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“You think you are a small entity,
but within you the entire universe is contained.”

— Ali ibn Abi Talib



Abstract

Natural gas remains the dominant heating fuel in buildings worldwide, accounting for
about 40% of total heating energy demand in 2022 according to the International En-
ergy Agency (IEA). Conventional gas boilers still cover most of this demand, despite their
contribution to greenhouse gas emissions. A promising alternative is the thermal com-
pressor heat pump (TCHP), a thermally driven heat pump that also uses natural gas but
in a fundamentally different way. Instead of converting the fuel directly into heat, as boil-
ers do, the TCHP uses natural gas to drive a thermal compressor (TC), which transfers
additional heat from an external source such as ambient air or water. This enables the
TCHP to deliver more heat than the fuel energy it consumes, making it a potentially more
energy-efficient replacement for conventional gas boilers.

A TCHP is a three-stage cycle that uses CO2 as a working fluid mainly in its supercrit-
ical phase. The main innovation lies in its TC technology, which replaces a conventional
electric compressor. However, the presence of multiple interacting components across the
three stages, strong nonlinearities, and the sensitivity of the TC to operating conditions
make the control of a TCHP particularly challenging. These complexities require advanced
strategies that go beyond traditional control approaches. Addressing this challenge, the fi-
nal aim of this thesis is to develop a new control strategy capable of enhancing the overall
performance of the TCHP. To this end, various simulation tools and performance analyses
are carried out to support the design and validation of the proposed control solution.

The first part of this thesis is dedicated to the TC, as a key component of a TCHP. To
build a detailed understanding of this component, a review of Stirling-type machines is
first presented, highlighting the unique features of the TC under study. An experimental
campaign is then carried out on a TC integrated into a single-stage heat pump to evaluate
its performance. This is complemented with a finite-volume (FV) physical model, which
quantifies exergy destruction across the TC’s internal components and provides insights
about optimal operating conditions. However, due to its high stiffness and slow solving
time, this model is not suitable for integration into a dynamic heat pump model. There-
fore, several data-driven models are developed from available data to provide fast and
reliable predictions. These models are suitable for integration into dynamic heat pump
models for control optimization.

The second part of the thesis extends the analysis to the complete TCHP system. This
part begins with a review of transcritical CO2 cycles, discussing their specific characteris-
tics as well as relevant modeling and control techniques. The TCHP cycle and process are
then described, and dedicated experimental work is carried out. A dynamic FV model of
the full system is proposed and validated against experimental data. Combining real mea-
surements with simulation results, reduced-order recurrent neural network (RNN) models
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are identified to provide efficient representations of the system dynamics. Finally, a new
model predictive control (MPC) strategy is introduced, relying on the reduced models to
enable optimal control of the TCHP system.

In summary, this thesis provides both component-level and system-level modeling
tools, validated through experiments, and introduces a novel MPC strategy for a TCHP.
These contributions not only support the development of efficient TCHPs as a sustainable
alternative to gas boilers but also offer a foundation for future optimization studies.

Keywords: thermal compressor heat pump; transcritical CO2; thermal compressor;
exergy analysis; finite volume method; data-driven modeling; recurrent neural networks;
model predictive control
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Nomenclature

List of acronyms

ANN Artificial Neural Network
BF Burner Fan
BUF Buffer
CD Condenser
CFC Chlorofluorocarbon
CFD Computational Fluid Dynamics
COP Coefficient of Performance
CV Control Volume
EEV Electronic Expansion Valve
EV Evaporator
FHX Fume Heat Exchanger
FT Flash Tank
FV Finite Volume
GC Gas Cooler
GP Gaussian Process
GRU Gated Recurrent Unit
GWP Global Warming Potential
HCFC Hydrochlorofluorocarbon
HPV High-Pressure Valve
IHX Internal Heat Exchanger
LHV Lower Heating Value
LMTD Logarithmic Mean Temperature Difference
LPV Low-Pressure Valve
LR Linear Regression
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MB Moving Boundary
MIMO Multi Input Multi Output
ML Machine Learning
MPC Model Predictive Control
MPG Monopropylene Glycol
MSE Mean Squared Error
NN Neural Network
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ODE Ordinary Differential Equation
ODP Ozone Depletion Potential
PID Proportional-Integral-Derivative Controller
PRBS Pseudo Random Binary Sequence
R2 Coefficient of Determination
RNN Recurrent Neural Network
SISO Single Input Single Output
TC Thermal Compressor
TCHP Thermal Compressor Heat Pump
TCHP-HYB Thermal Compressor Heat Pump Hybrid
TDHP Thermally Driven Heat Pump
VCC Vapor Compression Cycle

