The Maximal Digit Property of numeration systems

Savinien Kreczman

Joint work with Zuzana Masáková and Edita Pelantová

September 9, 2025

Sponsors

Wallonie - Bruxelles International.be

1 A particular class of Rényi numeration systems

2 Moving to alternate bases

Rényi numeration system

Given a base $\beta > 1$, represent numbers using a greedy algorithm.

If $x \in [0,1]$, define $r_0 = x$ then $d_{i-1} = \lfloor \beta r_i \rfloor$ and $r_i = \beta r_i - d_{i-1}$. Obtain a word $d_{-1}d_{-2}\cdots$ such that $\sum_{i=1}^{\infty} \frac{d_{-i}}{\beta^i} = x$. This word is called $d_{\beta}(x)$. It is on the alphabet $\{0,\ldots,\lfloor \beta \rfloor\}$.

Then, define the representation $\langle x \rangle_{\beta}$ as follows. If $x \in [0, 1)$, $\langle x \rangle_{\beta} = {}^{\omega} 0 \cdot d_{\beta}(x)$. If $x \geq 1$, let N be the least integer such that $\frac{x}{\beta^N} < 1$. Then, $\langle x \rangle_{\beta} = \sigma^N({}^{\omega} 0 \cdot d_B(\frac{x}{\beta^N}))$.

Example

If β is the golden ratio, we have, for instance, $\langle 1/2 \rangle_{\beta} = \cdot (010)^{\omega}$ and $\langle 2 \rangle_{\beta} = 10 \cdot 01$.

If we let γ be the root of x^3-3x^2-2x-1 , then $\langle \gamma-3 \rangle_{\gamma}=\cdot 210^{\omega}$.

Note that while $d_{\beta}(1)$ is often nontrivial, $\langle 1 \rangle_{\beta}$ is always 1.

Normalization

The *value* of the word $a_N a_{N-1} \cdots a_0 \cdot a_{-1} \cdots$ is

$$\sum_{i=0}^{N} a_i \beta^i + \sum_{i=1}^{\infty} \frac{a_{-i}}{\beta^i}.$$

Several words may have the same value. Finding the particular word which is the representation of this value is called *normalization*.

In this work, we would like to normalize words using a system of rewriting rules.

Example

Let β be the golden ratio. The word 2· also has value 2. We could normalize it with the sequence 2· \rightarrow 1 · 11 \rightarrow 10 · 01.

From a numeration system to a rewriting system

A *rewriting system* is a pair (E, \rightarrow) where \rightarrow is a binary relation on a set E.

In our work, the set E is $A^{\mathbb{Z}}$, and we assume that \to rewrites a word to a word of the same length and is context-free: if $x \to y$, then there exist α, γ, s, t such that $x = \alpha s \gamma, y = \alpha t \gamma, |s| = |t|$, and furthermore $\alpha' s \gamma' \to \alpha' t \gamma'$ for all α', γ' .

Additionally, if \oplus is the operation of digitwise addition, we would like to have $x \to y \Leftrightarrow x \oplus z \to y \oplus z$ for all $z \in A^{\mathbb{Z}}$ such that all involved words are still in $A^{\mathbb{Z}}$.

We call $s \rightarrow t$ a *core rule* in this construction.

Given β a simple Parry number, we define a rewriting system R_{β} associated with β from the core rule

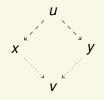
$$0t_1\cdots t_\ell \to 10^\ell$$

where $d_{\beta}(1) = t_1 \cdots t_{\ell}$.

Confluence

Let \rightarrow^* be the reflexive transitive closure of \rightarrow . Then \rightarrow is *confluent* if

$$\forall u, x, y \in E : u \rightarrow^* x, u \rightarrow^* y, \exists v : x \rightarrow^* v, y \rightarrow^* v.$$



Proposition (Frougny, 1992)

The system R_{β} is confluent over the alphabet $\{0, \ldots, c\}$ if and only if $d_{\beta}(1) = t_1 \ldots t_{\ell}$ with $t_1 = \ldots = t_{\ell-1} = c$ and $t_{\ell} \leq c$.

