s)

ρ imposes that the sum over L in (1.30) is restricted to L ≤ 2j. This
upper limit corresponds to the dimension of the spin-j Hilbert space and reflects the
fact that a density matrix contains exactly (2j + 1)2 independent degrees of freedom.
In Chapter 2, we will show how this restriction can be relaxed by assuming a nonlinear
correspondence between ρ and W(s)

ρ . This allows us to extend the expansion (1.30) and
construct more general phase-space functions.

To formalise this idea, we define the generalised SW phase-space representation as

W̃(s)
ρ (θ, φ) = W(s)

ρ (θ, φ) +
∞∑

L=2j+1

L∑
M=−L

x
(s)
LMYLM (θ, φ)



28 Chapter 1. Spin systems, phase space and entanglement

where the coefficients x(s)LM are complex-valued and may depend nonlinearly on the state
ρ. These coefficients must be chosen such that W̃(s)

ρ is real and covariant and that the
informational completeness is preserved, i.e.

ρ =

∫
S2

W̃(s)
ρ (Ω)∆(−s) (Ω) dΩ.

1.2.2.1 Wigner function

The Wigner function is the SW phase-space representation corresponding to s = 0, and
is given by

W(0)
ρ (θ, φ) =

√
4π

2j + 1

2j∑
L=0

L∑
M=−L

YLM (θ, φ) ρLM .

This shows that the Wigner function directly associates each spherical harmonic YLM
with the corresponding multipole ρLM of the state. A particular feature of the Wigner
function, due to the choice s = 0, is that it is the only element of the SW phase-
space representations family that allows the computation of expectation values without
requiring the dual kernel. From (1.27), one has

⟨O⟩ =
∫
S2

W(0)
ρ (Ω)W(0)

O (Ω) dΩ.

A direct consequence of this property is that for two orthogonal pure states |ψ1⟩ and |ψ2⟩,
we have

|⟨ψ1|ψ2⟩|2 =
∫
S2

W(0)
|ψ1⟩ (Ω)W

(0)
|ψ2⟩ (Ω) dΩ = 0.

This implies that the Wigner function of any pure state must take negative values. This
includes even spin coherent states, despite their semiclassical interpretation. In fact,
this negativity can be traced to the vanishing of the overlap between antipodal coherent
states (see (1.10)). Since all coherent states are related to each other by rotations, and
the Wigner function is covariant under SU(2), the existence of negative values for one
coherent state implies negativity for all. This behavior contrasts with the Wigner function
in infinite-dimensional systems (as in quantum optics), where Hudson’s theorem [93]
states that a pure state has a non-negative Wigner function if and only if it is Gaussian.
Thus, in that setting, coherent states have positive Wigner functions.

As negativity in phase-space representations is widely regarded as a signature of non-
classicality, it can be used to quantify the degree of quantumness of a state. One such
measure is the Wigner negativity volume [16] defined as

δ (ρ) =
1

2

(∫
S2

|Wρ (Ω)| dΩ− 1

)
≥ 0 (1.31)

which is invariant under SU(2) transformations and vanishes only when the Wigner func-
tion is positive everywhere. For spin systems, this quantity may vanish only when the
state ρ is sufficiently mixed. In Appendix 1.C, we show that the negativity of states with
an everywhere positive P function is upper bounded by the Wigner negativity of spin
coherent states.
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1.2.2.2 Husimi Q and Glauber-Sudarshan P functions

The Husimi and P functions correspond to the SW phase-space representations associated
with parameters s = −1 and s = 1, respectively. We have already encountered the P
function in the context of coherent states, where we showed that

ρ =

∫
S2

Pρ (Ω) |Ω⟩ ⟨Ω| dΩ.

Comparing this with the generalised traciality condition (1.26), it follows that the kernel
associated with the Husimi function is simply the projector onto coherent states

∆(−1) (θ, φ) = |θ, φ⟩ ⟨θ, φ| .

Consequently, the Husimi function of a spin state ρ is given by

W(−1)
ρ (θ, φ) ≡ Qρ (θ, φ) = ⟨θ, φ| ρ |θ, φ⟩ .

This function is everywhere positive and can be interpreted as the probability density of
obtaining the outcome |θ, φ⟩ in a projective measurement of the state ρ in the coherent
state basis. It therefore indicates the extent to which ρ is aligned with the direction
(θ, φ).

From the SW framework, the P function is defined as

Pρ (θ, φ) =

√
4π

2j + 1

2j∑
L=0

L∑
M=−L

(
Cjj
jj,L0

)−1
YLM (θ, φ) ρLM .

Due to the growth of the inverse Clebsch-Gordan coefficient
(
Cjj
jj,L0

)−1
with increasing

L, the P function amplifies higher-order L multipoles, making it highly sensitive to the
detailed structure of the quantum state. This sensitivity makes the P function especially
useful when analysing non-classical features of spin states, as it emphasises contributions
from high angular harmonics that are often associated with quantum correlations and
entanglement. In Appendix 1.D, we derive the analytical expression of the eigenvalues of
the kernel ∆(1) associated with the P function, which will prove useful in Chapter 2.

In Figure 1.5, we compare the Husimi, Wigner, and P functions for three repre-
sentative symmetric states of four qubits, namely the coherent state |θ = 0, φ = 0⟩, the
balanced Dicke state |D(2)

4 ⟩ and the GHZ state. For better readability, projections of
the half-spheres facing the xy-, yz- and zx-planes are also shown. We observe that the
Husimi function is strictly positive, while the Wigner function of the coherent state dis-
plays small regions of negativity. The coherent state is sharply peaked at the North pole
of the Bloch sphere, reflecting its classicality and well-defined mean spin direction. In
contrast, both the Dicke and GHZ states exhibit more delocalised distributions across the
sphere. In particular, the state |D(2)

4 ⟩ is spread uniformly along the equatorial line and
has a zero mean spin vector, ⟨J⟩ = 0, consistent with it being 1-AC. Such delocalisation
on the phase-space representation of pure states is often interpreted as a hallmark of
non-classicality, a concept that will be explored quantitatively in Chapter 3.

Finally, it is useful to note that the Husimi and Wigner functions can be seen as
Gaussian smoothings of the Wigner and P functions, respectively [91]. This smoothing
operation blurs out sharp features and suppresses extreme values. As a result, the pos-
itivity of the Husimi function can be understood as arising from the averaging of the
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Figure 1.5: Phase-space representations and projections of the half-sphere facing the xy-,
yz- and zx-planes of (from left to right) the coherent state |θ = 0, φ = 0⟩, the balanced
Dicke state |D(2)

4 ⟩ and the GHZ state for N = 4. From top to bottom, we have the
Husimi, Wigner and P functions.

Wigner function’s negative and positive regions. This behavior is illustrated in Figure
1.5, where the fine angular structures present in the P function, particularly the ripples
at the equator and at the South pole in the P representation of the coherent state, are
entirely suppressed in the Wigner and Husimi functions.

1.2.3 Discrete phase-space functions

As previously discussed, the SW kernel ∆(s) (Ω) form a basis of the linear operator space
B (H) via the generalised traciality condition (1.26). However, for a spin-j system, the
space L (C2j+1) of linear operators is (2j + 1)2-dimensional, so the continuous family{
∆(s) (Ω) : Ω ∈ [0, 2π]

}
constitutes an overcomplete operator basis. This motivates the

construction of a discrete set of spin operators that can also support phase-space repre-
sentations, similar in spirit to the SW formalism but defined on a finite grid.

Analogous to the rotation operators Rn (Ω) used to generate the SW kernel from
a reference operator ∆(s) (0), the discrete phase-space operators are generated using a
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unitary representation of the discrete Heisenberg-Weyl group [94, 95]

{Tpq : p, q = 0, 1, . . . , N} .

To define these operators for a system of N qubits restricted to the symmetric subspace,
we introduce generalised Pauli operators via their action on Dicke states

Z
∣∣∣D(k)

N

〉
= ωk

∣∣∣D(k)
N

〉
X
∣∣∣D(k)

N

〉
=
∣∣∣D(k+1 mod N+1)

N

〉
where ω = e2πi/d , where d = N + 1, is a primitive (N + 1)-th root of unity. Using these,
we define the displacement operators

Dpq = ω
(N+2)pq

2 ZpXq, with p, q = 0, 1, . . . , N.

The set {Dpq} forms a unitary operator basis for L
(
CN+1

)
.

Based on this construction, one defines a family of discrete phase-space representations
W(s)

ρ parameterised by s ∈ [−1, 1] [96]

W(s)
ρ (p, q) = Tr

(
ρ∆(s)

pq

)
(1.32)

where the kernel ∆(s)
pq , in order to be well-defined, must satisfy the following properties

analogous to those in the continuous SW formalism:

1. Hermiticity :
(
∆

(s)
pq

)†
= ∆

(s)
pq

2. Normalisation : Tr
(
∆

(s)
pq

)
= 1

3. Covariance : ∆
(s)
p−p′ mod N+1,q−q′ mod N+1 = Dp′q′∆

(s)
pq D†

p′q′

4. Traciality : Tr
(
∆

(s)
pq ∆

(−s)
p′q′

)
= Nδpp′δqq′ .

Here, the discrete Heisenberg-Weyl displacement operators Dpq take the place of rotation
operators in the covariance condition, establishing symmetry under phase-space trans-
lations. Each valid set of phase-point operators {∆pq : p, q = 0, 1, . . . , N}, satisfying the
properties above, yields a one-to-one correspondence between density operators ρ and
representations W(s)

ρ on a discrete (N + 1) × (N + 1) grid. This grid is made topologi-
cally compact by periodicity in both p and q (as implied by the covariance condition),
resulting in a discrete torus phase-space manifold.

A prominent example of such a function, for s = 0 and evenN , is the Wootters discrete
Wigner function, which is a natural generalisation of the continuous Wigner function to
finite-dimensional systems [23].

1.3 Entanglement of symmetric multiqubit states
Entanglement is a foundational concept in quantum physics, first introduced in 1935
through the seminal works of Einstein, Podolsky, and Rosen [1], and Schrödinger [97]. For
decades, it remained a subject of theoretical debate, particularly regarding its implications
for locality and realism. The development of Bell inequalities in 1964 [98], and their
subsequent experimental violation more than forty years ago [99, 100], provided decisive
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evidence against local hidden variable theories and confirmed the non-classical nature of
quantum correlations.

Today, despite ongoing discussions about the interpretation of quantum mechanics,
entanglement is widely recognised as a key resource driving the emerging field of quantum
technologies. It forms the backbone of the so-called second quantum revolution [101], en-
abling advances in quantum cryptography [102], quantum communications [8], quantum
sensing [103] and quantum computing [104]. A major goal of this thesis is to contribute
to the characterisation of entanglement, to investigate its relation with other properties
of quantum systems, and explore its potential for future applications.

1.3.1 Separable states

Separability of pure states. Consider a quantum system composed of N subsystems,
each of which can be a spin-j (with arbitrary j) or even an infinite-dimensional system,
such as a mode of the electromagnetic field. A pure state of this composite system is said
to be separable, i.e. not entangled, if it can be written as a tensor product [73]

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψN⟩ (1.33)

where each |ψi⟩ is the state of a single subsystem.
From this definition, it is clear that the state of each subsystem is well-defined. For

instance, the state of the first subsystem is |ψ1⟩ and although measurement outcomes on
|ψ1⟩ are inherently probabilistic, this state represents the most complete information one
can obtain about that subsystem (provided no hidden variables exist). Therefore, in a
separable state, the information about each subsystem is maximal. However, the state
(1.33) is not the most general form of a pure state in a composite system. Due to the
superposition principle, a consequence of the Hilbert space structure of quantum states,
a general pure state may be expressed as

|ψ⟩ =
n∑
i=1

ci

∣∣∣ψ(i)
1

〉
⊗
∣∣∣ψ(i)

2

〉
⊗ · · · ⊗

∣∣∣ψ(i)
N

〉
, ci ∈ C,

n∑
i=1

|ci|2 = 1 (1.34)

which reduces to (1.33) if n = 1. For n ≥ 2, the state of each individual subsystem is no
longer well-defined as it is not possible to assign a single pure state to any subsystem.
This property unambiguously signifies the non-local nature of the state (1.34), as the
global state |ψ⟩ is fully known even though the states of its subsystems are not. This is
in sharp contrast to classical systems, where the global state can always be retrieved from
the states of its parts. Due to this global property, the state (1.34) is said to be entangled
in the sense that its subsystems cannot be treated independently and are inherently
inseparable. To describe individual subsystems in such an entangled state, one must use
the partial trace operation. For example, the reduced state of the first subsystem is given
by

ρ1 = Tr¬1 (|ψ⟩ ⟨ψ|)
and the state of the two first subsystems is ρ12 = Tr¬12 (|ψ⟩ ⟨ψ|). Based on definition
(1.33), we now extend separability to mixed states.

Separability of mixed states. A N -partite mixed state ρ is separable if it can be
expressed as a convex sum of pure separable states, namely [105]

ρ =
∑
i

pi |Ωi⟩ ⟨Ωi|
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where each |Ωi⟩ is itself a separable pure state and the weights satisfy pi ≥ 0 and
∑

i pi =
1.

In practice, certifying the full separability of a multipartite quantum state is a chal-
lenging task. Therefore, it is often more feasible to examine whether the state is sepa-
rable with respect to a specific bipartition of the system. Consider an N -partite system
divided into two subsystems A and B, such that the total Hilbert space factorizes as
H = HA ⊗ HB. A pure state |ψ⟩ ∈ H is said to be separable with respect to the
bipartition A|B if it can be written as

|ψ⟩ = |ψA⟩ ⊗ |ψB⟩ ,

where |ψA⟩ ∈ HA and |ψB⟩ ∈ HB. However, even if a state is separable w.r.t. all
possible bipartitions, this does not imply that the state is separable. In the special
case of symmetric multiqubit systems, where the multiqubit states are constrained to
the symmetric subspace, all bipartitions into t and N − t qubits are equivalent under
qubit permutations. Thus, it suffices to consider bipartitions of the form t|N − t without
specifying which particular qubits belong to each subset.

Another important line of research in the characterisation of entanglement concerns
whether a given quantum state ρ can become entangled under some global unitary trans-
formation. Indeed, in a region surrounding the MMS, there exist mixed states that
remain separable under any global unitary. These are known as Absolutely Separable
(AS) states. This question is particularly relevant in practice, since global unitaries are
the types of operations typically accessible in laboratory settings. From the perspective
of entanglement resource theory, where entanglement is treated as a resource, AS states
are considered free states. Nevertheless, a complete characterisation of the set of AS
states remains an open problem in quantum information theory.

Absolute Separability. A state ρ is said to be AS if UρU † is separable for all
U ∈ U (H), where U (H) is the set of unitary operator defined on the Hilbert space H
[106].

The set of states
{
UρU †, U ∈ U (H)

}
, known as the unitary orbit of ρ, consists of all

states unitarily connected to ρ, and all such states share the same eigenvalue spectrum.
Conversely, any two states with the same spectrum belong to the same unitary orbit.
That is, the unitary orbit of ρ is uniquely determined by its eigenvalues, and vice versa.
Hence, the absolute separability problem is sometimes rephrased as the separability by
spectrum problem [107] since conditions for absolute separability are frequently expressed
in terms of the eigenvalues shared in a same unitary orbit.

Obviously, a pure state ρ = |ψ⟩ ⟨ψ| can always be entangled via an appropriate global
unitary transformation. Hence, the characterisation of AS states focuses on mixed states
that remain separable under all unitaries. A foundational result in this area is the exact
characterisation of the maximal ball of absolutely separable states centered on the MMS
for bipartite systems [108]. Moreover, for qubit-qudit systems of dimension 2 × d, it is
known that a state ρ is absolutely separable if and only if [107]

λ1 − λ2d−1 −
√
λ2d−2λ2d ≤ 0

where the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λ2d of ρ are sorted in decreasing order. However,
the exact characterisation of the sets of AS states in general multipartite systems is still
an open problem. In Chapter 2, we will be interested in extending the characterisation
of the set of AS states of multiqubit systems in the symmetric subspace.
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1.3.2 Entanglement criteria and entanglement measures

Several criteria have been proposed in the literature to determine whether a given quan-
tum state is entangled or not [109, 110]. However, none of these criteria is entirely
satisfactory. They are typically either only necessary or only sufficient, or they are im-
practical, that is, difficult to compute or verify experimentally. As a result, the problem of
identifying a practical necessary and sufficient criterion for certifying separability, known
as the separability problem, remains open.

Conversely, when a state is known to be entangled, various entanglement measures
have been introduced to quantify the degree of entanglement it exhibits. In what follows,
we focus on the entanglement criteria and measures that will be used in the subsequent
chapters.

1.3.2.1 Entanglement criteria

One of the most widely used bipartite entanglement criteria, due to its simplicity and
ease of computation, is based on the positivity of the partial transpose (PPT).

Proposition. If a state ρ is separable w.r.t. bipartition t|N− t, then its partial transpose
ρTt is positive semi-definite [6, 7].

Consequently, if a state is not PPT, meaning that its partial transpose has negative
eigenvalues, under a given bipartition, then it is entangled w.r.t. that bipartition. In the
special cases of pure states, and of mixed states in 2 × 2 or 2 × 3 dimensional systems,
the PPT criterion is both necessary and sufficient for entanglement.

In the particular case of symmetric states, several others entanglement criteria (re-
alignement criterion, spin-squeezing criterion,...) have been shown to be equivalent to the
PPT criterion [111, 112]. Furthermore, symmetric N -qubit states are either genuinely
entangled, i.e. entangled across any bipartition, or fully separable [113]. This implies
that if a symmetric N -qubit state has zero negativity with respect to a given biparti-
tion t|N − t, but non-zero with respect to some other bipartition, the state is genuinely
entangled and, in particular, still entangled across the t|N − t bipartition, despite the
vanishing negativity.

A separability criterion based on the P function of symmetric multiqubit states will
prove useful in the following chapters.

Proposition. A symmetric multiqubit state ρ is separable if and only if there exists an
everywhere positive P function Pρ, that is [114]

Pρ (Ω) ≥ 0, ∀Ω ∈ S2 and ρ =

∫
S2

Pρ (Ω) |Ω⟩ ⟨Ω| dΩ.

This characterisation is intuitive since any coherent state |Ω⟩ is separable (see (1.9)).
Hence, any state ρ that can be expressed as a convex sum of such states is also separable.
While this criterion provides a necessary and sufficient condition for separability in the
symmetric subspace, its main drawback is that explicitly constructing the corresponding
positive P function for a given separable state ρ can be challenging. This is illustrated in
Figure 1.5, where even for the coherent state |j, j⟩, the associated P function takes nega-
tive values for certain polar angles θ, highlighting that not all P functions are everywhere
positive even for separable states.
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1.3.2.2 Entanglement measures

To quantify the degree of entanglement of a quantum state, one introduces entanglement
measures.

Given a quantum system described by a Hilbert space H, an entanglement measure
E is a mapping from density matrices into positive real numbers. There is not a com-
pletely unified definition of a good entanglement measure but it is generally admitted
that entanglement measures must satisfy, at least, the two following conditions [115, 4].

• Vanishing on separable states: E (ρsep) = 0 if the state ρsep is separable.

• Monotonicity under LOCC: Entanglement cannot increase under Local Oper-
ations and Classical Communications (LOCC).

Many more conditions can be imposed on an entanglement measure, such as normal-
isation, asymptotic continuity, additivity,... (see [4, 115]). An additional condition
which is satisfied by numerous entanglement measures, including those we will use in
this manuscript, is convexity. That is, for a convex combination of states ρi with weights
pi, we have

E

(∑
i

piρi

)
≤
∑
i

piE (ρi) .

Based on the PPT criterion, a widely used entanglement measure is the negativity of
the partial transpose, often simply referred to as the negativity [116].

Entanglement negativity. For a given bipartition t|N − t of an N -qubit system in
a symmetric state ρ, the negativity Nt (ρ) is defined as the sum of the modulus of the
negative eigenvalues of the partial transpose ρTt , i.e.

Nt (ρ) =
t+1∑
i=1

|λi| − λi
2

, (1.35)

where the λi’s are the eigenvalues of ρTt . An important result is that a pure state is
separable w.r.t. a given bipartition if and only if its negativity w.r.t. this bipartition is
zero [7].

In the case of a pure state ρ = |ψ⟩ ⟨ψ|, the eigenvalues of ρTt can be related to
the eigenvalues λi of the reduced state ρt of |ψ⟩, which are equivalent to the Schmidt
coefficients

√
λi of |ψ⟩. In this case, the negativity can be expressed as [117]

Nt (|ψ⟩) =
t+1∑
i>j=1

√
λiλj. (1.36)

From this expression, one can see that the negativity is maximal when the reduced state
ρt is the MMS, i.e., when all λi = 1/(t + 1). In that case, the negativity reaches its
maximal value [36]

Nt (|ψ⟩) =
t

2
.

For GHZ states, the t-qubit reduced states read ρt = diag (1/2, 0, ..., 0, 1/2) and the
negativity is equal to 1/2 for any bipartition. For Dicke states, the Schmidt decomposition
[73]

|D(k)
N ⟩ =

k∑
ℓ=0

√√√√(tℓ)(N−t
k−ℓ

)(
N
k

) |D(ℓ)
t ⟩ ⊗ |D(k−ℓ)

N−t ⟩
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Figure 1.6: Entanglement negativity N with respect to the balanced bipartition
⌊N/2⌋|⌈N/2⌉ of several families of pure states as a function of the number of qubits.
We have N ≈ 0.231N for HOAP states (blue circles), N ≈ −0.469 + 0.625
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allows us to calculate the negativity across any bipartition t|N − t through

N
(
|D(k)

N ⟩
)
=
(
N
k

) t∑
i=0

i−1∑
j=0

√(
t
i

)(
N−t
k−i

)(
t
j

)(
N−t
k−j

)
.

In particular, we get for W states

N (|W ⟩) =
√
(N − t) t

N
.

As already stated, the maximal negativity of pure states Nmax = t/2 is reached when all
eigenvalues λi are equal to 1/(t + 1). For an equal bipartition ⌊N/2⌋|⌈N/2⌉, the bound
is equal to N/4 and thus scales linearly with the number of qubits. Figure 1.6 shows the
negativity with respect to a balanced bipartition for several families of states as a function
of the number of qubits. We observe that for the HOAP states found numerically in [118,
119], we observe a linear scaling of the negativity with N , but with a prefactor of 0.231
slightly smaller than the prefactor 1/4 of the upper bound.

Another entanglement measure is the geometric measure of entanglement (GME)
which quantifies the minimal distance between a pure state |ψ⟩ and the set of separable
states S. Intuitively, it is expected that a state which is far from S should be strongly
entangled.

Geometric Measure of Entanglement Given an N -qubit pure state |Ψ⟩, defined
over the full Hilbert space C2N , its GME is defined as [120]

EG (|Ψ⟩) = 1− max
{|ϕi⟩}Ni=1

|⟨ϕ1 ⊗ ϕ2 · · · ⊗ ϕN |ψ⟩|2 , (1.37)

where the maximisation is performed over the N single-qubit states |ϕi⟩. The GME
satisfies EG (|Ψ⟩) ≤ 1 and vanishes if and only if |Ψ⟩ is separable. While the GME is a
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genuine measure of multipartite entanglement, meaning that it vanishes only if the state
is fully separable, it is generally difficult to compute. In Chapter 3, we explain a method
based on machine learning to estimate the GME without full state tomography.

For symmetric multiqubit states, the maximisation appearing in (1.37) can be replaced
by the simpler maximisation where all single-qubit states |ϕi⟩ are identical, i.e.

EG (|ψ⟩) = 1−max
|ϕ⟩

|⟨ϕ⊗ ϕ · · · ⊗ ϕ|ψ⟩|2

This is allowed by the fact that the closest separable state of a symmetric multiqubit state
is also symmetric [121]. A (not tight) upper bound on the GME of N -qubit symmetric
states is given by [122]

EG (|ψ⟩) ⩽ 1− 1

N + 1
. (1.38)

Given an entanglement measure E defined on pure states, one can naturally extend
it to mixed states via the convex-roof construction.

Convex-roof extension. Given an entanglement measure E defined on pure states,
its convex-roof extension defined on mixed states is given by

E (ρ) = min
{pi,|ψi⟩}

∑
i

piE (|ψi⟩)

where the minimum is taken over all possible pure state decompositions ρ =
∑

i pi |ψi⟩ ⟨ψi|.
In particular, the negativity of pure states can be extended through the convex roof

extension of negativity [123]

NCR
t (ρ) = min

{pi,|ψi⟩}

∑
i

piNt (|ψi⟩) .

In contrast to the (ordinary) negativity of mixed states, it vanishes if and only if the
state is separable w.r.t. the bipartition t|N − t. Similarly, the GME can be generalised
to mixed states based on the convex roof construction

EG (ρ) = min
{pi,|ψi⟩}

∑
i

piEG (|ψi⟩) . (1.39)

In [124], it was shown that this definition is equivalent to another definition based on the
distance of ρ to the convex set S of separable mixed states

EG(ρ) = 1− max
σsep∈S

F (ρ, σsep) (1.40)

where

F (ρ, σ) = Tr

(√√
ρσ

√
ρ

)2

(1.41)

is the Uhlmann fidelity between any two mixed states ρ and σ.
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1.A Rotational control of atomic spin systems

Spin systems appearing in atomic physics can originate either from multilevel structures
defined by the (hyper)fine interaction in a single atom or from collective spins, such as an
ensemble of atomic qubits in a gas or in a Bose-Einstein condensate (see e.g. [125]). In all
such cases, the spin is associated with a magnetic moment given by m = −γJ where γ is
a proportionality constant (the gyromagnetic ratio) that depends on the specific physical
implementation of the spin system. When an external magnetic field B is applied, the
spin experiences a Zeeman interaction described by the Hamiltonian

H = −m ·B.

To define a quantisation axis, a static magnetic field is usually applied along the z-axis
B0 = B0ez. This leads to a Hamiltonian of the form

H0 = γB0Jz = ω0Jz (1.42)

where ω0 = γB0 is the Larmor frequency. This field plays two key roles. First, the
eigenstates |j,m⟩ of the spin operators Jz and J2 acquire different energies due to their
magnetic quantum number m, since ⟨j,m| Jz |j,m⟩ = m. This lifts any degeneracy
between the |j,m⟩ levels, helping to suppress unwanted transitions due to environmental
noise and enabling specific control on the spin state.

Secondly, since the magnetic field B0 is constant, the spin state evolves according to

|ψ (t)⟩ = e−iH0t |ψ (0)⟩ = e−iγB0Jzt |ψ (0)⟩ , (1.43)

The evolution (1.43) is exactly of the form of a rotation around the z-axis (see Subsection
1.1.2). Hence, a magnetic field induces a rotation on an atomic spin state around the
axis of the magnetic field.

However, this static Hamiltonian H0 does not allow arbitrary control over the spin
direction. To implement general spin rotations, e.g. around the x- or y-axis, it is necessary
to apply a time-dependent magnetic field [126]. For instance, a rotation around the x-axis
can be achieved by applying a magnetic field rotating in the xy-plane at frequency ω

B1 = B1 (cos (ωt) ex + sin (ωt) ey) .

This gives rise to a Hamiltonian in the lab frame

H = ω0Jz + ω1 (cos (ωt) Jx + sin (ωt) Jy)

where ω1 = γB1 is the Rabi frequency. To understand the effect of this time-dependent
drive, we move into the rotating frame w.r.t. the static magnetic field. In this frame,
spin operators transform as

U †
z (ωt) JxUz (ωt) = cos (ωt) Jx−sin (ωt) Jy U †

z (ωt) JyUz (ωt) = cos (ωt) Jy+sin (ωt) Jx,

where Uz (ωt) = e−iωJzt. Applying this transformation to the Hamiltonian, the effective
Hamiltonian in the rotating frame becomes

H̃ = (ω0 − ω) Jz + ω1Jx.
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On resonance, that is, when the drive frequency matches the Larmor frequency ω = ω0,
the first term vanishes, and we are left with a time-independent Hamiltonian

H̃ = ω1Jx

which generates a pure rotation about the x-axis in the rotating frame. This is the
foundation of coherent control in atomic spin systems, a static magnetic field defines the
quantisation axis and lifts degeneracies, while an oscillating transverse field resonantly
drives transitions and implements arbitrary rotations.

1.B Partial trace in the MPB
In this Appendix, we show that if ρ is an N -qubit symmetric state, with expansion in
the MPB given by

ρ =
N∑
L=0

L∑
M=−L

ρLMT
(N)
LM , (1.44)

then its t-qubit reduction ρt ≡ Tr¬t (ρ) is given by

ρt =
t∑

L=0

L∑
M=−L

t!
N !

√
(N−L)!(N+L+1)!
(t−L)!(t+L+1)!

ρLMT
(t)
LM (1.45)

where, for clarity, we have added a superscript to the multipolar operators indicating the
number of qubits. Using the coherent spin states basis, the multipole operators read [127]

T
(N)
LM = N+1

4π
α
(N)
L

∫
S2

YLM(Ω)|Ω⟩⟨Ω|dΩ, (1.46)

with
α
(N)
L = 2

√
π

√
(N−L)!(N+L+1)!

(N+1)!
.

In the coherent state representation, the partial trace is readily performed because the
partial trace of |Ω⟩ ⟨Ω| over any set of N − t qubits is trivially

∣∣Ω(t)
〉 〈

Ω(t)
∣∣, where we

use the superscript (t) to specify the number of qubits. Thus, the partial trace of (1.46)
yields

Tr¬t

[
T

(N)
LM

]
= N+1

4π
α
(N)
L

∫
S2

YLM (Ω)
∣∣Ω(t)

〉 〈
Ω(t)
∣∣ dΩ

or, upon comparison with (1.46) where N has been replaced by t,

Tr¬t

[
T

(N)
LM

]
=

 N+1
t+1

α
(t)
L

α
(N)
L

T
(t)
LM L ⩽ t,

0 L > t.
(1.47)

Equation (1.47) for L > t holds true because the integral∫
S2

YLM (Ω)
∣∣Ω(t)

〉 〈
Ω(t)
∣∣ dΩ

vanishes for L > t, as can be seen by substituting (1.17) for (|Ω⟩ ⟨Ω|)⊗t and using the
orthogonality of spherical harmonics. In (1.47), the prefactor of T (t)

LM can also be written
as

N+1
t+1

α
(t)
L

α
(N)
L

= t!
N !

√
(N−L)!(N+L+1)!
(t−L)!(t+L+1)!

. (1.48)

In the end, by linearity of the partial trace, using (1.44), (1.47) and (1.48), we get (1.45).
A similar result was obtained in [128] by a different method.
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1.C Bound on Wigner negativity volume
We show here that the Wigner negativity volume (1.31) of states with an everywhere
positive P function, denoted hereafter by ρP⩾0, is upper bounded by the Wigner negativity
volume of spin coherent states. Indeed, such states can always be represented as a mixture
of coherent states

ρP⩾0 =
∑
i

pi |Ωi⟩ ⟨Ωi|

with pi ⩾ 0 and
∑

i pi = 1. Their Wigner negativity volume can then be upper bounded
as follows

δ (ρP⩾0) =
1

2

(∫
S2

∣∣WρP⩾0
(Ω′)

∣∣ dΩ′ − 1

)
=

1

2

∫
S2

∣∣∣∣∣∑
i

piW|Ωi⟩ (Ω
′)

∣∣∣∣∣ dΩ′ − 1

2

⩽
∑
i

pi︸ ︷︷ ︸
=1

(
1

2

∫
S2

∣∣W|Ωi⟩ (Ω
′)
∣∣ dΩ′

)
︸ ︷︷ ︸

=δ(|Ω⟩)+ 1
2

−1

2
= δ (|Ω⟩)

where δ (|Ω⟩) is the Wigner negativity volume of a spin coherent state. Since it has been
observed that such Wigner negativity volume decreases with j [129], the same is true for
states with positive P function.

1.D Eigendecomposition of the P function kernel
Here we derive the eigendecomposition of the Stratonovitch-Weyl kernel for the P func-
tion. We start with the expression of the SW reference kernel (1.28), with s = 1

∆
(1)
0 =

2j∑
L=0

√
2L+ 1

2j + 1

TL0

Cjj
jjL0

=

j∑
m=−j

[
(−1)j−m√
2j + 1

2j∑
L=0

√
2L+ 1CL0

jmj−m

Cjj
jjL0

]
|j,m⟩ ⟨j,m|

=

j∑
m=−j

∆j+m |j,m⟩ ⟨j,m|

where we used (1.15) for the multipole operators. The kernel operators ∆(1) are covariant
under rotations [130], i.e.

R(Ω)∆
(1)
0 R†(Ω) = ∆(1)(Ω).

Therefore, the eigenvectors of ∆(1) (Ω) are the standard spin eigenstates over the quanti-
sation axis in the direction Ω, |j,m; Ω⟩ = R(Ω) |j,m⟩. On the other hand, the eigenvalues
∆j+m can be rewritten as

∆j+m =

2j∑
L=0

(−1)j−m

(2j + 1)!
CL0
jm,j−m ×

√
(2L+ 1)(2j − L)!(2j + L+ 1)! (1.49)

by using the identity [69]

Cjj
jjL0 = (2j)!

√
2j + 1

(2j − L)!(2j + L+ 1)!
.
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In order to evaluate the sum in (1.49), our strategy is to write a polynomial whose
coefficients are proportional to the ∆j+m eigenvalues deduced above. We start with a
generating function of the Clebsch-Gordan coefficients in terms of the Legendre polyno-
mials, given through the hypergeometric function 2F1(a1, a2; b1; t) (see (5), p. 263 of [69]
or [131], and (4), pp. 976 and 1005 of [132])√

2L+ 1

(2j − L)!(2j + L+ 1)!
(t− 1)2jPL

(
t+ 1

t− 1

)
=

√
2L+ 1

(2j − L)!(2j + L+ 1)!
(1.50)

×(t− 1)2j−L2F1(−L, −L; 1; t)

=
1

(2j)!

j∑
m=−j

(
2j

j +m

)
CL0
jm, j−mt

j+m.

We now multiply (1.50) by the necessary factors and sum over L to bring out the eigen-
values ∆j+m

(t− 1)2j
2j∑
L=0

(
2L+ 1

2j + 1

)
PL

(
t+ 1

t− 1

)
=

j∑
m=−j

(
2j

j +m

)
(−1)−j+m∆j+mt

j+m

=

2j∑
k=0

(
2j

k

)
(−1)−2j+k∆kt

k. (1.51)

Now, we can rewrite the left hand-side of (1.51) as
2j∑
L=0

(
2L+ 1

2j + 1

)
PL

(
t+ 1

t− 1

)
=
t− 1

2

[
P2j+1

(
t+ 1

t− 1

)
− P2j

(
t+ 1

t− 1

)]
,

where we used the Christoffel’s identity (see (1), p. 986 of [132]) with x = t+1
t−1

, y = 1 and
n = 2j, that is

n∑
k=0

(
2k + 1

n+ 1

)
Pk(x)Pk(y) =

Pn+1(x)Pn(y)− Pn(x)Pn+1(y)

x− y
.

Lastly, we use the power expansion of the Legendre polynomials [132]

(t− 1)LPL

(
t+ 1

t− 1

)
=

L∑
a=0

(
L

a

)2

ta (1.52)

to get

(t− 1)2j
2j∑
L=0

(
2L+ 1

2j + 1

)
PL

(
t+ 1

t− 1

)
=

1

2

[
2j+1∑
k=0

(
2j + 1

k

)2

tk − (t− 1)

2j∑
k=0

(
2j

k

)2

tk

]

= 1 +

2j∑
k=1

[(
2j + 1

k

)2

+

(
2j

k

)2

−
(

2j

k − 1

)2
]
tk

2

=

2j∑
k=0

(
2j

k

)(
2j + 1

k

)
tk. (1.53)

By comparing (1.51) and (1.53), we deduce that

∆k = (−1)2j−k
(
2j + 1

k

)
, ∀k = 0, . . . , 2j.



42 Chapter 1. Spin systems, phase space and entanglement



Chapter 2

Absolute positivity of phase-space
functions

The study of quantum multipartite mixed states naturally raises the question of the
maximal entanglement achievable under arbitrary unitary evolution. Since interactions
with the environment can reduce state purity, the maximal attainable entanglement is
expected to diminish, eventually reaching a point where no entanglement can be generated
unitarily. This observation has led to the concept of absolute separability, a property
characterising mixed states that remain separable under any unitary transformation.
Equivalently, as a unitary evolution can be associated to a change of basis, these states
are separable in every possible basis of the full Hilbert space.