List of symbols

a Coefficients -
A Wetted area m2

Acs Cross-sectional area m2

b Coefficients -
c Coefficients -
cp Isobaric specific heat capacity J·kg−1·K−1

cv Isochoric specific heat capacity J·kg−1·K−1

Cd Discharge coefficient -
dh Hydraulic diameter m
Ė Exergy transfer rate W or kW
EX Excess air -
f System dynamic function Multiple
fr Friction coefficient -
Fr Friction force N
h Fluid enthalpy J·kg−1

I Set of indices -
k Discrete time step -
K Thermal conductivity W·m−1·K−1

L Minor loss coefficient -
l Length m
LHV Lower heating value MJ.kg−1

m Mass kg
ṁ Mass flow rate kg.s−1 (equations) or

g.s−1 (figures and tables)
N Number of discretization in space -
Ns Number of samples -
nc Control horizon -
np Prediction horizon -
Nu Nusselt number -
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p Pressure Pa (equations) or
bar (figures and tables)

Pr Prandtl number -
q Vapor quality -
Q̇ Heat transfer rate W (equations) or

kW (figures and tables)
r Radius m
RCO2 Gas constant of CO2 m
rp Pressure ratio -
rs Stoichiometric ratio -
Re Reynolds number -
res Residual -
s Entropy J·kg−1·K−1

t Continuous time s
T Temperature K (equations) or

°C (figures and tables)
U Heat transfer coefficient W·m−2·K−1

u Input -
V Volume m3 (equations) or

cm3 (figures and tables)
V̇ Volume variation m3·s−1

v Velocity m·s−1

Ẇ Power W
X Displacement m
x State -
y Output -

α Weighting factor for control objective -
γ Regenerator temperature update coefficient -
∆ Differential -
δx Distance between two nodes on i-axis m
ϵ Surface roughness -
η Efficiency -
θ Crank angle °
τ Time constant s
µ Viscosity Pa·s
Φ Porosity -
φ Valve opening %
ψ specific flow exergy J·kg−1

σ Activation function -
ωm Rotational speed rpm
ρ Density kg·m−3

∂x Distance between two nodes on j-axis m
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bf burner fan
buf buffer
cc cold cavity
comb combustion
cra crank
d displacer
dis discharge
elec electricity
ev evaporator
ex exergy
f working fluid
fhx fume heat exchanger
ft flash tank
g gas
gc gas cooler
h heater
hc hot cavity
hpv high-pressure valve
ihx internal heat exchanger
i relative to node i
j relative to node j
k cooler
l liquid
lpv low-pressure valve
m motor
max maximum
mech mechanical
min minimum
mpg monopropylene glycol
opt optimal
outlet outlet
pred prediction
r regenerator
rec recovered
ref reference
ret return
rnn recurrent neural network
seq sequence
sf secondary fluid
sp setpoint
str stroke
suc suction
sup supply
sha shaft
tc thermal compressor
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th thermal
tot total
v vapor
val valve
w water
wall wall
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General Introduction

Context

Since the beginning of civilization, humans have relied on natural resources to improve
comfort and living conditions. Over time, this reliance has grown rapidly, driving tech-
nological progress at a pace faster than the environment can naturally adapt. One major
consequence is global warming, now recognized as a critical global challenge. The ineffi-
cient use of fossil fuels for industry, transport, and households has released large amounts
of greenhouse gases into the atmosphere.

According to the Intergovernmental Panel on Climate Change (IPCC (2023)), global
temperatures have risen by 1.1°C since the 19th century, leading to extreme weather
events and the melting of ice caps. Fossil fuels remain the dominant driver of emissions,
accounting for about 75% of global greenhouse gases and nearly 80% of primary energy
consumption worldwide (BP (2023)). In the European Union (EU), Eurostat (2022) re-
ports that households accounted for 25.8% of the EU’s final energy use in 2022, with space
and water heating alone representing 78.4%. These demands remain heavily dependent
on gas and oil boilers (IEA (2023)).

While the complete transition to renewable energy sources remains a long-term goal,
improving the efficiency of existing fossil fuel-based systems serves as a practical inter-
mediate solution. Despite their potential, electric heat pumps are still less adopted than
gas boilers due to various limitations, including infrastructure and efficiency concerns un-
der certain conditions (IEA (2022)). In this context, thermally driven heat pumps offer
a viable solution by combining the advantages of gas boilers and electric heat pumps.
These systems use heat as the driving force for the heat pump cycle, leveraging outdoor
environmental conditions to enhance overall efficiency.

The most widely used thermally driven heat pumps are absorption and adsorption sys-
tems, which rely on heat input rather than mechanical work to drive the cycle through
chemical processes (Kühn (2013)). These are commonly employed in applications such
as district heating, industrial waste heat recovery, and solar-assisted systems. Another
established configuration involves coupling a gas engine with a conventional vapor com-
pression heat pump, where the engine drives the compressor and its waste heat can be
recovered to enhance overall efficiency (Pawela and Jaszczur (2022)). Less common but
conceptually valid configurations include replacing the gas engine with a Stirling one.