The numbers β that have this property are sometimes called *generalized multinacci numbers*. For these numbers, we can normalize finite words by applying rewriting rules.

Spectrum and Beta-integers

Resulting from normalization is the equality between two sets of numbers associated with β .

The spectrum of β (with respect to the alphabet A, which is implicit) is $X_{\beta} = \{\sum_{i=0}^{\ell} a_i \beta^i : i \in \mathbb{N}, \ a_i \in A \ \forall i\}$. The β -integers are the set $\mathbb{N}_{\beta} = \{x : \langle x \rangle_{\beta} \in A^* \cdot 0^{\omega}\}$ If normalization can be done without adding more digits to the right, it follows that all elements of the spectrum are β -integers. Conversely, if an element cannot be normalized without adding digits to the right, one can find an associated element in $X_{\beta} \setminus \mathbb{N}_{\beta}$.

Optimality

Optimality was first considered by Dajani, de Vries, Komornik and Loreti. Optimal bases are such that the "local" conditions imposed by the greedy algorithm generalize to a more global condition, considering multiple digits at a time.

Example

Let γ be the positive root of x^3-3x^2-2x-1 and $x=\frac{3}{\gamma^2}+\frac{3}{\gamma^3}\simeq 0.290$. Then, we have $d_\gamma(x)=\cdot 1002210^\omega$. However, the length-3 prefix of $d_{\gamma(x)}$ is not the best under-approximation of x by a word of length 3, as we have $\operatorname{val}_\gamma(\cdot 100)<\operatorname{val}_\gamma(\cdot 033)\leq x$. Thus, base γ is not optimal.

Proposition (Dajani et. al., 2011)

When considering the alphabet $\{0, ..., c\}$, a base β is optimal if and only if $d_{\beta}(1) = t_1 ... t_{\ell}$ with $t_1 = ... = t_{\ell-1} = c$ and $t_{\ell} \leq c$.

Alternate base numeration system

The aim of this work is to find a generalization of this class of numeration systems to alternate base numeration systems. These generalize Rényi numeration systems by allowing an alternation between multiple bases.

We consider a sequence $\mathcal{B}=(\beta_n)_{n\in\mathbb{Z}}$ periodic of period p. The representation map is given by a greedy algorithm. For x in [0,1], we set $r_0=x$ and for $n\geq 1$ we set $x_{-n}=\lfloor \beta_{-n}r_{n-1}\rfloor$ and $r_n=\beta_{-n}r_{n-1}-x_{-n}$. We denote the infinite word $\cdot (x_{-n})_{n\geq 1}$ by $d_{\mathcal{B}}(x)$.

Now for $x \ge 1$, let $N \ge 0$ be the unique N such that $\prod_{i=0}^{N-1} \beta_i \le x < \prod_{i=0}^N \beta_i$. Then $\langle x \rangle_{\mathcal{B}} = \sigma^N({}^\omega 0 \cdot d_{\sigma^{-N(\mathcal{B})}}(\frac{x}{\prod_{i=0}^N \beta_i}))$ for $x \ge 1$, and $\langle x \rangle_{\mathcal{B}} = d_{\mathcal{B}}(x)$ for $x \in [0,1)$. The evaluation map is given by

$$\mathsf{val}_{\mathcal{B}}(a) = \sum_{n=0}^{N} a_n \prod_{i=0}^{n-1} \beta_i + \sum_{n=1}^{+\infty} \frac{a_{-n}}{\prod_{i=1}^{n} \beta_{-i}}.$$

Maximal digit property

Definition

An alternate base \mathcal{B} of period p has the maximal digit property (MDP) if for every $k \in \mathbb{Z}_p$ the expansion $d_{\sigma^{-k}\mathcal{B}}(1)$ satisfies

$$(d_{\sigma^{-k}(\mathcal{B})}(1))_j = \lceil \beta_{k-j} \rceil - 1 \tag{1}$$

for every $j \in \mathbb{N}, \ 1 < j < \left| d_{\sigma^{-k}(\mathcal{B})}(1) \right|.$

Example

If $d_{\mathcal{B}}(1)=\cdot 3231$ and $d_{\sigma(\mathcal{B})}(1)=\cdot 2322$, then \mathcal{B} has the maximal digit property.