For N qubits in symmetric states, or equivalently a spin-j system with j = N/2,
recent work has focused on characterising the non-trivial set of symmetric absolutely
separable (SAS) states [11, 12, 133]. Notably, SAS states have been identified as forming
balls centered on the maximally mixed state. Inspired by this research on entanglement,
we investigate another measure of non-classicality given by the presence of negativity in
the phase-space representations of finite-dimensional systems.

In this chapter, we provide a complete characterisation of the degree of negativity
in SW phase-space representations for mixed states with a fixed spectrum. We define a
spin-j state as Absolutely Stratonovitch-Weyl Bounded (ASB) if its SW function W(s)

ρ

remains above a certain bound under all symmetry-preserving unitaries U ∈ SU(2j + 1).
For a system of N = 2j qubits, these unitaries correspond to the most general evolution
within the symmetric subspace, preserving the state’s spectrum. Of particular interest
are Absolutely Stratonovitch-Weyl Positive (ASP) states, those whose SW representations
remain non-negative under any SU(2j + 1) transformation. These states serve as phase-
space analogs of multiqubit SAS states. We focus on two key SW representations, namely
the Wigner and P functions, which are known to exhibit negativity. Specifically, we
characterise the sets of Absolutely Wigner Positive (AWP) and Absolutely P Positive
(APP) states. A list of abbreviations is given in Table 2.1.

Our first objective is to derive conditions ensuring that the minimal value of an SW
representation within the unitary orbit

{
UρU †, U ∈ SU(2j + 1)

}
of a state ρ is bounded

by some value Wmin. That is, for a fixed parameter s, we seek conditions under which

min
Ω∈S2

U∈SU(2j+1)

W(s)

UρU† (Ω) ≥ Wmin,

43
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where W(s)
ρ is a SW function uniquely defined for each ρ as

W(s)
ρ (Ω) =

√
4π

2j + 1

2j∑
L=0

(
Cjj
jjL0

)−s L∑
M=−L

ρLMYLM(Ω). (2.1)

Since all states in a unitary orbit share the same eigenvalues λ = {λi, i = 1, 2, . . . , N + 1},
we expect ASB conditions to be expressible purely in terms of λ, allowing for a geometric
representation in the eigenvalue simplex.

Beyond theoretical interest, characterising states with non-negative phase-space repre-
sentations has practical implications. A positive phase-space function can be interpreted
as a genuine probability distribution, enabling efficient classical simulations. Recent work
has leveraged the Wigner function to classicaly simulate large spin-system dynamics effi-
ciently under certain conditions, such as dephasing, using stochastic trajectories [85, 86].
Similarly, discrete Wigner functions (e.g., Wootters function [23]) have been linked to
classical simulability: pure states in odd dimensions with everywhere-positive Wootters
functions admit efficient classical representations [134, 135]. Notably, stabilizer states,
central to the Gottesman-Knill theorem, are classically simulable precisely because their
discrete Wigner functions are non-negative [136, 137]. Conversely, negativity in discrete
Wigner functions has been tied to quantum contextuality and computational advantage
[87, 138–142]. Resource theories further suggest that greater negativity correlates with
stronger non-classicality [143, 144]. Thus, characterising absolutely positive states refines
our understanding of the boundary between classical and quantum computation.

As explained in Chapter 1, the most general continuous phase-space representation of
a spin state ρ takes the form

W̃(s)
ρ = W(s)

ρ (Ω) +
+∞∑

L=2j+1

L∑
M=−L

xLMYLM (Ω) , (2.2)

where the xLM are complex numbers. The W̃(s)
ρ function of a state is not unique because

the variables xLM can be any complex number provided that (2.2) is real, covariant
under rotations and preserve the informational completeness. Our second objective is to
extend SW representations, particularly the P function, to refine the characterisation of
SAS states. By optimising the xLM , we enlarge the set of APP states, which, due to
the role of the P function in decomposing states into separable coherent states, directly
correspond to SAS states.

The present chapter is structured in two parts. In the first part, we explore the
ASB conditions based on the SW function W(s)

ρ (2.1). This will allow us to find a
linear necessary and sufficient condition for states to be ASB for a given bound Wmin

which geometrically takes the form of ASB polytopes. A characterisation of these ASB
polytopes is given in Section 2.2 for the Wigner and P functions. In this same section,
we also explore the comparison between the sets of AWP and APP states with the set of
SAS states.

In the second part of the chapter, we explore conditions for states to be SAS with the
help of the extended phase-space representation (2.2) and more particularly for the P
function. This allows us to extend the sets of SAS states compared to known results and
to define non-linear conditions for a state to be SAS. While we focus on the P function
in this part of the chapter, all our results can be straightforwardly extended to other
phase-space representations and to different bounds Wmin.
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Abbreviations Conditions

Absolutely Stratonovitch-Weyl Bounded (ASB) W(s)

UρU† (Ω) ≥ Wmin,

∀Ω ∈ S2 andU ∈ SU(2j + 1)

Absolutely Stratonovitch-Weyl Positive (ASP) W(s)

UρU† (Ω) ≥ 0,

∀Ω ∈ S2 andU ∈ SU(2j + 1)

Absolutely Wigner Positive (AWP) W̃(0)

UρU† (Ω) ≥ 0,

∀Ω ∈ S2 andU ∈ SU(2j + 1)

Absolutely P Positive (APP) W̃(1)

UρU† (Ω) ≥ 0,

∀Ω ∈ S2 andU ∈ SU(2j + 1)

Table 2.1: Index of abbreviations and the related condition on the phase-space represen-
tations of the state. Note that the ASB and ASP conditions and the AWP and APP
conditions apply on the SW and generalised phase-space representations, respectively.

2.1 Polytopes of absolutely Stratonovitch bounded states
In this section, for given parameter s and bound Wmin, we prove that the set of ASB
states based on the SW function (2.1) form a polytope in the simplex of state spectra
and we fully characterise this polytope. We also determine a necessary and sufficient
condition for a state to be inside the ASB polytope based on a majorisation criterion and
relate our results to discrete phase-space representations such as the Wootters function.
These results offer a strong characterisation of the classicality of mixed spin states.

2.1.1 ASB states set

For a given parameter s, the SW phase-space representation of a state ρ is given by (see
Chapter 1)

W(s)
ρ (Ω) = Tr

(
ρ∆(s) (Ω)

)
where ∆(s) is the associated kernel of W(s) (Ω). The following proposition gives a complete
characterisation of the set of ASB states based on the SW functions and is valid for any
spin quantum number j.

Theorem. Let ∆(s)↑ =
(
∆

(s)↑
0 ,∆

(s)↑
1 , . . . ,∆

(s)↑
N

)
denote the vector of kernel eigenvalues

sorted in increasing order, and let

Wmin ∈
[
∆

(s)↑
0 , 1

2j+1

]
. (2.3)

Then a spin state ρ has in its unitary orbit only states whose SW function satisfies
W(s)

ρ (Ω) ≥ Wmin for all Ω ∈ S2 if and only if its decreasingly ordered eigenvalues λ↓

satisfy the following inequality

2j∑
i=0

λ↓i∆
(s)↑
i ≥ Wmin. (2.4)
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For Wmin = 0, this proposition provides a complete characterisation of the set of ASP
states. We note that a similar proposition was expressed for the Wigner function with
Wmin = 0 in [145, 146].

Proof. Consider a general spin state ρ. We are first looking for a necessary condition for
any element UρU † of the unitary orbit of ρ to have a SW function W(s)

UρU† (Ω) ≥ Wmin at
any point Ω ∈ S2. Since the unitary transformation applied to ρ may correspond, in a
particular case, to an SU(2) rotation, the value of the SW function of ρ at any point Ω
corresponds to the value of the SW function at Ω = 0 of an element in its unitary orbit
(the rotated version of ρ). But since we are considering the full unitary orbit, i.e. all
possible U ’s, we can set the SW function argument to Ω = 0. The state ρ can always
be diagonalised by a unitary matrix M , i.e. MρM † = Λ with Λ = diag (λ0, ..., λ2j) a
diagonal positive semi-definite matrix. The SW function at Ω = 0 of UρU † is then given
by

W(s)

UρU†(0) = Tr
[
UρU †∆(s)(0)

]
= Tr

[
UM †ΛMU †∆(s)(0)

]
.

By defining the unitary matrix V = UM † and calculating the trace in the Dicke basis,
we obtain (where we drop the SW function argument in the following)

W(s)

UρU†(0) = Tr
[
V ΛV †∆(s)(0)

]
=

2j∑
p,q,k,l=0

VpqλqδqkV
∗
lk∆

(s)
l δlp =

2j∑
q,p=0

λq |Vqp|2∆(s)
p .

The positive numbers |Vqp|2 in the previous equation define the entries of a unistochastic
matrix of dimension (2j + 1)× (2j + 1) which we denote by B,

Bqp = |Vqp|2 .

We give in Appendix 2.A a short introduction to bistochastic and unistochastic matrices.
In this way, the minimal value of the SW phase-space function in the unitary orbit of the
evolved state is

min
U∈SU(2j+1)

W(s)

UρU†(0) = min
B∈U2j+1

λB∆(s) (2.5)

where U2j+1 is the set of unistochastic matrices of dimension (2j + 1) × (2j + 1). In
principle, the minimisation on the unistochastic matrices U2j+1 presented in (2.5) seems
intractable to perform for 2j = N > 3 due to the lack of a complete characterisation
of U2j+1. However, we can extend the minimisation domain to the bistochastic matrices
B ∈ B2j+1 ⊃ U2j+1 to obtain a lower bound

min
B′∈U2j+1

λB′∆(s) ≥ min
B∈B2j+1

λB∆(s)

and prove that this bound is in fact always tight. This follows from two key facts: i)
for any bistochastic matrix B, one can always find a unistochastic matrix B′ such that
λB = λB′ for any vector λ1, and ii) the bistochastic matrix appears in the minimisation
(2.5) only in the form λB. By the Birkhoff-von Neumann theorem, we know that B can
be expressed as a convex combination of permutation matrices Pk, i.e.

B =

Np∑
k=1

ckPk,

1In fact, for any product of a vector and a bistochastic matrix λB, one can find an orthostochastic
matrix A (i.e. that comes from an orthogonal matrix) such that λB = λA (See Theorem B.6 of [147]).
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where Np = (2j + 1)! is the total number of permutations πk ∈ S2j+1 with S2j+1 the
symmetric group over 2j + 1 symbols and

ck ≥ 0 ∀ k = 1, 2, . . . , Np and

Np∑
k=1

ck = 1.

Consequently, we have

W(s)

UρU† =

2j∑
p,q=0

λpBpq∆
(s)
q =

Np∑
k=1

ck

2j∑
p,q=0

λp [Pk]pq∆
(s)
q =

Np∑
k=1

ck

2j∑
p=0

λp∆
(s)
πk(p)

For a state ρ whose eigenspectrum λ satisfies the Np inequalities

2j∑
p=0

λp∆
(s)
π(p) ≥ Wmin ∀π ∈ S2j+1 (2.6)

we then have

W(s)

UρU† =

Np∑
k=1

ck

2j∑
p=0

λp∆
(s)
πk(p)

≥ Wmin

for any unitary U and we conclude. Conversely, a state has in its unitary orbits only
states whose SW function satisfies W(s)(Ω) ≥ Wmin ∀Ω ∈ S2 if

W(s)

UρU† =

Np∑
k=1

ck

2j∑
p=0

λp∆
(s)
πk(p)

≥ Wmin ∀U ∈ SU(2j + 1).

In particular, the unitary matrix U can correspond to any permutation matrix P , so that
we have

W(s)

PρP † =

2j∑
p=0

λp∆
(s)
π(p) ≥ Wmin ∀π (2.7)

and we conclude that the state satisfies (2.6). In fact, it is enough to consider the ordered
eigenvalues λ↓ so that a state is ASB iff it verifies the most stringent inequality amongst
all possible permutations of (2.7)

λ↓ ·∆(s)↑ =

2j∑
p=0

λ↓p∆
(s)↑
p ≥ Wmin (2.8)

with the ordered eigenvalues of the kernel ∆↑.

2.1.2 ASB polytopes

Since the conditions for being ASB depend only on the eigenspectrum λ of a state, it is
sufficient in the following to focus on diagonal states in the Dicke basis. The condition
(2.4) for a given Wmin defines a polytope of ASB states in the simplex of mixed spin
states. Indeed, we start by noting that the equalities

2j∑
i=0

λi∆
(s)
π(i) = Wmin (2.9)
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Figure 2.1: ASP polytope for j = 1 of the Wigner (s = 0) and P (s = 1) functions
displayed in the barycentric coordinates system. The ASP polytope is the area shaded in
dark red with the blue dashed lines marking the hyperplanes defined by (2.9). The circles
are the surfaces of the ASP balls (see Subsection 2.1.4). The orange points represent all
the permutations of the spectrum (2.19). The beige triangle corresponds to the full
simplex of spin-1 states with spectrum λ = (λ0, λ1, λ2).

define, for all possible permutations π, (2j+1)! hyperplanes in R2j. Together they delimit
a particular polytope that contains all ASB states. The ASP (Wmin = 0) polytopes for
j = 1 and j = 3/2 are respectively represented in Figures 2.1 and 2.2 in a barycentric
coordinate system for the Wigner (s = 0) and P (s = 1) functions (see Appendix 2.B for
a reminder about barycentric coordinates systems).

If we now restrict our attention to ordered eigenvalues λ↓, we get a minimal polytope;
see Figure 2.3 for the case of j = 1. The full polytope is reconstructed by taking all pos-
sible permutations of the barycentric coordinates of the vertices of the minimal polytope.
These vertices can be found as follows. In general we need 2j+1 independent conditions
on the vector

(
λ↓0, λ

↓
1, . . . , λ

↓
2j

)
to uniquely define (the unitary orbit of) a state ρ. One of

them is given by the normalisation condition
∑2j

i=0 λ
↓
i = 1. The others correspond to the

fact that a vertex of the ASP polytope is the intersection of 2j hyperplanes each specified
by an equation of the form (2.9). One of them is

2j∑
i=0

λ↓i∆
(s)↑
i = Wmin. (2.10)

Let us focus on the remaining 2j−1. For simplicity, consider a transposition π = (p, q)
with p < q. This is the permutation whose only non-trivial action is π(p) = q and
π(q) = p. The condition (2.9) for this transposition becomes

λ↓p∆
(s)↑
q + λ↓q∆

(s)↑
p +

2j∑
i=0
i ̸=p,q

λ↓i∆
(s)↑
i = Wmin

⇔ λ↓p(∆
(s)↑
q −∆(s)↑

p ) + λ↓q(∆
(s)↑
p −∆(s)↑

q ) = 0 (2.11)



2.1. Polytopes of absolutely Stratonovitch bounded states 49

Figure 2.2: The AWP (s = 0) polytope for j = 3/2 in the barycentric coordinate system.
The grey rods (shown in the enlarged polytope on the left) are the edges of the AWP
polytope and the blue sphere is its largest inner ball, with radius rAWP

in = 1/(2
√
15) (see

Subsection 2.1.4).

where the second line comes from applying the constraint (2.10). It is clear that (2.11) is
satisfied if and only if λ↓p = λ↓q. And because the eigenvalues are ordered, this also implies
λ↓k = λ↓p for all k between p and q. The only forbidden transposition is (0, 2j) because it
would give the MMS. Hence a given transposition (p, q) will correspond to a set of q − p
conditions λl = λl+1 for l = p, . . . , q − 1. Therefore, as any permutation is a composition
of transpositions, the 2j − 1 conditions that follow from (2.9) reduce to a set of 2j − 1
nearest-neighbour eigenvalue equalities taken from the 2j elements set

E =
(
λ↓0 = λ↓1, λ

↓
1 = λ↓2, ..., λ

↓
2j−1 = λ↓2j

)
. (2.12)

Since we need 2j − 1 conditions, we can draw 2j − 1 equalities from E in order to obtain
a vertex. This method gives

(
2j

2j−1

)
= 2j different draws and so we get 2j vertices for

the minimal polytope. Geometrically, (2.12) can also be seen as the set of non-trivial
hyperplanes defining the minimal polytope, and the

(
2j

2j−1

)
= 2j draws correspond to the

different intersections of the hyperplane (2.10) with the 1-dimensional faces (i.e. edges)
of the minimal polytope. The full set of hyperplanes defining the minimal polytope is
(2.12) supplemented with λ↓2j = 0 and the normalisation condition.

As explained previously, all other vertices of the full polytope are obtained by permut-
ing the coordinates of the vertices of the minimal polytope. The entirety of the preceding
discussion of the ASP polytope vertices naturally extends to the ASB polytope vertices
for which we must replace 0 by Wmin in the right-hand side of the equality (2.9). How-
ever, for negative values of Wmin, the polytope may extend beyond the simplex and some
vertices will have negative-valued components, resulting in unphysical states.

A peculiar characteristic of the ASP polytope is that each point on its surface has a
state in its orbit satisfying W(s)

ρ (0) = Wmin. Indeed, for an eigenspectrum λ that satisfies
(2.9) for a given permutation π, the diagonal state ρ in the Dicke basis with ρii = λπ−1(i)
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Figure 2.3: ASP minimal polytopes for j = 1 of the Wigner (s = 0, on the left) and P
(s = 1, on the right) functions in the barycentric coordinate system. The structure is
similar to Figure 2.1 but we only draw the part where the eigenvalues of the state are
sorted in descending order. The dark point corresponds to the maximally mixed state.

satisfies

W(s)
ρ (0) =

2j∑
i=0

λi∆
(s)
i = Wmin

and is in the unitary orbit of λ. As negative values of the SW function are generally con-
sidered to indicate non-classicality, the value Wmin = 0 plays a special role. Nevertheless,
since (2.3) holds for any Wmin ∈

[
∆

(s)↑
0 , 1

2j+1

]
the corresponding sets of states also form

polytopes, which become larger as Wmin becomes more negative, culminating in the entire
simplex when Wmin is the smallest kernel eigenvalue ∆

(s)↑
0 . There is thus a continuous

transition between the one-point polytope, which represents the MMS, and the polytope
containing the whole simplex. As discussed later, Figure 2.4 in Subsection 2.1.4 shows a
special example of this family for spin-1. For the Husimi Q function, which is positive by
construction, the polytope for Qmin = 0 contains the entire simplex of state spectra. In
this case it would become especially interesting to consider lower bounds Qmin > 0 and
study the properties of the associated polytopes.

2.1.3 Majorisation condition

The condition (2.4) for a state to be ASB can equivalently be expressed based on its
majorisation by a mixture of the vertices of the minimal polytope. To show this, we first
define the concept of the majorisation between two vectors.

Vector majorisation. For two vectors u and v of the same length n, we say that u
majorises v, denoted u ≻ v, if and only if

l∑
k=1

u↓k ≥
l∑

k=1

v↓k

for l < n, with
∑n

k=1 uk =
∑n

k=1 vk and u↓ denoting the vector u with components sorted
in decreasing order.

Proposition. A state ρ is ASB if and only if its eigenvalues λ are majorised by a
convex combination of the ordered vertices

{
λ↓

vk

}
of the corresponding ASB polytope, i.e.
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∃ c ∈ R2j
+ such that

λ ≺
2j∑
k=1

ckλ
↓
vk

(2.13)

with
∑2j

k=1 ck = 1.

Proof. If λ is AWB then it can be expressed as a mixture of the vertices of the AWB
polytope

λ =
∑
k

ckλvk

and the majorisation (2.13) follows. Conversely, it is known from the Schur-Horn theorem
that x ≻ y if and only if y is in the convex hull of the vectors obtained by permuting
the elements of x (i.e. the permutahedron generated by x). Hence, if λ fulfils (2.13),
it can be expressed as a convex combination of the vertices of the ASB polytope and is
therefore inside it.

2.1.4 Balls of Absolutely Stratonovitch Bounded states

In Subsection 2.1.1, we have fully characterised ASB polytopes for all finite dimensions
based on the SW phase-space representations. Taking advantage of their geometry, we
present here the sufficient condition for states to belong to the ASB set based on their
purity alone. In the following, we denote by r(ρ) the Hilbert-Schmidt distance between
a state ρ and the MMS,

r(ρ) = ∥ρ− ρ0∥HS =
√

Tr
[
(ρ− ρ0)

2]. (2.14)

Proposition. The radius of the largest inner ball of the ASB polytope associated with a
Wmin value such that the ball is contained within the state simplex is

r
(s)
in (Wmin) =

1− (2j + 1)Wmin

(2j + 1)
(
(2j + 1)|∆(s)|2 − 1

) . (2.15)

It vanishes for the largest value of the SW bound Wmin = 1/(2j + 1) for which the ASB
polytope reduces to the MMS.

Proof. Let us first consider the radius r(s)in of the largest ball centered on the MMS con-
tained in the polytope of ASB states and find a state ρ∗ that lies both on the surface of
this ball and on a face of the polytope. The Hilbert-Schmidt distance is equivalent to
the Euclidean distance in the simplex between the spectra λ and λ0 of ρ and the MMS
respectively, i.e.

r(ρ) =

√√√√( 2j∑
i=0

λ2i

)
− 1

2j + 1
= ∥λ− λ0∥.

In order to find the radius r(s)in of the largest inner ball of the ASB polytope, we need
to find the spectra on the hyperplanes of the ASB polytope with the minimum distance
to the MMS. Mathematically, this translates in the following constrained minimisation
problem

min
λ

∥λ− λ0∥2 subject to

{ ∑2j
i=0 λi = 1

λ · ∆(s) = Wmin

(2.16)
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where ∆(s) =
(
∆

(s)
0 ,∆

(s)
1 , ..., ,∆

(s)
2j

)
. For this purpose, we use the method of Lagrange

multipliers with the Lagrangian

L = ∥λ− λ0∥2 + µ1

(
λ · ∆(s) −Wmin

)
+ µ2

(
1−

2j∑
i=0

λi

)

where µ1, µ2 are two Lagrange multipliers to be determined. The stationary point λ∗ of
the Lagrangian must satisfy the following condition

∂L

∂λ

∣∣∣
λ=λ∗

= 0 ⇔ 2λ∗ + µ1∆
(s) − µ21 = 0 (2.17)

with 1 = (1, 1, ..., 1) of length 2j + 1. By summing over the components of (2.17) and
using the normalisation of the kernel, we readily get

µ2 =
µ1 + 2

2j + 1
. (2.18)

Next, by performing the scalar product of (2.17) with ∆(s) and using (2.18), we obtain
the following Lagrange multipliers

µ1 =
2 (1− (2j + 1)Wmin)

(2j + 1)|∆(s)|2 − 1
, µ2 =

2
(
|∆(s)|2 −Wmin

)
(2j + 1)|∆(s)|2 − 1

.

Finally, upon substituting the above values for µ1 and µ2 into (2.17) and solving for the
stationary point λ∗, we obtain

λ∗ =

(
|∆(s)|2 −Wmin

)
1− (1− (2j + 1)Wmin)∆

(s)

(2j + 1)|∆(s)|2 − 1
(2.19)

which leads us to

r
(s)
in (Wmin) = r (ρ∗) =

1− (2j + 1)Wmin√
(2j + 1)

(
(2j + 1)|∆(s)|2 − 1

) (2.20)

with ρ∗ any state with eigenspectrum (2.19).

2.1.5 Relation with discrete phase-space functions

The results derived in Subsection 2.1.1 extend naturally to discrete phase-space represen-
tations (introduced in Chapter 1). Specifically, one can construct polytopes characterising
absolutely bounded discrete phase-space functions in close analogy with the continuous
case.

Proposition. Let W(s)
ρ be a discrete phase-space function of a spin-j state ρ whith eigen-

values λ↓ ordered in decreasing order. Since the phase-point operators ∆(s)
pq are Hermitian,

they admit a diagonalisation. Let

∆
(s)
00 =M ′DM ′†



2.2. Wigner and P functions 53

where D is diagonal with entries ∆(s)↑, the eigenvalues ∆
(s)
00 ordered increasingly. Then,

ρ is absolutely bounded by Wmin if and only if

2j∑
i=0

λ↓i∆
(s)↑
i ≥ Wmin.

Proof. By the cyclic property of the trace, the discrete phase-space function satisfies

W(s)

UρU†(0, 0) = Tr
[
UρU †∆

(s)
00

]
= Tr

[
UM †ΛMU †M ′DM ′†]

= Tr
[
V ΛV †D

]
where V = M ′†UM † is unitary. Since all phase-point operators ∆

(s)
p,q are related by a

unitary transformation, the minimal value of W(s)

UρU†(p, q) over all p, q = 0, 1, . . . , 2j + 1

and all U ∈ SU (2j + 1) coincides with that of W(s)

UρU† (0, 0). Hence,

min
p, q = 0, 1, . . . , 2j + 1
U ∈ SU(2j + 1)

W(s)

UρU†(p, q) = min
U ∈ SU(2j + 1)

Tr
[
V ΛV †D

]
)

The result then follows directly from the analysis in Subsection 2.1.1.

Although this thesis primarily focuses on continuous phase-space representations, the
above proposition demonstrates that analogous constructions hold in the discrete setting
as well. This opens a promising avenue for future work on polytopes of absolutely bounded
discrete phase-space functions.

2.2 Wigner and P functions
We now have a general characterisation of the ASB polytopes and balls for any Stratonovitch-
Weyl function and spin number j. In this section, we focus on the Wigner and P functions,
which are phase-space representations that can develop negative values (in contrast to
the Husimi function). In order to provide some intuition, a description of the AWB poly-
topes will be given for low spin number j. In addition, as non-classicality is expected
for a negative valued phase-space function, a comparison of the ASP polytopes with the
ensemble of SAS states is of particular interest. In particular, since a state with a positive
P function is expressed as a mixture of separable states, all states contained within the
APP polytope are also SAS.

To particularise the equations (2.19) and (2.15) to s = 0 and 1, we note that the
eigenvalues of the P function (s = 1) kernel are (see Chapter 1)

∆
(1)
k = (−1)2j−k Ck

2j+1 k = 0, 1, . . . , 2j (2.21)

and that the squared norms of the kernel eigenvalues vector of the Wigner (s = 0) and
P functions are

|∆(0)|2 = 2j + 1 |∆(1)|2 = C2j+1
4j+2 − 1.

Unfortunately, there is still no known closed-form expression for the eigenvalues of the
Wigner function kernel.



54 Chapter 2. Absolute positivity of phase-space functions

2.2.1 Wigner function

The AWP polytopes for j = 1 and 3/2 are represented on the left panel of Figure 2.1
and in Figure 2.2 respectively. The spectrum (2.19) representing states lying on both the
borders of the AWB polytope and ball reduces to

λ∗ =
[(2j + 1)−Wmin]1− [1− (2j + 1)Wmin]∆

(0)

4j(j + 1)
. (2.22)

Thus, by considering all permutations of the elements of λ∗, we can find all states located
where the AWB polytope is tangent to the AWB inner ball, as shown in Figures 2.1 and
2.3 in orange for Wmin = 0 and j = 1. The inner ball containing only AWB states has
radius

r
(0)
in (Wmin) =

1− (2j + 1)Wmin

2
√
j(2j + 1)(j + 1)

.

In the case that Wmin ̸= 0, the polytope and the inner ball sizes increase (decrease) as
Wmin becomes more negative (positive). Let us first discuss this behaviour for positive
values of Wmin. The inner radius (2.15) vanishes for Wmin = 1/(2j+1), corresponding to
the fact that only the MMS state has a Wigner function with this minimal (and constant)
value. The radius then increases as Wmin decreases. At Wmin = 0, it reduces to the radius
of the largest ball of AWP states,

r
(0)
in (0) =

1

2
√
j(2j + 1)(j + 1)

(2.23)

as appears in Figures 2.1 and 2.2. Expressed as a function of dimension d = 2j + 1
and re-scaled to generalised Bloch length, this result was also recently found in the
context of SU(d)-covariant Wigner functions (i.e. as the phase space manifold changes
dramatically with each Hilbert space dimension, rather than always being the sphere)
[148]. Although our bound is tight for all j in the SU(2) setting (i.e. there always exist
orbits infinitesimally farther away that contain Wigner-negative states), it is unknown if
this bound remains tight for such SU(d)-covariant Wigner functions for d > 2.

At the critical value

Wmin =
∆j,j − (2j + 1)

∆j,j(2j + 1)− 1
< 0, (2.24)

the spectrum (2.19) acquires a first zero eigenvalue, λ∗2j = 0. This corresponds to the
situation where λ∗ is simultaneously on the ball surface, on a face of the polytope, and
on an edge of the simplex; see the orange dots in Figure 2.4. For more negative values
of Wmin, (2.19) no longer represents a physical state because λ∗2j becomes negative. In
this situation, in order to determine the radius of larger balls that contain only AWB
states, additional constraints must be imposed in the optimisation procedure reflecting
the fact that some elements of the spectrum of ρ are zero. Since the possible number of
zero eigenvalues depends on j, we will not go further in this development. Note that the
same behaviour appears for other SW functions where the AWB polytope size increases
with Wmin.

We now particularise the results of Section 2.1 to the case Wmin = 0 in order to
compare the AWP polytope with the set of SAS states for different spin number j.
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Figure 2.4: AWB polytope in the barycentric coordinates system for j = 1 and Wmin =
1
3
+ 2

3

√
2
(√

5− 3
)
≈ −0.387 as given by (2.24). The structure is similar to Figure (2.1)

but the polytope occupies a larger portion of the state space. We omit the part of the
polytope that is outside the simplex.

2.2.1.1 Spin j = 1/2

In the familiar case of a single qubit state ρ, the spectrum (λ, 1− λ) is characterised by
a single number λ. The kernel eigenvalues are

∆0 =
1

2
(1−

√
3), ∆1 =

1

2
(1 +

√
3) = 1−∆0.

Letting λ ≥ 1
2

denote the larger of the two eigenvalues, the strong ordered condition
(2.10) for Wmin = 0 becomes

λ0∆0 + λ1∆1 = λ∆0 + (1− λ)(1−∆0) = λ(2∆0 − 1) + 1−∆0 ≥ 0.

Thus the AWP polytope is described, in the 1-dimensional projection to the λ-axis, as

1

2
≤ λ ≤ 1−∆0

1− 2∆0

=
1

2
+

1

2
√
3
.

This may be equivalently expressed either in terms of purity R or Bloch length |n| =√
2γ − 1,

1

2
≤ R ≤ 2

3
and |n| ≤ 1√

3
.

Additionally, the distance to the maximally mixed state via (2.14) is r ≤ 1/
√
6.

Regarding absolute separability, all qubit states are SAS. This is a consequence of the
qubit pure states being equivalent to spin-1/2 coherent states. Thus AWP qubit states
are a strict subset of SAS qubit states. Furthermore, due to the invariance of phase-space
negativity under rigid rotation, for a single qubit there is no distinction between a state
being positive and being absolutely positive. This means that any state with Bloch radius
|n| ∈ [1/

√
3, 1] is SAS but has a negative Wigner function.
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Figure 2.5: Left : Maximal PT negativity over each unitary orbit in the j = 1 simplex of
state spectra. The dashed blue line and brown circle are respectively the AWP polytope
and ball. Right : Maximal PT negativity over each unitary orbit on the surface of the
minimal j = 3/2 AWP polytope (where W(0)

UρU† = 0 for all U ∈ SU (3)). The notation
of the vertices corresponds to the eigenspectra given in Table 2.3 in Appendix 2.C. The
camel curves in both panels show the boundary on which the negativity along the unitary
orbit becomes non-zero and is given by (2.26) for j = 1.

2.2.1.2 Spin j = 1

The sets of AWP and SAS states are both more complicated for qutrits than for j = 1/2,
and neither is a strict subset of the other. For j = 1, it is known that the maximal value
of the entanglement negativity, in the sense of the PPT criterion, in the unitary orbit of
a two-qubit symmetric state ρ with spectrum λ0 ≥ λ1 ≥ λ2 is [11]

max

[
0,
√
λ20 + (λ1 − λ2)2 − λ1 − λ2

]
. (2.25)

It is also known that a state ρ is SAS if and only if its spectrum verifies√
λ1 +

√
λ2 ≥ 1. (2.26)

On the left panel of Figure 2.5, we plot the resulting maximal negativity in the j = 1
simplex with the AWP polytope. There are clearly regions of spectra that satisfy either,
both, or neither of the AWP and SAS conditions. Thus already for spin-1 there exist
states with a positive P function and a negative W function and vice-versa. For j = 1
specifically, it was also shown in [11] that the largest ball of SAS states has a radius
r
(1)
in (0) = 1/(2

√
6) ≈ 0.20412, which is the same value as the radius r(0)in (0) = 1/(2

√
6).

Hence, for j = 1, the largest ball of AWP states coincides with the largest ball of SAS
states as we can see in Figure 2.5.

2.2.1.3 Spin j = 3/2

For spin-3/2, a numerical optimisation (see [11] for more information) yielded the maxi-
mum negativity of the partial transpose in the unitary orbit of the states located on a face
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of the polytope. The results are displayed on the right panel of Figure 2.5 where we de-
pict the maximal entanglement negativity on the surface of the minimal AWP polytope.
Similar to the spin-1 case, we observe both SAS and entangled states on this surface. A
notable difference is that, for j = 3/2, the largest ball containing only SAS states has
a radius r(1)in (0) = 1/(2

√
19) [11, 12] which is strictly smaller than r

(0)
in (0) = 1/(2

√
15).

Therefore, the SAS states on the face of the polytope are necessarily outside this ball.

2.2.2 P function

The set S1 of APP states w.r.t. the P function (2.1) contained in the APP polytope for
j = 1 is represented on the right panel of Figure 2.1. The kernel of the P function verifies
|∆(1)|2 = C2j+1

4j+2 − 1 which leads to the spectrum (2.19)

λ∗ =

(
C2j+1

4j+2 − 1−Wmin

)
1− (1− (2j + 1)Wmin)∆

(s)

2
[
(4j + 1)C2j

4j − (j + 1)
] . (2.27)

The inner ball containing only APB states has radius

r
(1)
in (Wmin) =

1− (2j + 1)Wmin√
(4j + 2)

[
(4j + 1)C2j

4j − (j + 1)
]

Hence, for Wmin = 0, we can define the set S0 of APP states based on the P function
(2.1) through the radius of the APP ball

r
(1)
in (0) =

1√
(4j + 2)

[
(4j + 1)C2j

4j − (j + 1)
] . (2.28)

Remarkably, the radius (2.28) is exactly the same as that deduced in [149], albeit through
a distinct approach.

2.2.2.1 Spin j ≤ 3/2

For a qubit (j = 1/2), the kernel eigenvalues are given by

∆0 = −C0
2 = −1, ∆1 = C1

2 = 2

and the ordered APP conditions are for the highest eigenvalue λ ≥ 1/2

−λ+ 2(1− λ) ≥ 0.

Thus, the APP polytope is defined by the following inequality

1

2
≤ λ ≤ 2

3
.

We see that not all qubit states are APP based on the P function defined through the
SW phase-space function (2.1). However, as already explained for the AWP polytope for
j = 1/2, all qubit states are SAS, meaning that for each qubit state ρ and each unitary
U ∈ SU (2), there exists a P function such that PUρU† ≥ 0. This clearly shows that
higher-order terms in the definition of the most general SW phase-space representations
(2.2) are necessary to retrieve the full set of SAS qubit states.
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Figure 2.6: Left : Polytope of SAS states for j = 1 in the simplex of eigenvalues,
displayed in barycentric coordinates. The blue dotted lines, corresponding to conditions
(2.9), define the edges of the polytope. The green area delimited by the condition (2.26)
represents the set of SAS states. Right : Polytope for j = 3/2 next to the full tetrahedron
of states in barycentric coordinates. The vertices of the polytope are indicated by the
blue dots. The twice degenerate eigenvalues ∆i of the P function kernel (see second row
of Table 2.2) produce degeneracy in the faces. As a result, some of the blue dots are in
the middle of the edges of the polytope. The green points are SAS states obtained by
numerical optimisation as described in [11].

In Figure 2.6, we depict the APP polytopes for j = 1 and 3/2 and the full sets of SAS
states which were obtained in [11, 12]. Once again, we can see that the set of APP states
based on the P function does not cover the entire set of SAS states. In Section 2.3, we
deal with the extension of the APP states set by using higher-order terms appearing in
the generalised phase-space representations (2.2).

2.2.2.2 Spin j > 3/2

For j > 3/2, there is no known characterisation of the full set of SAS states. The best
result known so far is that on the radius of a ball containing only APP states [149] which
appears to be the inner ball of the APP polytope. Hence, the set of SAS states obtained
through the APP polytope is the best characterisation of SAS states known so far for
j > 3/2.