A more specific configuration developed by Boostheat, namely the thermal compres-
sor heat pump (TCHP), uses a Stirling-type thermal compressor (TC) instead of a Stirling
engine and mechanical compressor coupling (Ibsaine et al. (2016)). The TC is powered
by heat energy, which originates from fuel combustion. Due to the relatively low pres-
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sure ratio achieved by a single TC and the advantageous characteristics of CO2 in the
transcritical regime, the system architecture involves coupling three TCs in series (Ibsaine
(2015)). This increased complexity introduces multiple interdependent processes that
must operate in harmony to ensure optimal performance, a challenge that necessitates the
implementation of advanced control strategies. Another critical motivation for integrating
control systems in such cycles is the unique behavior of CO2, which requires dynamically
adjusting the optimal high-pressure values to maximize efficiency under varying operating
conditions (Lorentzen (1994)). Without precise control, maintaining or reaching these op-
timal pressures becomes challenging, resulting in performance losses and potential system
instability. Additionally, this technology relying primarily on gas presents an interesting
solution for remote areas lacking access to electrical grids, as it can offer higher efficiency
and independence from electricity supply constraints.

In conclusion, addressing the challenges posed by global warming requires a compre-
hensive approach that balances technological advancement with environmental sustain-
ability. The adoption of energy-efficient solutions, such as heat pumps and natural re-
frigerants, combined with the gradual phase-out of fossil fuels, can significantly mitigate
the impacts of climate change while ensuring a sustainable future. Enhancing system effi-
ciency inherently requires the development of advanced and intelligent control strategies,
making them an indispensable component of modern energy solutions.

Objectives

Performance optimization of a CO2 transcritical cycle can be pursued through modifica-
tions to component geometries, adjustments to cycle configurations, or the development
of advanced control strategies. In this work, however, with fixed components, cycle layout,
and working fluid, the primary objective is to optimize the performance of a TCHP applica-
tion through a novel Model Predictive Control (MPC). To do so, a comprehensive dynamic
model that captures system transient responses is required, beginning with component-
level representations that are subsequently integrated into a system-level framework.

Particular attention is devoted to the TC, the key component distinguishing a TCHP
from conventional electrically driven heat pump cycles. Due to its high influence on over-
all performance, the first objective is to characterize this component through experimen-
tal testing, detailed physical modeling, and data-driven approaches, thereby establishing
performance indicators and identifying optimal operating conditions. Building on these
component-level insights, the study then extends to the complete TCHP cycle including
three serially connected TCs, where the architecture and processes are described, and
a hybrid dynamic model is developed and validated against experimental data in both
steady-state and transient regimes. Since the full model is too complex for real-time con-
trol, reduced-order recurrent neural network (RNN) models are trained to provide effi-
cient dynamic representations. These reduced models form the basis of a new MPC frame-
work, designed to replace conventional single-input PID loops with a multi-input strategy
capable of coordinating the strong couplings and nonlinearities inherent to the system.
The validated hybrid dynamic model of the TCHP is finally adopted as the benchmark
to evaluate and demonstrate the benefits of the proposed MPC strategy for performance
optimization.
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Thesis Contributions

The contributions of this thesis revolve around TC modeling and experimentation and
extend to TCHP modeling, experimentation, and control. The main contributions are as
follows:

• Experimental work on a Stirling-type TC with suction and discharge valves, inte-
grated into a single-stage heat pump cycle, to validate the models and analyze per-
formance (Chapter 1).

• Development of a third-order physical model (finite volume (FV)-based) of a Stirling-
type TC for heat pump applications, denoted ’TC-3RD’. The model is implemented
in an open-source Python framework and can be adapted for Stirling engine appli-
cations (Chapter 2).

• Data-driven modeling of the Stirling-type TC using various machine learning models.
Several types of models are trained and compared (Chapter 3).

• Experimental work on a three-stage transcritical CO2 heat pump for heating. The
collected data are used to validate the dynamic model at the system level (Chapter
4).

• Derivation of a hybrid dynamic model combining physical (FV-based) and empirical
(data-based) approaches for the three-stage transcritical CO2 TCHP, denoted ’TCHP-
HYB’. The model is developed in a modular Python object-oriented framework, and
its predictive capability is validated with real experimental data (Chapter 5).

• Use of an RNN as a reduced-order model for prediction within the MPC framework,
connecting supply water temperature to internal inputs such as the opening of the
expansion valve and burner fan speed. This provides a proof-of-concept for advanced
control of a three-stage transcritical CO2 TCHP (Chapter 6).

Manuscript content

This manuscript is divided into two main parts.

