Generation of anticoherent states
from a pulse-based protocol
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Motivations

Anticoherent states are maximally entangled symmetric mul-
tiqubit states, optimal for rotation and magnetic field sensing’
Despite growing interest? a general experimental protocol for
their generation has remained elusive, until now.

Anticoherent states

An anticoherent state to order ¢ is an isotropic state for which
the moments of J - n up to order ¢ are independent of the
direction n, i.e.

Tr[p(J -n)*] # f(n) fork=1,2,...,¢

We can quantify the degree of anticoher-
ence of any state |¢) through the measure
of anticoherence3
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where the \; are the Schmidt coefficients of |¢)). This measure
can serve as a figure of merit for numerical optimisation.

Bures _

Any symmetric multiqubit state can be expanded in the tensor
multipolar basis

N
=2 > punin
L=0M=—L
In this manner, a state is anticoherent of order ¢ iff
prm =0for L=1,2,...,tand M =—-L,...,L

Hence, in order to generate anticoherent states, the goal is to
completely depopulate the lower state multipoles pras.

Pulse-based protocol

Our protocol consists of a sequence of nc cycles in which we
apply first a rotation followed by a squeezing*

Iy (0) = e °  Tlo(n) = e /27
such that the final state is

[Yne) = <H sz(ﬁi)ﬂy(ai)> |0)

where §; = 0 and the initial state is [ig) =
where |0) is the qubit ground state.
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(Initial state multipoles N = 4)

Pulses dynamics
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From a physical point of view, our protocol exploits the fact
that the rotations (resp. squeezings) only couple multipoles
with the same L (resp. M). Moreover, during a squeezing
along z, the transitions for M = 0 are forbidden.

For different number of qubits N and anticoherence order t,
we use the Nelder-Mead algorithm to find the 2n¢ parameters
0; and n; that maximises AP,

Numerical results

For all N < 48, the optimised parameters are able to generate
the highest order anticoherent state allowed.

(State multipoles evolution for N = 6 and ¢ = 3)
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For each anticoherence order (t = 2, 3 and 4), there is a thresh-
old number of cycles above which the state is perfectly antico-
herent (up to numerical errors).

For N = 48, we obtain a 9-anticoherent state, the maximal
order for this N, verifying AS"* > 0.99 with nc = 14.

High-dimensional systems

We observe that, for even N, in order to generate an antico-
herent state of order 2, we can take n; = Oy = — 5y and
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03 = 7 and only optimise over 72 and 7s.
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It allows us to obtain the scaling laws 12 = VAR and 73 = 5%

that we can exploit to generate anticoherent states with N =
10000 verifying 1 — AF™® < 107,

Perspectives

« Test the protocol in experiments with spin or Bose-Einstein
condensate systems.

» Use anticoherent states for improved gyroscopy or magne-
tometry applications in the lab.
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