2.3 Beyond the polytopes

In this section, we extend the set of SAS states obtained through the characterisation of
the set of APP states. Hence, we focus here only on the P function (s = 0). However,
all the results can be straightforwardly applied to other phase-space representations. To
set the notations, let us recall that the most general P function of a spin state ρ has the
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form (2.2) [114]

Pρ (Ω) = P (0)
ρ (Ω) +

+∞∑
L=2j+1

L∑
M=−L

xLMYLM (Ω) , (2.29)

where P (0)
ρ is the P function given by the SW framework (2.1). The latter is uniquely

defined for ρ as

P (0)
ρ (Ω) =

√
4π

2j + 1

2j∑
L=0

(
Cjj
jjL0

)−1
Q(L)
ρ (Ω) (2.30)

with the real functions (by the hermiticity of ρ) covariant under rotations

Q(L)
ρ (Ω) =

L∑
M=−L

ρLMYLM(Ω). (2.31)

where the ρLM are the state multipoles. Since any state ρ can be represented by a
decomposition on the overcomplete basis of coherent states (pure product states)

ρ =

∫
S2

Pρ (Ω) |Ω⟩ ⟨Ω| ,

any separable state can be described by an everywhere positive P function. However, the
P function P0 is not always everywhere positive, even for separable states. Hence, the
additional terms in (2.29) play a crucial role, as illustrated by examining a spin coherent
state oriented along a specific direction Ω0. A positive P realisation of ρ = |Ω0⟩ ⟨Ω0| is a
Dirac delta function on the sphere, Pρ(Ω) = δ (Ω− Ω0). However, it is clear that such a
delta function cannot be obtained by truncating the infinite sum in (2.29). Indeed, if we
did this, the resulting P function would always be negative somewhere on the sphere, as
discussed in [149]. Hence, in order to extend the set of SAS states obtained through the
characterisation of APP states, we consider the following minimisation

min
U∈SU(2j+1)

Ω∈S2

PUρU†(Ω) ⩾ 0 (2.32)

where PUρU† potentially includes all the terms with L > 2j+1 in the general formulation
of the P function (2.29).

2.3.1 Non-linear APP criteria

To simplify the complexity of the minimisation problem in (2.32) and facilitate the deriva-
tion of analytical results, we choose to focus exclusively on additional terms that arise
from the product of QL functions, as defined in (2.31). Specifically, we consider only
those extra terms, obtained by squaring the QL functions and then subtracting their
lower angular momentum components so that only spherical harmonics with L > 2j are
involved. We thus add to P0 terms proportional to

P (L)
ρ (Ω) ≡

(
Q(L)
ρ

)2 − 2j∑
L′=0

L′∑
M=−L′

(∫ (
Q(L)
ρ

)2
Y ∗
L′MdΩ

)
YL′M , (2.33)

where only the integrals with L′ even are non-zero. It is important to note that, by
construction, the functions (2.33) are non-zero only for L > 2j and are covariant under
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rotations as inherited from each Q(L)
ρ . Consequently, as explained in Subsection 2.1.1, we

can work only with the P functions of a unitarily transformed state ρ evaluated at Ω = 0

PUρU† (0) = P
(0)

UρU† (0) +

2j∑
L>j

yLP
(L)

UρU† (0) , (2.34)

where yL are real numbers. Just like the xLM variables in (2.29), each yL can depend
on the state ρ and U . However, for the sake of simplicity, we will only consider them
as variables independent of the unitary and the state. The general idea for obtaining a
larger SAS set is to reduce the minimisation problem on the full unitary orbit to a problem
that requires minimisation on the unistochastic matrices only, as in the developments for
obtaining the polytopes of SAS states.

A direct application of a formula giving the integral of a triple product of spherical
harmonics (see e.g. (4), p. 148 of [69]) together with the equality |ρLM | = |ρL−M | lead us
to an algebraic expression for the functions P (L)

ρ (0) defined in (2.33),

P (L)
ρ (0) =

2L+ 1

4π

L∑
M=0

F (L,M) |ρLM |2 , (2.35)

with F (L,M) state-independent coefficients given by

F (L,M) =


1−

2j∑
L′=0
L′ even

(
CL′0
L0L0

)2
ifM = 0

2(−1)M+1

2j∑
L′=0
L′ even

CL′0
L0L0C

L′0
LML−M ifM ̸= 0

(2.36)

where the identity CL′0
L0L0 = 0 for L′ odd restricts the sum to L′ even. Some values of

F (L,M) are given in Table 2.4. Note that these coefficients are real and can be positive
or negative. The factors (2L + 1)/4π in (2.35) can be absorbed into the variables yL
without loss of generality to rewrite (2.34) as follows

Pρ (0) = P (0)
ρ (0) +

2j∑
L>j

L∑
M=0

yLF (L,M)|ρLM |2. (2.37)

As the Hilbert-Schmidt distance r (ρ) between any state ρ and the MMS ρ0 can be written
as

r2 (ρ) =

2j∑
L=1

(
ρ2L0 + 2

L∑
M=1

|ρLM |2
)

we can isolate the component |ρ2j 1|2 as

2|ρ2j 1|2 = r2 −
2j∑
L=1

ρ2L0 − 2

2j∑
L=1

L∑
M=1+δL,2j

|ρLM |2, (2.38)

and then insert this expression into (2.37) to get

Pρ (0) = P (0)
ρ (0) + Πρ (0) + Π̃ρ (0) (2.39)
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with

Πρ (0) =

(
y2jF (2j, 1)

2

)
r2 +

2j∑
L=1

[
yLF (L, 0)Θ(L− j)− y2jF (2j, 1)

2

]
ρ2L0 (2.40)

and

Π̃ρ (0) =

2j∑
L=1

L∑
M=1+δL,2j

[
yLF (L,M)Θ(L− j)− y2jF (2j, 1)

]
|ρLM |2 , (2.41)

where Θ(x) is the Heaviside step-function defined here as

Θ(x) =

{
0 x ≤ 0
1 x > 0

.

In what follows, we will omit the contribution of Π̃ρ (0) in (2.39), under the assumption
that it is positive, i.e. Π̃ρ (0) ≥ 0. To ensure this assumption, we will need to put
constraints on the possible values of the yL’s. This simplification allows us to reduce the
requirement of positivity for P to the simpler condition of positivity for PLB

ρ ≡ P
(0)
ρ +Πρ.

The general form of the remaining function PLB reads

PLB
ρ = f (ρ) +

2j∑
L=1

(
gLρL0 + hLρ

2
L0

)
, (2.42)

where the function f (ρ) and the coefficients gL and hL are deduced from (2.30) and (2.39)
as being

f (ρ) =
1

2j + 1
+

(
y2jF (2j, 1)

2

)
r2

gL =

√
2L+ 1

2j + 1

(
Cjj
jjL0

)−1
(2.43)

hL = yLF (L, 0)Θ(L− j)− y2jF (2j, 1)

2
.

Note that gL is a constant, hL depends on the yL variables, while the function f (ρ)
depends only on the SU(2j + 1)-invariant distance to the maximally mixed state r given
by (2.14). Hence, f , gL and hL are constant along the unitary orbit of ρ.

In the end, the function PLB
ρ only depends on the components ρL0 = Tr

(
ρT †

L0

)
. By

diagonalising the state ρ =M †ΛM , any state ρ′ in the unitary orbit of ρ can be expressed
as ρ′ = V ΛV † with V = UM †. Hence, a multipole ρ′L0 of ρ′ reads

ρ′L0 = Tr
(
V ΛV †T †

L0

)
=

j∑
m,m′=−j

Vm′mλmV
∗
m′mtLm′ = λBtTL

with tL = (tL,j, , . . . , tL,−j) the vector containing the eigenvalues of TL0, tL,m = ⟨j,m|TL0 |j,m⟩,
and B the unistochastic matrix defined from V , with entries Bkl = |Vkl|2. The expression
of PLB

ρ eventually reduces to

PLB
ρ = f(ρ′) +

2j∑
L=1

[
gLλBtTL + hL

(
λBtTL

)2 ]
. (2.44)
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Number of qubits N = 2j S1 S3

2 λ (−3, 1, 3)T ⩾ 0 r2 ⩽ 1
78

≈ 0.01282

3 λ (−6,−1, 4, 4)T ⩾ 0 r2 ⩽ 1
354

≈ 0.002825

4 λ (−10,−5, 1, 5, 10)T ⩾ 0 r2 ⩽ 11
25390

≈ 0.0004332

5 λ (−15,−15,−1, 6, 6, 20)T ⩾ 0 r2 ⩽ 1595
16058598

≈ 0.00009932

Table 2.2: Condition for a state with eigenspectrum λ = (λ0, . . . , λN) sorted in descending
order λ0 ⩾ λ1 ⩾ · · · ⩾ λN to be included in SAS sets S1 and S3 .

As a result, we have moved from a minimisation problem over the full unitary orbit
of a state to a simpler problem that necessitates a minimisation over the unistochastic
matrices only,

min
U∈SU(2j+1)

Ω∈S2

PUρU† (Ω) = min
U∈SU(2j+1)

PUρU† (0)

⩾ min
U∈SU(2j+1)

PLB
UρU† (2.45)

= min
b∈U2j+1

PLB
UρU†

where in the second line we have used our assumption Π̃ρ ≥ 0 and in the last line we refer
to a parametrization b of unistochastic matrices B ∈ U2j+1, as discussed in Appendix
2.A. In particular, the terms λBtTL in PLB

UρU† are linear expressions of the b-variables of
the bistochastic matrices. It follows that PLB

UρU† is quadratic over b (see also Appendix
2.D).

Using the same result from Subsection 2.1.1 to enlarge the minimisation over unis-
tochastic matrices into a minimisation over bistochastic ones, we can now derive from
(2.45) another set of SAS states, denoted as S2({yL}), or just S2 for short, taking the
form of a quadratic optimisation problem on the b-variables of the bistochastic matrix
(see Appendices 2.A and 2.D, in particular (2.62)), with the yL parameters constrained
by the positivity condition Π̃ρ (0) ≥ 0 (2.41).

Proposition. SAS set S2({yL}): A symmetric N-qubit state ρ is SAS if

min
b∈B2j+1

PLB
UρU† ⩾ 0, (2.46)

where PLB
UρU† is given by (2.44) and yL are real parameters restricted by the inequalities

yLF (L,M)Θ(L− j)− y2jF (2j, 1) ⩾ 0, (2.47)

for L = 1, . . . , 2j and M = 1, . . . , L, where the coefficients F (L,M) are defined in (2.36).

One can relax the minimisation problem to the whole real domain b ∈ R4j2 while
retaining a useful SAS set provided that hL > 0, otherwise the Hessian (2.63) of the
quadratic function PLB

UρU† (2.44) has a negative eigenvalue and hence PLB
UρU† has a minimum

equal to negative infinity.
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The latter requirement implies that

yLF (L, 0)Θ(L− j) >
y2jF (2j, 1)

2
(2.48)

for all L. Under these assumptions, the global minimum of PLB
ρ on b ∈ R4j2 has an

algebraic solution given by (see Appendix 2.D for details)

min
b∈U2j+1

PLB
ρ ⩾ min

b∈R4j2
PLB
ρ = f (ρ)− 1

4

2j∑
L=1

g2L
hL
. (2.49)

Any state for which the r.h.s. of (2.49) is positive is then SAS, which after a bit of algebra
can be rewritten as an upper bound on r

r2 (ρ) ⩽

( −2

y2jF (2j, 1)

)(
1

2j + 1
− 1

4

2j∑
L=1

g2L
hL

)
. (2.50)

Note that we have used the inequality y2j ⩾ 0, which is a direct consequence of F (2j, 1) <
0 shown in Appendix 2.E (see (2.64)) and the inequality (2.47) for L = 1. In order to
obtain the best SAS set, we need to maximise the r.h.s. of the last equation over the
admissible parameters yL. If we first maximise (2.50) with respect to yL for L ̸= 2j, we
find that we need to maximise the hL variables (2.43) and consequently maximise the yL
variables, which are upper bounded by the conditions (2.47). Our numerical observations
(see (2.65)) show that the strictest upper bound is yL ⩽ y2jF (2j, 1)/F (L, 1). We can
then evaluate yL at these apparently tight upper bounds. Finally, we maximise (2.50)
with respect to y2j, to obtain the extremal point

yL =
F (2j, 1)

F (L, 1)
y2j for j < L < 2j

y2j =
(2j + 1)

F (2j, 1)

2j∑
L=1

g2L

2Θ(L− j)F (L,0)
F (L,1)

− 1
(2.51)

In particular, yL ⩾ 0 implies that hL > 0 is fulfilled, as required above. Thus, we obtain
a simpler SAS set S3, weaker than S2, but with an analytical expression.

Proposition. SAS set S3 : A symmetric N-qubit state ρ is SAS if its distance r to the
MMS in the symmetric sector fulfills

r2 (ρ) ⩽
1

(2j + 1)2

(
2j∑
L=1

g2L

1− 2Θ(L− j)F (L,0)
F (L,1)

)−1

(2.52)

with F (L,M) and gL state-independent constants defined in (2.36) and (2.43). Note that
(2.52) gives a better radius on the set of SAS states than previous results, such as the
inner ball of the APP polytope [149].

2.3.2 Two- and three-qubit symmetric states

In this section, we exemplify our SAS sets in the specific cases of N = 2 and N = 3, in
order to clarify all the technical aspects of our method.
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Figure 2.7: SAS states in the first Weyl chamber (λ0 ≥ λ1 ≥ λ2) for N = 2 represented in
barycentric coordinates. The curves correspond to the bounds of the sets S0 (blue) and
S3 (orange). The green area encompasses all the remaining SAS states, as completely
characterised by the condition (2.26). The set S1 is depicted in light red. Lastly, S2 with
y2 = 455/12 is formed by the light and dark red regions. We note that S2 is only very
slightly bigger than S3.

2.3.2.1 2 qubits (spin j = 1)

In this case, the set S1 of states in the APP polytope is given by

λ(↑)(−3, 1, 3)T ⩾ 0.

We plot in Figure 2.7 the set S1 in one Weyl chamber. In contrast, the other two sets,
S2({yL}) and S3, rely on the P function (2.34) with only one extra term

Pρ(Ω) = P (0)
ρ (Ω) + y2P

(2)
ρ (Ω), (2.53)

with
4π

5
P (2)
ρ (0) =

6

35

(
3ρ220 − 4|ρ21|2 + |ρ22|2

)
. (2.54)

By scaling y2 with the factor 5/4π, and performing the change of variable (2.38) in (2.53)
and (2.54), reading explicitly

2|ρ21|2 = r2 −
2∑

L=1

ρ2L0 − 2
2∑

L=1

L∑
M=1+δL,2

|ρLM |2,

we get
Pρ(0) = P (0)

ρ (0) + Πρ(0) + Π̃ρ(0),

with

Πρ(0) =
6

35
y2

(
− 2r2 + 2ρ210 + 5ρ220

)
Π̃ρ(0) =

6

35
y2

(
4|ρ11|2 + 5|ρ22|2

)
.

The inequality Pρ ⩾ P
(0)
ρ + Πρ ≡ PLB defines the admissible region (2.47) of the y2

variable, here y2 ⩾ 0. The function PLB has now the form (2.42) with factors (2.43) given
by

f(ρ) =
1

3
− 12

35
y2r

2 (g1, g2) =

(
√
2, 5

√
2

3

)
(h1, h2) =

6

35
(2y2, 5y2)
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Figure 2.8: SAS states in the first Weyl chamber (λ0 ≥ λ1 ≥ λ2 ≥ λ3) for N = 3. The
dark red and orange surfaces are respectively the boundaries of S1 and S3, respectively.
The dark red points are the states contained in S2({yL}) with yL equal to (2.51). The
green points are SAS states obtained numerically as described in [11].

which are the elements needed to calculate the set S2({yL}) defined by (2.46). Lastly, we
use (2.52) to calculate our third set at y2 = 455/12 (2.51)

S3 for 2 qubits : ρ ∈ Asym if r2 ⩽
1

78
.

The surface of the ball spanned by this radius r is depicted in orange in Figure 2.7.

2.3.2.2 3 qubits (spin j = 3/2)

The linear set S1, plotted in Figure 2.8 in dark red, is given by

λ(↑)(−6,−1, 4, 4)T ⩾ 0.

Now, for the extended phase-space representation, we start by defining the respective P
function (2.34) which has two additional terms

P = P0 + y2P
(2)
ρ + y3P

(3)
3 , (2.55)

where P (2)
ρ for 3 qubits is also given by (2.54) and

4π

7
P (3)
ρ (0) =

2

21

(
7ρ230 − 6|ρ31|2 − 3|ρ32|2 + 2|ρ33|2

)
.

By using (2.38) to substitute |ρ31|2 in the P function, we get Pρ = P
(0)
ρ +Πρ + Π̃ρ with

Πρ =
2

7

[
x3
(
ρ210 − r2

)
+

(
9y2 + 5y3

5

)
ρ220 +

10

3
y3ρ

2
30

]
,

Π̃ρ =
2

7

[
2y3|ρ11|2 +

2

5
(5y3 − 6y2) |ρ21|2 +

(
3

5
y2 + 2y3

)
|ρ22|2 + y3|ρ32|2 +

8

3
y3|ρ33|2

]
.
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Again, Pρ ⩾ P
(0)
ρ + Πρ ≡ PLB when all the coefficients of the terms in Π̃ρ are positive,

i.e.,

y3 ⩾ 0 , 5y3 − 6y2 ⩾ 0 ,
3

5
y2 + 2y3 ⩾ 0. (2.56)

Let us remark that y2 may take negative values.
Now, we can calculate the factors (2.43) which are necessary to calculate PLB

ρ and
the set S2({yL}). They are given by

f(ρ) =
1

4
− 2

7
y3r

2 (g1, g2, g3) =

(√
5

2
,
5

2
,
7
√
5

2

)
(h1, h2, h3) =

2

7

(
y3,

9

5
y2 + y3,

10

3
y3

)
Finally, for S3, we have the extra condition hL > 0 (2.48) for the yL values

9y2 + 5y3 > 0,

which is always satisfied for the extremal yL values given in (2.51), which read

y2 =
2065

16
, y3 =

1239

8
.

The set S3 eventually reads

S3 for 3 qubits : ρ ∈ Asym if r2 ⩽
1

354
.

Conclusion
Given the ever-rising importance of spin phase-space representations in fields like quan-
tum information science [137, 134, 135, 138], quantum many-body dynamics [84–86],
and quantum thermodynamics [150], we have studied in this chapter the properties of
the SW phase-space representations of finite-dimensional quantum systems. Our work
has advanced the characterisation of non-classicality in mixed spin-j states, establish-
ing rigorous bounds on the unitary evolution of quantum states and their phase-space
negativity.

Our first result gives a complete characterisation for any spin quantum number j of
the set of absolutely Stratonovitch-Weyl bounded (ASB) states in the form of a polytope
centred on the MMS in the simplex of state eigenvalues. We have compared our results
on the set of absolutely Wigner positive states with the set of SAS states. The spin-1
and spin-3/2 cases, for which analytical results are known, were closely examined and
important differences were highlighted, such as the existence of SAS states whose Wigner
function is negative, and, conversely, the existence of entangled absolutely Wigner positive
states. This novel fact represents a key distinction from the infinite-dimensional setting
where a positive Glauber-Sudarshan function (equivalent to the P function) trivially
implies a positive Wigner function [151, 152]. Moreover, the characterisation of the APP
polytopes, i.e. the SAS set S1, allowed us to show that the SAS ball previously derived
in [149] is in fact the largest ball enclosed in the APP polytope, directly connecting our
work with previous results.

Building on top of the set S1 of SAS states contained in the APP polytope, we have
derived two new families of even larger SAS sets S2 and S3, both being nonlinear w.r.t.
the state eigenvalues. Among our sets, S1 and S3 are simple functionals on the spectrum
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and the purity of the state. In contrast, S2({yL}), which is capable of detecting a larger
subset of SAS states, necessitates solving a quadratic optimisation problem over the
bistochastic matrices. Our observations on the cases N = 2 and N = 3 indicate that the
disparity between the SAS subsets detected by S3 compared to S2 seems to be minimal,
as illustrated in Figure 2.7. It is also important to note that none of our sets provides
complete characterisation of all SAS states, i.e. the full SAS set.

This motivates several strategies for future work. To efficiently uncover more SAS
states, instead of scrutinizing S2, a viable approach is to include additional terms in the
P function, as outlined in (2.33). The minimum number of terms to be added for a
complete characterisation of SAS set remains as an open question, even in the case of two
qubits. Another direction for witnessing larger sets of SAS states is to use the convexity
property of SAS2. In particular, we can immediately establish a larger SAS set defined
by the convex hull of all SAS sets S2({yL}) depending on the yL’s.

Note that another possible alternative to the characterisation of the set of SAS states,
for integer j, is through the characterisation of the set of Symmetric Absolutely PPT
(SAPPT) states [154], i.e. states whose partial transpose remain positive under any
unitary evolution. Indeed, for integer j, a still pending question is if the sets of SAS
and SAPPT states are identical. If true, then the full characterisation of SAPPT states
conducted in [12] would also give a full characterisation of the sets of SAS states. For
half-integer j, it was recently shown that the set of SAPPT is strictly included in the
SAS set [13] and more work is thus definitely needed to fully characterise the SAS set of
half-integer j systems.

Other future researches could explore the ratio of the volume of the ASB polytopes to
the volume of the full simplex; this would basically be a global indicator of classicality like
those introduced and studied in [145, 148, 155] particularised to spin systems. Another
perspective, as briefly mentioned in Section 2.1, is to apply the techniques presented
here to other distinguished quasiprobability distributions. For example, future work
could explore the relation between absolutely Husimi bounded (AHB) polytopes and the
geometric measure of entanglement of mixed multiqubit symmetric states (see Chapter
3 for the link between the Husimi function and the geometric measure of entanglement).
It would also be intriguing to connect the lower bound on the SW phase-space functions
in the unitary orbit to the accuracy achievable in simulating the general unitary (or even
dissipative) many-body quantum dynamics of spin systems efficiently using stochastic
trajectories [84–86]. Indeed, it could be expected that states with a positive lower bound
would be more accurately simulated by these trajectories where the SW phase-space
functions are used as an actual probability distribution obeying a certain Fokker-Planck
equation. Additionally, this bound could be linked to potential quantum advantages
in applications such as parameter estimation, where the presence of negative values in
quasiprobability distributions might enhance the precision of quantum sensing protocols.

Finally, in terms of experimental implementation, measuring the state spectrum is
required to check if a state belongs to S1 and S2, while, for S3, it relies on evaluating
the state’s purity. Importantly, both the spectrum and purity of a quantum state can be
estimated without the need for full quantum tomography [156].

2The proof of the convexity of the set of symmetric absolutely separable states is a special case of the
convexity of the absolutely separable case [153].
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2.A Unistochastic and bistochastic matrices

Let B ∈ Bd be a d × d bistochastic matrix [147]. Bistochastic matrices possess positive
entries, and the sum of entries in each column or row equals 1. The set of bistochastic
matrices, denoted as Bd, forms a polytope in R(d−1)2 . One approach to parameterise
this set involves introducing free variables in a (d− 1)× (d− 1) minor of a bistochastic
matrix B, and then the remaining entries are determined by satisfying the bistochastic
conditions. For instance, B3 can be parametrized by b = (b1, b2, b3, b4) ∈ [0, 1]4 as

B (b) =

 b1 b2 1− b1 − b2
b3 b4 1− b3 − b4

1− b1 − b3 1− b2 − b4
∑4

i=1 bi − 1

 , (2.57)

where the positivity condition of the entries of B defines the domain of the bk variables
[157, 158]

B3 =
{
B(b)

∣∣b ∈ [0, 1]4, 1 ≤
∑
i

bi, b1 + b2 ≤ 1,

b1 + b3 ≤ 1, b2 + b4 ≤ 1, b3 + b4 ≤ 1
}
. (2.58)

For the sake of simplicity, we simply write b ∈ B3 whenever b satisfies these conditions.
Another useful parameterization of bistochastic matrices follows from the fact that they
are the convex hull of permutation matrices σπ [147]

B =
∑
π∈Sd

cπσπ, (2.59)

where cπ ≥ 0,
∑

π cπ = 1.
A special subset of bistochastic matrices are the unistochastic matrices B ∈ Ud whose

entries are specified by a unitary matrix V ∈ SU(d), Bij = |Vij|2. While for d = 2,
U2 = B2, a similar equality does not hold for d ≥ 3 [157–159]. For example, the vectors b
defining a unistochastic matrix B ∈ U3 must satisfy, in addition to the condition b ∈ B3,
an extra condition related to the positive area of a triangle (see [157, 158, 160] for more
details), so that

U3 = B3 ∩ {B(b)|A(b) ≥ 0} , (2.60)

with
A(b) ≡ 4b1b2b3b4 − (b1 + b2 + b3 + b4 − 1− b1b4 − b2b3)

2 . (2.61)

Note that there is no known characterisation of unistochastic matrices for d > 3 [159,
160].

2.B Barycentric coordinates

A mixed spin-j state necessarily has eigenvalues λi that are positive and add up to one,
i.e.

λi ≥ 0,

2j∑
i=0

λi = 1.
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Figure 2.9: Barycentric and cartesian coordinate systems of spin state spectra for j = 1.
The simplex in this case is an equilateral triangle, shown here in gray. The red dot
corresponds to a given spectrum and its projections onto the barycentric and Cartesian
coordinate system are indicated by the red and green dashed lines respectively.

This means that every state ρ has its eigenvalue spectrum in the probability simplex of
dimension 2j. For example, for j = 1, this simplex is a triangle shown in grey in Figure
2.9. In geometric terms, the spectrum (λ0, λ1, λ2) defines the barycentric coordinates of
a point λ in the simplex, as it can be considered as the centre of mass of a system of 2j
masses placed on the vertices of the triangle.

Let’s explain how to go from the barycentric coordinate system to the Cartesian
coordinate system spanning the simplex. If we denote by

{
r(i) : i = 0, . . . , 2j

}
the set of

2j + 1 vertices of the simplex, the Cartesian coordinates of a point λ are given by

xk =

2j∑
i=0

λi r
(i)
k

where r(i)k is the k-th Cartesian coordinate of the i-th vertex of the simplex. For j = 1,
the simplex is an equilateral triangle with vertices having Cartesian coordinates r1 =
(0, 0), r2 = (1, 0) and r3 = (1/2,

√
3/2). For j = 3/2, it is a regular tetrahedron with

vertices having Cartesian coordinates r1 = (0, 0, 0), r2 = (1, 0, 0), r3 = (1/2,
√
3/2, 0) and

r4 = (1/2, (2
√
3)−1,

√
2/3).

2.C AWP and APP polytope vertices for j ≤ 2

We give in Table 2.3 for 1/2 ≤ j ≤ 2 the spin state spectra associated with the vertices
of the minimal AWP and APP polytopes as they can be determined as explained in
Subsection 2.1.2.
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j AWP vertices APP vertices

1/2 λv1 ≈ (0.789, 0.211) λv1 ≈ (0.666, 0.333)

1 λv1 ≈ (0.423, 0.423, 0.153)

λv2 ≈ (0.544, 0.228, 0.228)

λv1 ≈ (0.375, 0.375, 0.25)

λv2 ≈ (0.4, 0.3, 0.3)

3/2 λv1 ≈ (0.294, 0.294, 0.294, 0.119)

λv2 ≈ (0.33, 0.33, 0.170, 0.170)

λv3 ≈ (0.4, 0.2, 0.2, 0.2)

λv1 ≈ (0.266, 0.266, 0.266, 0.2)

λv2 ≈ (0.266, 0.266, 0.233, 0.233)

λv3 ≈ (0.28, 0.24, 0.24, 0.24)

2 λv1 ≈ (0.226, 0.226, 0.226, 0.226, 0.097)

λv2 ≈ (0.24, 0.24, 0.24, 0.14, 0.14)

λv3 ≈ (0.266, 0.266, 0.156, 0.156, 0.156)

λv4 ≈(0.313, 0.172, 0.172, 0.172, 0.172)

λv1 ≈ (0.204, 0.204, 0.204, 0.204, 0.184)

λv2 ≈ (0.206, 0.206, 0.206, 0.156, 0.156)

λv3 ≈ (0.208, 0.208, 0.195, 0.195, 0.195)

λv4 ≈ (0.216, 0.196, 0.196, 0.196, 0.196)

Table 2.3: Barycentric coordinates (corresponding to the eigenspectrum of a mixed spin
state) of the vertices of the minimal polytope of AWP states.

2.D Proof of (2.49)
We begin by noting that PLB

ρ , as given in (2.42), depends only on the components ρL0,
and on r which, however, is constant along the unitary orbit of ρ. These components
can be expressed for a generic state within the unitary orbit, ρ = UΛU †, with Λ being
a diagonal matrix in the |j,m⟩-basis whose diagonal entries are the eigenvalues of ρ, as
follows

ρL0 = λBtTL = vLb
′T ,

where tL is the vector of eigenvalues of TL0 with the entries tL,m = ⟨j,m|TL0 |j,m⟩, Bij =
|Uij|2 is a unistochastic matrix (hence also bistochastic) parametrized by a generalization
(2.57) in the bk variables, and the new variables bk = b′k +

1
N+1

are defined to remove an
irrelevant constant term. The vectors vL have the components

[vL]k = λ
∂B

∂b′k
tTL

for k = 1, . . . , N2, where the derivative of B has all elements zero with the exception of[
∂B

∂b′k

]
i,j

=

[
∂B

∂b′k

]
N+1,N+1

= 1,

[
∂B

∂b′k

]
i,N+1

=

[
∂B

∂b′k

]
N+1,j

= −1

where i =
⌊
k−1
N

+ 1
⌋

and j ≡ k−1 (mod N). The function PLB
ρ defined in (2.42), written

as a quadratic function on the coefficients of b′, then reads

PLB
ρ = f + 2qb′T + b′H b′T , (2.62)

with

q =
1

2

N∑
k=1

gkvk H =
N∑
k=1

hkv
T
k vk. (2.63)
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N = 2j L F (L,M) for M = 0, . . . , L

2 2
(
18
35
,−24

35
, 6
35

)
3

2

3

(
18
35
,−24

35
, 6
35

)(
2
3
,−4

7
,−2

7
, 4
21

)
4

3

4

(
100
231
,−50

77
, 20
77
,− 10

231

)(
250
429
,− 90

143
,− 20

143
, 10
39
,− 10

143

)
5

3

4

5

(
100
231
,−50

77
, 20
77
,− 10

231

)(
250
429
,− 90

143
,− 20

143
, 10
39
,− 10

143

)(
2
3
,− 80

143
,− 40

143
, 20
429
, 30
143
,− 12

143

)
Table 2.4: Numerical values of F (L,M) defined in (2.36) for several number of qubits
and N ⩾ L > N/2.

We assumed in Section 2.3 that the eigenvalues hL of the matrix H are non-negative.
On the other hand, the vectors v1, . . . ,vL can be completed to form an orthogonal basis
V = {vk}N2

k=1. We now define the dual basis Ṽ = {ṽk}N2

k=1 of V as the set of vectors
satisfying

ṽkv
T
l = δkl.

We use this basis to define a new affine transformation b′ = b′′ − H̃qT with

H̃ =
N∑
k=1

h−1
k ṽTk ṽk.

Now, PLB
ρ written in terms of the new variables reads

PLB
ρ = f + b′′Hb′′T − qH̃qT = f + b′′Hb′′T − 1

4

N∑
k=1

g2k
hk
,

where we have used that HH̃qT = qT . The global minimum of PLB
ρ is achieved for

b′′ = 0 because H is a non-negative matrix, which proves the result (2.49).

2.E Properties of F (L,M)

Here we present some inequalities associated with the function F (L,M) defined in (2.36).

Proposition. For L = 2j and M = 1, we have

F (L = 2j,M = 1) < 0. (2.64)

Proof. Writing N = 2j, we have

F (N, 1) = 2
N∑
L=0

CL0
N0N0C

L0
N1N−1 = 2

N∑
L=0

(
CL0
N0N0

)2( L(L+ 1)

2N(N + 1)
− 1

)

< 2
N∑
L=0

(
CL0
N0N0

)2( N(N + 1)

2N(N + 1)
− 1

)
< 0
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where we used an identity between the CL0
N0N0 and CL0

N1N−1 given in (7), p. 253 of [69].

Proposition. For all M = 0, . . . , L,

F (L, 1) ⩽ F (L,M) and F (L, 1) < 0. (2.65)

This inequality is a conjecture supported by the explicit evaluation of F (L,M) for
several (L,M)-values, as shown in Table 2.4 for j ≤ 5/2. These inequalities become
relevant for specifying the allowed domain of the xL parameters restricted by (2.47)-
(2.48). If we assume that (2.65) is true, then the inequality that gives the best upper
bound on xL for L > j comes from M = 1

xL ⩽
F (2j, 1)

F (L, 1)
x2j,

where we have used (2.64) and the fact that x2j ⩾ 0.



Chapter 3

Entanglement from phase-space
distributions

As discussed in Chapter 2, the non-classicality of phase-space representations of spin
systems and the entanglement of symmetric multiqubit states are closely related, though
not fully equivalent. Nevertheless, a fundamental result states that a quantum state
ρ is separable if and only if it admits a positive Glauber-Sudarshan P function. This
establishes that phase-space distributions can indeed provide rigorous statements about
entanglement [161, 17, 162, 163, 164]. Together with phase-space negativity and magic
[143, 165], entanglement lies at the very heart of quantum physics and constitutes a key
resource for quantum technologies [101]. Yet, detecting and quantifying entanglement is
notoriously challenging, making the development of new theoretical methods and experi-
mental protocols essential. Established approaches include entanglement witnesses [112],
in particular around specific symmetric multiqubit states [166, 167], as well as criteria
based on collective measurements [167] or PPT mixtures [168], which allow the detection
of certain classes of entanglement. The purpose of this chapter is to explore the use of
modern machine learning tools to estimate the entanglement of symmetric multiqubit
states from partial information extracted from their phase-space representations.

More specifically, the focus will be on the geometric measure of entanglement (GME)
of symmetric multiqubit states. The GME of a multiqubit state, whether pure or mixed,
is an entanglement measure that quantifies its distance to the nearest separable state
[169]. Intuitively, one might expect a state close to the set of separable states to be less
entangled than a state far from it. The GME is therefore a quantitative measure of the
degree of entanglement of a state, making it a significant quantity in the field of multi-
partite entanglement. However, it should be noted that, in contrast to the entanglement
negativity for example, the calculation of the GME requires the exact knowledge of the
state. This makes the GME a challenging quantity to be accessed experimentally, as it
would necessitate a complete tomography of the state.

In order to render the GME an experimentally accessible quantity, we will exploit the
direct relation between the GME of symmetric multiqubit pure states and the Husimi
function. This is achieved through the moments of the Husimi function, otherwise known
as Wehrl moments, which contain partial information about the state. It is shown that
the GME of any symmetric multiqubit pure state can be predicted based on the ratio
of successive Wehrl moments, utilising artificial neural networks (ANNs). The method
proves to nicely scale with the number of qubits and show resilience to measurement
errors and noise. Finally, it is demonstrated that these moments are accessible through

73
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experimental means by employing spherical designs, thus establishing this work as a
potential tool in the experimental estimation of entanglement.

This chapter is organised as follows. In Section 3.1, we define the GME, the Wehrl
moments and their relations to each other for pure symmetric multiqubit states. We also
explain how the GME of pure and mixed symmetric multiqubit states can be efficiently
estimated numerically. In Section 3.2, we succinctly explain how ANNs are defined and
how they can be trained through deep learning techniques. In Section 3.3, we present how
we generate the datasets of GME and Wehrl moments used throughout this work to train
our ANNs. In Section 3.4, we introduce two different approaches to estimate the GME
of the dataset: a first one based on the two highest known successive Wehrl moments
and a second one based on a trained ANN. We then compare and analyse our results. In
Section 3.5, we propose a protocol for experimentally determining Wehrl moments. It is
based on the measurement of a set of multiqubit observables whose number scales only
quadratically with the number of qubits. We then conclude and present perspectives of
our work. Finally, this chapter ends with a series of technical appendices with additional
information on the training of our ANNs, their efficacy for different symmetric multiqubit
states than those considered in the main text and their robustness against noise impacting
the Wehrl moments values.

3.1 Geometric measure of entanglement and Wehrl mo-
ments

3.1.1 Geometric measure of entanglement

We introduced, in Chapter 1, the GME of N qubit symmetric states as [120, 121]

EG (|ψ⟩) = 1−max
|ϕ⟩

∣∣〈ϕ⊗N ∣∣ψ〉∣∣2 , (3.1)

where the maximisation is performed over the single-qubit separable state |ϕ⟩. This
measure of entanglement quantifies the distance between the state |ψ⟩ and the nearest
separable state. The GME has an operational interpretation, as states with high GME
are difficult to distinguish by local operations [170]. It has been used to prove that, in
measurement-based quantum computation, more entanglement does not necessarily mean
more computational power. In fact, certain highly entangled states can be less useful than
states with less entanglement [135, 171]. The GME was also employed to study quantum
phase transitions, demonstrating that it exhibits non-analytic behavior at critical points
in quantum spin chains [172, 173]. This behavior highlights the effectiveness of the GME
as a diagnostic tool for identifying quantum criticality in many-body systems.