1. Part I investigates the Stirling-type TC for heat pump cycles through experimental,
modeling, and performance analysis. This part builds upon Chapters 1 to 3. Chap-
ter 1 presents a state-of-the-art review of Stirling-type machines, with a particular
focus on the Stirling engine as the most well-known example. The components of
a Stirling engine and its thermodynamic cycle are reviewed. Stirling thermal com-
pressors (STCs) are then discussed, distinguishing between one-orificed types often
used for pulse tube cooling and the second type with separate suction and discharge
valves, to which the targeted TC belongs. The targeted TC is then introduced, dis-
tinguishing it from other Stirling-type machines. Experimental work is conducted by
integrating the TC into a single-stage heat pump, from which data are collected and
filtered using a Gaussian process method. A new exergy-based performance metric
is defined to characterize the TC. Chapter 2 develops a detailed physical model of
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the TC, denoted ’TC-3RD’, where it is spatially discretized into control volumes using
the FV method, and mass, momentum, and energy balance equations are applied.
The model is validated against real data under steady-state conditions and assessed
for transient behavior through comparison with CFD simulations. A detailed exergy
analysis is performed to pinpoint the components contributing most significantly to
exergy destruction, providing insights for future optimization. The physical model
is computationally slow, thus unsuitable for integration into the TCHP system-level
model, so Chapter 3 extends the experimental dataset with previously available data
to identify data-driven models, including polynomial regression, Gaussian process
regression, and artificial neural networks. The most suitable model, providing fast
and reliable predictions, is to be integrated in the complete TCHP model to be de-
veloped in Part II.

2. Part II extends the analysis to a complete TCHP cycle integrating three TCs in series.
This part investigates control-based performance optimization of a TCHP through
dynamic modeling and advanced control strategies, also reinforced with experimen-
tal work, and corresponds to Chapters 4 to 6. Chapter 4 reviews CO2 as a refrigerant
and its application in transcritical cycles, highlighting the motivation for selecting
this working fluid and the required cycle architectural adaptations to handle its spe-
cific thermodynamic characteristics. The TCHP test bench is installed at Boostheat
for experimentation. Its process and cycle components are described, and two cate-
gories of experimental data are presented: (a) transient open-loop and (b) steady-
state, to be used for model development and validation. Chapter 5 reviews dynamic
modeling approaches applied to vapor compression cycles in general and transcriti-
cal CO2 heat pumps in particular. A hybrid dynamic model of the entire TCHP cycle,
denoted ’TCHP-HYB’, is derived, discretized in space with the FV method, applying
mass and energy balances to the heat exchangers, while TCs are represented with
machine learning models developed in Part I and expansion valves are represented
algebraically. This TCHP-HYB is validated in both steady-state and transient con-
ditions using experimental data and is used later for control validation. Chapter 6
introduces the application of control systems to TCHPs, emphasizing their crucial
role in achieving optimal performance and efficiency. A new control system based
on MPC is developed. Because the TCHP-HYB is too complex and stiff for MPC opti-
mization, reduced-order models based on RNNs are identified and trained with both
experimental and simulated data. The proposed MPC is designed with an objective
function targeting heating demand tracking while minimizing consumption. Based
on the reduced models, the new control method is validated and its benefits are
demonstrated.

This is summarized in a global visual view of the manuscript content in Figure 1. All
the modeling tools are developed in a Python framework. The CoolProp Python library is
used to compute the thermophysical properties of the working fluids.

List of publications

Journal (under review):
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Chapter 1

Introduction

Abstract

The thermal compressor (TC) targeted in this work belongs to the family of Stirling-type
machines. Therefore, it is appropriate to start Part I with a state-of-the-art review of
such machines. Section 1.1 introduces the Stirling engine as the most famous and widely
studied type in the literature. Its components and thermodynamic cycle are described.
Subsequently, Stirling thermal compressors (STC) are introduced as a less familiar class,
but closer to the targeted TC in this work. Their operating principle is defined and distin-
guished from that of a Stirling engine. Section 1.2 defines the targeted TC components and
the corresponding thermal compression process. Section 1.3.1 describes the test bench
used for the experimental work, where the TC is integrated into a single-stage heat pump
cycle. To conduct these experiments, Section 1.3.3 defines the test protocol and the ranges
of input variables. The resulting data are used to calculate the performance indicators of
the TC in Section 1.3.4. In Section 1.3.5, the collected data are filtered using a Gaussian-
process model. From the performance indicators, a unified exergy-based performance
metric for the TC is defined and plotted against the collected data in Section 1.3.6.

1.1 Introduction to Stirling machines

1.1.1 Stirling engine

A Stirling engine, invented by Robert Stirling in 1816, is an external-combustion engine
that operates as a closed, regenerative, piston cycle. It produces mechanical work through
cyclic compression and expansion of a working fluid, driven by a temperature difference
between a heat source and a heat sink, with net work arising from the phase difference be-
tween the compression and expansion volumes. Stirling engines offer several advantages,
including high theoretical efficiency, quiet operation, and fuel flexibility, making them
suitable for applications such as cryogenic cooling, solar-thermal power, and submarine
propulsion.