If $d_{\mathcal{B}}(1) = .32$ and $d_{\sigma(\mathcal{B})}(1) = .2222$, then \mathcal{B} does not have the maximal digit property.

Notice that this implies that all $d_{\sigma^{-k}(\mathcal{B})}(1)$ are finite, and that when p=1 this is the condition we have seen before.

Associated rewriting system

With an alternate base \mathcal{B} , we can associate a rewriting system $\rho_{\mathcal{B}}$. We assume that all $d_{\sigma^{-k}(\mathcal{B})}(1)$ are finite, for simplicity.

If $d_{\sigma^{-k}(\mathcal{B})}(1) = t_1^{(k)} \cdots t_\ell^{(k)}$, we allow the core rule

$$0t_1^{(k)}\cdots t_\ell^{(k)}\to 10^\ell,$$

but *only* if it is "correctly aligned", i.e. if the leftmost digit is at a position congruent to $k \mod p$.

We then build a rewriting system $\rho_{\mathcal{B}}$ from the p core rules associated with $d_{\mathcal{B}}(1), \ldots, d_{\sigma^{-p+1}(\mathcal{B})}(1)$.

Main result

Theorem

Let **B** be an alternate base of period p. Then the following statements are equivalent:

- (a) $X_{\sigma^i(\mathcal{B})} = \mathbb{N}_{\sigma^i(\mathcal{B})}$ for all integers i.
- (b) B is optimal.
- (c) B has the maximal digit property (MDP).

Theorem

Let \mathcal{B} be an alternate base of period p such that the $d_{\sigma^{-i}(\mathcal{B})}(1)$ are all finite. Then the following statements are equivalent.

- (c) The base B has the MDP.
- (d) The rewriting system $\rho_{\mathcal{B}}$ is confluent over finite words on the alphabet A.
- (e) The rewriting system $\rho_{\mathcal{B}}$ allows normalization of finite words in base \mathcal{B} .

Sketch of proof (1)

When \mathcal{B} does not have the maximal digit property, one can build counterexamples to (a)-(e) from a similar scheme.

Example

Consider a base of period 2 such that $d_{\mathcal{B}}(1) = .32$ and $d_{\sigma^{-1}(\mathcal{B})}(1) = .412$ (no MDP). The representations in the last three rows have the same value.

0	4	1	2		
		0	4	1	2
0	4	1	4	1	2
1	0	0	2	1	2
0	4	2	0	0	0

These three representations provide a counterexample for confluence and normalization, and when correctly scaled the last two provide a counterexample for optimality and equality of spectrum.

Sketch of proof (2)

When \mathcal{B} has the MDP, normalization is proven by showing that all non-admissible representations can be reduced, confluence follows from normalization, and optimality and equality of spectrum are proven similarly.

Example

Consider a base of period 2 such that $d_{\mathcal{B}}(1) = .341$ and $d_{\sigma^{-1}(\mathcal{B})}(1) = .431$.

Then a non-admissible representation must contain one of the factors |34|2, |34|3, 4|32|, 4|33| or 4|34|, all of which can be rewritten by $\rho_{\mathcal{B}}$.

Conclusion

The assumption that the $d_{\sigma^{-i}(\mathcal{B})}(1)$ are all finite can be dropped in the second theorem.

Take-home message: there is a family of numeration systems with additional nice properties (normalization, confluence, optimality, equality of spectrum) that generalizes to the alternate base case.

Thank you for your attention!