Using the isomorphism between the set of N -qubit symmetric states and the set of
spin j = N

2
states, we can identify any multiqubit symmetric separable state |Ω⟩ with its

corresponding coherent spin state |θ, φ⟩. We are thus left with the problem of finding the
maximum of the Husimi function Q of |ψ⟩ on the sphere S2, that is

max
|Ω⟩

|⟨Ω|ψ⟩|2 = max
θ∈[0,π]
φ∈[0,2π[

|⟨θ, φ|ψ⟩|2 = max
θ∈[0,π]
φ∈[0,2π[

Q|ψ⟩ (θ, φ) .

This is an important relation as it means that the GME of any symmetric multiqubit
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Figure 3.1: Top : Husimi function to the power q = 1, 4 and 8 (from left to right) of
a random symmetric state of N = 8 qubits (the color scale is different in each panel).
Middle and bottom : Wehrl moments W (q)

|ψ⟩ and their ratios S|ψ⟩(q) for the states
∣∣DN

N

〉
(in blue), GHZ (in orange), W (in green) and |DN/2

N ⟩ (in pink) for N = 8.

state can be related directly to the Husimi function of its corresponding spin state as

EG (|ψ⟩) = 1− max
θ∈[0,π]
φ∈[0,2π[

Q|ψ⟩ (θ, φ) . (3.2)

Under experimental conditions, the quantum state of a system is never perfectly pure
due to the interaction of the system with its environment, resulting for example in de-
polarisation. It is therefore important to address the case of mixed states as well. For a
mixed state ρ, the GME can be generalised based on the convex roof construction (see
Section 1.3)

EG (ρ) = min
{pi,|ψi⟩}

∑
i

piEG (|ψi⟩) (3.3)

where the minimum is taken over all pure state decompositions {pi, |ψi⟩} of ρ, i.e. ρ =∑
i pi |ψi⟩ ⟨ψi|. In [124], it was shown that this definition is equivalent to another definition

based on the distance of ρ to the convex set S of separable mixed states

EG(ρ) = 1− max
σsep∈S

F (ρ, σsep) . (3.4)

We will explain in Subsection 3.1.4 how the two definitions (3.3) and (3.4) can be used
to numerically compute the GME of mixed states.
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3.1.2 Wehrl moments

From an experimental perspective, the estimation of the GME necessitates full state
tomography, a process that can prove to be fastidious as it requires numerous measure-
ments. Hence, it would be interesting to be able to estimate the GME of any state from
only partial information of it. To do so, we define the Wehrl moments W (q)

|ψ⟩ of integer
order q

W
(q)
|ψ⟩ =

1

4π

∫
S2

(
Q|ψ⟩(Ω)

)q
dΩ (3.5)

which are SU(2) invariant and directly related to the Rényi-Wehrl entropy S(q)
|ψ⟩ = 1/(1−

q) logW
(q)
|ψ⟩ [174]. The Wehrl moments have already been used as a measure of localisation

in phase space [174, 175], in detection of phase transitions in different materials [176, 177]
and, specifically for q = 2, as a measure of complexity of quantum states [178]. Indeed,
the idea is that the Husimi function of a delocalised state takes smaller values in phase
space than a localised state. Therefore, the effect of raising the Husimi function up
to a certain power q > 1 will have a greater impact on a delocalised state, since Q is
normalised, and the value of its Wehrl moment will be smaller than that of a localised
state. The top panel of Figure 3.1 shows the effect of raising the Husimi function of a
random symmetric state of N = 8 qubits up to q = 1, 4 and 8.

A tight upper bound for Wehrl moments of order q > 1 that is valid for any state is
given by [174, 179]

W
(q)
|ψ⟩ ⩽

1

Nq + 1
,

where the equality holds only for coherent states which are the most localised states [180].
At the middle of Figure 3.1, we plot the Wehrl moments of several symmetric states of
N = 8 qubits. It appears that the Wehrl moments of the coherent and most localised
state

∣∣DN
N

〉
are greater than for the entangled states GHZ, W and |DN/2

N ⟩.
An explicit expression for the Wehrl moments of symmetric multiqubit states in terms

of Dicke coefficients dk has been given by Gnutzmann and Życzkowski [174], and reads
in our notations

W
(q)
|ψ⟩ =

qN∑
m=0

1

qN + 1

(
qN

m

)−1

∣∣∣∣∣∣
∑
i1,...,iq

q∏
k=1

√(
N

ik

)
dik

∣∣∣∣∣∣
2

,

where the inner sum goes from 0 to N for each ik with the restriction
∑q

k=1 ik = m.
This relation is exact and allows us to calculate the Wehrl moments when we know the
expansion of a symmetric state in the Dicke basis.

3.1.3 Bounds on the GME from Wehrl moments

The introduction of the Wehrl moments for the estimation of the GME is motivated by
the fact that the maximum of the Husimi function can be bounded with the help of
successive Wehrl moments. For any integers q > p > 1 and any state |ψ⟩, it holds that

max
θ∈[0,π]
φ∈[0,2π[

Q|ψ⟩ (θ, φ) ⩾
W

(q+1)
|ψ⟩

W
(q)
|ψ⟩

⩾
W

(p+1)
|ψ⟩

W
(p)
|ψ⟩

. (3.6)
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This is a consequence of the integral Hölder’s inequality [181],

∥fg∥1 ⩽ ∥f∥r∥g∥m,

where ∥f∥r =
(∫

X
|f |rdµ

) 1
r , r,m ∈ [1,∞] with 1/r+1/m = 1, and f and g are functions

defined on X. By taking f = Q|ψ⟩, g = Qq
|ψ⟩, X = S2, dµ = dΩ/4π, r = ∞ and m = 1, we

readily get (3.6) by noting that ∥f∥∞ = maxX f where ∥·∥∞ denotes the spectral norm.
Equation (3.6) provides us with a chain of better and better upper bounds for the GME
as q and p increase. In fact, defining the sequence (for integer q > 1)

S|ψ⟩(q) =
W

(q)
|ψ⟩

W
(q−1)
|ψ⟩

, (3.7)

we have that
EG (|ψ⟩) ⩽ 1− S|ψ⟩(q) ∀q > 1, (3.8)

and
EG (|ψ⟩) = 1− max

θ∈[0,π]
φ∈[0,2π[

Q|ψ⟩ (θ, φ) = 1− lim
q→∞

S|ψ⟩(q). (3.9)

Equation (3.9) shows that the GME can be extracted from the limit of the sequence
S|ψ⟩(q) of ratios of successive Wehrl moments. The bottom panel of Figure 3.1 shows the
ratios of Wehrl moments of different symmetric states for N = 8 qubits. For symmetric
Dicke states

∣∣∣D(k)
N

〉
, the Wehrl moments are explicitly given by

W
(q)

|D(k)
N ⟩

=

(
Ck
N

)q
(Nq + 1)Ckq

Nq

.

This then leads to

1− EG

(∣∣∣D(k)
N

〉)
= lim

q→∞
S|D(k)

N ⟩ (q) =

 Ck
N

(
k

N

)k (
N − k

N

)N−k

0 < k < N − 1,

1 k = 0, N.

in agreement with known results for the GME of Dicke states [120].
While it is now clear from (3.8) that there is a direct link between the GME and the

ratios of Wehrl moments, it would be interesting to study how precisely we can estimate
the GME from the ratios of the lower Wehrl moments. To this end, we will turn our
interest into ANNs which are able to learn the relation between different quantities. To
train these ANNs we however need to generate different data sets containing the GME and
the Wehrl moments of random states which represent the large diversity of entanglement
that can arise in multiqubit symmetric states [182]. The first step is to compute the GME
of pure and mixed symmetric multiqubit states.

3.1.4 Computation of the GME

In this subsection, we present different algorithms to compute the GME of pure and
mixed states. For the reader interested in the results of the ANNs training, they can
directly go to Section 3.2.
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3.1.4.1 Pure states

There are two strategies to compute the GME of a pure state depending on whether the
state is considered to be a multiqubit symmetric state or a spin state. In the latter case,
the GME of a symmetric multiqubit state |ψ⟩ can be computed by finding the maximum
of the Husimi function of its associated spin state with the help of (3.2). As a coherent
state in the standard angular momentum basis is given by

|θ, φ⟩ =
j∑

m=−j

√
Cj+m

2j

(
cos

θ

2

)j+m(
sin

θ

2

)j−m
e−i(j−m)φ|j,m⟩,

finding the maximum of the Husimi function can be achieved by optimising the two angles
(θ, φ) which define a coherent state. This is a highly non-linear optimisation which can
be handled by any non-linear solver such as Ipopt [183]. While this method can offer
satisfactory results, it is not optimal and better results can be obtained, in terms of
accuracy and computation speed, by considering the system as an ensemble of qubits in
the symmetric subspace instead.

In this case, we can adapt to the symmetric subspace an algorithm first presented in
[184]. Consider a multiqubit state |ψ⟩ in the full Hilbert space of N qubits for which we
want to find the closest separable state. We start from a random separable state |Φ0⟩ =∣∣∣ϕ(0)

1 ⊗ ϕ
(0)
2 · · · ⊗ ϕ

(0)
N

〉
and, by tracing out the first qubit, compute the unnormalised

single-qubit state

|ψ̃⟩ =
〈
ϕ
(0)
2 · · · ⊗ ϕ

(0)
N

∣∣∣ψ〉 .
To maximise the overlap between |ψ⟩ and |Φ0⟩, we then update the first qubit state

∣∣∣ϕ(0)
1

〉
with ∣∣∣ϕ(0)

1

〉
→
∣∣∣ϕ(1)

1

〉
=

|ψ̃⟩√
⟨ψ̃|ψ̃⟩

.

As
∣∣∣ϕ(1)

1

〉
is a pure single-qubit state, it is guaranteed that

∣∣∣ϕ(1)
1

〉
is always separa-

ble. The procedure can then be repeated by tracing out only the second qubit and
then the third qubit, and so on. After n iterations, we get a separable state |Φn⟩ =∣∣∣ϕ(n)

1 ⊗ ϕ
(n)
2 · · · ⊗ ϕ

(n)
N

〉
closer to the state |ψ⟩ [184]. It is demonstrated that this algo-

rithm allows to find a generalised Schmidt decomposition of the multipartite state |ψ⟩
with arbitrary precision. However, this decomposition is not unique (except for bipar-

tite system) and the final quantity 1−
∣∣∣〈ϕ(n)

1 ⊗ ϕ
(n)
2 · · · ⊗ ϕ

(n)
N

∣∣∣ψ〉∣∣∣2 does not necessarily
correspond to the GME. This is expected as the estimation of the GME is a non-linear
optimisation problem. Hence, it may be necessary to run the algorithm several times with
different initial state |Φ0⟩ to find the GME of |ψ⟩. Interestingly, for symmetric multiqubit
states, this algorithm can be modified such that only symmetric states are used, greatly
reducing the required numerical resources. Indeed, a symmetric state |ψ⟩ can be split
across a bipartition t|N − t as [73]

|ψ⟩ =
t∑

q=0

∣∣∣D(q)
t

〉
⊗
∣∣∣v(q)t 〉 (3.10)
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where ∣∣∣v(q)t 〉 =

N−t+q∑
k=q

√
Cq
tC

k−q
N−t

Ck
N

dk

∣∣∣D(k−q)
N−t

〉
.

We can then start from anN -qubit separable symmetric state
∣∣Ω(0)

〉
=
∣∣ϕ(0) ⊗ ϕ(0) · · · ⊗ ϕ(0)

〉
and, using (3.10) for t = 1, compute the unnormalised single qubit state

|ψ̃⟩ = ⟨ϕ(0) ⊗ · · · ⊗ ϕ(0)︸ ︷︷ ︸
N−1

|ψ⟩ (3.11)

=
1∑
q=0

〈
ϕ(0) ⊗ · · · ⊗ ϕ(0)

∣∣∣v(q)1

〉 ∣∣∣D(q)
1

〉
Then, as we work in the symmetric subspace, we can update the entire separable state
|Ω0⟩ at once using ∣∣ϕ(0)

〉
→
∣∣ϕ(1)

〉
=

|ψ̃⟩√
⟨ψ̃|ψ̃⟩

and we get
∣∣Ω(1)

〉
=
∣∣ϕ(1) ⊗ ϕ(1) · · · ⊗ ϕ(1)

〉
. Starting over from (3.11) with this new

state
∣∣Ω(1)

〉
, we can then compute an updated state

∣∣Ω(2)
〉

and so forth. Again, for
this algorithm to compute the GME of the symmetric state |ψ⟩ with arbitrary precision,
it must run multiple times with different initial state |Ω0⟩. While this algorithm was
designed to compute the GME of multiqubit pure states, it can also serve to compute the
maximal value of the Husimi function of a pure spin state through (3.2).

3.1.4.2 Mixed states

The geometric measure of entanglement of mixed states can be numerically estimated
based on its convex roof construction (3.3) or its definition based on the fidelity (3.4).
In the first case, the algorithm for the estimation of the GME of pure states can be used
with the results from [185]. In the second case, an algorithm for multiqubit states in the
full Hilbert space is presented in [184].

We propose here another algorithm to compute the GME exclusively for a symmetric
multiqubit/spin system. The advantage of these systems is that a closed-form of separable
states is known. Note that an other method to circumvent the problem of separable states
characterisation is to use the ensemble of PPT states, which gives a lower bound on the
GME [186]. As the ensemble of separable states is convex, by the Caratheodory’s theorem,
any N -qubit symmetric separable state can always be expressed in the following form

ρsep =

(N+1)2∑
i=1

pi |θi, φi⟩ ⟨θi, φi|

where pi ≥ 0,
∑(N+1)2

i=1 pi = 1 and the |θi, φi⟩ are coherent pure states. Hence, in order
to find the GME of a multiqubit symmetric state ρ, we need to solve the following
optimisation problem

Find max
{pi},{θi,φi}

F (ρ, ρsep) (3.12)
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subject to pi ≥ 0

(N+1)2∑
i=1

pi = 1

|θi, ϕi⟩ ∈ SC

where SC is the set of pure coherent states. Consequently, to find the GME of a state, we
need to solve the optimisation problem (3.12) involving 3(N + 1)2 parameters. Here, we
propose to use the Nelder-Mead non-linear optimisation algorithm to obtain the optimal
angles {θi, φi}. For the weights {pi}, a more efficient algorithm can be used. Indeed, it
was showed that the fidelity F (ρ, σ) between two arbitrary states ρ and σ is equal to the
maximal value obtained from the following SDP problem [187, 188]

Find max
X

[
1

2
Tr (X) +

1

2
Tr
(
X†)]

subject to

(
ρ X
X† σ

)
≥ 0

where X is a matrix with complex entries.
Based on this preliminary explanation, the algorithm we propose is the following:

1. Randomly initialise the (N + 1)2 weights pi and the 2 (N + 1)2 angles (θi, φi).

2. For these angles, optimise the weights with the following SDP problem

Find max
{pi},X

[
1

2
Tr (X) +

1

2
Tr
(
X†)]

subject to

(
ρ X
X† ρsep

)
≥ 0

ρsep =

(N+1)2∑
i=1

pi |θi, φi⟩ ⟨θi, φi|

3. Using the previously found weights, optimise the fidelity F (ρ, ρsep) with the Nelder-
Mead algorithm using the angles {θi, φi} as the optimisation parameters.

4. Repeat steps 2 and 3 until the difference on the fidelities obtained from two con-
secutive optimisations is lower than a given value ϵ.

We note that, in addition to the value of the GME, this algorithm also gives the decom-
position of the nearest separable mixed state into a weighted sum of coherent pure states.
If ρ is separable, then the algorithm directly gives the decomposition of the mixed state
into pure states.

To benchmark the algorithm, we computed the GME of the depolarized GHZ states
for N = 2, 3, 4, 5 and 6. Starting from the GHZ state density matrix

ρGHZ = |GHZ⟩ ⟨GHZ|
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Figure 3.2: Top : GME of the depolarised GHZ state given by (3.13). Bottom : Difference
between the GME obtained numerically ENum

G and the analytical value (3.13) for N =
2, 3, 4, 5 and 6.

we then obtain the symmetric depolarised state by removing the diagonal elements in the
Dicke basis

ρ
(p)
ij =

{
ρij i = j

pρij i ̸= j

with p ∈ [0, 1]. It is known that the GME of ρ(p) for any number of qubits N and all
p ∈ [0, 1] is given by [186]

EG
(
ρ(p)
)

=
1−

√
1− p2

2
. (3.13)

We show in Figure 3.2 the difference between the GME obtained numerically and the
analytical GME given by (3.13).

3.2 Artificial Neural Networks
In recent years, with the rapid increase in computer processing power, the field of machine
learning has expanded rapidly. One of its subfield is Artificial Neural Networks (ANNs)
which has become one of the main area of artificial intelligence and have gained momen-
tum in quantum physics [189, 190]. In the context of quantum state tomography, they
have been used to reconstruct density matrices from measurement results [191, 192] and
to find an optimal measurement basis [193]. In quantum optics, artificial neural networks
have been trained to detect multimode Wigner negativity [194]. Deep reinforcement
learning and recurrent neural networks have also been exploited for quantum information
theory purposes, such as quantum state preparation [195] and quantum error-correction
[196, 197].
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In the context of entanglement theory, ANNs have been used to quantify the amount
of entanglement in multipartite quantum systems [198, 199] and to classify the entangle-
ment in pure states [200] and mixed states [201]. In [198], the authors trained complex-
valued ANNs to predict the GME of symmetric states. To do so, they reformulated the
GME computational problem as the search for the best rank-one tensor approximation
of complex tensors, for which they used ANNs. Other authors have used deep learning
methods to compute the concurrence and mutual information from an incomplete tomog-
raphy of mixed qubit states [199]. In quantum many-body physics, convolutional neural
networks were employed to compute e.g. the entanglement entropy from the variance on
the number of particles in an electron chain [202].

Fundamentally, an ANN is a non-linear regression function that updates its parame-
ters during a learning phase in order to mimic as closely as possible the real (unknown)
function that connects the data points of interest. It therefore seems perfectly suited to
our objective of estimating the GME of multiqubit symmetric states on the basis of their
first Wehrl moments. In this subsection, we briefly explain how ANNs and deep learning
work.

3.2.1 Structure of an artificial neural network

The smallest unit of an ANN is a neuron which is characterised by a vector of n weights
w = (w1, w2, . . . , wn) and a bias b. The neuron receives n real values x = (x1, x2, . . . , xn)
and outputs a single real value

z (w, b) = x ·wT + b =
n∑
i=0

wixi + b

as represented in Figure 3.3. As it stands, the neuron can only represent a linear function
between the inputs and the output. In order to add some non-linearities, one adds a
non-linear function f : z → f(z), known as the activation function. The output of the
neuron is then

y (w, b) = f
(
x ·wT + b

)
. (3.14)

Figure 3.3: Representation of a single neu-
ron.

The activation function is arbitrary and
is often taken as a simple function which
can be efficiently computed. Here, we will
use the Rectified Linear Unit (ReLU) func-
tion defined by

ReLU(x) =

{
x x ≥ 0

0 x < 0

and shown in Figure 3.4.
With this elementary brick, a neural

network is built as a set of layers, indexed
by l, containing a given number nl of single
neurons (see Figure 3.8 which depicts the
ANN structure used for the estimation of

the GME). From this construction, the i-th neuron of the l-th layer outputs a real value
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y
(l)
i based on its inputs, these inputs being themselves the outputs of the neurons in the

previous layer. The output of a neuron in the first layer y(0)i is simply the data which
we feed to the neural network, in our case the Wehrl moment ratios S(q)

|ψ⟩. By feeding
the nodes of one layer with the values of the previous layer, the data flows through the
network and finally the last layer contains the value of the regression, in our case an
estimate of the GME. Initially, the weights and biases are chosen at random but the
training process, known as deep learning, updates them to increase the accuracy of the
ANN’s predictions.

Figure 3.4: Graph of the ReLU function.

The predominance of neural networks
comes in part from the fact that nearly all
operations in ANNs can be put in the form
of matrix multiplications. Hence, the pro-
cessing power of GPUs (graphics process-
ing units) can be leveraged to reduce the
computation time of the learning stage. To
see this, we point out that each neuron of
the l-th layer of size nl will receive nl−1 in-
puts from the previous layer. Hence, the

parameters of a layer can be expressed in the form of a matrix of weights

W (l) =


w11 w12 . . . w1nl

w21 w22 . . . w2nl
...

... . . . ...
wnl−11 wnl−12 . . . wnl−1nl


where wij is the i-th weigth of the j-th neuron, and a vector of biases

b(l) = (b1, b2 . . . , bnl)

where bi is the bias of the i-th neuron. In this form, we can gather the output of the
neurons of the layer in a vector

y(l) = f (l) ·
(
z(l)
)
= f (l) ·

(
y(l−1)W (l) + b(l)

)
where the notation f · (z) means that the function f is applied on each element of z.
Initially, the weights W (l) and the biases b(l) are randomly generated. To get an ANN
that makes useful predictions, we need to train it. This means updating the weights and
biases so that the non-linear function representing the ANN closely resembles the one
that actually relates the inputs of the ANN and the desired output. The way this is done
is known as deep learning.

3.2.2 Deep Learning

There exists different ways to train a neural network. Here, as we are able to compute the
Wehrl moments and the GME of any state, we will use supervised learning. In supervised
learning, we train an ANN from a data set for which we know the correct output vector
ŷ such that we can easily inform the neural network if it improves or not during the
training process. Two other emblematic learning methods are unsupervised learning and
reinforcement learning. Regardless the method used, we must define a loss function which
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serves as a comparison between the expected values the neural network should output
and the actual value that it outputs.

For our task of predicting the GME, we simply use the mean squared error cost
function

ϵ
(
ŷ,y(D)

)
=

1

nD

nD∑
k=1

(
ŷk − y

(D)
k

)2
≡

(
EG (ψ)− Epred

G (ψ)
)2

where D is the number of layers in the network (also called the depth), nD is the number
of neurons of the last layer and Epred

G is the GME of the state |ψ⟩ as predicted by the
ANN. Clearly, we want to update the parameters of the neural network to get the minimal
possible value of ϵ. Based on this loss function, we can update the weights and biases of
the ANN with the algorithm of gradient descent. To explain the algorithm, let us consider
the derivative of the loss function w.r.t. a given weight ∂ϵ/∂wij (a similar reasoning of
course holds for the biases). In Figure 3.5, we see that by following the opposite of
the derivative, we can update the weight in order to obtain a smaller value for the loss
function. Using the chain rule, the derivative of ϵ w.r.t. a weight in the l-th layer is

∂ϵ

∂w
(l)
ij

= 2

nD∑
k=1

(
ŷk − y

(D)
k

) df (D)

dz

∣∣∣∣
z=z

(D)
k

∂z
(D)
k

∂w
(l)
ij

(3.15)

where the last factor needs to be expanded. For any l′ > l, we have

∂z
(l′)
k

∂w
(l)
ij

=

nl′−1∑
m=1

w
(l′)
km

df (l′−1)

dz

∣∣∣∣
z=z

(l′−1)
m

∂z
(l′−1)
m

∂w
(l)
ij

Figure 3.5: Derivative of the loss function
with respect to a weight.

and we see that the derivative of z(l)k de-
pends on the one of z(l−1)

k . Consequently,
applying the chain rule successively allows
us to go through the consecutive neural
network layers to finally get the l-th layer
containing the neuron with the weight w(l)

ij .
The derivative of the output of this neuron
then reads

∂z
(l)
m

∂w
(l)
ij

= y
(l−1)
j δim.

Hence, we can get a formula for which, by
passing the input data in the ANN to get

all the y(l) values, we can compute the derivative of ϵ w.r.t. any weight of the ANN. Once
it is done, we update the weight by using gradient descent

w
(l)
ij = w

(l)
ij − α

∂ϵ

∂w
(l)
ij
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where α > 0 is a quantity called the learning rate. This value must not be too high,
otherwise the update will overshoot the minimum of ϵ. But it should not be too small for
the algorithm to converge in a reasonable time. In fact, there exists a whole subdomain
of ANNs which studies how the learning rate should be updated at each update of the
parameters, but we will not dive into this. For completeness, we specify that we use in
the following the ADAM algorithm for the update of the learning rate [203].

The ANN we use here is a Multilayer Perceptron (MLP) neural network for which a
neuron is connected to all neurons of the next layer and an output is given by (3.14).
However, there exists a lot of different network architectures. Examples are the Convolu-
tional Neural Networks (CNNs), often used in image analysis, Recurrent Neural Networks
(RNNs) for time series and the attention unit used in Large Language Models (LLMs).

3.3 Data sets and performance metrics

As our goal is to determine the best estimate of the GME of a state from its first few Wehrl
moments, we need a set of representative pure and mixed symmetric multiqubit states
on which to test our methods and calculate some metrics to compare their respective
performances (see Section 3.4). This section aims to explain how we generated these
representative multiqubit states and what our performance measures are.

3.3.1 Generation of the data sets

3.3.1.1 Pure states

First, we need a data set of pure symmetric multiqubit states from which we compute
their first Wehrl moments and their GME. This way, we can input the ratio of the Wehrl
moments in the ANN, retrieve the prediction Epred

G (ψ) and compare it to the true GME
EG (ψ) as required in (3.15) to apply gradient descent. In fact, we need two data sets, one
for the training of the neural network and a second to test it. The reason is that ANNs
sometimes begin to specialise too much on the data set on which they are trained. At
this point, they do not learn anymore but simply remember to associate a given value to
another one with no real significance. This phenomenon is called overfitting. To prevent
it we need a second data set on which we test the ANN during its training to prevent
that it overfits on the training data set. So, if the ANN starts to overfit, the loss function
will decrease over the training data set but will increase rapidly over the test data set.

Another point to take care of is to use a large enough variety of symmetric states to
generate the data sets. If the set of states is too restrictive, the ANN will make excellent
predictions on these but will be unable to generalise to other kind of symmetric states.
Here, we generate three different subsets of states. Subset 1 is made of symmetric states
with randomly and uniformly distributed Majorana points [71] on the Bloch sphere.
Subset 2 is made of random states for which degenerated Majorana points are uniformly
distributed on the Bloch sphere, with random degeneracy tuples drawn uniformly from
all partitions of N . Finally, the subset 3 is made of superpositions of GHZ and Dicke
states, i.e.

|ψ (α, k)⟩ = N
[
α |GHZ⟩+ (1− α) |D(k)

N ⟩
]

with random real number α ∈ [0, 1] and random integer k between 0 and N . For each
number of qubits N , 20000 states are randomly drawn for each subset. All these states
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Figure 3.6: Frequency distributions of GME of the training set (left) and test set (right)
forN = 8 qubits, where the three subsets of states are represented by different colors. The
number of states in the data sets is large enough to generate a similar GME distribution
for the training and test sets. For N = 8, the maximal GME is EG ≈ 0.816 [204], while
(1.38) gives the upper bound EG(|ψ⟩) ⩽ 8/9 ≈ 0.889.

are then divided into two equally sized sets: one for training the ANN and the other for
testing it. The Wehrl moments up to qmax = 8 and the GME EG are computed for all
states.

Figure 3.6 shows the GME probability distribution of training states (left) and test
states (right) forN = 8. We find that these three subsets have very different entanglement
distributions and are therefore a good set of training and test data. In particular, subset
2 (yellow histograms) is mostly made up of weakly entangled states, while subset 3 (red
histograms) contains a significant proportion of very highly entangled states.

3.3.1.2 Mixed states

In the case of mixed states, we will train ANNs on two different subsets separately. We
do so because the training outcomes will exhibit significant differences between the two
sets.

The first set is obtained by drawing 1000 pure random states |ψ⟩ and mixed random
states ρ and mixing them as follows

ρ = (1− k) |ψ⟩ ⟨ψ|+ kρ. (3.16)

with k = 0.05. As the relation between the GME and the Husimi function (3.2) does
not hold for mixed states, it is not expected that the Wehrl moments are able to predict
the GME for states of any degree of mixedness. Consequently, this set encompasses
states that are only marginally mixed but that are nevertheless typically obtained in
experiments targeting pure states.

For the second set, we generate 1000 depolarised mixed states for each number of
qubits N ∈ {2, 3, 4}. The mixed states were obtained by drawing pure random states
|ψ⟩ according to the Haar measure and mixing them with the MMS ρ0 = I/ (N + 1) as
follows

ρ = (1− k) |ψ⟩ ⟨ψ|+ kρ0, (3.17)

where k ∈ [0, 0.5] is a parameter quantifying the degree of depolarisation. It follows that
this set, in contrast to the first one, is composed of states presenting very different degree
of mixedness. The reason behind this choice will become evident upon the presentation
of the results of the ANNs training.
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3.3.2 Performance metrics

In order to quantify the precision of the estimation of the GME given by the ANNs, we
first define the relative difference between the predicted GME and the actual GME as

δi =
EG (|ψi⟩)− Epred

G (|ψi⟩)
EG (|ψi⟩)

,

where Epred
G (|ψi⟩) stands for the predicted GME of state |ψi⟩ of the test dataset. Then, we

define the mean absolute relative difference, hereafter called mean relative error (MRE)

∆ =
1

M

M∑
i=1

|δi|, (3.18)

where we sum over all states of the test dataset. As the distribution of the absolute
relative difference |δi| is not Gaussian, the standard deviation is not a good estimate for
error bars. Instead, we calculate a low error bar and a high error bar so as to include
68.2% of the |δi| distribution in the error bar and have 15.9% of the distribution below
(above) the low (high) error bar, as would be the case for an interval of one standard
deviation centered around the mean for a Gaussian distribution.

3.4 Estimation of the geometric measure of entangle-
ment

In this section, we finally estimate the GME of the states of the test datasets presented
previously based on the knowledge of their Wehrl moments from q = 1, . . . , qmax, expect-
ing a better estimate of the GME as qmax increases. To give a first crude comparison
point for pure states, we first compute an estimate of the GME of the test data set based
on the ratio of the two highest known Wehrl moments, see (3.9). Then, we apply our
trained ANNs to estimate the GME of the test data set for pure and mixed states. We
are particularly interested in the performance of the ANNs as a function of the highest
considered order qmax and of the number of qubits N .

3.4.1 Pure states

3.4.1.1 Ratios of Wehrl moments

As the ratios of successive Wehrl moments (3.7) converge to the maximum of the Husimi
function when q → ∞, a first estimate of the GME of the test states based on these ratios
is given by

Epred
G (|ψ⟩) = 1− S|ψ⟩ (qmax) . (3.19)

The predictive power of (3.19) is illustrated in Figure 3.7 for different maximal orders
qmax and number of qubits N . As expected from the inequality (3.8), we observe that the
estimate (3.19) is always larger than the actual value of the GME (left panels), which
results in a positive relative difference (middle panels). As qmax increases, the estimate
becomes better and better, with a decrease in mean relative error (MRE) as a function of
qmax (top right panel). However, even with qmax = 8, the MRE remains above 10%. The
MRE increases slightly with N before stabilising quickly, as shown in the bottom right
panel.
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Figure 3.7: Predictions of EG based directly on Wehrl moment ratios S|ψ⟩(qmax) =

W
(qmax)
|ψ⟩ /W

(qmax−1)
|ψ⟩ for N = 4 and different maximal orders qmax (top) and for qmax = 4

and different number of qubits N (bottom). Left panels: Predicted value versus actual
value of GME for all states of the test dataset. Middle panels: Probability to predict
the GME with a certain relative difference. The bin size is 0.5%. Right panels: Mean
relative error (??) as a function of qmax and N . The grey solid line in the top right panel
shows a fit of equation ∆(qmax) = A/qmax with A ≈ 102.

3.4.1.2 Artificial neural networks

We now want to train ANNs so that when we feed them with the finite sequence{
S|ψ⟩ (q) : q = 2, . . . , qmax

}
for some state |ψ⟩, they output an estimate for EG (|ψ⟩) = 1−limq→∞ S|ψ⟩(q), as schemat-
ically represented in Figure 3.8. To be able to compare the trainings based on different
qmax and N , we choose to always use the same network architecture

(qmax − 1, 512,ReLU, 256,ReLU, 128,ReLU, 64,ReLU, 32, 1)

where ReLu is the nonlinear Rectified Linear Unit introduced in Section 3.2. The number
of parameters in our neural network is of the order of 105 which is relatively small (the
largest LLMs are composed of dozens of billions of parameters).

For the learning process, we take a batch size of 500 and, for each qmax ∈ 2, 3, . . . , 8
and N = 2, 3, . . . , 10, we train the ANN in a supervised manner for 5000 epochs with the
ADAM optimiser. Our loss function is the squared difference averaged over the batch.
Remarkably, even after 5000 epochs, no overfitting is observed (see Figure 3.14 and the
additional discussion in Appendix 3.A).

We show in Figure 3.9 the results of the different trainings applied to the test dataset.
We find that ANNs give quite reliable predictions already for qmax = 3 with a MRE at 1%,
two order of magnitude less than with the Wehrl moments ratios. More surprisingly, even
on the basis of the first non-trivial Wehrl moment W (2)

|ψ⟩ , ANNs give a good estimate for
weakly and strongly entangled states. When we take into account more Wehrl moments,
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Figure 3.8: Representation of the ANN architecture used for the estimation of the GME.

the ANNs are able to predict the GME more accurately. For a fixed number qmax = 4
of Wehrl moments (see Appendix 3.A for qmax = 8), we find that the MRE increases as
we increase the number of qubits but eventually saturates. We believe that for a higher
number of qubits, there is a greater spectrum of states with the same first Wehrl moments
but different GMEs. This would imply that the input to the ANN is not sufficient to
distinguish between these different states and would explain the observed increase in
error. We also observe that at qmax = 4, the MRE saturates at about 1% for N ≳ 5.
This result is quite remarkable as it shows that with ANNs the MRE seems to scale very
favourably with N .

3.4.2 Mixed states

The results on the test data for mixed states are represented in Figure 3.10 for k = 0.05
by yellow diamonds for depolarised states (3.17) and red squares for random mixed states
(3.16) and a reduced batchsize of 50 states. For comparison, we also show the lower MRE
obtained for pure random states by blue dots. We see that for depolarised states, the
MRE is around 0.1% or even below for N = 2 and 3 and below 1% for N = 4 for qmax ⩾ 4.
For the random mixed states (3.16), the error is systematically higher than that obtained
for the depolarised states, but it remains at an acceptable level for qmax ⩾ 4.

The data displayed in Figure 3.10 shows that Wehrl moments remain useful quantities
for predicting entanglement of slightly mixed states in multiqubit systems. It is interesting
to note that even for highly depolarised states of the form (3.17), ANNs are still able to
predict with high accuracy the GME. This is shown in Figure 3.11, where we consider
higher degrees of depolarisation k. Counter-intuitively, we find that the predictions on
the GME improve as k increases (see middle and right panel). This is probably due to
the specific class of mixed states we have considered and the fact that the range of GME
values that the ANN has to account for decreases with k (see left panel). It does, however,
show that for a typical decoherence model such as depolarisation, Wehrl moments still
contain essential information for predicting the GME even for highly mixed states.
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Figure 3.9: Same representation and parameters as in Figure 3.7, but with predictions
based on trained ANNs. The grey solid line in the top right panel shows a decreasing
exponential fit of equation ∆(qmax) ≈ 0.989 exp(−0.179 qmax).

Figure 3.10: Results of the training of the ANNs on mixed states of the form (3.17)
(yellow diamonds) and (3.16) (red squares) for k = 0.05. The blue dots represent the
MRE for the predictions of the ANNs trained for pure states and applied to the pure
states used in the equations (3.17) and (3.16) to generate the mixed states forming the
test dataset.

Figure 3.11: Results obtained by training ANNs on depolarised states of the form (3.17)
for different degrees of depolarisation k ∈ {0.05, 0.1, 0.3, 0.5}. Here, N = 4 and qmax = 2.
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3.4.3 Discussion of the main results

The excellent performance of the ANNs to obtain estimates of the GME of pure states
is clearly evident. We consistently find that the ANNs outperform a first estimation
based only on Wehrl moment ratios. The differences in performance are quite large, with
ANNs outperforming the Wehrl moment ratios by two orders of magnitude. For the
method based on ANNs, the MRE decreases very rapidly from qmax = 2 to qmax = 4.
Then, it seems that the MRE decreases exponentially at roughly the same rate. For
qmax = 4, the MRE obtained with ANNs seems to quickly saturate to about 1% for large
number of qubits (N ≳ 5). We have also tested the ANN on a set of pure states that
have been dynamically generated from spin squeezing. This set is characterised by a
GME distribution that differs strongly from those used to train the ANN (see Appendix
3.A for more details). In this case, we find that the ANN also works very well with
similar performance, demonstrating its great flexibility upon variations of input data.
Furthermore, we show in Appendix 3.B that an ANN trained on noisy Wehrl moments
is still able to predict the GME quite accurately.