1.1.1.1 Main components

A Stirling machine is usually composed of five key components:

1. Compression volume (C).
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2. Cooler heat exchanger (K): removes heat from the working fluid and transfers it to
the heat sink.

3. Regenerator (R).

4. Heater heat exchanger (H): adds heat to the working fluid from the heat source.

5. Expansion volume (E).

The serial connection of these components is illustrated for a beta-type Stirling engine in
Figure 1.1. In addition to these components, there are the displacer (D) and the power
piston (PP), which are responsible for moving the working fluid and delivering the engine’s
usable output power, respectively.

Figure 1.1: Stirling engine of beta-type scheme.

1.1.1.2 Thermodynamic cycle

To understand the operation of a Stirling engine, its theoretical cycle is described. The
closed thermodynamic cycle is composed of four elementary processes, shown on the p–V
and T–s diagrams in Figure 1.2:

Process 1 (1→2): The working fluid is compressed while mainly occupying the compres-
sion volume.

Process 2 (2→3): The working fluid is transferred from the compression volume to the
expansion volume while absorbing heat from the regenerator. At nearly constant
volume, the heating causes the pressure to rise.

Process 3 (3→4): The hot working fluid is expanded in the expansion volume. Since the
pressure is now higher, more work can be extracted than is needed for compression.
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Process 4 (4→1): The working fluid goes back from the expansion volume to the com-
pression volume. Its temperature decreases when passing through the regenerator
and arrives in the compression volume at a temperature close to that of the cooler.
At nearly constant volume, the cooling causes the pressure to decrease. The working
fluid returns to its initial state (1).

Figure 1.2: Stirling engine cycle: (a) p–V and (b) T–s diagrams.

1.1.1.3 The regenerator

In Stirling machines, the regenerator is essential for efficient thermal cycling. It consists
of a porous matrix with a high surface area, typically made from thin wires. Its role is
to store and recover heat between the compression and expansion strokes. When the hot
working fluid flows through, the regenerator matrix absorbs heat; when flow reverses, it
releases it back to the cold working fluid. This alternating process creates a steep axial
temperature gradient. The regenerator increases the efficiency of the engine because it
reduces the amount of heat needed to produce a given amount of work.

In the case of a perfect regenerator, the heat exchanged with the surroundings is lim-
ited to the heat absorbed from the heat source at the heater and the heat rejected at the
cooler. Then the theoretical efficiency of a Stirling cycle becomes equivalent to that of the
Carnot cycle:

ηCarnot = 1− Tk

Th
(1.1)

where Th and Tk denote the temperatures of the heater (heat source) and cooler (heat
sink), respectively. However, the actual Stirling cycle, as implemented in real engines,
differs significantly from this theoretical model due to the following inefficiencies:

• Imperfections in the heat exchangers, which reduce the effectiveness of heat transfer.

• Non-ideal regenerator performance, leading to incomplete thermal energy recovery.

• The presence of dead volumes in the heat exchangers and connecting ducts, which
are not swept by the pistons and cause spatial variations in thermodynamic proper-
ties.

In real Stirling machines, the five basic components can be implemented in different ways,
some of which look very different from the schematic in Figure 1.1. There are also differ-
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ent mechanisms for moving the displacer and the piston, but the basic working principles
remain the same as outlined above.

1.1.2 Stirling thermal compressor

The concept of a Stirling thermal compressor (STC), or thermocompressor, was first dis-
closed by Bush (1939). Unlike a Stirling engine, a STC is an open system whose operating
principle is to use thermal energy to raise pressure. As shown in Figure 1.3, this is achieved
by a modified layout in which the power piston of a Stirling engine is typically replaced
by an orifice or by separate suction/discharge valves Kornhauser (1996). Consequently,
the kinematic linkage that couples the displacer to the power piston is eliminated, and
a motor is used solely to drive the displacer. The motor only overcomes displacer me-
chanical losses, so its electrical power demand is small compared with the input thermal
power. This configuration enables transport of the working fluid from the heat source to
the heat sink. Like the Stirling engine, the STC is fuel-flexible, can in principle attain high
efficiency, and operates quietly due to low mechanical frequency.

In a Stirling engine, the thermodynamic cycle is commonly described in four phases—compression,
transfer to the expansion space, expansion, and return to the compression space—and re-
lies on a phase angle between the volume variations of the compression and expansion
spaces. By contrast, a STC (Figure 1.3) has a single principal varying volume that gener-
ates the pressure waves, so no such phase shift occurs. This volume can be regarded as
the combination of the hot and cold cavities (HC and CC), with only a small additional
variation introduced by the displacer rod. We use the terms “hot cavity” and “cold cavity”
because no true compression/expansion work, as in a Stirling engine, takes place in a STC.

Two STC configurations are distinguished in the literature according to their purpose.
Type 1 uses a single flow path and is often applied in pulse-tube refrigeration; it was
first proposed and experimentally investigated by Dai et al. (2002) as a replacement for
the mechanical compressor driving a pulse-tube refrigerator. Type 2 includes separate
suction and discharge valves and is intended to replace mechanical compressors; it was
initially proposed by Martini (1969) for powering artificial hearts and later considered for
applications such as heat pumps (Ibsaine et al. (2016)).

1.2 Thermal compressor for heat pumps

The targeted thermal compressor is a Stirling thermal compressor (STC) with separate
suction and discharge valves, similar to the device studied by Ibsaine et al. (2016) for
heat-pump cycles. This chapter complements Ibsaine’s work.

1.2.1 Components

Most components were introduced in Section 1.1; they are restated here with the adap-
tations specific to the targeted machine. For the remainder of the thesis, the targeted
thermal compressor is abbreviated as “TC.” The TC consists mainly of a cylinder with two
variable-volume chambers and constant-volume heat exchangers that connect them. Fig-
ure 1.4 shows a vertical cross-section of the TC. As illustrated, the cylinder is divided into
two spaces—the cold cavity (CC) and the hot cavity (HC)—separated by a displacer (D).
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Figure 1.3: STC scheme.

The heat exchangers comprise a cooler (K) composed of 17 pipes, which rejects heat to
the surrounding water jacket; a heater (H) of annular shape, which supplies heat; and a
regenerator (R) of screen matrix made of a porous matrix. The regenerator absorbs heat
when the working fluid flows from the hot to the cold side, and releases it when the flow
reverses. The cooler dead volume (KR) of and heater dead volume (HR) are the spaces
between the cooler and the regenerator, and between the heater and the regenerator, re-
spectively. Suction (SV) and discharge (DV) valves are connected to the CC to admit and
release flow to and from the heat-pump cycle.

Figure 1.4: TC vertical cross-section showing its components.



36 Chapter 1. Introduction

1.2.2 Crank mechanism

The variations of the cold- and hot-cavity volumes in the cylinder are determined by the
displacement of the displacer. The displacer is connected to a rod, which in turn is linked
to a crank mechanism (Figure 1.5). This arrangement produces sinusoidal variations of
the cavity volumes:

Vcc = π
(
r2d − r2sha

) (
Lstr −Xd

)
+ Vcc,min, (1.2)

Vhc = πr2dXd + Vhc,min. (1.3)

Here, Vcc,min and Vhc,min denote the minimum cavity volumes; rd is the displacer radius,

Figure 1.5: Crankshaft mechanism generating the volume variations. When θm = 0◦, the
displacer is at the top of the hot cavity; when θm = 180◦, it is at the bottom of the cold
cavity.

Lstr the stroke length, and rsha the rod radius. The displacer position Xd follows the
slider–crank relation:

Xd = rcra
(
1− cos θm

)
+ Lrod

[
1−

√
1−

(
rcra
Lrod

sin θm

)2
]
, (1.4)

where θm is the crank angle, rcra the crank radius, and Lrod the rod length. The resulting
cavity-volume variations are shown in Figure 1.6a. The cold- and hot-cavity volumes are in
phase, so the total working volume changes only slightly (mainly due to the shaft volume).
Figure 1.6b presents the p–V diagrams of the cold and hot cavities, along with that of the
total working volume. In a Stirling engine, the p–V loop of the working volume encloses
a larger area because of the phase difference between the two cavities, and its orientation
follows that of the hot cavity (expansion space), highlighting the recovery of useful work
(Figure 1.2). In contrast, the TC exhibits a much smaller loop that typically follows the
orientation of the cold cavity. This behavior results from the harmonic volume oscillations
and from the fact that more work is required to move the fluid upward than is recovered
when it flows back downward.

1.2.3 Thermal compression process

Unlike a traditional compressor, a TC generates a pressure wave by heating its working
fluid rather than by mechanically compressing it. A convenient way to describe the ther-
mal compression process is to plot the (assumed uniform) internal pressure inside the TC
as a function of the displacer position Xd. The four processes are shown in Figure 1.7 and
are explained below:
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Figure 1.6: TC behavior: (a) variations of cold-cavity, hot-cavity, and total working vol-
umes during two complete cycles, θm ∈ [0◦, 720◦]; (b) p–V diagrams of the cold cavity, hot
cavity, and total working volumes.

Process 1 (1→2): Valves closed. As the displacer moves from the upper dead center
toward the lower part of the cylinder, the working fluid flows toward the upper hot
region. Due to the higher temperature, the pressure increases gradually from p1 to
p2. The total working volume remains nearly constant, since the shaft volume is
small compared with the overall TC volume.