For mixed states, the performance of ANNs with Wehrl moments remains satisfactory
for general high purity states. This is evidenced by the fact that the GME is still obtained
with a maximal error of 1% for N = 4. It is clear that, while the correlation between
the GME and the Husimi function is less pronounced in the mixed state scenario when
compared to the pure state, the Wehrl moments do offer valuable insights concerning
the entanglement of mixed states. It would be interesting in latter work to find better
correspondance between the Husimi function and the GME of multiqubit mixed states.
Interestingly, the method is still robust for depolarised states, suggesting that the relation
between the GME and the Husimi function remains substantial in such states.

3.5 Experimental determination of Wehrl moments
In this section, we propose a simple protocol based on spherical t-designs that allows
the experimental determination of Wehrl moments of various orders from the same set of
measurement outcomes of Stern-Gerlach experiments. A spherical t-design is a set of nt
points on the unit sphere, located at angles Ωk = (θk, φk) with k ∈ {1, . . . , nt}, such that
[205, 206]

1

4π

∫
S2

P (Ω) dΩ =
1

nt

nt∑
k=1

P (Ωk) (3.20)

for all trigonometric polynomials P of degree at most t. Taking P (Ω) = (Qρ(Ω))
q, and

assuming for the moment that t is sufficiently large, we obtain by combining Eqs. (3.5)
and (3.20)

W (q)
ρ =

1

nt

nt∑
k=1

(Qρ (Ωk))
q

from which we can conclude that it is sufficient to measure the Husimi function in a finite
number nt of directions to determine the Wehrl moments. Some examples of t-designs
on the sphere are shown in Figure 3.12. Given sufficient number of points nt, it is known
that a t-design for any t exists.

The Husimi function at Ω can be rewritten as

Qρ(Ω) ≡ |⟨Ω|ρ|Ω⟩|2 = |⟨D(0)
N |R(Ω)†ρR(Ω)|D(0)

N ⟩|2 = |⟨D(0)
N |ρΩ|D(0)

N ⟩|2 = pΩ0
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Figure 3.12: Examples of t-designs with t = 2, 3 and 4 (from left to right).

where R(Ω) is the rotation operator which maps the Dicke state |D(0)
N ⟩ to the product

state |Ω⟩, ρΩ = R(Ω)†ρR(Ω) is the rotated state and pΩ0 is the probability that the system
in state ρΩ is found in state |D(0)

N ⟩. The latter probability can be measured from a Stern-
Gerlach experiment giving access to

{
pΩk = |⟨D(k)

N |ρΩ|D(k)
N ⟩|2 : k = 0, . . . , N

}
or, in the

case of an atomic system, by driving a dipole transition to an auxiliary energy level and
then observing the resonance fluorescence to obtain pΩ0 [207].

The advantage of our protocol, which consists of measuring the Husimi function in
a finite number of directions and extracting the Wehrl moments, is that it is totally
independent of the state under consideration. Indeed, the Husimi function of any N -
qubit symmetric state is a polynomial function of degree N . By choosing t = Nq, all
Wehrl moments can be extracted exactly, up to order q, irrespective of the state ρ. As
regards spherical designs, it has been shown numerically that nt ≈ t2/2 [208], so to
extract the Wehrl moments up to order q, we should measure the Husimi function in
approximately (Nq)2/2 points. Note that our protocol is not necessarily optimal and
that there might be clever ways of using the full set of probabilities {pΩk } obtained in
Stern-Gerlach experiments (instead of only pΩ0 ) to find a better approximation of the
Wehrl moments.

3.5.1 Results from approximate Wehrl moments

Since ANNs are, to a certain extent, intrinsically robust to noise, it is not necessary to
have perfect determination of the Wehrl moments in order to obtain good estimates of
the GME (see Appendix 3.B for more details). This suggests the possibility of using
spherical designs of order t less than Nq to obtain approximate Wehrl moments up to
order q via

W (q)
ρ ≈ 1

nt

nt∑
k=1

(Qρ (Ωk))
q . (3.21)

Equation (3.21) approximates all Wehrl moments with q > t/N from the same set of
Husimi function values. Therefore, as long as this improves the prediction of the ANN,
we can give it approximate Wehrl moments of increasing order.

We show in Figure 3.13 the results of the training of ANNs based on the spherical
t-design with t = 13 and the same test set of pure states as presented in Sec.3.3. They
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Figure 3.13: Same representation and parameters as in Figure 3.7, but with predictions
based on Wehrl moments obtained from Eq. (3.21) with Ωk the points defining a spherical
t-design with t = 13 and nt = 94. For the lower panels, we took qmax = 10 instead of
qmax = 4.

show that the MRE can be brought down to a level of 1% with t = 13 even for a number of
qubits up to 10. We chose this particular value of t because the spherical design contains
antipodal points and the Husimi function at two antipodal points can be measured by a
single Stern-Gerlach experiment. The number of directions in which the Stern-Gerlach
experiment must be performed can therefore be halved in this case (from nt = 94 to 47).

Conclusion

In this work, we have studied how ANNs can be used to give a reasonably accurate
estimate of the geometric measure of entanglement (GME) of pure and mixed symmetric
multiqubit states based on their first Wehrl moments (moments of their Husimi function).
This shows that, while entanglement and phase-space functions are distinct concepts,
they can nonetheless be related and even use their connection as an advantage. We also
proposed an experimental protocol for measuring Wehrl moments and showed that it can
be coupled with ANNs to obtain a good estimate of the GME. This provides opportunities
for the experimental estimation of entanglement on the basis of a few Wehrl moments.

This work opens up several perspectives. First, while we have focused on the deter-
mination of GME, our approach could have been used to determine e.g. Wehrl entropy
[209, 210], as both GME and such entropy are based on Wehrl moments, opening up
characterisations of quantum chaos and phase transitions via ANNs. Secondly, it is
known that determining the GME of a quantum state is a considerably more complex
task for mixed states than for pure states. Nevertheless, as we have shown in Subsection
3.4.2, the GME of a depolarised state can still be predicted with high accuracy from its
first Wehrl moments. Remarkably, we even found that GME predictions improve as the
state purity decreases, probably because the entanglement also decreases in this case.
It would be of great interest to know for which other types of mixed states ANNs also
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give reliable estimates of the GME. In addition, our approach could be generalised to
non-symmetric many-body quantum states where one is confronted with the exponential
many-body wall, as it can be expected that ANNs will also perform well in this context
[211]. More generally, an approach similar to the one used in this work could be followed
to estimate the maximum or minimum of a quasi-probability distribution other than the
Husimi function from its first moments, such as the Wigner and the P functions.
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3.A Additional information on ANNs

Figure 3.14 shows an example of the evolution of the loss function on the test dataset
throughout the training of the ANN for different numbers of qubits and qmax = 4. We
observe no overfitting, with the loss function decreasing even after a large number of
epochs.

Figure 3.14: Loss function (averaged squared error) of the test dataset as a function of
the number of training epochs for a maximal order qmax = 4 and different numbers of
qubits N .

Figure 3.15 shows the performance of the ANNs for a larger number of qubits and
a larger maximal order than the results presented in the main text. For the top panels
N = 8 and for the bottom panels qmax = 8. The same general observations as in the
main text apply in this case, in particular the fact that the mean relative error is below
1% already for qmax = 4.

Figure 3.15: Same as Figure 3.9 for N = 8 (top) and qmax = 8 (bottom). The grey
solid line in the top right panel shows a decreasing exponential fit of equation ∆(qmax) ≈
1.919 exp(−0.197 qmax).
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Figure 3.16: Left panel: Frequency distribution of GME of 30 000 squeezed states gener-
ated for N = 8 qubits. Middle and right panels: mean relative error on the estimate of
the GME obtained from ANNs for N = 4 and qmax = 4 respectively. The grey solid line
shows a decreasing exponential fit of equation ∆(qmax) ≈ 1.745 exp(−0.189 qmax).

In order to further test the performance of ANNs, we generated another set of states
resulting from the dynamical evolution corresponding to a spin squeezing. We calculated
the time evolution of the initial coherent/product state |D(0)

N ⟩ under the Hamiltonian

H = χx J
2
x + χy J

2
y + χz J

2
z .

where χx, χy, χz are squeezing rates along the three spatial directions. At regular times,
we sampled the state of the system and calculated its Wehrl moments and GME. After
500 time steps ∆t = 0.1, we ended the evolution and started again from the same initial
state. The χα rates were chosen randomly between 0 and 1 at the beginning of each
evolution. In this way, we generated 30 000 states on which we tested the previously
trained ANNs. The results are presented in Figure 3.16. We find that the ANNs still
predict the GME very well even though they have never handled this type of states before.
This shows that the training set was sufficiently large and representative to obtain ANNs
capable of inferring beyond the states on which they have been trained.

3.B Noisy Wehrl Moments
In our previous developments, we used the exact value of the Wehrl moments for each
multiqubit state. However, the Wehrl moments may not be known exactly, e.g. because
of noises that are inevitably present in an experiment. This provides an incentive to test
ANNs with noisy inputs. As a first approach, we applied Gaussian noise to our inputs
S|ψ⟩(q) (from the same training and test data sets as before). More precisely, for each q,
we first calculated the average value of the ratio of Wehrl moments over the whole data
set, S|ψ⟩(q) . Based on this value, we defined a normal distribution with a mean value of
zero and a standard deviation given by

σ = η S|ψ⟩(q)

where η is a real number that quantifies the magnitude of the noise. Then we applied
noise, sampled from the normal distribution, to each Wehrl moment ratio and fed these
noisy Wehrl moments to ANNs trained in two different ways: ANNs trained as before
on noiseless Wehrl moments and ANNs trained directly on noisy Wehrl moments. The
results are shown in Figure 3.17 for η = 0.01. We find that the least satisfactory pre-
dictions are obtained from ANNs that have not been trained on noisy Wehrl moments
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Figure 3.17: Mean relative error (MRE) on the GME obtained from ANNs fed with noisy
input data. The red and yellow symbols give the MRE for ANNs trained respectively
on noiseless and noisy Wehrl moments. For comparison, the blue dots give the MRE for
ANNs trained and tested on noiseless Wehrl moments (see Figure 3.9).

(red squares). The explanation we see is that ANNs trained on noiseless Wehrl moments
become excellent at predicting GME with such data but are unable to generalise on noisy
data (a phenomenon similar to overfitting). However, ANNs trained on noisy Wehrl mo-
ments work much better and give a low mean relative error, around 1%, for qmax ⩾ 4
(yellow diamonds). For a higher noise level, the MRE increases and is of the order of
2.6% for η = 0.03 with qmax = 4 and N = 4.
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Chapter 4

Anticoherent states, their entanglement
and how to generate them

In the previous chapters, we explored quantumness in spin systems from a general per-
spective, without focusing on particular spin states. In this chapter, we turn our attention
to anticoherent (AC) states, a family of spin states that exhibits a high degree of non-
classicality and entanglement. These states were introduced relatively recently, especially
when compared to other paradigmatic spin states such as GHZ states [65, 25]. Since then,
their properties were explored further and AC states revealed to be promising candidates
for several quantum metrological tasks. Notably, they are optimal for frame alignment
[212] and rotation and magnetic field sensing when the direction of the rotation or the
field is unknown [27, 28, 213, 214]. More recently, it was discovered that AC states could
also be useful for toponomic quantum computing [29].

As introduced in Chapter 1, the anticoherence of a pure spin state is closely linked
to the isotropy of its spin operator expectation value. This observation has led to the
development of several measures of anticoherence, that quantify the degree of isotropy of
a pure spin state [215]. These measures have proven fruitful in contexts such as quantum
rotosensing [28] and in characterising the quantumness of orthonormal bases in Hilbert
space [30]. The goal of this chapter is to review the known properties of AC states and
introduce new results that advance our theoretical understanding of them and that could
allow their generation in various experimental platforms.

In Section 4.1, we first relate the definition of AC states of order t (t-AC states) with
their phase-space representations. This will highlight that AC states are highly delo-
calised in phase-space, a hallmark of non-classicality, as previously discussed in Chapter
3. We then present two additional equivalent definitions of t-AC states, each illuminat-
ing a different aspect of their structure. Notably, one of these definitions reveals that
pure t-AC states maximise the entanglement negativity with respect to the bipartition
t|N − t, thus identifying them as the most entangled multiqubit symmetric pure states.
We then define the anticoherence measures that will be used throughout this thesis.
Similarly to entanglement, no single universally accepted measure of the degree of an-
ticoherence exists. This diversity is advantageous, as different measures can be used to
derive complementary properties of AC states. We also introduce t-AC subspaces which
are subspaces of the spin Hilbert space containing only t-AC states [213, 216], which will
prove instrumental in deriving a new property of AC states.

In Section 4.2 we recall known results on how t-AC measures can be employed to
demonstrate that AC states are optimal for rotation sensing around an unknown axis.
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In this context, t-AC states serve as optimal quantum rotosensors (OQRs) [26, 27, 28].
Furthermore, we demonstrate here that t-AC subspaces automatically satisfy the Knill-
Laflamme condition, a key requirement for quantum error-correction, suggesting their
relevance for quantum computation [217–219].

In Section 4.3, we show an original result on the precise relation between the degree of
anticoherence of a pure spin state and its entanglement. For instance, while a t-AC state
maximise the entanglement negativity, it remained unclear how anticoherence compares
to entanglement. We show that the Bures t-AC measure (see Subsection 4.1.2) can be
directly connected to the negativity, establishing a direct relation between anticoherence
and entanglement and giving an insightful geometric representation of the entanglement
negativity of symmetric multiqubit pure states.

This insight motivates an extension of anticoherence measures to mixed states. Exist-
ing AC measures were originally formulated for pure states, but a naive extension leads
to problems. For instance, the MMS ρ0 = I/(2j + 1), which is the most classical mixed
state, is also anticoherent to any order t ≤ N . Yet, it lacks the quantum features we
associate with anticoherence. The key to resolving this lies in recognising that isotropy
in spin states can arise either from coherent quantum superpositions or from classical
mixtures. By leveraging the connection between the Bures AC measure and the negativ-
ity, we introduce a new measure of anticoherence that isolates the quantum contribution
in mixed states. This new measure reduces to the Bures t-AC measure for pure states,
correctly relating anticoherence of pure states solely to quantum coherence.

Experimentally, AC states have already been created and their properties for quantum
metrology have already been asserted [31, 220]. However, to date, only a limited number
of AC states have been realised, and only in multiphotonic systems. This underscores the
need for protocols enabling their creation in other platforms such as atomic or solid-state
systems. In Section 4.4, we address this need by introducing a simple protocol that allows
the generation of AC states of arbitrary order. This protocol enables the generation of
AC states with a high degree of anticoherence for both low-dimensional (j ≤ 24) and
high-dimensional (j ≫ 1) systems. Conventional quantum control algorithms such as
GRAPE or CRAB were not used due to their suboptimal performance in terms of time
and accuracy, and their increased computational demands. Instead, we relied on the
analytical form of the Hamiltonian evolution to design a pulse-based protocol. The pulse
durations are optimised using the Nelder-Mead nonlinear algorithm. Our scheme requires
only two types of operations, i.e. spin rotation and squeezing, both of which are already
implemented in many experimental platforms. To our knowledge, no other protocol has
achieved the generation of AC states with such a high order of anticoherence. Moreover,
the pulse sequence provides an intuitive physical picture of how a coherent spin state is
transformed into an anticoherent one.

4.1 Anticoherent states

4.1.1 Definitions

As introduced in Chapter 1, a pure spin-j state is said to be t-AC if it satisfies the
condition

∂

∂n
⟨(J · n)k⟩ = 0 ∀k = 1, 2, . . . , t, (4.1)
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Figure 4.1: Radial representation of the real part of the spherical harmonics Y11, Y21 and
Y31, from left to right [221].

where J = (Jx, Jy, Jz) is the spin operator and n = (nx, ny, nz) is a unit vector in R3.
This definition means that the first t moments of the spin projection are directionally
isotropic. To gain further physical insight into t-AC states, we explore their phase-space
representations. The Stratonovitch-Weyl phase-space functions admit the multipolar
expansion (see Chapter 1)

Fρ (Ω) =

√
4π

2j + 1

2j∑
L=0

L∑
M=−L

(
Cjj
jj,L0

)−s
YLM (Ω) ρLM (4.2)

where Ω = (θ, φ) denotes a point on the sphere and each spherical harmonic YLM is
associated with the multipole ρLM of the spin state ρ. The spherical harmonics themselves
take the form

YLM (θ, ϕ) = (−1)M

√
(2L+ 1) (L−M)!

4π (L+M)!
PM
L (cos θ) eiMϕ

with PM
L denoting the associated Legendre polynomials. As shown in Figure 4.1, spherical

harmonics of increasing order L exhibit finer angular structure. Consequently, a spin
state whose phase-space representation is sharply localised will predominantly populate
lower multipoles, while a state with delocalised phase-space function will show significant
weights in higher L.

To quantify this, we define the cumulative multipole population up to order t as

rt =
t∑

L=1

L∑
M=−L

|ρLM |2

which measures how much of the state lies in the lower multipoles. For pure states,
r2j = 1. Among such states, spin coherent states are known to maximise rt for all t < 2j
[222], making them the pure states with the most localised phase-space function on the
sphere.
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Figure 4.2: Top : Wigner function of the coherent state |θ = 0, φ = 0⟩, the GHZ state
and the spin eigenstate |j,m = 2⟩ for j = 3. Bottom : Modulus squared |ρLM |2 of the
corresponding state multipoles.

This trend is clearly illustrated in Figure 4.2 which compares, for j = 3, the Wigner
function of the coherent state |θ = 0, φ = 0⟩, the GHZ state, which is a 1-AC state, and
the spin eigenstate |j,m = 2⟩. We observe that the coherent state is highly peaked, while
the more non-classical states display high degree of delocalisation.

These observations naturally lead to an alternative and equivalent definition of anti-
coherent states in terms of their multipolar expansion.

AC states from multipolar expansion. A pure spin state |ψ⟩ is t-AC if and only
if all multipoles up to order t vanish, i.e. [223]

ρLM = 0, ∀L = 1, . . . , t and M = −L, . . . , L. (4.3)

In this sense, t-AC states are rotationally symmetric to order t, and their phase-space
representations show high isotropy and delocalisation. A well-known example is the GHZ
state, which is 1-AC and satisfies ρ1M = 0 for M = −1, 0 and 1 as we can see from the
multipoles depicted in Figure 4.2. Higher-order examples include [224]∣∣ψHOAP

t=2

〉
=

1

2

(
|2,−2⟩+ i

√
2 |2, 0⟩+ |2, 2⟩

)
(4.4)

∣∣ψHOAP
t=3

〉
=

1√
2
(|3,−2⟩+ |3, 2⟩) (4.5)

∣∣ψHOAP
t=4

〉
=

1

5

(√
7 |6,−5⟩+

√
11 |6, 0⟩ −

√
7 |6, 5⟩

)
(4.6)

which are HOAP states of order 2,3 and 4, respectively. Their corresponding Wigner
functions and the modulus squared of their multipoles are shown in Figure 4.3, further
illustrating the relationship between low multipole suppression and spatial delocalisation.

If instead of a spin-j system we consider a system of N = 2j qubits whose states are
restricted to the symmetric subspace, we can relate the definition of t-anticoherence given
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in (4.3) to the properties of the reduced density matrix of the state. Indeed, the t-qubit
reduced state ρt can be expanded in the multipolar basis as (see Appendix 1.B)

ρt =
I

t+ 1
+

t∑
L=1

L∑
M=−L

t!

(2j)!

√
(2j − L)! (2j + L+ 1)!

(t− L)! (t+ L+ 1)
ρLMTLM . (4.7)

From this decomposition, a direct connection emerges between the vanishing of the mul-
tipoles of order L ≤ t and the reduced state. In particular, we obtain the following
equivalent definition of t-anticoherence.

AC states from reduced states. A symmetric multiqubit state |ψ⟩ is t-AC if and
only if its t-qubit reduced state ρt is the t-qubit MMS in the symmetric subspace, that is

ρt =
I

t+ 1
. (4.8)

This means that while the global state |ψ⟩ is pure and fully known, any of its subsystems
composed of t or fewer qubits carry no information about it.

This feature lies at the heart of entanglement theory and directly implies that t-AC
states are maximally entangled across all bipartitions q|N − q with q ≤ t. To further
quantify this connection, we consider the negativity of a pure state, given by [117]

Nt (|ψ⟩) =
t+1∑
i>j=1

√
λiλj

where the λi’s are the eigenvalues of the reduced state ρt. As discussed in Chapter 1, the
maximal possible negativity for such bipartition is

Nmax
t =

t

2

which occurs precisely when the reduced state has uniformly distributed eigenvalues,
i.e. λi =

1
t+1

for all i = 1, 2, . . . , t + 1. Therefore, a pure state reaches this maximal
entanglement if and only if it is t-AC.

In Appendix 4.A, we list in Table 4.3 the HOAP states for j ≤ 5 that are already
known [224, 225].

4.1.2 Anticoherence measure of pure spin states

As discussed earlier, coherent states are the least anticoherent, as they completely fail to
satisfy the conditions to be t-AC. But how much anticoherent are important quantum
states like the GHZ state, the W state, or general Dicke states

∣∣Dk
N

〉
? To answer this,

various measures of t-anticoherence have been proposed. These measures aim to quantify
how close a given spin state is to being t-AC. Here, we introduce two main classes of
anticoherence measures.

A measure of t-AC of a pure spin-j state |ψ⟩ was defined as a positive function At

satisfying the following minimal set of conditions [215]:

1. At (|ψ⟩) = 0 if and only if is |ψ⟩ is a coherent state.

2. At (|ψ⟩) = 1 if and only if |ψ⟩ is t-AC.
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Figure 4.3: Wigner function and modulus squared of the multipoles of AC states of order
t = 2, 3 and 5 for respectively j = 2, 3 and 6 given in (4.4), (4.5) and (4.6).

3. At (|ψ⟩) ∈ [0, 1] for any pure state |ψ⟩.

4. At (|ψ⟩) is invariant under global phase changes and arbitraty spin rotations.

The first three criteria ensure that coherent and t-AC states give respectively the min-
imum and maximum values of any measure. The last condition ensures that the value
taken by measures of anticoherence does not depend on a particular orientation of the
coordinate system.

Several inequivalent measures satisfying these criteria exist. Here, we focus on two
widely used and physically meaningful ones: the purity-based and Bures distance-based
measures. Both hinge on the fact that the t-qubit reduced state of a t-AC state is the
MMS which has the lowest possible purity R (ρ) = 1

t+1
. In contrast, separable states have

pure reduced states with Tr (ρ2t ) = 1. Since coherent states are the only pure separable
spin states, these observations motivate the following measures.

Anticoherence measure based on purity. Let λ1, λ2,. . . , λt+1 be the eigenvalues
of the t-qubit reduced state of a pure spin state |ψ⟩. The purity-based anticoherence
measure of order t (purity t-AC measure) is defined as

AR
t (|ψ⟩) = t+ 1

t
[1−Rt (|ψ⟩)] (4.9)

where

Rt (|ψ⟩) ≡ Tr
(
ρ2t
)
=

t+1∑
i=1

λ2i

is the purity of its t-qubit reduced density matrix and the rescaling t+1
t

is used so that
AR
t (|ψ⟩) ∈ [0, 1]. It can be easily shown to verify all four conditions required for an

anticoherence measure [215].
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Anticoherence measures based on operator distances. Let d (ρ, σ) be a dis-
tance between two density matrices ρ and σ. We require this distance to be invariant
under unitary transformations and to attain its maximal value when ρ = |ψ⟩ ⟨ψ| is a pure
state and σ = ρ0 is the MMS. A distance-based measure of t-AC is given by

Ad
t (|ψ⟩) = 1− 1

Kt

d (ρt, ρ0) (4.10)

where ρ0 = I
t+1

is the MMS and the normalisation factor Kt is the distance between a
pure state and the MMS, i.e. Kt = d (diag(1, 0, . . . , 0), ρ0).

Some examples are the anticoherence measures based on the trace distance

dTr (ρ, σ) =
1

2
Tr

[√
(ρ− σ)2

]
and the Hilbert-Schmidt distance

dHS (ρ, σ) =
√
Tr
[
(ρ− σ)2

]
.

Note that the Hilbert-Schmidt-based measure is related to the purity-based one by AHS
t =

1−
√

1−AR
t .

In the following, we will rather focus on the Bures distance

dB(ρ, σ) =

√
2− 2

√
F (ρ, σ), (4.11)

based on the Ulhman-Jozsa fidelity defined in Chapter 1 and for whichKt =

√
2
(
1− 1√

t+1

)
.

Equivalently, due to the purification theorem, the fidelity can be expressed as1 [226, 227]

F (ρ, σ) ≡ max
|ψ⟩∈P(ρ)
|ϕ⟩∈P(σ)

|⟨ψ|ϕ⟩|2 , (4.12)

where P(ρ) is the set of all purifications of ρ. For pure states ρ = |ψ⟩⟨ψ|, the fidelity
between ρt and the MMS verifies

F (ρ0, ρt) =
1

t+ 1
[Tr

√
ρt]

2 =
1

t+ 1

[
t+1∑
i=1

√
λi

]2
, (4.13)

and, consequently, for pure states, the anticoherence measure based on the Bures distance
(Bures t-AC measure) can be written as

AB
t (|ψ⟩) = 1−

√√
t+ 1−∑t+1

i=1

√
λi√

t+ 1− 1
(4.14)

where λ1, λ2, . . . , λt+1 are the eigenvalues of the t-qubit reduced state of ρ.

1Some authors use the name of fidelity for
√
F .
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4.1.3 Anticoherent subspaces

While, for a given spin quantum number j, the HOAP state, i.e. the state with the
maximal order of anticoherence, is often unique (up to arbitrary rotation), this is not
the case for lower orders of anticoherence. For sufficiently small t, entire subspaces of
the Hilbert space may consist exclusively of t-AC states. This motivates the definition of
t-AC subspaces.

t-AC subspaces. For a given j, a subspace V(j)
k,t ⊂ C2j+1 of dimension k is called a

t-AC subspace if every state |ψ⟩ ∈ V (j)
k,t is t-AC [213, 216].

An equivalent characterisation can be given in terms of multipolar tensor operators. A
subspace V(j)

k,t is t-AC if and only if a (not necessarily orthonormal) basis B(j)
k,t = {|ψi⟩}ki=1

of V(j)
k,t satisfies [213]

⟨ψi|TLM |ψj⟩ = 0 (4.15)

for all i, j = 1, . . . , k and any L = 1, 2, . . . , t and M = −L, . . . , L. This shows that it is
not sufficient for the elements of a basis B(j)

k,t to be individually t-AC in order to span an
anticoherent subspace. The stronger condition (4.15) must also be satisfied. For instance,
a 1-AC subspace V(j)

k,1 must be spanned by a basis B(j)
k,1 = {|ψi⟩}ki=1 whose elements fulfill

⟨ψi| Jα |ψj⟩ = 0, α = x, y, z

for all i, j = 1, 2, . . . , k.
The smallest spin systems in which 1-AC and 2-AC subspaces are identified are V(2)

2,1

and V(7/2)
2,2 , respectively. Explicit bases for these subspaces are, for j = 2,

|ψ1⟩ =
1

2

(
|2,−2⟩+ i

√
2 |2, 0⟩+ |2, 2⟩

)
, |ψ2⟩ =

1

2

(
|2,−2⟩ − i

√
2 |2, 0⟩+ |2, 2⟩

)
(4.16)

and, for j = 7/2,

|ψ1⟩ =
√

3

10

∣∣∣∣72 , 72
〉
+

√
7

10

∣∣∣∣72 ,−3

2

〉
, |ψ2⟩ =

√
7

10

∣∣∣∣72 , 32
〉
−
√

3

10

∣∣∣∣72 ,−7

2

〉
. (4.17)

The Majorana representations of the states (4.17) are shown in Figure 4.4. Expected
applications of AC subspaces are presented in Section 4.2.

Analogously to the fact that pure t-AC states are maximally entangled, it was shown
in [213] that if a mixed state ρ verifies im (ρ) ∈ V(j)

k,t , then ρ maximises the negativity
with respect to the bipartition t|N − t with Nt (ρ) =

t
2
. For example, the family of mixed

states
ρ (p) = p |ψ1⟩ ⟨ψ1|+ (1− p) |ψ2⟩ ⟨ψ2|

with |ψ1⟩ and |ψ2⟩ given in (4.17), all satisfy N1 = 1
2
. This demonstrates that the

connection between anticoherence and entanglement can persist even for mixed states.

4.2 Anticoherence for quantum metrology and error
correction

In addition to their interesting theoretical properties, we further motivate our study of
AC states in this section by a reminder about their usefulness in quantum metrology.
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Figure 4.4: Majorana representation of the states |ψ1⟩ (left) and |ψ2⟩ (right) given in
(4.17).

We note that t-AC states were also identified as optimal spin states for reference frames
alignement [212] and that AC subspaces are good candidates for toponomic quantum
computation [29]. Furthermore, we present here an original result on the possible use of
AC subspaces for quantum error-correction.

4.2.1 Quantum metrology with AC states

In quantum metrology, the goal is to estimate an unknown parameter ω encoded in
the quantum state ρω of a system. Typically, one considers measurements performed
simultaneously on N identical and independently prepared systems, each in the state ρω.
To extract information about ω, one introduces an estimator ω̂ (x), which is a function
of the measurement outcomes x = (x1, x2, . . . , xN). A natural figure of merit for the
estimator is the mean squared error, defined as [228]

ϵ (ω̂ (x) , ω) =
1

N

N∑
i=1

(ω̂ (xi)− ω)2 .

For unbiased estimators, i.e. those satisfying
∑∞

i=1 ω̂ (xi) = ω, this quantity coincides
with the variance (∆ω)2. In this case, for infinitesimal parameter change, the achievable
precision is fundamentally limited by the Quantum Cramér-Rao (QCR) bound, which
states that

(∆ω)2 ≥ 1

NFQ (ω)

where FQ (ω) is the Quantum Fisher Information (QFI). The QFI is defined as

FQ (ω) = Tr
(
ρωL

2
ω

)
where Lω is the symmetric logarithmic derivative determined by the differential equation

∂ωρω =
1

2
(ρωLω + Lωρω) .

It is well-known that for N independent and non-entangled systems, the achievable pre-
cision scales as

(∆ω)2 ∝ 1

N
(4.18)
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which is known as the shot noise scaling [229]. Fortunately, this scaling can be improved
by using ensemble of entangled systems.

To build intuition for the QFI, it is helpful to connect it with the fidelity between
quantum states. When estimating a parameter ω, the state ρ undergoes an evolution to
ρω, which depends explicitly on ω. The optimal choice of the input state ρ is one that
maximises the distinguishability between ρ and ρω. Therefore, it should minimise their
fidelity (4.12)

Fρ (ω) =

[
Tr

(√√
ρρω

√
ρ

)]2
.

For infinitesimal parameter changes, this fidelity admits the approximation [230, 231,
232]

Fρ (ω) ≃ 1− 1

4
FQ (ω)ω2 (4.19)

with [213]

FQ (ω) = −2
∂2Fρ (ω)

∂ω2

∣∣∣∣
ω=0

. (4.20)

Thus, the QFI corresponds to the leading non-vanishing term in the series expansion of
the fidelity. In other words, the QFI quantifies how rapidly a quantum state changes
under infinitesimal variations of the parameter ω.

The metrological problem we are interested in here is the measurement of the am-
plitude ω of some rotation applied on a system. Note that if this rotation is due to a
magnetic field applied on a spin system, it can be reformulated as the measurement of the
magnetic field intensity. In this manner, the optimal state |ψ⟩ to measure the amplitude
of a rotation with a known rotation axis n must minimise

Fρ (ω,n) =

[
Tr

(√√
ρRn (ω) ρR

†
n (ω)

√
ρ

)]2
. (4.21)

For an infinitesimal rotation, (4.21) takes the form

Fρ (ω,n) ≃ 1− (∆Jn)
2 ω2 (4.22)

and hence, one needs to maximise (∆Jn)
2 in order to find the optimal state to estimate

the rotation amplitude around the axis n. It is well-known that it is achieved by the spin
cat state whose axis of symmetry is parallel to the rotation axis [233, 234]. For example,
if the rotation axis is n = ez, then the GHZ state

|ψ⟩ = 1√
2
(|j, j⟩+ |j,−j⟩)

is optimal and achieves the Heisenberg scaling

(∆ω)2 ∝ 1

N2

with N = 2j. While noise and decoherence must be taken into account, an improvement
over non-entangled multiqubit systems has already been achieved experimentally using a
GHZ state with beryllium and dysprosium atoms [235, 236].

In the following, we are interested in a similar setting in which we want to measure
a rotation amplitude ω but whose axis n = (cosϕ sin θ, sinϕ sin θ, cos θ) is not known.
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The quantum states that are optimal for this measurement problem are called optimal
quantum rotosensors (OQR). To define OQRs we consider the overlap between the initial
state and its rotated version, i.e. the fidelity between the two states where the rotation is
Rn (ω) = eiωJn with Jn = Jx cosϕ sin θ+ Jy sinϕ sin θ+ Jz cos θ. In the case that only the
magnitude of the rotation ω is well-defined but not the rotation axis, the fidelity must
be averaged over all possible directions n. Hence, we must consider the average fidelity

Fρ (ω) =
1

4π

∫
S2

Fρ (ω,n) dn. (4.23)

For infinitesimal angles ω, it is clear from (4.22) that the OQR must maximise∫
S2

(∆Jn)
2 dn.

This maximum is obtained for pure 2-AC states for which ⟨Jα⟩ = 0 and J2
α = j(j+1)

3
, with

α = x, y, z [27], indicating that 2-AC states are optimal for small amplitudes rotation
sensing. However, it is possible to go further. Indeed, a closed-form of (4.23) depending
only on the purity t-AC measures of the pure state ρψ = |ψ⟩ ⟨ψ| was found [26, 28]

Fρψ (ω) = φ
(j)
0 (ω) +

⌊j⌋∑
t=1

φ
(j)
t (ω)AR

t (|ψ⟩)

where the φ(j)
t are real-valued trigonometric polynomials functions independent of |ψ⟩.

According to this closed-form, the average fidelity is a linear function that must attain
its extremal values on the boundary of the domain of admissible values of purity t-AC
measures AR

t . Unfortunately, characterising this domain is a well-known open problem
for AC states. However, based on numerical results, it was shown that for small rotation
amplitudes, the purity t-AC measures AR

t must be maximised. As a result, for j = 1
and 3/2, the OQRs are states verifying AR

1 = 1. In Table 4.1, for 2 ≤ j ≤ 7/2, we show
the different optimal rotosensors, their purity t-AC measures and the largest rotation
amplitude ω∗ up to which the state is optimal. Sometimes, a trade-off between AC
measures of different orders must be made. For example, the state with the maximal
3-AC measure for j = 7/2

|ψ⟩ = 1√
2

(∣∣∣∣72 ,−5

2

〉
+

∣∣∣∣72 , 52
〉)

verifies AR
3 = 993

1000
which is higher than the 3-AC measure of the optimal rotosensor in

Table 4.1. However, its 2-AC measure is only AR
2 = 995

1000
.

The fact that states with high AC measures are optimal for sensing small amplitudes
rotation can be explained analytically as, in the vicinity of ω = 0, the trigonometric
functions φ(j)

t take the form [28]

φ
(j)
t (ω) =

b
(j)
t,t

4t
ω2t +O

(
ω2t+2

)
where b

(j)
t,t are some coefficients strictly negative for t ≥ 1. Hence it appears that to

minimise the average fidelity, the anticoherence measures AR
t must be maximised w.r.t.

different orders t. For a given j, if an AC state of order ⌊j⌋ exists then it is the OQR
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OQR in the standard spin basis AR
1 AR

2 AR
3 ω*

j = 2 1
2

(
|2,−2⟩+ i

√
2 |2, 0⟩+ |2, 2⟩

)
1 1 666

1000
1.684

j = 5/2 1√
2
(|5/2,−3/2⟩+ |5/2, 3/2⟩) 1 990

1000
880
1000

1.497

j = 3 1√
2
(|3,−2⟩+ |3, 2⟩) 1 1 1 1.364

j = 7/2
√

2
9
|7/2,−7/2⟩ −

√
7
18
|7/2,−1/2⟩ −

√
7
18
|7/2, 5/2⟩ 1 1 986

1000
0.717

Table 4.1: OQRs for different spin numbers j. The anticoherence measures up to order
3 are given for each state. These states are optimal only for rotation angles ω ∈ [0, ω∗] .

for small amplitude ω. This is the case for j = 1, 3/2, 2 and 3. Similar results on the
usefulness of using higher order t-AC states were shown in [214, 228].