Process 2 (2→3): When the pressure p2 exceeds the discharge pressure, the discharge
valve opens while the displacer continues moving downward.

Process 3 (3→4): Valves closed. As the displacer moves upward from the lower dead
center, the working fluid flows toward the lower cold region, and the pressure de-
creases gradually from p2 to p1. The working volume changes only slightly.

Process 4 (4→1): When the pressure p1 drops below the suction pressure, the suction
valve opens while the displacer continues moving upward.

Having defined the TC components, operating principle, and processes, we now proceed
to the experimental evaluation by integrating the TC into a single-stage heat pump cycle
to analyze its performance.

1.3 TC experimental work

Previously, Ibsaine et al. (2016) investigated the TC as an isolated component under no-
load conditions, with the valves kept closed. In that setup, valve dynamics were neglected
and no mass flow was considered, meaning the TC was not evaluated in its intended role
as the active compression device in a heat pump cycle. In contrast, this section presents an
experimental campaign where the TC is integrated into a single-stage CO2 heat pump cy-
cle, with valve operation, mass flow, and realistic boundary conditions taken into account.
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Figure 1.7: TC processes represented by the variation of internal pressure p as a function
of displacer position Xd.

1.3.1 Test bench description

The experimental work is carried out on the test bench installed at the Boostheat labo-
ratory. This setup includes a thermal compressor (TC), a condenser (CD), an electronic
expansion valve (EEV), an evaporator (EV), and a fume heat exchanger (FHX), as shown
in Figure 1.8a. From 1 to 2 CO2 flow (in green) is compressed inside TC, where then
it condenses inside CD from 2 to 3. Afterwards, the flow undergoes expansion from 3
to 4 inside the EEV, before finally evaporating inside EV, reaching state 1 again. This is
demonstrated by the T–s diagram in Figure 1.8b. For water loop (in red): The water en-
tering the cycle is referred to as return water, while the final outlet stream is called supply
water. Water recovers heat in three steps: first in the TC cooler, then in the condenser,
and finally in the FHX, where it absorbs heat from the combustion fumes (in gray). This
last step ensures that the fumes are sufficiently cooled before being released through a
plastic pipe. The top of the TC is surrounded by a well-insulated combustion chamber to
minimize heat losses. Ambient air and methane fuel are mixed in a burner fan resulting
in an air/methane mixture (in yellow) and directed into the combustion chamber located
above the TC. The burner fan regulates the heater temperature under a closed-loop PID
controller.

Figure 1.9 shows the upper part of the TC in the Boostheat test bench. This figure
includes the burner fan, the methane–air mixture passage, the combustion chamber itself,
the fume exit pipe, and the FHX where heat is transferred from the fume. The lower part
of the TC is shown in Figure 1.10. Here, the motor casing encloses the electric motor
that drives the crank mechanism, the suction and discharge valves where the entry and
exit of CO2. Surrounding the cooler is a water jacket with connected water pipes, where
circulating water absorbs the rejected heat and transfers it to circulating water.

The commissioning of the installation involved identifying the sensors, establishing
communication between the different control PLCs on the test bench, and developing the
data acquisition system in LabVIEW, which mainly collected data from the test bench, ex-



1.3. TC experimental work 39

cept for the TC that was controlled using Boostheat’s locally designed software, primarily
regulating the burner fan and motor rotational speed.

1.3.2 Measurements

The sensors installed on the test bench (Figure 1.8a), their types, and their corresponding
ranges and accuracies are listed in Table 1.1. In the water cycle, Pt100 sensors are installed
at the inlet and outlet of the TC cooler, the FHX, and the CD. They are chosen for their high
accuracy, which is essential for evaluating the heat recovered from these heat exchangers.
In the CO2 cycle, Type T thermocouples are placed at the suction and discharge of the TC
to measure the temperatures Tsuc and Tdis, respectively, since they offer a wide operating
range and robustness under the high pressures and temperatures of the refrigerant circuit.
Type K thermocouple is used to measure the heater temperature, since it can withstand
up to 1260 °C. A Huba Control Type 200 vortex sensor is installed on the water side to
measure the volumetric flow rate, from which the mass flow rate ṁw is derived. A Huba
Control Type 520 pressure sensor is used to measure the suction and discharge pressures
at psuc and pdis, respectively; this type is known for its precision even at high operating
pressures. Finally, a Coriolis F-029 sensor is installed between the EEV and the EV to
measure the CO2 mass flow rate ṁf in the cycle.