Finally, even for mixed states, the anticoherence is necessary to obtain OQRs. It was
shown that a mixed state ρ is an OQR if ρ is 2-AC, in the sense of (4.1), and im (ρ) ⊂ V(j)

k,1

[213].

4.2.2 Quantum error correction with AC subspaces

A new result that we present in this chapter is that t-AC subspaces can be used for
quantum algorithms error correction. One standard approach to error correction is to
encode a logical qubit in a higher-dimensional system (d > 2). The logical states |0⟩ and
|1⟩ are then represented by two orthogonal states |ψ1⟩ and |ψ2⟩ of the larger system. More
generally, a quantum error-correcting code is a subspace C = span {|ψ1⟩ , |ψ2⟩}, which is
said to correct a set of errors E if there exists a recovery operation RC such that for all
|ψ⟩ ∈ C and all E ∈ E , we have that [237]

RC

(
1

√
pE|ψ

E |ψ⟩
)

= |ψ⟩ ,

where pE|ψ = ⟨ψ|E†E|ψ⟩ is the probability that the error occurs during the algorithm.
The dimension of the code space can be increased (dC > 2) to encode logical qudits. The
celebrated Knill-Laflamme theorem provides the necessary and sufficient condition for
correctability.

Theorem. Knill-Laflamme A set of errors E is correctable on a code C if and only if
[217]

⟨ψi|E†
µEν |ψj⟩ = ⟨ψi|ψj⟩ cµν (4.24)

for all Eµ, Eν ∈ E, all |ψi⟩ , |ψj⟩ ∈ C and where the constants cµν depend only on Eµ and
Eν.

Based on this theorem, we obtain the following result.

Theorem. Let B = {|ψi⟩}dCi=1 be a basis of an AC-subspace V(j)
dC ,t

of dimension dc. Then
the code C = B corrects all errors Eµ ∈ E such that

E†
µEν ≡

q∏
i=1

Jαi (4.25)
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with q = 1, 2, . . . , t and αi = 0, x, y, z and J0 ≡ I. In particular, 2-AC subspaces can
correct all linear errors Jα (α = x, y, z), while 4-AC subspaces can correct linear and
quadratic errors JαJβ which are among the most common in quantum computing.

Interestingly, the 2-AC subspace (4.17) was already proposed as a candidate quantum
error-correcting code [218, 238]. We emphasise that our result holds even for a single-
spin system, without the need for repetition codes, as required, for example, in spin-cat
encodings [219].

Proof. The spin operators Jx, Jy and Jz can be expanded in the multipolar basis as

Jα =
1∑

M=−1

cMT1M (4.26)

where it is important to note that there are only multipolar tensors with L = 1. The
product of two multipolar tensors takes the form

TL1M1TL2M2 =

2j∑
L=0

(−1)2j+L
√

(2L1 + 1) (2L2 + 1)

{
L1 L2 L
j j j

}
CLM
L1M1,L2M2

TLM

(4.27)

where
{
L1 L2 L3

j1 j2 j3

}
denotes a 6j-symbol and CL3M3

L1M1,L2M2
a Clebsch-Gordan coefficient

[69]. Since Clebsch-Gordan coefficients are nonzero only when

|L1 − L2| ≤ L ≤ L1 + L2.

it follows that for L1 = L2 = 1, we have 0 ≤ L ≤ 2. Thus, products of two spin operators
yield multipoles with L ≤ 2. More generally, a product of q spin operators produces
multipoles of order at most L = q. Therefore, for all q ≤ t and for all |ψi⟩ , |ψj⟩ ∈ V(j)

dC ,t

we obtain

⟨ψi|E†
µEν |ψj⟩ = E

(µ,ν)
00 ⟨ψi|T00 |ψj⟩ =

E
(µ,ν)
00√
2j + 1

⟨ψi|ψj⟩ (4.28)

where T00 = I√
2j+1

and

E
(µ,ν)
00 = Tr

(
E†
µEνT00

)
.

This is exactly of the Knill-Laflamme form with

cµν =
E

(µ,ν)
00√
2j + 1

which depends only on Eµ and Eν . Hence the theorem follows.

4.3 Anticoherence measure of mixed spin states
As definitions (4.9) and (4.10) only depend on the reduced state ρt, t-AC measures can
naturally be extended to mixed states. In this sense, the anticoherence is a measure of
isotropy, as given by spin operator mean values (4.1), and can arise either from quantum
superposition and/or classical mixture; the MMS being the highest order AC state verify-
ing AB

2j+1 = 1. However, given the properties of pure t-AC states related to entanglement,
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quantum metrology and error-correction, it would be interesting to distinguish these two
sources of anticoherence. In this section, from a first result on the relation between the
Bures AC measure and entanglement (Subsection 4.3.1), we extend the definition of AC
measures to mixed states.

We will refer to the Bures t-AC measure as the total anticoherence measure, i.e.

AT
t ≡ AB

t = 1−
√

1− F (ρt, ρ0)

1− 1√
t+1

as it quantifies anticoherence coming from both classical mixtures and quantum super-
positions. Based on our results on the relation between the Bures t-AC measure and
the negativity, we will define quantum and classical anticoherence measures AQ

t and AC
t

which only quantify isotropy/anticoherence of quantum or classical origin.

4.3.1 Relation between Bures AC measure and entanglement

Let us first prove that the Bures t-AC measure is in fact analytically related to the
negativity of the partial transpose w.r.t. the bipartition t|N − t. Consider the reduced
t-qubit state ρt of a symmetric N -qubit pure state |ψ⟩. The eigenvalues of ρt naturally
verifies (

t+1∑
i=1

√
λi

)2

=
t+1∑
i=1

λi︸ ︷︷ ︸
=1

+2
t+1∑
i>j=1

√
λiλj.

Knowing that the negativity of a pure state is given by Nt(|ψ⟩) =
∑t+1

i>j=1

√
λiλj (see

Chapter 1), we see that
t+1∑
i=1

√
λi =

√
1 + 2Nt(|ψ⟩).

From (4.13), it follows that

F (ρ0,t, ρt) =
1 + 2Nt(|ψ⟩)

t+ 1
(4.29)

and the Bures t-AC measure can be written as

AB
t (|ψ⟩) = 1−

√√
t+ 1−

√
1 + 2Nt(|ψ⟩)√

t+ 1− 1
. (4.30)

This shows that the Bures t-AC measure is in fact the same metric as the negativity w.r.t.
bipartition t|N − t. This result directly relates anticoherence of pure spin states with en-
tanglement. In the other way, it also gives a geometrical definition of the entanglement
negativity of a symmetric multiqubit pure state |ψ⟩. If we consider the Schmidt decom-
position of |ψ⟩ in a t|N − t bipartition, then its reduced state has eigendecomposition
ρt =

∑
i λi |ϕi⟩ ⟨ϕi| and

[Tr
√
ρt]

2 = 1 + 2Nt (|ψ⟩) (4.31)

and, based on the definition of the Bures distance (4.11), we get

Nt(|ψ⟩) =
t+ 1

2

[
1− 1

2

(
dB(ρ0, ρt)

)2]2 − 1

2
.
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Hence, the negativity increases when the Bures distance between ρt and the MMS de-
creases.

The equation (4.30) allows us to find an inequality for the negativity over different
bipartitions of pure symmetric multiqubit states, similar to monogamy relations [239–
241]. Consider the reduced mixed states ρt and ρt+1 of a mixed symmetric N -qubit
state ρ. It holds that P (ρt+1) ⊆ P (ρt) and P (ρ0,t+1) ⊆ P (ρ0,t)

2, where P(ρ) is the set
of purifications |ψ⟩ of ρ. Therefore, from definition (4.12), it is clear that F (ρ0, ρt) ⩾
F (ρ0, ρt+1), which implies that

dB (ρt, ρ0) ⩽ dB (ρt+1, ρ0) .

and it follows that√
1− 1√

t+ 1

(
1−AB

t (ρ)
)
⩽

√
1− 1√

t+ 2

(
1−AB

t+1(ρ)
)
.

In the case of pure states, the relation (4.30) between the negativity and the Bures t-AC
measure gives additionally

t+ 2

t+ 1
[1 + 2Nt (|ψ⟩)] ≥ 1 + 2Nt+1 (|ψ⟩) , (4.32)

The equality in (4.32) is obtained for t-AC states as their negativity w.r.t the bipartition
t|N − t is Nt = t/2.

4.3.2 Mixed states anticoherence measure

4.3.2.1 generalised AC measure

One way to separate the quantum and classical contributions responsible for anticoherence
is through the convex roof extensions of the respective measure of entanglement associated
to the Bures t-AC measure. In other words, we can now define the quantum t-AC measure
based on (4.30) as

AQ
t (ρ) ≡ 1−

√√
t+ 1−

√
1 + 2NCR

t (ρ)√
t+ 1− 1

where we use the convex-roof extended negativity

NCR
t (ρ) = min

{pi,|ϕi⟩}

∑
i

piNt (|ϕi⟩)

which is a faithful measure of entanglement, meaning that a mixed state ρ is entangled
w.r.t. the bipartition t|N − t if and only if NCR

t (ρ) > 0. Since AQ
t is a monotonous

function of NCR
t , it inherits all its properties with respect to convex combinations and

SLOCC transformations [182]. Specifically, AQ
t is a convex function (see Subsection

1.3.2), unlike the total t-AC measure AT
t . The main property, that we prove a posteriori

is
AT
t (ρ) ≥ AQ

t (ρ) (4.33)

2We note ρ0,t the t-qubit MMS. We avoid this notation when the number of qubit is clear from the
context.
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for any state ρ. Hence, we can now define the difference

AC
t (ρ) ≡ AT

t (ρ)−AQ
t (ρ)

as the classical anticoherence measure. By construction, we have that AT
t (ρ) = AQ

t (ρ) for
pure states and that AT

t (ρ) = AC
t (ρ) for separable states. We end this subsection with

the proof of (4.33).

Theorem. For any mixed quantum state ρ and any order of anticoherence t, it holds that

AT
t (ρ) ≥ AQ

t (ρ).

Proof. Using (4.30) and the definition of AQ
t (ρ), the inequality reduces to

[Tr
√
ρt]

2 ≥ 1 + 2NCR
t (ρ).

By substituting the eigendecomposition ρ =
∑N+1

i=1 λi |ψi⟩ ⟨ψi| into the inequality, it suf-
fices to show that

[Tr
√
ρt]

2 ≥ 1 + 2
N+1∑
i=1

λiNt (|ψi⟩) ≥ 1 + 2NCR
t (ρ).

For each pure state |ψi⟩, we denote the t-qubit reduced state by σi = TrN−t(|ψi⟩ ⟨ψi|).
Using (4.31), we find

1 + 2
N+1∑
i=1

λiNt (|ψi⟩) = 1 + 2
N+1∑
i=1

λi

([
Tr

√
σi
]2 − 1

2

)
=

N+1∑
i=1

λi [Tr
√
σi]

2
.

Since the reduced state of ρ is ρt =
∑

i λiσi, we getTr√∑
i

σ̃i

2

≥
N+1∑
i=1

[
Tr
√
σ̃i

]2
,

with σ̃i = λiσi. The last inequality can be written in terms of the Schatten p-antinorm
of positive semi-definite matrices [242], ∥A∥p ≡ ∥TrAp∥1/p, for p = 1/2, yielding∥∥∥∥∥∑

i

σ̃i

∥∥∥∥∥
1/2

≥
∑
i

∥σ̃i∥1/2 .

The latter inequality is always fulfilled for any set of positive semi-definite matrices σ̃i by
the definition of anti-norms [242].

4.4 Generation of anticoherent states
As we saw in the previous sections, t-AC states benefit from numerous theoretical prop-
erties and are expected to be useful in quantum metrology and quantum error correction.
Hence, there is a need to find ways to generate experimentally these states for any order
of anticoherence t. In this section, we present our protocol for generating a sequence of
control operations that produce a pure AC state of a given order t in a spin-j system.
Our analysis focuses exclusively on the unitary dynamics spanned by sequences of rota-
tion and squeezing pulses. This section closely follows the presentation from [35] where
we also study some dynamical decoupling sequences in order to mitigate the impact of
decoherence on the protocol.
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4.4.1 Controls and figure of merit

In order to find a protocol that will generate t-AC states, it is first necessary to define
an objective function. This function will depend on the controls that are to be defined,
and will serve as a figure of merit quantifying the quality of the final state produced.
Our goal is to prepare a t-AC state, regardless of its specific form, rather than to aim
for a predetermined target state. In the following, we consider the Bures t-AC measure
AB
t which will ensure that the pure states generated by our protocol have properties very

close to those of a genuine t-AC state.
To explore the controlled generation of pure AC spin states, we consider a Hamilto-

nian capable of producing any SU(2j + 1) spin unitary transformation, and therefore of
accessing the full state space[243, 244], which is of the form

H(t) = Ω(t)
[
cos
(
ϕ(t)

)
Jx + sin

(
ϕ(t)

)
Jy
]
+ χ(t)J2

z (4.34)

where Ω(t) is the rotation rate about an axis in the x-y plane oriented at an angle ϕ(t)
to the x axis and χ(t) is the one-axis twisting rate which controls squeezing along the z
direction. Squeezing is essential, as it is the only term in the Hamiltonian (4.34) responsi-
ble for the creation of non-classical states from spin-coherent states [245]. A Hamiltonian
of this form has been successfully implemented in a variety of experimental settings, in-
cluding the hyperfine manifolds of cesium atoms [246] and dysprosium atoms [236, 247]
as well as in condensates of spin-1/2 particles [9, 248, 249], and in atomic ensembles in
optical cavities where light-mediated interactions induce similar effective spin dynamics
[250]. For strontium atoms, this Hamiltonian has been investigated numerically for the
universal generation of quantum states and gates [251], and has also been realised exper-
imentally [252]. In addition, the one-axis twisting term χJ2

z has already been realised on
several experimental platforms [253–255].

We will show that the number of control parameters can be reduced while still allowing
the generation of AC states. To do this, we fix ϕ(t) = π/2. The Hamiltonian (4.34)
then reduces to the well-studied one-axis twisting and rotation Hamiltonian H(t) =
Ω(t)Jy + χ(t)J2

z , which can be used to produce extreme spin squeezed states achieving
the Heisenberg limit, see e.g. [256]. Our protocol exploits this Hamiltonian to maximise
the objective function AB

t (|ψ⟩⟨ψ|) starting from a pure coherent spin state |ψ0⟩. In QOC,
the most efficient algorithms rely on the calculation of the gradient of the objective
function with respect to the controls. However, in our case, gradient-based methods,
such as LBFGS or gradient descent with the use of automatic differentiation, frequently
only found local minima, resulting in a suboptimal set of parameters and anticoherence
measure. Initially, to find controls that generate AC states, we used the well-known
gradient-free CRAB algorithm [257] with the Hamiltonian (4.34), which gave satisfactory
results for small orders of anticoherence. For example, we were able to find controls that
generate spin states close to anticoherent states to order 5, with 1−A5 < 10−3 for j = 9.
However, we developed a pulse-based protocol that uses the same control parameters,
specifically designed for the generation of AC states, which greatly outperformed CRAB
in terms of speed, convergence and scalability. Despite the limitations of the gradient-free
Nelder-Mead method, our approach has enabled us to find controls that can successfully
produce higher-order AC states (up to t = 9 for j = 24) and that can handle large
spins (up to j = 5000 for t = 2). Furthermore, because our protocol applies the pulses
sequentially, it is not limited by the bandwidth of the control frequency, unlike in QOC.
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Figure 4.5: Diagram illustrating the coupling between state multipoles (for j = 2). Each
square represents a multipole ρLM of the spin state from the multipolar expansion (these
are shown explicitly for L = 0, 1). Blue and green arrows indicate the effects of rotation
(Jy generator) and squeezing (J2

z generator), respectively. Red crosses denote either the
absence of coupling between two multipoles or the absence of an adjacent multipole.

4.4.2 Pulse-based protocol

The key idea behind our pulse-based protocol lies in the distinct multipole coupling
behaviors of the squeezing and rotation operations. Squeezing generated by J2

z couples
a multipole ρLM only to its neighbors ρL±1,M , while the rotation generated by Jy affects
only multipoles with the same L (see Figure 4.5 and Appendix 4.B for details). Through
squeezing, population can therefore be transferred from a multipole at level L to one at
level L + 1, which is desirable when seeking to generate anticoherent states, in which
all multipole moments of order less than or equal to t are suppressed. While squeezing
enables this upward transfer, it can also cause reverse coupling from L + 1 to L, which
can reintroduce lower-order moments and prevent anticoherence from being achieved.
However, this can be avoided by placing the L+1 multipoles in specific M states, namely
M = 0 and M = ±L, which are decoupled from the lower levels. By steering the
population into these decoupled states, we can isolate the populated multipoles in the
upper level while allowing those at L to transition upward to L + 1 without unwanted
backflow. Figure 4.9 clearly demonstrates this behavior, see subsubsection 4.4.3.2.

Based on this idea, our protocol consists of a sequence of nC cycles, where each cycle
(except the first) applies a rotation about the y-axis followed by a squeezing operation
along z. Thus, in the one-axis twisting and rotation Hamiltonian, we alternate between
applying squeezing (χ(t) ̸= 0, Ω(t) = 0) and rotation (Ω(t) ̸= 0, χ(t) = 0) by activating
only one term at a time. The corresponding operations are described by the operators

Ry(θ) = e−iJyθ, Sz(η) = e−iJ
2
z η

where θ and η are the amplitudes of the rotation and the squeezing. Note that this
sequence of pulses is similar to the protocol presented in [256]. The final state of the
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Figure 4.6: Protocol for generating anticoherent states of order 3 for spin j = 3 using
nC = 3 cycles. The optimization is performed over all parameters (η1, η2, η3, θ2 and θ3).
Each colored rectangle represents the modulus squared of the corresponding multipole of
the multipolar expansion. The final anticoherence measure reaches 1−A3 < 10−7.

system after nC cycles is then given by

|ψnC ⟩ =
(

nC∏
i=1

Sz(ηi)Ry(θi)

)
|ψ0⟩

where θ1 is always taken as zero since it is necessary to first perform a squeezing. The
initial state |ψ0⟩ is the coherent state that points in the direction of the y-axis. For each
sequence, we optimize the parameters {θi, i = 2, 3, . . . , nC} and {ηi, i = 1, 2, . . . , nC}
to generate an AC state of a given order, that is, a state that maximises the Bures t-
AC measure for a given t. As we shall see, while this approach is fully realizable with
the Hamiltonian (4.34), it is specifically tailored for AC state generation rather than
producing arbitrary spin states.

4.4.3 Results

4.4.3.1 Numerical optimization

We first optimize the parameters ηi and θi numerically using the gradient-free Nelder-
Mead algorithm. Figure 4.6 shows the pulse sequence obtained for j = 3, which prepares
an AC state of order 3 with a deviation 1 − A3 < 10−7 in nC = 3 cycles. The first
squeezing operation, Sz(η1), transfers the population from the lower-order multipoles ρ2±2

to the higher-order multipoles ρ6±2. The subsequent rotation, Ry(θ2), shifts the dominant
population within L = 6 from M = ±2 to M = 0. As discussed previously, the M = 0
components are decoupled from lower-order multipoles under squeezing, allowing the next
squeezing step to preserve these higher-order contributions without transferring them
back. Finally, the rotation Ry(θ3) removes any residual population in ρ20 by transferring
it to ρ2±1 and ρ2±2, which are completely eliminated by the final squeezing operation.
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Figure 4.7: Highest anticoherence measure achieved using the pulse-based protocol for
orders t = 2, 3 and 4 (from top to bottom), shown as a function of the spin quantum
number j for different numbers of cycles nC .

In Figure 4.7, we present the maximum AC measures of order t = 2, 3 and 4 obtained
by optimizing this protocol, as a function of the spin quantum number j for different
numbers of rotation-squeezing cycles nC . The top panel reveals a clear qualitative dif-
ference between nC = 2 and nC = 3, the latter ensuring that all generated states satisfy
1−A2 < 10−7. This suggests that nC = 3 acts as a threshold in the pulse-based protocol
to achieve AC to order t = 2. A similar threshold behavior is observed for t = 1 (data
not shown), t = 3, and t = 4, occurring at nC = 1, nC = 4, and nC = 7, respectively, as
illustrated in the second and third panels. This seems to indicate that the pulse-based
protocol is indeed specifically optimized to generate AC states. Finally, with nC = 14,
we are able to successfully generate a state with A9 > 0.99 for j = 24, corresponding to
the highest AC order achievable with such precision before the number of cycles becomes
too large for the Nelder-Mead optimization to remain effective.

In Table 4.2, we present the accumulated values of rotation and squeezing obtained for
the generation of AC states of order t = 2, 3, . . . , 7, up to numerical errors (1−At < 10−15).
These control parameters were obtained to minimise the total squeezing time, which
is anticipated to be the limiting factor on the experimental duration of the protocol.
The chosen spin number j is systematically the smallest one for which a given order
of anticoherence t is theoretically possible. The values found for each parameter (for
j = 2, 3, 6 and 12) are provided in a GitHub repository [258], alongside Julia code used
to optimize our protocol. Based on the values in Table 4.2, this pulse-based protocol is
experimentally accessible with current technology, both in terms of the necessary gates
[256] and the attainable experimental parameters θ and η [259, 260]. For example, the
coherence times of the coherent and spin cat states in a Sb donor nucleus (j = 7/2)
implanted in silicon-based chip are respectively of T ≈ 100ms and T ≈ 14ms. Based on
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j t nC Total rotation
∑nC

i=1 |θi| Total squeezing
∑nC

i=1 |ηi|
2 2 2 0.560 1.323
3 3 3 3.824 1.325
6 4 6 9.818 0.959
6 5 6 6.496 1.043
12 6,7 12 17.812 1.953

Table 4.2: Minimum number of cycles nC required to generate a pure AC state of order
t (with 1−At < 10−15) in a spin-j system. The values chosen for j are the smallest that
still allow the generation of an AC state to order t. For those values, we observe that
nC always coincides with j. The last two columns of the table indicate the accumulated
values of rotation and squeezing required to generate the state.

conservative value of the squeezing strength χ, a typical squeezing parameter η = χt =
π/2 is achievable in 4.375ms [259, 260], well within the coherence time of the system.

4.4.3.2 Analytical results for t = 2

Our numerical results show that the cat state, which is AC of order 1, can always be
generated in a single cycle using η1 = π/2 for any j, a finding previously reported and
proved in [261–263].

Similarly, we have just seen in Figure 4.7 that AC states of order 2 can be generated
from 3 cycles for all j. Based on this observation and on the intuition provided by Figure
4.5, we were able, for integer spin j, to derive analytical values for the required control
parameters. By examining the effect of the control parameters on the multipoles TLM for
L ≤ 2, we identified that 2-AC spin-j states could be generated using the following set
of squeezing and rotation values

η1 =
π

2
, θ2 = − π

4j
, θ3 =

π

2
. (4.35)

These were subsequently adopted as an ansatz for the next steps of our protocol. Using

Figure 4.8: Majorana representation of the states (4.37) (left) and (4.39) (right) produced
by 3 rotation-squeezing cycles.
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Figure 4.9: Protocol for generating spin-3 AC states of order 3 based on nC = 3 cycles.
The control parameters used are those given in (4.35) and (4.38).

a symbolic computation program and the results from Appendix 4.B, we further obtained
the following squeezing parameters for j = 2

η2 = −arccot
√
2

2
, η3 =

arccot
√
2

4
. (4.36)

With the control parameters (4.35) and (4.36), the generated state is the tetrahedron
state (as shown in Figure 4.8)∣∣ψHOAP

t=2

〉
= c1|2,−2⟩+ c2|2, 0⟩+ c1|2, 2⟩ (4.37)

where

c1 =
−1/

√
2 + i√
6

, c2 =

√
2 + i√
6

.

For j = 3, we found the parameter values

η2 = −arccot
√
2

2
, η3 =

1

8

[
π − arctan

(
2
√
2
)]

(4.38)

leading to the octahedron state (also represented in Figure 4.8)∣∣ψHOAP
t=3

〉
= c1|3,−3⟩+ c2|3,−1⟩ − c2|3, 1⟩ − c1|3, 3⟩ (4.39)

where

c1 = −1

4
i

(
1

3

(
−241 + 22

√
2i
)) 1

8

, c2 = −i
√
5

4

(
1 + 11

√
2i
)1/4

35/8
.

The latter state is not only AC of order 2 but also of order 3. This is a special result,
as it is the only AC state of order 3 that we could obtain with only nC = 3 cycles. The
other AC states of order 3 we found needed nC = 4 cycles, as can be seen in Figure 4.7.
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Figure 4.10: Squeezing parameters η2 (blue dots) and η3 (orange triangles) required
for generating a 2-AC spin-j state with our pulse-based protocol. The other control
parameters are set to η1 = π

2
, θ1 = − π

4j
and θ2 = π

2
. The red and green lines represent

the analytical approximations given in (4.40).

We show in Figure 4.9 the evolution of the state multipoles during the generation of the
octahedron state (4.39). It can be compared to the protocol represented in Figure 4.6
which also gives an AC state of order 3 for j = 3. These analytical results are particularly
remarkable because, although the applied controls do not allow the generation of arbitrary
spin states, they can still produce exact AC states, as expected by our numerical results
shown in Figure 4.7.

For j > 3, the parameters η2 and η3 are determined by numerical optimization to
ensure that 1 − A2 < 10−6. For any j, the evolution of the multipoles to obtain an AC
state of order 2 from the parameters (4.35) is similar to the evolution illustrated for j = 3
in Figure 4.9. The process begins by generating the cat state with η1 = π/2. Next,
the rotation θ2 = −π/(4j) isolates the highly populated multipoles ρ2j±1 from the lower
levels by transferring them to ρ2j0. This is followed by the squeezing η2, which shifts
the ρ2±2 multipoles to higher L. The subsequent rotation θ3 = π

2
fully transfers ρ20 to

ρ2±2. Finally, the squeezing η3 further moves these multipoles to higher L, completing
the protocol.

This approach of first generating the 1-AC state and then the 2-AC state is not the
most time-efficient in terms of squeezing and rotation durations. However, the initial cat
state produced by the first squeezing η1 = π/2 could be generated more rapidly using
alternative dynamical methods [264–266] or based on post-selection [267], thus reducing
the total time required for the spin squeezing. As this first large squeezing η1 = π/2
represents a substantial portion of the total squeezing time, the exploration of alternative
methods to generate the cat state could prove to be highly advantageous.

Additionally, these analytical values minimise the number of parameters that need
optimization, enabling the generation of AC states of order 2 for larger spin numbers.
Figure 4.10 shows the squeezing parameters η2 and η3, obtained via numerical optimiza-
tion up to j = 350, as functions of j in log-log scale, providing strong evidence that they
follow power laws well approximated by

η2(j) =
3

4
√
2j
, η3(j) =

5

4j
. (4.40)
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The validity of these expressions seems to extend well beyond the fitting region, since by
using (4.40) for η2 and η3 for j = 5000, the generated state has a 2-AC measure close to
1 with a deviation 1−A2 < 10−3.3

Conclusion

Over the last years, anticoherent states have garnered increasing attention due to their
theoretical properties and practical applications. Since their initial definition based on
isotropy properties (4.1), it was shown that their phase-space quasidistributions exhibit
high degree of delocalisation and that t-AC states are maximally entangled symmetric
states w.r.t. bipartition t|N − t. These are reliable indicators that AC states are highly
non-classical. Following their quantum properties, AC states are optimal pure symmet-
ric states for rotosensing, magnetometry and frame alignement tasks. Furthermore, we
showed in this chapter that subspaces of pure AC states are good candidates for quantum
error-correction algorithms since they verify the Knill-Laflamme condition.

We also clarified in this chapter the relation between anticoherence and entanglement.
While in the case of pure states, the isotropy condition (4.1) can only be obtained by
quantum superposition, it is no longer the case for mixed states for which isotropy can
arise from classical mixture of states. However, mixed AC states can still show high
degree of entanglement and quantum metrology usefulness. Hence, it was necessary
to divide anticoherence measures into two distinct measures of classical and quantum
anticoherence. We did so by using a first result on the relation between the Bures t-AC
measure and the negativity of the partial transpose. It allowed us to define the quantum
anticoherence measure as the convex-roof of the negativity and we showed that it is always
smaller than the Bures t-AC measure, i.e. the total t-AC measure.

Finally, due to their potential use in quantum technologies, it is needed to find pro-
tocols to generate t-AC states for different experimental platforms. While some specific
AC states were already produced in photonic systems, and their metrological usefulness
ascertained, there was no clear path to generate general t-AC states in cold atoms experi-
ments. Here, we presented a simple and efficient protocol for the deterministic generation
and protection of AC states. Our pulse-based protocol, which involves cycles of rotations
followed by squeezing, has demonstrated remarkable efficiency in producing AC states
of different orders, achieving a high degree of anticoherence even for large spin quantum
numbers. Through numerical optimization and analytical derivations, we have identified
the optimum parameters for the rotation and squeezing operations, enabling the gen-
eration of AC states up to order 9 for spin-24 systems and order 2 for collective spin
ensembles. Our protocols can be applied to any physical platform where rotation and
squeezing operations are possible, such as magnetic atoms, spin ensembles, qudits or even
Bose-Einstein condensates.

The results presented in this chapter suggest several new research directions. Firstly,
as the purity t-AC measure for pure states is directly related to optimality of quan-
tum metrology tasks and as mixed optimal quantum rotosensors are given by mixed AC
states, a possible area for further research would be to establish a connection between the

3For large spin j, low-order AC measures of random states sampled according to the Haar measure
can be significantly high (see related [268]). Therefore, we might suspect that the state we can generate
for j = 5000 is simply a random state with a high 2-AC measure. However, this is not the case. For a
sample of 5000 random states, we find an average value of 1 − A2 > 10−2 (with a standard deviation
σ < 3.3 · 10−3), which is an order of magnitude larger than that of our generated state.
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quantum measure of anticoherence and an indicator of optimality in quantum metrology,
such as quantum Fisher information. This would give a direct link between optimality
in quantum metrology and entanglement. Secondly, our result on the verification of the
Knill-Laflamme condition by AC subspaces is a preliminary step on the possible use of
AC states for quantum error correction. Further work is definitely needed to find con-
crete protocols able to correct errors from AC subspaces. As correction of high order
errors seems possible by using only one spin system, it might be possible to implement
QEC with AC subspaces without the need of repeating code. Finally, future research
could explore the use of more sophisticated Hamiltonian dynamics, such as two-axis
anisotropic countertwisting [269] or effective three-body collective-spin interactions [270],
to further speed up the generation of AC states. Beyond deterministic coherent control
schemes, AC states could also be generated probabilistically via post-selection [271] or
through dissipative state preparation methods. An interesting direction to explore could
be the use of quantum non-demolition measurement schemes based on multicolor prob-
ing, as demonstrated in [272], which may offer another approach to generate AC states
in atomic ensembles with increased robustness against technical noise and inhomoge-
neous broadening. Investigating these alternatives may offer new avenues for producing
practically useful AC states under less stringent coherence requirements, expanding their
applicability to realistic experimental platforms.
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4.A Table of anticoherent states
We give in Table 4.3 below examples of HOAP states (taken from Refs. [25, 66, 222])
expressed in both the standard angular momentum basis and the multipole operator
basis.

4.B Evolution of the multipoles under squeezing
In this Appendix, we show that the rotation generator Jy couples a multipole of order
M only to those of order M ± 1, without changing the value of L, while the squeezing
generator J2

z couples a multipole of order L only to those of order L± 1, without altering
the value of M . Throughout this section, we set ℏ = 1.

4.B.1 Rotation

Under the unitary evolution generated by the Hamiltonian ΩJy, the density matrix in
the multipolar basis evolves according to

i
∑
LM

ρ̇LMTLM = Ω
∑
LM

ρLM [Jy, TLM ] . (4.41)

The operator Jy can be expressed in terms of the ladder operators as

Jy =
J+ − J−

2i

and its commutator with any multipole operator is given by

[J±, TLM ] =
√
L(L+ 1)CLM±1

LM,1±1TLM±1.

Therefore, the commutator in (4.41) can be rewritten in the form

[Jy, TLM ] =

√
L(L+ 1)

2i

(
CLM+1
LM,11TLM+1 − CLM−1

LM,1−1TLM−1

)
.

Using the relations

CLM−1
LM,1−1 =

√
(L−M + 1)(L+M)√

2L(L+ 1)
CLM+1
LM,11 = −

√
(L+M + 1)(L−M)√

2L(L+ 1)

and the orthogonality relation

Tr
(
TLMT

†
L′M ′

)
= δLL′δMM ′ (4.42)

we find that the evolution of any multipole component ρLM is governed by∑
LM

ρ̇LM =
Ω

2
√
2
[(L−M + 1)(L+M)ρLM−1 + (L+M + 1)(L−M)ρLM+1]

which depends only on the neighboring multipoles ρLM±1.
4For the sake of brevity and due to the relation ρ∗LM = (−1)MρL−M , only the state multipoles ρL−M

with M ⩾ 0 are given in the table.



4.B. Evolution of the multipoles under squeezing 125

j t Pure spin-j HOAP state and its non-zero multipoles4

1 1 |ψ⟩ = 1√
2
(|1, 1⟩+ |1,−1⟩)

ρ00 =
1√
3
, ρ2−2 =

1
2
, ρ2−2 =

1
2

3/2 1 |ψ⟩ = 1√
2

(∣∣3
2
, 3
2

〉
+
∣∣3
2
,−3

2

〉)
ρ00 =

1√
4
, ρ20 =

1
2
, ρ3−3 =

1
2

2 2 |ψ⟩ = 1
2

(
|2, 2⟩+ i

√
2 |2, 0⟩+ |2,−2⟩

)
ρ00 =

1√
5
, ρ3−2 =

i
2
, ρ4−4 =

1
4
, ρ40 =

1
2

√
7
10

5/2 1 |ψ⟩ = 1√
2

(∣∣5
2
, 3
2

〉
+
∣∣5
2
,−3

2

〉)
ρ00 =

1√
6
, ρ20 = − 1

2
√
21
, ρ3−3 =

1
3
ρ40 = − 3

2
√
7
, ρ5−3 = −

√
5
6

3 3 |ψ⟩ = 1√
2
(|3, 2⟩+ |3,−2⟩)

ρ00 =
1√
7
, ρ4−4 =

1
2

√
5
11
, ρ40 = −

√
7
22
, ρ6−4 = −

√
3
22
, ρ60 = −

√
3
77

7/2 2 |ψ⟩ =
√
2
3

∣∣7
2
, 7
2

〉
+

√
7
2

3

(∣∣7
2
, 1
2

〉
+
∣∣7
2
,−5

2

〉)
ρ00 = 1√

8
, ρ3−3 = 7

3
√
66
, ρ30 = 7

6
√
66
,

ρ5−3 = 7
6
√
78
, ρ50 = 7

6

√
7
78
, ρ6−6 = 1

9

√
7
2
, ρ6−3 = 1

18

√
77
2
,

ρ60 = −1
6

√
11
6
, ρ7−6 =

1
9

√
7
2
, ρ7−3 = − 5

18

√
35
143
, ρ70 = −8

3

√
2

429

4 3 |ψ⟩ =

√
5
6

2
(|4, 4⟩+ |4,−4⟩) +

√
7
3

2
|4, 0⟩

ρ00 =
1
3
, ρ4−4 =

7
6

√
5

143
, ρ40 =

7
3

√
7

286
, ρ6−4 =

1
3

√
35
22
,

ρ60 = −1
3

√
5
11
, ρ8−8 =

5
24
, ρ8−4 =

1
12

√
35
13
, ρ80 =

1
4

√
55
26

9/2 3 |ψ⟩ = 1√
6

(∣∣9
2
, 9
2

〉
+
∣∣9
2
,−9

2

〉)
− 1√

3

(∣∣9
2
, 3
2

〉
+
∣∣9
2
,−3

2

〉)
ρ00 = 1√

10
, ρ3−3 = 10

√
429−3

√
2002

1287
, ρ40 = 4√

715
,

ρ5−3 = − 1
117

(
6
√
26 +

√
273
)
, ρ6−6 = − 1√

30
,

ρ60 =
1
2

√
5
33
, ρ6−6 = − 1√

30
, ρ60 =

1
2

√
5
33
, ρ7−3 = −5

√
3−2

√
14√

2431
,

ρ8−6 = −1
3

√
7
10
, ρ80 = −1

6

√
55
13
, ρ9−9 =

1
6
, ρ9−3 = −

√
2+2

√
21

3
√
221

5 3 |ψ⟩ = 1√
11
(|5, 5⟩+ |5,−5⟩) +

√
3
5
|5, 0⟩

ρ00 = 1√
11
, ρ40 = 3

√
2

143
, ρ5−5 = 3

5
√
13
,

ρ60 = −3
√

3
935
, ρ7−5 =

6√
221
, ρ80 = 2

√
22

1235
,

ρ9−5 =
1
5

√
21
17
, ρ10−10 =

1
5
, ρ100 = −29

5

√
13

3553

Table 4.3: Examples of HOAP states for the smallest values of the spin quantum number
j, and their state multipoles. Here, t is the order of anticoherence of the state.
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4.B.2 Squeezing

Under the unitary evolution generated by the Hamiltonian χJ2
z , the density matrix in

the multipolar basis evolves according to

i
∑
LM

ρ̇LMTLM = χ
∑
LM

ρLM
[
J2
z , TLM

]
. (4.43)

In the multipolar basis, the squeezing operator is given by

J2
z =

j(j + 1)
√
2j + 1

3
T00 +

1

6
√
5

√
(2j + 3)!

(2j − 2)!
T20.

Since T00 is proportional to the identity matrix, it does not contribute to the evolution
of the density matrix, meaning only the term involving T20 need to be considered. We
can now use the general commutator between two multipolar operators, given by [69]

[TL1M1 , TL2M2 ] =
√

(2L1 + 1)(2L2 + 1)
∑
L

(−1)2j+L
(
1− (−1)L1+L2+L

)
×
{
L1 L2 L
j j j

}
CLM1+M2
L1M1,L2M2

TLM1+M2 ,

where we used the 6j-symbol and Clebsch-Gordan coefficients. These coefficients are
non-zero only when |L1 − L2| ≤ L ≤ L1 + L2. In our case, since L1 = 2, the maximum
multipolar order reachable from L2 is L = L2 ± 2. However, for L = L2 ± 2 or L = L2,
the factor

1− (−1)L1+L2+L

vanishes, leading to the final expression

[
J2
z , TLM

]
=

M√
2L+ 1

(√
(L−M + 1)(L+M + 1)(2j − L)(2j + L+ 2)

2L+ 3
TL+1M

+

√
(L−M)(L+M)(2j − L+ 1)(2j + L+ 1)

2L− 1
TL−1M

)
.

Finally, using the orthogonality property (4.42), (4.43) simplifies to

ρ̇LM =
χ

i

M√
2L+ 1

(√
(L−M)(L+M)(2j − L+ 1)(2j + L+ 1)

2L− 1
ρL−1M√

(L−M + 1)(L+M + 1)(2j − L)(2j + L+ 2)

2L+ 3
ρL+1M

)
,

which clearly shows that a multipole of order L is coupled only to its adjacent multipoles
of order L± 1.



Chapter 5

Extreme depolarisation of spin states

In experimental settings, quantum systems are inevitably coupled to their environment,
often resulting in the detrimental loss of coherence and entanglement. A central figure of
merit in assessing the quality of a quantum system is its coherence time—the timescale
over which the system can reliably maintain quantum information or remain in a su-
perposition before decoherence drives it into a statistical mixture. While decoherence is
typically seen as a limitation, recent studies have highlighted its potential for construc-
tive applications, including quantum state preparation via the Quantum Mpemba Effect
(QME) [273, 274, 275] and in quantum thermometry [276, 277].

In the previous chapter, we examined the growing significance of spin systems with
more than two levels as promising platforms for quantum technologies. These systems,
which may be interpreted as multi-qubit ensembles restricted to the symmetric subspace,
are now experimentally accessible with increasing precision. In this chapter, we turn
our attention to fundamental aspects of decoherence in such spin systems. Most prior
work on spin depolarisation has either followed a phenomenological approach based on a
depolarisation channel [278, 279, 280, 281, 282], or has focused on dynamical decoherence
of specific states, such as NOON states and coherent states [283, 284]. Our goal here is
to go beyond these approaches and analyse spin depolarisation in a general framework,
through two perspectives: purity loss and entanglement decay.

A key assumption of the dynamics we consider is that the total energy of the spin
system and its environment is conserved, in accordance with thermodynamic principles
[285, 286]. This assumption, which holds for all microscopic models yielding Markovian
master equations, leads to nontrivial constraints on the decoherence rates. As we shall see,
the time evolution has two important properties : it is unital and separability-preserving.
Under such dynamics, an initial pure state |ψ0⟩ evolves into a mixed state ρ whose purity

R (ρ) ≡ Tr
(
ρ2
)

decreases monotonically with time. Eventually, the state ρ converges to the unique sta-
tionary state, the MMS defined on H ≃ C2j+1.

Throughout this process, quantum entanglement, quantified via negativity across var-
ious bipartitions of the N -qubit system, also decays. Interestingly, the state may tran-
siently pass through PPT entangled states, but ultimately becomes separable after a
finite time. Beyond this point, it remains separable indefinitely, eventually entering the
ball of absolutely separable states (discussed in Chapter 2), from which no entanglement
can be restored by unitary operations alone.

Building on our results on the depolarisation of spin systems, we explore its application
in dynamical quantum metrology, where one wants to infer the value of the depolarisation
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rate based on the dissipative dynamics of the system. This will allow us to find optimal
states for isotropic noisy magnetic field and temperature sensing, both of which are critical
in the calibration of precision instruments.

This chapter is organized as follows. In Section 5.1, we present the Lindblad master
equation describing the depolarisation of an arbitrary spin and its expression in the
multipolar tensor basis. We discuss a conservation law for the dynamics, its steady
states and a general solution for the density matrix and its reductions. In Section 5.2,
we study isotropic depolarisation, from the evolution of purities and entanglement, the
condition of appearance of superdecoherence, and identify the HOAP states as the most
sensitive states to isotropic depolarisation. Then, in Section 5.3, we analytically determine
the initial states that experience the fastest purity loss under anisotropic depolarisation
for any spin j and identify long-time optimal states for j = 2. Finally, we explore
in Section 5.4 the estimation of dissipative rates in the context of depolarisation and
relate it with dynamical quantum metrology, in particular quantum thermometry and
noisy magnetometry. This chapter builds primarily on the results of [36]. However,
the discussion presented here on the dynamical quantum metrology constitutes original
additional contributions.

5.1 Depolarisation master equation

We consider the dynamics of a spin system governed by a master equation of the Lindblad
form

ρ̇ (t) =
i

ℏ
[ρ (t) , H] +

∑
α=x,y,z

Dα [ρ (t)] (5.1)

with the Hamiltonian H = ℏωJz and the dissipator

Dα [ρ] = γα
(
2JαρJα − J2

αρ− ρJ2
α

)
. (5.2)

This describes a spin-j system undergoing Markovian depolarisation along the three spa-
tial directions x, y and z with potentially different decoherence rates γx, γy and γz. In
particular, our master equation describes the well-known pure dephasing of a spin when
γx = γy = 0 and γz ̸= 0. In the following, we will refer to isotropic depolarisation when
γx = γy = γz and to anisotropic depolarisation when γx = γy ̸= γz.

Since the dissipator contains only Hermitian jump operators, the Lindblad generator
is unital, implying that the purity of the state ρ (t) can only decrease with time (see e.g.
[287]). We present physical models that give rise to such master equations in Appendix
5.A. Notably, we show how a Hamiltonian, strongly driving a system which interacts
with a thermal bath, can lead to anisotropic depolarisation. Various models leading to
the same form of dynamical evolution have been proposed and studied in the literature.
For instance, the derivation of a master equation describing isotropic depolarisation of
multiphoton states was carried out in [283] based on SU(2) invariance. The effect of
isotropic decoherence for a qubit on Uhlmann’s mixed state geometric phase was studied
in [288]. In Ref. [289], the anisotropic depolarisation of light stemming from its inter-
action with a material medium was analysed. A master equation describing anisotropic
depolarisation of a spin-1/2 was derived from a microscopic Hamiltonian model in [290]
and from disordered Hamiltonian ensembles in [291]. A non-Markovian version for a
central spin-1/2 interacting with a spin bath has been derived in [292].
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Note that microscopic models and thermodynamic principles constrain the allowed
values of the decoherence rates γα. Under the assumptions that the spin environment
is in thermal equilibrium and that the interaction Hamiltonian between the spin and
the environment commutes with both Hamiltonians of the spin and the environment, a
condition coined as strict conservation of energy, the unitary and dissipative evolutions
necessarily commute [285, 286], i.e. [U ,D] = 0 where U(·) = (i/ℏ) [·, H] and D (·) =∑

α=x,y,z Dα (·) for the master equation (5.1). For ω ̸= 0, the condition [U ,D] = 0

holds only if γx = γy
1. Physically, this reflects the fact that the unitary part induces a

spin precession around the z-axis, and the dissipator is invariant under rotations about
the z-axis only when γx = γy. For this reason, we will focus on the case γx = γy ≡
γ⊥z. For isotropic depolarisation, [U ,D] = 0 even for a more general Hamiltonian H =
ω · J with ω = (ωx, ωy, ωz). When Hamiltonian evolution commutes with dissipative
evolution, it has no impact on how the purity and entanglement of the state evolves with
time. Since a linear Hamiltonian evolution conserves purity and entanglement of a state,
we henceforth discard the Hamiltonian part of the evolution and focus entirely on the
dissipative dynamics.

5.1.1 Master equation in the multipolar tensors basis

A general spin decoherence master equation can be expressed as

ρ̇ =
∑

α=x,y,z

γα [[ρ, Jα] , Jα] (5.3)

In the MPB, each state multipole evolves according to

ρ̇LM = −ΓLMρLM − ΓLM+2ρLM+2 − ΓLM−2ρLM−2 (5.4)

with the rates
ΓLM = γzM

2 +
γx + γy

2

[
L(L+ 1)−M2

]
(5.5)

ΓLM±2 =
γx − γy

4
d±LM (5.6)

where
d±LM =

√
(L∓M)(L±M + 1)(L∓M − 1)(L±M + 2). (5.7)

Multipoles with different L are decoupled, as are components with even or odd M , re-
sulting in a block-diagonal Liouvillian in the MPB, with N + 1 blocks of size 2L + 1
for L = 0, . . . , N . From (5.4), we see that the block for L = 0 is equal to 0, so that
the stationary state has always a component on the MMS such that the component ρ00
remains equal to 1/

√
N + 1 at all times, which is simply due to normalisation of the state

ρ. The blocks for L > 0 have diagonal elements −ΓLM for M = −L, . . . , L and symmetric
off-diagonal elements −ΓLM±2. When γx = γy, ΓLM±2 = 0 and the Liouvillian is diagonal
in the MPB and each ρLM evolves independently.

Notably, it appears from (5.4) that the dynamics conserves the property of anticoher-
ence of a state at any time. Indeed, if the state multipoles ρLM are initially equal to zero
for some L and ∀ M = −L, . . . , L, they remain zero at all times. Therefore, an initial

1A direct calculation shows that [U(ρ),D(ρ)] = iω
2 (γx − γy)

∑
LM (

∑
± ±d±LMTLM±2)ρLM with d±LM

defined in (5.7) and ρLM the state multipoles of ρ. Hence, the conclusion that [U(ρ),D(ρ)] = 0 for any
ρ iff γx = γy.
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q-AC state remains q-AC at any time2. We emphasise that this property would still hold
if the γα rates were time dependent or took negative values to model non-Markovian
dynamics. Therefore, the property of anticoherence of a state is very generally conserved
under the model of decoherence corresponding to the master equation (5.1).

5.1.2 Exact solutions for ρ and its reductions

Under strict energy conservation (γx = γy), the state multipoles are fully decoupled and
obey

ρ̇LM = −ΓLMρLM (5.8)

whose general solution is given by

ρLM (t) = e−ΓLM tρLM (0) . (5.9)

The solution (5.9) allows us to directly access the state multipoles of all the reduced
states of ρ. Consequently, the state multipoles ρ(q)LM of the q-qubit reduced density matrix
ρq = Tr¬q [ρ] can be expressed in terms of the ρLM of ρ as

ρ
(q)
LM (t) =

q!

N !

√
(N−L)!(N+L+1)!
(q−L)!(q+L+1)!

ρLM (t) (5.10)

for L ⩽ q and −L ⩽ M ⩽ L. In the following, we will heavily rely on equations (5.9)
and (5.10) for our analytical and numerical results. A first observation is that when
γ⊥z = γx = γy ̸= 0, all multipoles decay exponentially, except ρ00, and the system
asymptotically approaches the MMS.

5.1.3 Decrease of purity

In order to identify the states that are the most prone to decoherence, we focus on the
rate of change of the purity Ṙ (ρ) and its higher order time derivatives. These quantities
can be expressed in a simple form when γx = γy because then (5.8) implies that

d |ρLM |2 /dt = −2 |ρLM |2 ΓLM .

Repeated use of the latter equality together with the expression of the state purity in
terms of its state multipoles yields for the n-th order time derivative

dnR (ρ)

dtn
= (−2)n

∑
L,M

|ρLM |2 (ΓLM)n = (−2)n (ΓLM)nR (ρ) (5.11)

where we define the average value in state ρ of a function f of variables L and M by

f(L,M) =

∑
L,M |ρLM |2 f(L,M)∑

L,M |ρLM |2
. (5.12)

In particular, the rate of change of purity, which is also equal to the opposite of the linear
entropy production rate [293], is given by

Ṙ (ρ) = −2ΓLMR (ρ) ⩽ 0. (5.13)
2To avoid confusion with the time variable t, we now note the number of qubits in a reduced state

and the anticoherence order by q.
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Similarly, the second time derivative of R (ρ) is given by

R̈ (ρ) = 4(ΓLM)2R(ρ) ⩾ 0. (5.14)

More generally, the solution (5.9) for the state multipole of ρ(t) gives

R (t) =
1

N + 1
+
∑
L>0,M

|ρLM(0)|2 e−2ΓLM t. (5.15)

where we have set R (t) ≡ R (ρ (t)).

5.2 Isotropic depolarisation
When the decoherence rates are equal in all directions, γ ≡ γx = γy = γz, the spin
system undergoes isotropic depolarisation. From (5.4) and (5.5), we find that the state
multipoles ρLM decay exponentially over time as

ρLM (t) = ρLM(0)e−γL(L+1)t. (5.16)

The evolution of the spin state is in this case similar with that of the well-known isotropic
depolarisation channel [294]. Indeed, the MMS is the unique stationary state in both
cases. However, we point out that the isotropic depolarisation based on the master
equation is physically richer than the channel. In fact, under the isotropic depolarisation
channel, every state multipoles decay at the same rate while the decay rates here depends
on L.

5.2.1 Superdecoherence

From (5.13), the time derivative of the purity is

Ṙ (ρ) = −2L (L+ 1)γR (ρ) ⩽ 0. (5.17)

The purity of the q = N − 1 qubit reduced state is (see Chapter 1)

Tr
[
ρ2N−1

]
=

N−1∑
L=0

L∑
M=−L

N(N+1)−L(L+1)
N2 |ρLM |2 . (5.18)

Using Tr (ρ2) =
∑

LM |ρLM |2 and (5.18), we find that

N∑
L=0

L∑
M=−L

L(L+ 1) |ρLM |2 = N(N + 1)Tr
[
ρ2
]
−N2Tr

[
ρ2N−1

]
. (5.19)

which is valid for any state ρ (pure or mixed). Consequently, (5.17) can be rewritten as

Ṙ (ρ) = −2γ
[
N (N + 1)R (ρ)−N2R (ρN−1)

]
(5.20)

where R (ρN−1) is the purity of the N − 1-qubit reduced state of ρ. Due to the propor-
tionality of the state multipoles expressed by the relation (5.10) and the diagonal form of
the master equation in the MPB, the master equation keeps exactly the same form (5.8)



132 Chapter 5. Extreme depolarisation of spin states

for the reduced states ρq than for the global state ρ. Using (5.20), we can thus write the
closed set of equations for the purities

Ṙ (ρ1) = −2γ [2R (ρ1)− 1]

Ṙ (ρ2) = −2γ [6R (ρ2)− 4R (ρ1)]
...

Ṙ (ρ) = −2γ
[
N (N + 1)R (ρ)−N2R (ρN−1)

]
. (5.21)

Each equation in this system depends only on purities of subsystems of up to q-qubits,
independent of N .

It is known that collective dephasing can lead to a phenomenon called superdecoher-
ence [295–297], where the rate at which states lose their coherence scales as N2 with N
the number of qubits, contrary to individual decoherence for which the coherence loss rate
scales as N . We show here that superdecoherence also arise in isotropic depolarisation.

5.2.1.1 Condition for superdecoherence

The following proposition gives a necessary condition for superdecoherence to occur.

Proposition. Superdecoherence under isotropic depolarisation of a state ρ cannot occur
if ρ is separable.

Proof. Rewriting (5.20) as allows us to highlight both linear and quadratic contributions
in N

Ṙ (ρ) = −2γR (ρ)N − 2γ [R (ρ)−R (ρN−1)]N
2. (5.22)

We now show that the coefficient in front of N2 can only be negative for entangled
states. To this end, we use the entanglement criterion based on the Rényi entropy Sq
for q = 2 3, which states that if a state ρ is separable, then R (ρq) ⩾ R (ρ) for any
number of qubits q < N . This criterion reflects the fact that the reduced states of
a separable state are always less mixed than the global state is [179]. Therefore, for
separable states R (ρ)−R (ρN−1) is always negative. It can be positive only for entangled
states. A consequence is that superdecoherence can never occur when the system starts
from a separable state. Indeed, as we show in Appendix 5.C, isotropic depolarisation
leads to a separability preserving (SEPP) dynamical map. This means that separable
states can only evolve into separable states, which we have just shown cannot display
superdecoherence.

Interestingly, the situation is fundamentally different for the closely related phe-
nomenon of superradiance, which can occur without any entanglement [298], starting
for example from the separable state in which all atoms are excited.

5.2.1.2 Connection between superdecoherence and AC measures

A numerical optimization shows that R (ρ) − R (ρN−1) is smaller than or equal to 1/2,
where the value 1/2 is reached when ρ is a pure 1-AC state. Hence, these states exhibit
the largest depolarisation rate

Ṙ = −γN (N + 2)

3The Rényi entropies are defined as Sq (ρ) = 1
1−q ln [Tr (ρ

q)] for q > 0. For q = 2, S2 (ρ) =

− ln
[
Tr
(
ρ2
)]

= − ln [R (ρ)] and we have S2 (ρ) ≥ S2 (ρt) ⇔ R (ρ) ⩽ R(ρt).
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scaling quadratically with N . This connection between purity loss and anticoherence can
be made explicit as for an initial pure state |ψ0⟩, the rate (5.22) at t = 0 can be rewritten
as (see Appendix 5.D for more detail)

Ṙ
∣∣∣
t=0

= −2γ

(
N +

N2

2
AR

1

)
(5.23)

where AR
1 is the purity 1-AC measure of |ψ0⟩ and expressible as

AR
1 = 1− 1

j2
|⟨ψ0|J|ψ0⟩|2.

The equation (5.23) relates superdecoherence to anticoherence (and thus to entanglement
of |ψ0⟩) because the term scaling quadratically with the number of qubits is directly
proportional to AR

1 . This term vanishes for spin-coherent states (AR
1 = 0) and is maximal

for 1-AC states (AR
1 = 1).

Higher-order time derivatives of the purity can be evaluated by repeated use of the
set of equations (5.21). For example, at any time t, we have for the second-order time
derivative of R

R̈ = −2γ
[
N (N + 1) Ṙ (ρ)−N2Ṙ (ρN−1)

]
(5.24)

= 4γ2N2
[
(N + 1)2R (ρ)− 2N2R (ρN−1) + (N − 1)2R (ρN−2)

]
.

The quantity R̈ does not only depend on R (ρ) and R (ρN−1) as Ṙ did, but also on
R (ρN−2), the purity of the reduced density matrix of N − 2 qubits. For an initial pure
state ρ = |ψ0⟩ ⟨ψ0|, (5.24) can be rewritten as

R̈
∣∣∣
t=0

=
4

3
γ2N2

[
6 + 3N2AR

1 − 2 (N − 1)2AR
2

]
(5.25)

where we have set AR
q = AR

q (|ψ0⟩) for q = 1, 2. It can be seen from (5.25) that, among
1-AC states, 2-AC states yield the smallest value for R̈|t=0 and that (5.25) with AR

1 =
AR

2 = 1 gives immediately

R̈|t=0 =
4

3
γ2N2(N + 2)2.

It follows that 2-AC states not only lead to the highest rate of depolarisation Ṙ|t=0, but
that this rate also decreases the slowest over time among all such states. In contrast, the
maximal value of R̈|t=0 is reached for GHZ states, for which AR

1 = 1, AR
2 = 3/4 and thus

R̈|t=0 = 2γ2N2(N2 + 2N + 3). This means that among the maximally entangled pure
states with respect to the 1|N − 1 bipartition, the GHZ states are those for which the
depolarisation rate decreases most rapidly with time.

From (5.16), it appears that the multipoles of higher L decay faster. Therefore, it
clearly appears that the pure states which minimise (maximise) the cumulative distribu-
tion

rq =

q∑
L=1

L∑
M=−L

|ρLM |2

are the states which maximise (minimise) the superdecoherence. From their definition
in the multipolar basis, q-AC states minimise rq and are thus the most superdecoherent
states of all spin states. In the other extreme, it has been shown that spin coherent states
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Figure 5.1: Isotropic depolarisation for different 4-qubit states: coherent state (pink), W
state (green), GHZ state (orange) and HOAP state given by (5.26) (blue). Left: Purity
as a function of time, monotonically decreasing towards the asymptotic value 1/N + 1.
Right: Purity loss rate as a function of time.

maximise rq [222]. They are therefore the most robust to isotropic depolarisation. For
N = 4, we show in Figure 5.1 the effect of isotropic depolarisation on the purity of a
coherent state, the W and GHZ states and the 2-AC HOAP state∣∣ψHOAP

t=2

〉
=

1

2

(
|D(0)

4 ⟩+ i
√
2 |D(2)

4 ⟩+ |D(4)
4 ⟩
)
. (5.26)

5.2.2 Entanglement dynamics

5.2.2.1 Entanglement survival time

Under isotropic depolarisation, a N -qubit system initially in a pure entangled symmetric
state |ψ⟩ gradually loses its purity and entanglement over time. Asymptotically, the
system reaches its unique stationary state, i.e. the MMS which has the smallest purity
and is separable [299]. After a finite time of the evolution leading the system from its
initial state |ψ⟩ to ρ0, the state becomes separable and remains so because the dynamics is
separability preserving (see Appendix 5.C). We call this particular time the entanglement
survival time and denote it by tES. After a longer but still finite time, the system state
enters the ball of SAS states centred on ρ0 [33, 149] (see Chapter 2). From this point
on, any entanglement between the qubits that could potentially be retrieved by global
unitary transformations on the system is permanently lost.

Our aim is to study the scaling of the entanglement survival time with the number
of qubits, in particular for the most rapidly decohering states. However, in general, it is
not practically feasible to compute this time, as this reduces to determining whether a
mixed state is entangled or separable, a notoriously difficult problem. We will therefore
use entanglement or separability criteria to give upper and lower bounds for tES. As we
shall see, these bounds follow the same scaling with N , which is consequently also the
scaling of tES with N . In this work, we use the negativity to detect, and to some extent
quantify, bipartite entanglement. A non-zero negativity indicates entanglement. We call
the time when the negativity becomes zero the NPT (negative partial transpose) survival
time tNPT. It is a lower bound for the entanglement survival time, i.e. tNPT ⩽ tES. Here,



5.2. Isotropic depolarisation 135

γtNPT(4)γtNPT(6)γtNPT(12)γtNPT(28)

0.140.120.10.080.060.040.020

1

10−2

10−4

10−6

10−8

10−10

γt

N

Figure 5.2: Negativity with respect to the ⌊N/2⌋|⌈N/2⌉ bipartition of HOAP states
[118, 119] for N = 4, 6, 12, 28 (from right to left) as a function of time for isotropic
depolarisation. The dashed lines indicate when the negativity drops to zero.

we will not investigate whether the states produced by isotropic depolarisation are fully
bound entangled [300], but will focus on the distillable entanglement that is detected by
the PPT criterion for the different bipartitions of the system, in the same spirit as the
works [279, 280].

Even before using the PPT criterion, we can obtain a lower bound on the entan-
glement survival time for pure q-AC initial states. We proceed as before by using the
purity-based entanglement criterion which states that when R (ρ) > R (ρq), the state ρ
is entangled. Then, taking into account the fact that R (ρq) = 1/ (q + 1) at any time
because anticoherence is conserved now yields that ρ (t) remains entangled for

t <
ln
(
N(q+1)
N−q

)
2γN(N + 1)

⩽ tES. (5.27)

5.2.2.2 NPT survival time scaling

In this subsection, we analyse the scaling of the NPT survival time with the number
of qubits. To begin, Figure 5.2 shows the negativity as a function of time for initial
HOAP states with different number of qubits. The logarithmic scale used in the plot
clearly shows that the negativity drops to zero after a finite time, the NPT survival time
tNPT, decreasing with the number of qubits4. We observe numerically that the balanced
bipartition ⌊N/2⌋|⌈N/2⌉ is, except for small numbers of qubits, the one for which tNPT is
the largest, while it is the smallest for the bipartition 1|N − 1. For this reason, in what
follows, we focus only on these two bipartitions.

Figure 5.3 (top panel) shows tNPT for the balanced bipartition as a function of N . We
see that tNPT falls off as an inverse power law in N for all states considered. The states

4To accurately estimate tNPT, the moment when the negativity becomes zero, we had to work with
octuple precision floats. We worked with the BigFloat type available in Julia for floating point numbers
of arbitrary precision, which uses the GNU MPFR library.

https://julialang.org
https://www.mpfr.org
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Figure 5.3: Negative partial transpose (NPT) survival time tNPT as a function of N for
(left) the bipartition 1|N − 1, with the grey solid lines showing the scalings 1/N and
1/N1.75, and (right) the bipartition ⌊N/2⌋ | ⌈N/2⌉, with the grey solid line showing the
scaling 1/N .

that lose their entanglement the fastest and thus lead to the smallest value of tNPT are
the HOAP states, even though they have the largest initial negativity. Similar data for
the bipartition 1|N − 1 are displayed in the bottom panel of Figure 5.3. In this case, the
GHZ states are the most fragile states under isotropic depolarisation and we find that
tNPT falls off approximately as N1.75. This observation can be contrasted with the fact
that the entanglement in a GHZ state is known to be maximally fragile under the loss of
a single qubit. Nevertheless, we see that the global entanglement is more robust than the
local one and the HOAP states are found to be the first to become PPT with respect to
any bipartition. Hence, AC states are not only the most rapidly decohering states, but
also the ones that become PPT the fastest.

5.2.2.3 P function separability time

For an initial pure entangled state ρ = |ψ⟩ ⟨ψ|, the P function is necessarily not every-
where positive because otherwise the state would be separable. Over time, based on (5.9),
the P function takes the form

Pρ (Ω) =

√
4π

N + 1

∑
L,M

(
Cjj
jjL0

)−1
ρLM (0) e−ΓLM tYLM (Ω) (5.28)

where all the multipoles with L > 0 decay exponentially. Therefore, after a finite time
tP ⩾ tES, the P function becomes everywhere positive, which is a sufficient condition for
separability. Because the dynamics is separability preserving, the state remains separable
for all t ⩾ tP . In Figure 5.4, we show the time tP as a function of the number of qubits.
To estimate tP numerically, we computed a discretized version of the P function for
Ω = (θ, φ) ∈ [0, π] × [0, 2π] sampled on a grid with resolution δθ = δφ = 1/N3/4. Then
we checked at what time, with precision δt = 1/

(
4096

√
N
)
, this discretized P function

becomes everywhere positive. For all the different types of states considered, we find an
inverse power law scaling of the form tP ∼ 1/N . It is for the HOAP states that tP is the
smallest and for W states that tP is the largest for a given number of qubits.
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Figure 5.4: Shortest time after which the P function becomes everywhere positive, en-
suring the separability of the state. The grey solid line shows the scaling 1/N .

5.2.2.4 Time to reach the ball of SAS states

We have computed the time it takes for an initial pure state to enter, as a result of
depolarisation, the set S0 defined by the ball of SAS states of radius (see Chapter 2)

r =
1√

(2N + 2) [(2N + 1)CN
2N − (N/2 + 1)]

(5.29)

centred on the MMS. Let us denote this time by trmax . Figure 5.5 shows trmax as a function
of N , the number of qubits. We can see that trmax increases linearly with N for GHZ and
Dicke states. In stark contrast, for HOAP states, trmax is approximately independent of
N , meaning that HOAP states become absolutely separable after a time that depends
only on the decoherence rates and not on the size of the system. More precisely, our
high-precision numerics shows that trmax ≈ 0.384 for HOAP states, trmax ≈ 0.116(N + 2)
for GHZ and balanced Dicke states with even N , trmax ≈ 0.341(N −2) for balanced Dicke
states with odd N and trmax ≈ 0.35N + 0.81 for W states.

Our results are summarized in Table 5.1. It is interesting to compare them with
those obtained for an ensemble of qubits subjected to individual decoherence. In that
case, it has been shown that the time tNPT calculated for the bipartition ⌊N/2⌋|⌈N/2⌉
generally increases with N , notably for GHZ states [278–281, 301]. It was therefore
concluded that the entanglement survival time tES also increases with N . Clearly, these
conclusions are no longer valid for collective depolarisation since we have just shown that
then both times decrease with N . Highly-entangled symmetric states thus appear to
be more fragile to collective depolarisation than to individual depolarisation, which we
attribute to superdecoherence that is absent for individual depolarisation.

5.2.2.5 Dynamical generation of PPT entangled states

We now focus in more detail on the case of a few qubits for which we can obtain further
analytical results. To begin with, let us consider a 4-qubit system initially in the pure
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Figure 5.5: Time after which an initial pure N -qubit symmetric state enters the ball of
radius (5.29) centred on the MMS as a result of depolarisation, shown here for various
states as a function of N . Note the difference in behaviour for balanced Dicke states
depending on the parity of N (red squares).

2-AC state (5.26). The time-evolved state ρ (t), which follows from (5.16), is represented
in the Dicke basis

{
|D(k)

4 ⟩ : k = 0, . . . , 4
}

by the matrix


u+1
5

0 − iu3/5

23/10
0 u

0 1−4u
5

0 0 0
iu3/5

23/10
0 6u+1

5
0 iu3/5

23/10

0 0 0 1−4u
5

0

u 0 − iu3/5

23/10
0 u+1

5

 (5.30)

where u = u(t) = e−20γt/4. The partial transpose of (5.30) has only one eigenvalue that
can potentially be negative, respectively denoted by λ(1,3)− for the bipartition 1|3 and λ(2,2)−
for the bipartition 2|2. These eigenvalues are given by

λ
(1,3)
− (t) =

e−20γt

20

(
e20γt − 5 e8γt − 6

)
N tNPT tES tP trmax

GHZ 1/2 ∼ 1/N ∼ 1/N ∼ 1/N N
W 1/2 ∼ 1/N ∼ 1/N ∼ 1/N N

DB ∼
√
N ∼ 1/N ∼ 1/N ∼ 1/N N

HOAP ∼ N ∼ 1/N ∼ 1/N ∼ 1/N const

Table 5.1: Scaling laws with the number of qubits of the initial negativity and the different
characteristic times defined in the text for several families of states subject to isotropic
depolarisation. The scaling laws for tES have been deduced from the inequalities tNPT ⩽
tES ⩽ tP and the scaling laws for tNPT and tP .
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Figure 5.6: Distance r to the maximally mixed state (in blue) and negativity N for the
two possible bipartitions 1|3 and 2|2 (in orange) as a function of time when starting from
the 4-qubit 2-AC HOAP state (5.26).

and
λ
(2,2)
− (t) = −e

−20γt

30

(
3− 3e20γt +

√
e16γt [4e4γt (e20γt + 3) + 75] + 9

)
.

The eigenvalue λ(2,2)− (t) cancels at a time γt(2,2)NPT ≈ 0.134582, less than γt(1,3)NPT ≈ 0.158384,
the time at which λ

(3,1)
− (t) cancels. Therefore, there is a time interval during which the

negativity is zero for the bipartition 2|2 while it is non-zero for the bipartition 1|3. In
this time interval, the state generated by isotropic depolarisation is PPT entangled with
respect to the 2|2 bipartition, and thereby realises a 3 × 3 bipartite symmetric PPT
entangled state [111]. Figure 5.6 illustrates this dynamical evolution of entanglement
under collective depolarisation in this particular case. It should be noted that for the
initial GHZ, W and Dicke states, no such PPT entanglement is produced during the
dynamics. Similarly, we found that other types of PPT entangled states can be generated
by isotropic depolarisation starting from pure AC states. For example, starting from the
5-qubit (resp. 6-qubit) HOAP state given in Table 4.3, isotropic depolarisation leads to
PPT entangled states with respect to the 2|3 bipartition (resp. 3|3 bipartition).

5.3 Anisotropic depolarisation
In this section, we turn to anisotropic depolarisation, where the rates in the three spatial
directions are not all equal, i.e. γx = γy = γ⊥z ̸= γz. We start in Subsection 5.3.2 by
searching for the initial pure states with the largest purity decay rate and relate it with
the variances of the state. In Subsection 5.3.2, we find the states minimising the purity
at all times for N = 2 and 4.

5.3.1 Purity loss rate

In the more general case of anisotropic depolarisation (γ⊥z ̸= γz), the rate of change of
the purity is given by

Ṙ = −2
∑
L,M

(
M2γz + [L(L+ 1)−M2]γ⊥z

)
|ρLM |2. (5.31)
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For a pure state |ψ⟩, Ṙ can be expressed only in terms of variances of the spin components
in state |ψ⟩. Indeed, for pure states, the following relations hold (see Appendix 5.D)

∆J2
z =

1

2

N∑
L=0

L∑
M=−L

M2 |ρLM |2 (5.32)

∆J2
x +∆J2

y =
1

2

N∑
L=0

L∑
M=−L

[
L(L+ 1)−M2

]
|ρLM |2 (5.33)

that can be combined with (5.31) to obtain

Ṙ|ψ⟩ = −4
[
γz∆J

2
z + γ⊥z

(
∆J2

x +∆J2
y

)]
. (5.34)

The general result (5.34), which is valid for any pure spin state, suggests controlling de-
polarisation on short time scales by appropriately squeezing the initial state, i.e. making
∆J2

z smaller or larger than ∆J2
x+∆J2

y , depending on the value of the depolarisation rates
γz and γ⊥z. Interestingly, a similar result applies to continuous variable quantum states
[302]. In particular, for macroscopic quantum states, a slowing down of decoherence due
to photon loss has been experimentally demonstrated via squeezing in phase space [303,
304].

5.3.2 Optimization of purity loss

In the following, we show how to find the pure states that maximise the purity loss rate
(5.34). First, let us remark that the variances of the spin components verify

∆J2
x +∆J2

y +∆J2
z = N

2

(
N
2
+ 1
)
− |⟨J⟩|2 (5.35)

because J2 = N
2

(
N
2
+ 1
)
1, and

0 ⩽ ∆J2
α = ⟨J2

α⟩ − ⟨Jα⟩2 ⩽ ⟨J2
α⟩ ⩽

N2

4
, ∀α = x, y, z, (5.36)

where the last inequality comes from the fact that the largest eigenvalue of J2
α is equal

to N/2.

5.3.2.1 Case I: γz > γ⊥z

In this case, the decoherence rate (5.34) is maximised by maximizing ∆J2
z . Let us show

that the upper bound for the variance given in (5.36), equal to N2/4, can be reached. It
can only be reached when ⟨Jz⟩ = 0. For a pure state |ψ⟩ with expansion in the Dicke
basis

|ψ⟩ =
N∑
k=0

dk|D(k)
N ⟩, dk ∈ C,

the condition ⟨Jz⟩ = 0 reads
N∑
k=0

|dk|2 (N − 2k) = 0, (5.37)
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and the variance ∆J2
z then reduces to

〈
J2
z

〉
=
N2

4
+

N∑
k=0

|dN−k| k (k −N) . (5.38)

The latter expression is equal to N2/4 when the sum on the right-hand side vanishes,
which occurs when all Dicke coefficients dk are equal to zero, except d0 and dN . But then,
(5.37) gives |d0|2 = |dN |2 directly. The corresponding normalised state is the GHZ state,
for which (5.34) yields the maximal purity loss rate for γz > γ⊥z

Ṙ|GHZ⟩ = −2γ⊥zN − γzN
2. (5.39)

5.3.2.2 Case II: γz < γ⊥z

In this case, the decoherence rate (5.34) is maximised by maximizing ∆J2
x+∆J2

y . Rewrit-
ing (5.35) as

∆J2
x +∆J2

y = N
2

(
N
2
+ 1
)
− ⟨Jx⟩2 − ⟨Jy⟩2 − ⟨Jz⟩2 ,

we see that a state verifying ⟨Jx⟩ = ⟨Jy⟩ = 0 and, at the same time, ⟨J2
z ⟩ = 0 is optimal.

For even N , ⟨J2
z ⟩ given by (5.38) is equal to zero when |dk|2 = 1 for k = N/2 and

|dk|2 = 0 otherwise. The corresponding state is the balanced Dicke state, which also
verifies ⟨Jx⟩ = ⟨Jy⟩ = 0 and is thus optimal. Similarly, for odd N , we find that the
optimal state has |dk|2 = 1 either for k = (N + 1) /2 or k = (N − 1) /2 and |dk|2 = 0
otherwise. In the end, the maximal purity loss rate for γz < γ⊥z is given by

Ṙ|DB⟩ =

{
−γ⊥zN(N + 2) evenN
−γ⊥z [N(N + 2)− 1] oddN

(5.40)

and is independent of γz.

5.3.2.3 Minimisation of purity at any fixed time

Until now, we have identified the states which decohere the fastest at short times for any
possible value of the rates γ⊥z and γz. It is much more difficult to answer the question
of which initial pure states give the smallest purity after an arbitrary period of time t∗.
Through a combination of analytical and numerical methods, we were able to answer this
question for 2 and 4 qubits. First, we have observed that, for N = 2 and N = 4 (but
not N = 3), the optimal initial states found numerically are always 1-AC. Taking this
observation as a working hypothesis, we can perform the optimization analytically. To
this end, let us denote by R|ψ⟩ (t

∗) the purity of the spin state at time t∗ when the system
is initially in state |ψ⟩. We then define the derivative of this purity with respect to a pure
state |σ⟩ as

dR|ψ⟩ (t
∗)

d |σ⟩ = lim
ϵ→0

R|ψϵ⟩ (t
∗)−R|ψ⟩ (t

∗)

ϵ
, (5.41)

where we define the normalized state |ψϵ⟩ = N (|ψ⟩+ ϵ|σ⟩) with N a normalisation
constant. In order to find optimal states, we look for critical states that cancel the
derivative (5.41) for a fixed value of t∗.
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Figure 5.7: Minimum achievable purity at time t∗ for different values of γ⊥z/γz < 1 (left)
and γ⊥z/γz > 1 (right). The optimal initial states are the GHZ and balanced Dicke states
(green and red curves, respectively) at short times and the |µ∗⟩ states given by (5.43)
(blue curves) at longer times. Vertical lines locate the transition from GHZ to |µ∗⟩ which
occurs when Im(µ∗) vanishes.

5.3.2.4 j = 1 or N = 2 qubits

For N = 2, the only critical states are the GHZ and balanced Dicke states, whatever
the value of t∗. They are both 1-AC [66]. The GHZ and balanced Dicke states were
previously found to be optimal at short times for γz > γ⊥z and γz < γ⊥z, respectively.
Our numerics shows that this is also the case for longer times, and thus for any t∗.

5.3.2.5 j = 2 or N = 4 qubits

We assume that the optimal initial N = 4 qubits states are all 1-AC, which our numerics
confirms, regardless of the final time t∗ and the depolarisation rates. In [66], it was shown
that any 1-AC 4-qubit state can be brought by rotation to the form

|µ⟩ = N
(
|D(0)

4 ⟩+ µ|D(2)
4 ⟩+ |D(4)

4 ⟩
)

(5.42)

with µ ∈ C and N a normalisation constant. We can always find a critical state of the
form (5.42). Indeed, by cancelling the derivative of the purity at time t∗ for the initial
state (5.42) and solve for the real and imaginary parts of µ, we find a critical value µ∗

with Re (µ∗) = 0 and

Im (µ∗) =

√
7(e8(4γ⊥z−3γz)t

∗
−e8γzt∗)

4e4(7γ⊥z+2γz)t∗−7e24γ⊥zt
∗
+3e8γzt∗

+ 2. (5.43)

Let us make some observations on this result. First, when γ⊥z = γz, (5.43) reduces to
µ∗ = i

√
2 and the purity AC measure then gives A2 = 1, so that we recover the result of

the previous section that, for isotropic depolarisation, the optimal state for N = 4 is at
any time the 2-AC state. Next, the critical value (5.43) exists only for times for which
the argument in the square root is non negative, i.e. for t∗ > t∗µ∗ with t∗µ∗ a time that
depends only on the rates.

We show on the left panel of Figure 5.7 the evolution of the purity for the optimal
state |µ∗⟩ for different values of γ⊥z/γz with γz > γ⊥z. The vertical lines, drawn at
t∗ = t∗µ∗ , indicate the time at which the initial optimal state changes from the GHZ state
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Figure 5.8: Measure of anticoherence to order 2 of optimal states minimising the purity
as a function of the final time t∗ for N = 4 and different values of the depolarisation
rates. Symbols correspond to data obtained by numerical optimisation and solid curves
show the analytical predictions based on (5.42) and (5.43).

to |µ∗⟩. Finally, we note that µ∗ → i
√
2 when t → ∞, meaning that the asymptotically

optimal state always converges to the pure 2-AC state given in (5.26). The same type of
behaviour can be seen on the right panel of Figure 5.7, where we let γz/γ⊥z vary with
γz < γ⊥z. Here, the optimal state changes from the balanced Dicke state to |µ∗⟩. As all
non-zero state multipoles of the balanced Dicke state have M = 0, the purity decay is
insensitive to the value of the rate γz.

Finally, in Figure 5.8, we compare the rotationally invariant measure of 2-AC of the
numerically obtained optimal states and the |µ∗⟩ states as a function of t∗. As can be
seen, both give the same results. At short times, A2 is constant and equal to 3/4. The
corresponding state is either the GHZ state when γz < γ⊥z, or the balanced Dicke state
when γz > γ⊥z. At longer times, A2 increases monotonically with t∗ and tends to 1 as
t∗ → ∞. All this shows that the optimization results of the purity for arbitrary times are
already complex for a small number of qubits.

5.4 Dynamical quantum metrology
In the study of open quantum systems, a key objective is the accurate measurement of
dissipative rates characterising the interaction of the system with its environment. This is
particularly relevant in quantum thermometry, where one aims to infer the temperature
T of a thermal bath coupled to a quantum probe. A standard strategy involves allowing
the probe to thermalise with the bath, such that its steady state becomes a Gibbs state
in the eigenbasis {|ϵk⟩} of the system Hamiltonian [305]

ρ =
∑
k

e−ϵk/kBT

Z |ϵk⟩ ⟨ϵk|

where ϵk is the energy of the eigenstate |ϵk⟩, Z =
∑

k exp(−ϵk/kBT ) is the partition
function and kB is the Boltzmann constant. Temperature estimation is then performed
through measurements on the thermalised state.
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However, this equilibrium-based approach requires waiting for the system to fully ther-
malise, which may be experimentally challenging. An alternative is offered by dissipative
quantum metrology, which focuses on extracting information about dissipative parame-
ters, such as decay rates or temperature, from the transient (non-equilibrium) dynamics
of a quantum probe. A notable example is dynamical quantum thermometry, where
temperature is estimated before thermal equilibrium is reached [306]. In this context,
we exploit analytical results on depolarising dynamics to identify states that optimally
estimate depolarisation rates, with applications to magnetic noise characterisation and
temperature sensing.

5.4.1 Relation between the fidelity and the purity

For parameter estimation, we introduce a dimensionless anisotropy parameter κ, such
that

γ ≡ γz =
γ⊥z
κ

assuming κ is known and fixed. The depolarisation dynamics is therefore fully charac-
terised by γ, which we aim to estimate.

As explained in Chapter 4, the optimal pure initial state ρ0 = |ψ0⟩ ⟨ψ0| is the one that
maximally distinguishes the evolved state from the initial one. This distinguishability
can be quantified using the fidelity

F (ρ0, ργ (t)) = Tr (ρ0ργ (t))

where ργ (t) is the time-evolved state under depolarising dynamics. In the MPB, the
evolved density matrix reads (see (5.9))

ργ (t) =
N∑
L=0

L∑
M=−L

ρLM (0) e−γt[M
2+κ(L(L+1)−M2)]TLM ,

which yields the fidelity

F (ρ0, ργ (t)) =
N∑
L=0

L∑
M=−L

|ρLM (0)|2 e−γt[M2+κ(L(L+1)−M2)]. (5.44)

Notably, this expression has the same structure as the purity under depolarisation (5.15)
but with the depolarisation rates rescaled by a factor of 1/2. Hence, the states that
minimise fidelity are precisely those that minimise purity. For infinitesimal depolarisation,
i.e. for small values of γt, the QFI associated with the parameter γ is given by (see (4.20))

FQ (γ) = −2
N∑
L=0

L∑
M=−L

|ρLM (0)|2
[
M2 + κ

(
L (L+ 1)−M2

)]2
t2.

Therefore, the initial states that maximise the QFI are those maximising the factor

|ρLM (0)|2
[
M2 + κ

(
L (L+ 1)−M2

)]2
.

Since the factor M2+κ (L (L+ 1)−M2) is always positive, this maximisation is directly
related to (5.31), that is the rate of change of purity, and the results of Subsection 5.3.2.
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5.4.2 Optimal states for quantum metrology

For isotropic depolarisation, we know that the pure states minimising the fidelity (5.44)
are HOAP states. The rate of change of (5.44) is directly related to the purity 1-AC
measure and, interestingly, this derivative scales as N2 only if the initial state is entan-
gled. This means that Heisenberg-limited precision in the measurement of the isotropic
depolarisation rate is achievable only through entangled initial states.

In Appendix 5.A, we present several microscopic models that lead to depolarising
dynamics in spin systems. In particular, we show that isotropic depolarisation emerges
naturally from interaction with an isotropic noisy magnetic field. This has practical rel-
evance in settings such as the calibration of MRI systems or the design of magnetically
shielded environments, where weak magnetic fluctuations must be characterised. Impor-
tantly, as discussed in Chapter 4, HOAP states are also optimal for estimating coherent
magnetic field intensities with unknown directions. This dual role highlights the versatil-
ity of HOAP states as they are optimal for sensing both coherent and incoherent magnetic
field intensities, making them powerful resources in quantum sensing and metrology.

In the case of anisotropic depolarisation, we saw that the rate of change of the purity
is maximal for GHZ and balanced Dicke state for γz > γ⊥z and γ⊥z > γz respectively.
From (5.39) and (5.40), we see that the first derivative of the fidelity (5.44) for these
two optimal states scales as N2, again indicating that Heisenberg scaling is achievable.
For longer times, however, the optimal state depends on system size. For instance, for
N = 4 qubits, we identified the 2-AC state (5.26) as the one that maintains minimal purity
throughout its evolution, and is thus optimal for late time estimation of the depolarisation
rate.

In Appendix 5.A, we show that the dynamics of a spin system interacting with an
electromagnetic thermal bath at arbitrary temperature T can also be effectively described
by anisotropic depolarisation. The interaction with the bath leads to spontaneous and
stimulated emission and absorption processes resulting in the following master equation
for the spin density matrix ρ

dρ

dt
=γ0 (n̄+ 1) [2J−ρJ+ − (J+J−ρ+ ρJ+J−)]

+ γ0n̄ [2J+ρJ− − (J−J+ρ+ ρJ−J+)] . (5.45)

where γ0 = 4ω3
0|d|2/3c3 is the spontaneous emission rate (with d is the electric dipole

of the spin), n̄ = (eω0/kBT − 1)−1 is the mean number of thermal photons at the atomic
transition frequency ω0. By applying a strong driving field described by the Hamiltonian
H = ωJx with ω ≫ γ0 (n̄+ 1), we show that the master equation (5.45) can be expressed
in the rotating frame with respect to the strong driving term ωJx as

dρ

dt
=
γ0 (2n̄+ 1)

2
([Jx, [Jx, ρ]] + [Jy, [Jy, ρ]]) + γ0 (2n̄+ 1) [Jz, [Jz, ρ]] . (5.46)

which is of the form of anisotropic depolarisation. From this, we identify the depolarisa-
tion rates as

γ ≡ γz = γ0 (2n̄+ 1) = 2γ⊥z.

Since γ is directly related to the thermal occupation number n̄, which in turn depends on
the temperature T , the measurement of γ provides a method for inferring the temperature
of the thermal bath, thus enabling dynamical quantum thermometry.
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Conclusion

In this chapter, we presented a general study of the depolarisation dynamics of an ar-
bitrary spin, equivalent to a multiqubit system in a symmetric state, using tools from
quantum information theory. A simple analytical solution to the general master equa-
tion (5.1) was obtained in the multipole operator basis and exploited to find the states
featuring the most rapid decoherence, both for isotropic and anisotropic depolarisation.

In the case of isotropic depolarisation, we proved that pure or mixed state entan-
glement between the constituent qubits is a necessary condition for superdecoherence to
occur, in contrast to the closely related phenomenon of superradiance which can occur
without any entanglement [298]. We found the relations (5.23) and (5.25) between the
initial decoherence rate of pure states and their purity AC measures of order 1 and 2.
This allowed us to identify the AC states as the spin states which exhibit the highest ini-
tial decoherence rates and lead to the states with the lowest purity at any time, starting
from a pure state. The entanglement of the different families of states listed in Table 5.1
and its evolution over time was studied numerically. More precisely, the entanglement
survival time, that we lower- and upper-bounded using the PPT entanglement criterion
and a sufficient separability criterion based on the P function, was shown to scale as 1/N
with N the number of qubits, consistently with the bound (5.27). Although other fami-
lies of states show the same scaling, we found the entanglement of AC states to be more
fragile to depolarisation than for GHZ, W or even Dicke states. The tES ∼ 1/N scaling
we found is also different from that of individual, rather than collective, decoherence. We
attribute this difference to superdecoherence that is absent for individual depolarisation.
A detailed analysis for a few qubits showed that isotropic depolarisation can lead to the
dynamical creation of PPT entanglement across balanced bipartitions (see e.g. Figure
5.6). Then, we studied when a state enters the ball of SAS states of radius (5.29). The
states belonging to this ball are too mixed for any unitary operation to create entan-
glement. It was found that pure states with maximum order of anticoherence enter this
ball after a time roughly independent of the number of qubits, in sharp contrast to other
states for which this time increases linearly with N . This again points to the extreme
fragility of entanglement in AC states against depolarisation.

In the case of anisotropic depolarisation, we first related the initial purity loss rate
to the variances of the spin components in a pure state (5.34). We then showed for any
spin that the maximum purity loss rate at short times is achieved by the GHZ states for
γz > γ⊥z and by the balanced Dicke state for γz < γ⊥z. As for the dynamics at longer
times, we have completely identified the pure states of N = 2 and N = 4 qubits that
display the lowest purity after an arbitrary fixed time. The extremal states for N = 4
were found to exhibit a transition from the GHZ/balanced Dicke state to a parametric
AC state given by (5.42).

Finally, we explored the use of depolarisation in dynamical quantum metrology. We
showed that the fidelity between an initial pure state ρ = |ψ⟩ ⟨ψ| and its depolarised
version ρ (t) is directly related to the purity of ρ (t). This allowed us to identify the states
that lose their purity the fastest under isotropic and anisotropic depolarisation as the
optimal state for dynamical quantum metrology tasks, such as quantum thermometry.

Regarding the perspectives of this work, the entanglement dynamics for anisotropic
depolarisation deserves further investigation. In particular, the question remains whether
entanglement between the constituent qubits is a necessary condition for superdecoher-
ence to occur in this case. Another perspective this work suggests is to analyse the
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potential of AC, GHZ and Dicke balanced spin states, which we have shown to be the
most sensitive to isotropic or anisotropic depolarisation, for quantum parameter estima-
tion and quantum sensing strategies based on decoherence, in line with the works [307,
308]. In particular, it would be interesting to find the optimal measurement time for the
estimation of the depolarisation rate based on the results of Section 5.4 and compare our
results with those present in other works [305].



148 Chapter 5. Extreme depolarisation of spin states

5.A Models of depolarisation
In this Appendix, we present models that provide a physical basis for the master equation
(5.3).

5.A.1 Noisy magnetic field

A first model, inspired from [309], is that of a spin system interacting with a fluctuating
magnetic field B(t). The interaction Hamiltonian is

Hint = −µJ ·B
where J = (Jx, Jy, Jz) and m = µJ is the spin magnetic moment. We choose a coarse-
graining time ∆t for the evolution and make the assumption that this time is much larger
than the correlation time τc of the fluctuations of the magnetic field. Then, assuming
white noise and isotropic magnetic field fluctuations, the two-time correlation functions
of the components of B(t) are given by

Bα(t1)Bβ(t2) =
B2

3
τcδ (t1 − t2) δαβ

where α, β = (x, y, z) and an overbar denotes the ensemble average over realizations of
the stochastic process. Finally, if we make the Born approximation that no correlations
appear between the system and the magnetic field, by taking the limit ∆t → dt, it can
be shown that the evolution reduces to

dρ

dt
=

∑
α=x,y,z

γ
[
Jα, [Jα, ρ]

]
where γ = τcω

2
0/2 and ω0 = µB/(

√
3ℏ) is the effective Larmor frequency. The limit

∆t → dt is valid as long as ∆t ≪ τs where τs = 1/γ is the typical evolution time of the
system, hence τc ≪ ∆t≪ τs.

5.A.2 Thermal bath

5.A.2.1 Infinite temperature

As a second model, we consider a collection of two-level atoms with electric dipole moment
d, interacting collectively with the electromagnetic field in thermal equilibrium. This
system is governed by the standard superradiant master equation [310]

dρ

dt
= γ0 (n̄+ 1) [2J−ρJ+ − (J+J−ρ+ ρJ+J−)]

+γ0n̄ [2J+ρJ− − (J−J+ρ+ ρJ−J+)] (5.47)

where γ0 = 4ω3
0|d|2/3ℏc3 is the spontaneous emission rate and n̄ = (eℏω0/kBT −1)−1 is the

average number of thermal photons at the atomic transition frequency ω0. The first term
accounts for both spontaneous and thermally induced emission, while the second term
describes absorption due to the thermal bath. In the high-temperature limit kBT ≫ ℏω0,
we have n ≫ 1 and n + 1 ≈ n, so that emission and absorption processes occur at
approximately equal rates. Under this approximation, the master equation simplifies to

dρ

dt
= −γ⊥z ([Jx, [Jx, ρ]] + [Jy, [Jy, ρ]])

where γ⊥z = 2γ0n and thus provides a model for anisotropic depolarisation.
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5.A.2.2 Finite temperature

Inspired by the results in [311], we now generalize the above result to describe a spin-
j system coupled to a thermal electromagnetic bath at an arbitrary temperature T ,
under the influence of a strong coherent drive. The system is immersed in a thermal
bath at temperature T , and we apply a strong driving Hamiltonian H = ωJx, where
ω ≫ γ0(n̄+ 1). The full dynamics of the density matrix is then governed by

dρ

dt
= −i [H, ρ] + γ0 (n̄+ 1) [2J−ρJ+ − (J+J−ρ+ ρJ+J−)] (5.48)

+γ0n̄ [2J+ρJ− − (J−J+ρ+ ρJ−J+)] .

Moving to the rotating frame with respect to the strong driving term ωJx, the ladder
operators evolve as

J̃± = eiωJxtJ±e
−iωJxt = Jx ± i (Jy cos (ωt) + Jz sin (ωt))

We now compute the transformed dissipator. Focusing on the first term, we get

J̃−ρJ̃+ = JxρJx + JyρJy cos
2 (ωt) + JzρJz sin

2 (ωt)

−iJxρJy cos (ωt)− iJxρJz sin (ωt) + iJyρJz cos (ωt) sin (ωt)

+iJyρJx cos (ωt) + +iJzρJx cos (ωt) + iJzρJy cos (ωt) sin (ωt) .

Because ω ≫ γ0(n̄ + 1), we take the time-average over the fast oscillations, yielding the
effective approximation

J̃−ρJ̃+ ≃ JxρJx +
1

2
(JyρJy + JzρJz)

Applying the same procedure to the remaining terms, we obtain the master equation

dρ

dt
= γ0 (2n̄+ 1) [Jx, [Jx, ρ]] +

γ0 (2n̄+ 1)

2
([Jy, [Jy, ρ]] + [Jz, [Jz, ρ]]) .

To recover the anisotropic depolarisation form, we perform a final rotation of the reference
frame by an angle π/2 about the y-axis. The resulting master equation reads

dρ

dt
=
γ0 (2n̄+ 1)

2
([Jx, [Jx, ρ]] + [Jy, [Jy, ρ]]) + γ0 (2n̄+ 1) [Jz, [Jz, ρ]] . (5.49)

We thus obtain an anisotropic depolarisation model with rates

γz = γ0 (2n̄+ 1) = 2γ⊥z.

In Figure 5.9, we plot the average fidelity between the evolution predicted by the full
master equation (5.48) and the effective depolarisation model (5.49) over 1000 random
initial states. As expected, the agreement between the two improves with increasing ω,
validating the approximation in the strong driving regime.
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Figure 5.9: Average infidelity 1 − F (ρ1, ρ
′
2) where ρ1 (t) and ρ2 (t) =

ei
π
2
JyeiJxγ0tρ′2e

−iJxγ0te−i
π
2
Jy evolve according to the master equations (5.48) and (5.49),

respectively. The fidelity is computed over 1000 random initial pure states of N = 4
qubits, evolved from γ0t = 0 to γ0t = 1 with n̄ = 2, for different values of the driving
strength ω. The colored areas represent the standard deviation based on the 1000 random
state evolutions.

5.A.3 Continuous measurement

Finally, a third model is based on a weak continuous measurement of the spin components.
When an observable A of a quantum system is continuously measured with an apparatus
and that the measurement is not read out, the system evolves according to [312]

dρ

dt
= −γ [A, [A, ρ]] (5.50)

with γ > 0 a constant proportional to the strength of the measurement. We immediately
recognize the form of the dissipator (5.2). Thus, in order to obtain the full master
equation (5.3), the three collective spin observables Jx, Jy and Jz must be simultaneously
subjected to a continuous measurement. Because these observables are not compatible,
cross terms of the form [Jα, [Jβ, ρ]] with α ̸= β appear in addition to the simple sum
of terms of the form (5.50). However, these extra terms can be neglected within the
Born-Markov approximation [313].

5.B Master equation in the multipolar basis

In this appendix, we rewrite the master equation (5.1) in the multipolar basis which
helps us to find analytical solutions to it as explained in the main text. To shorten the
expressions, we use the short-hand notation

∑
L,M for

∑N
L=0

∑L
M=−L.

As the Lindblad operators Jα (α = x, y, z) are Hermitian, the dissipator

Dα (ρ) = γα (2JαρJα − JαJαρ− ρJαJα)

can be rewritten as
Dα (ρ) = −γα [Jα, [Jα, ρ]] .
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Let us first consider Dz(ρ). Using [69]

[Jz, TLM ] =
√
L (L+ 1)CLM

LM ;10TLM ,

we get
Dz (ρ) = −γz

∑
L,M

ρLM [L (L+ 1)]
(
CLM
LM ;10

)2
TLM

From CLM
LM ;10 =M/

√
L (L+ 1), we conclude that the state multipoles ρLM evolve under

depolarisation along z according to

ρ̇LM (t) |Dz ≡ Tr
[
T †
LMDz (ρ)

]
= −γzM2ρLM (t) (5.51)

Next, we consider Dx (ρ). By writing Jx = (J+ + J−) /2 and using the commutator [69]

[J±, TLM ] = ∓
√

2L (L+ 1)CLM±1
LM ;1±1TLM±1

we get

[Jx, ρ] =
1

2

∑
L,M

ρLM ([J−, TLM ] + [J+, TLM ])

=
1

2

∑
L,M

√
2L(L+ 1)ρLM ×(

CLM−1
LM ;1−1TLM−1 − CLM+1

LM ;11TLM+1

)
and therefore

[Jx, [Jx, ρ]] =
1

2

∑
L,M

L(L+ 1)ρLM

[
CLM−1
LM ;1−1

(
CLM−2
LM−1;1−1TLM−2 − CLM

LM−1;11TLM
)

− CLM+1
LM ;11

(
CLM
LM+1;1−1TLM − CLM+2

LM+1;11TLM+2

) ]
.

Using the explicit formula for Clebsch-Gordan coefficients [69]

Ca+b−1α+β
aα;bβ = 2 (bα− aβ)

×
(
(2a+ 2b− 1) (2a− 1)! (2b− 1)! (a+ b+ α+ β − 1)! (a+ b− α− β − 1)!

(a+ α)! (a− α)! (b+ β)! (b− β)! (2a+ 2b)!

)1/2

we eventually get

ρ̇LM(t)|Dx = −γx
4

[
2
(
L2 + L−M2

)
ρLM + d+LM ρLM+2 + d−LM ρLM−2

]
(5.52)

where
d±LM =

√
(L∓M)(L±M + 1)(L∓M − 1)(L±M + 2).

A similar calculation for Jy = (J+ − J−)/(2i) yields

ρ̇LM(t)|Dy = −γy
4

[
2
(
L2 + L−M2

)
ρLM − d+LM ρLM+2 − d−LM ρLM−2

]
. (5.53)

Eventually, by adding all three contributions (5.51), (5.52) and (5.53), we get (5.4).
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5.C Preservation of separability under isotropic depo-
larisation

In this Appendix, we show that the dynamics generated by the master equation (5.1) for
γx = γy = γz preserves the separability of states, i.e. that a separable state can only
evolve into a separable state under isotropic depolarisation. As the Hamiltonian part
only induces a rotation in the state space, it clearly preserves the separability of a state.
For notational convenience, we set ℏ = 1 in the following. We start by rewriting the
dissipative part of the master equation as∑

α=x,y,z

Dα (ρ) = D+z (ρ) +D−z (ρ) (5.54)

where
D±z (ρ) = γ

(
J±ρJ∓ − 1

2
{J∓J±, ρ}+ JzρJz −

1

2

{
J2
z , ρ
})

.

We then follow the method of Gisin [314] to show that certain quantum diffusion equations
for spin relaxation preserve spin-coherent states. This method is based on the unravelling
of the master equation into stochastic quantum trajectories and will allow us to prove
that both dissipators D±z are separability preserving.

First, consider as in [314] the deterministic equation for the relaxation of a spin

d |ψ⟩
dt

= (⟨Jz⟩ − Jz) |ψ⟩ (5.55)

If the initial state |ψ⟩ is a coherent state, then at any later time the state will also be
coherent (and therefore separable). This is because a state is coherent iff

|⟨J⟩|2 ≡
∑
i=x,y,z

⟨Ji⟩2 = j2,

and because |⟨J⟩|2 is a quantity conserved under spin relaxation for a coherent initial
state. Indeed, it holds that

d

dt
|⟨J⟩|2 (t) = 2

∑
i=x,y,z

⟨Ji⟩ (2 ⟨Ji⟩ ⟨Jz⟩ − ⟨{Ji, Jz}⟩) .

For a coherent state initially pointing in the direction of the unit vector n, we have
⟨Jk⟩ = jnk and ⟨{Jk, Jℓ}⟩ = j (2j + 1)nknℓ + jδkℓ, from which follows that

d

dt
|⟨J⟩|2 (0) = 2j2

∑
i=x,y,z

nk (nknz − δkz) = 0.

As the direction z in (5.55) is arbitrary, the result is equally valid for Jx and Jy. Moreover,
a similar calculation shows that it is also valid for jump operators J±. The next step
is to write a stochastic differential equation (SDE) for the master equation (5.54). The
Stratonovitch SDE associated with D±z reads [315]

d |ψ⟩ =
√
γ [(J± − ⟨J±⟩) + (Jz − ⟨Jz⟩)] |ψ⟩ dξ

+γ

[
⟨Jz⟩ (Jz − ⟨Jz⟩)−

1

2
J2
z +

1

2

〈
J2
z

〉]
|ψ⟩ dt

+γ

[
⟨J∓⟩ (J± − ⟨J±⟩)−

1

2
J∓J± +

1

2
⟨J∓J±⟩

]
|ψ⟩ dt (5.56)
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where the first line is the diffusion term and the second and third lines are the drift terms.
Then, due to the relation J∓J± − J2

z = j (j + 1)∓ Jz, we can write

⟨J−⟩ J+ − ⟨J−⟩ ⟨J+⟩ = ⟨J−⟩ (J+ − ⟨J+⟩) ⟨J−J+⟩+
〈
J2
z

〉
− J−J+ − J2

z

= Jz − ⟨Jz⟩
so that (5.56) can now be written as a sum of terms of the form (5.55) for the jump
operators Jz and J+. Both preserve spin-coherent states, which eventually shows that a
coherent state remains coherent when subjected to isotropic depolarisation.

5.D Decoherence rates for pure states

In this Appendix, we use the short-hand notation
∑

L,M for
∑N

L=0

∑L
M=−L. Our aim is to

evaluate, for pure states, the decoherence rates of isotropic and anisotropic depolarisation
appearing in (5.17) and (5.31). Up to a constant factor, these decoherence rates are given
by ∑

L,M

L (L+ 1) |ρLM |2

∑
L,M

M2 |ρLM |2

∑
L,M

[
L (L+ 1)−M2

]
|ρLM |2 .

If the state is pure, we have

Tr
(
ρ2
)
= 1 and Tr

(
ρ2N−1

)
= Tr

(
ρ21
)

(5.57)

and (5.19) can be simplified into∑
L,M

L (L+ 1) |ρLM |2 = N (N + 1)−N2Tr
(
ρ21
)
. (5.58)

Now, it holds that for any state ρ (pure or mixed), Tr (ρ21) can be expressed as a function
of the sum of the variances ∆J2

α = ⟨J2
α⟩− ⟨Jα⟩ of the spin components Jα (α = x, y, z) in

state ρ, a quantity also known as the total variance [316]

V ≡
∑

α=x,y,z

∆J2
α = j (j + 1)− |⟨J⟩|2 (5.59)

where j = N/2. The total variance quantifies the overall level of quantum fluctuations
of the spin. It is minimal for spin coherent states and maximal for 1-AC states. In terms
of total variance, we have [215]

Tr
(
ρ21
)
= 1− V− j

2j2
=
N (N + 1)− 2V

N2
.

This relationship allows us to rewrite the first decoherence rate (5.58) as∑
L,M

L (L+ 1) |ρLM |2 = 2
(
∆J2

x +∆J2
y +∆J2

z

)
= N

(
N

2
+ 1

)
− 2 |⟨J⟩|2 . (5.60)
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We then show that the second decoherence rate is given, for pure states, by∑
L,M

M2 |ρLM |2 = 2∆J2
z . (5.61)

The left-hand side of this equation can be obtained by combining the commutator [Jz, TLM ] =
MTLM with the expansion of the density operator in the MPB and the orthonormality
relation Tr

[
T †
LMTL′M ′

]
= δLL′δMM ′ of the MPB as

Tr ([Jz, ρ] [ρ, Jz]) =
∑
L,M

M2 |ρLM |2 . (5.62)

For a pure state ρ = |ψ⟩ ⟨ψ|, the left-hand side of (5.62) is equal to 2∆J2
z . Indeed, by

expanding the commutators, we get

Tr ([Jz, ρ] [ρ, Jz]) = 2
[
Tr
(
J2
z ρ

2
)
− Tr (JzρJzρ)

]
.

The first term is given by

Tr
(
J2
z ρ

2
)
= Tr

(
⟨ψ| J2

z |ψ⟩
)
=
〈
J2
z

〉
while the second term is given by

Tr (JzρJzρ) = Tr (Jz |ψ⟩ ⟨ψ| Jz |ψ⟩ ⟨ψ|)
= ⟨ψ| Jz |ψ⟩ ⟨ψ| Jz |ψ⟩ = ⟨Jz⟩2.

Eventually, for pure states, it holds that Tr ([Jz, ρ] [ρ, Jz]) = 2
(
⟨J2

z ⟩ − ⟨Jz⟩2
)
= 2∆J2

z .
Last, by substracting (5.61) from (5.60), we readily get the third decoherence rate∑

L,M

[
L (L+ 1)−M2

]
|ρLM |2 = 2

(
∆J2

x +∆J2
y

)
.



General conclusion and perspectives

This thesis has explored several fundamental aspects of spin and multiqubit quantum
systems through the lens of entanglement, non-classicality, and anticoherence. The uni-
fying theme of our work has been the interplay between these three manifestations of
quantumness, examined from both theoretical and practical perspectives.

In the first part, from Chapter 2 to 3, we developed a rigorous framework for charac-
terising the absolute non-classicality of spin-j states via Stratonovich-Weyl phase-space
representations. We fully characterised the set of symmetric multiqubit states with
absolutely positive linear phase-space representations via polytopes in the simplex of
eigenvalues of the state ρ. Applied to the Sudarshan-Glauber P function, this extends
our knowledge of symmetric absolutely separable states (SAS). Building on these re-
sults, we considered the phase-space representations of spin systems beyond the linear
Stratonovitch-Weyl representations, to find larger sets of SAS states, for any number of
qubits.

Leveraging again phase-space representations to characterise multiqubit entangle-
ment, we established a quantitative link between the geometric measure of entanglement
(GME) and Wehrl moments of the Husimi function. Using artificial neural networks, we
showed that the GME of a state can be, in some cases, reliably estimated from partial
information on the state, opening alternative ways to practical and scalable entanglement
estimation protocols.

In Chapter 4, we focused on anticoherent (AC) states, a class of highly non-classical
and maximally entangled symmetric multiqubit states. We illustrated the relation be-
tween the anticoherence of pure states and the delocalisation of their phase-space repre-
sentations, highlighted their known utility in quantum metrology (rotosensing and magne-
tometry) and demonstrated their potential for quantum error correction, as AC subspaces
automatically fulfill the Knill-Laflamme condition. Furthermore, we established a precise
relationship between the Bures measure of anticoherence and entanglement negativity for
pure states, showing that the two concepts are in fact intimately connected. Then, by dis-
entangling the classical and quantum origins of anticoherence, we extended the measures
of anticoherence to mixed states. Finally, we proposed an intuitive and experimentally
implementable protocol for generating AC states across a variety of cold atoms platforms,
via rotation and squeezing pulse-based controls.

Lastly, in Chapter 5, we studied the dynamics of spin systems under depolarisation,
revealing the conditions for superdecoherence and its connection to entanglement. Our
results show that AC states, while highly useful in metrology, are particularly fragile
under isotropic depolarisation. This fragility, detrimental for rotosensing and magnetom-
etry, could nevertheless be exploited in dissipative quantum metrology, for instance in
noisy magnetometry. Similarly, GHZ states are sensitive to anisotropic depolarisation, a
feature that can be harnessed in quantum thermometry to rapidly estimate environmental
temperatures.
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Overall, this thesis has contributed to uncover relations between phase-space non-
classicality, entanglement, and anticoherence in spin and symmetric multiqubit systems
with both theoretical insights and experimental perspectives. The results open several
research avenues, among which I find the following particularly promising.

Advanced protocols for generating AC states. A first direction concerns the
design of more sophisticated protocols for the deterministic generation of AC states,
possibly involving continuous control of rotations and squeezing. While the pulse-based
protocol we proposed is already efficient and feasible in current experimental platforms,
its intuitive structure could be the basis for finding improved protocols that could reduce
generation time, thereby mitigating decoherence, and enhance robustness against control
errors. Developing such protocols would strengthen the experimental viability of AC
states as resources for quantum metrology and quantum computing (via quantum error-
correction).

Nonlinear phase-space representations. Another direction lies in extending non-
linear phase-space representations of spin systems, potentially with the aid of new math-
ematical tools. Such generalisations would not only refine the characterisation of SAS
states but could also shed new light on broader properties of spin systems. A central
open question is whether the number of terms required in the multipolar expansion of
phase-space representations (for L > 2j + 1) to fully characterise the SAS set is finite
or infinite. Answering this would already advance our understanding of separability and
phase-space structure in finite-dimensional quantum systems.

Quantum metrology from mixed anticoherence measures. A third avenue is to
investigate the connection between our newly defined measure of anticoherence for mixed
states and quantum metrology. Building on the relation established between the QFI
and anticoherence measures of pure states, and noting that our anticoherence measure
for mixed states are maximised precisely for optimal mixed quantum rotosensors [213], it
would be highly valuable to establish a direct link between our AC measure and the QFI
of rotosensing protocols for mixed states.
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