Sensor Range Accuracy

Pt100 −30–300 ◦C ±(0.15 + 0.002T ) ◦C
Type T thermocouple −200–350 ◦C ±0.5 ◦C or 0.4%
Type K thermocouple −200–1260 ◦C ±1.5 ◦C or 0.4%

Huba Control Type 520 (pressure) 0–1000 bar ±0.3%

Huba Control Type 200 (vortex flow) 0.5–150 L/min ±1%

Coriolis F-029 (mass flow) liquid/vapor refrigerant ±0.2% (liquid), ±0.5% (vapor)

Table 1.1: Sensor specifications used in the TC experiment.

1.3.3 Experimental protocol and conditions

The experiments are conducted by varying main TC inputs: return water temperature
Tw,ret, heater temperature Th, pressure ratio rp, rotational speed ωm, suction temperature
Tsuc at different charged pressure pcharged values. These vary according to the following
protocol:

• Tw,ret is regulated with a chiller so it can be imposed on the cycle.

• Th is regulated by the burner fan speed ωbf (range 2000-9500 rpm), driven with a
PID to a defined setpoint.

• rp (ratio of discharge pressure pdis and suction pressure psuc) is adjusted by varying
the percentage valve opening φeev (range 11-100 %) without targeting a certain
value; a minimum opening of 11 % corresponds to the highest pressure ratio and a
maximum 100 % opening corresponds to a minimum pressure ratio value.
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(a) Test bench layout at Boostheat.
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Figure 1.8: TC in a Single-stage heat pump cycle: (a) experimental setup and (b) thermo-
dynamic representation.

• pcharged is imposed by manually charging (filling) or discharging (emptying) CO2

into and from the CO2 cycle.

• ωm (range 100-245 rpm) is imposed using local software.

• Tsuc is kept as a floating variable.

For the first test, the bench was charged with CO2 until a pressure of 30 bar was reached.
Afterwards, the other parameters were varied. At each rotational speed, the valve open-
ing was adjusted several times before changing the speed again, until the full range of
operating conditions was covered. The bench was then charged with additional CO2, sta-
bilizing at 40, 50, and 56 bar. The same sequence of valve-opening and speed variations
was repeated at each pressure level, resulting in a total of 118 samples. The ranges of
operating conditions during the experimental campaign are summarized in Table 1.2. The
heater temperature was set to either 700 or 800 ◦C, and its variation was not extensively
investigated. This limitation was due to issues with the burner fan’s internal regulation:
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Figure 1.9: TC upper part in the Boostheat test bench, showing the burner fan,
methane–air mixture passage, combustion chamber, fume exit pipe, and fume heat ex-
changer (FHX).

lowering the heater temperature led to flame extinction. In the next section, we define
the performance indicators of the TC based on these measurements.

Symbol Description Range Unit

psuc Suction pressure 22.6–48.7 bar
pdis Discharge pressure 34.2–64.2 bar
ωm Rotational speed 100–245 rpm
Th Heater temperature 700, 800 ◦C

Tw,ret Return water temperature 17.5–24 ◦C
Tsuc Suction temperature 3–21.6 ◦C

Table 1.2: TC input operating-variable ranges during the experimental campaign.

1.3.4 TC performance indicators

An important key to understanding a TC is to examine the energy conversion processes
illustrated in Figure 1.11. The primary energy supplied to the TC is the heat received at its
top part, i.e., the heater, through combustion of a methane–air mixture. This corresponds
to the fuel thermal power Q̇fuel. A portion of this heat is absorbed by the heater, denoted
by Q̇h, which is regarded as useful heat. Another portion is recovered by the FHX, Q̇fhx,
while the remaining part is considered as heat loss, Q̇loss.

In addition, the TC receives a suction enthalpy flow from the heat pump cycle, defined
by the suction enthalpy hsuc and the mass flow rate ṁf . An electric motor with power
input Pelec is connected to the displacer to provide the mechanical power Ẇmech required
for its movement, although this power is relatively small compared to the fuel thermal
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Figure 1.10: TC lower part in the Boostheat test bench, showing the motor casing contain-
ing the electric motor, the water jacket surrounding the cooler, the corresponding water
pipes, and the suction and discharge valves.

power. Part of the resulting energy is recovered by the cooling water, Q̇k, which circulates
around the cooler in a water jacket, while the remainder is delivered to the heat pump
cycle as the output enthalpy flow, hdis and ṁf .

The fuel thermal power, expressed in terms of methane combustion, is given by:

Q̇fuel = ṁCH4 · LHVCH4 , (1.5)

where ṁCH4 is the mass flow rate of methane and LHVCH4 = 50 MJ/kg is its lower heating
value.

The heat recovered by the FHX and the TC cooler is calculated from the corresponding

Figure 1.11: TC energy conversion processes.



1.3. TC experimental work 43

water mass flow rate, specific heat, and inlet and outlet temperatures:

Q̇fhx = ṁwcpw(Tfhx,w,out − Tfhx,w,in), (1.6)

Q̇k = ṁwcpw(Tk,w,out − Tk,w,in). (1.7)

The output (compression) power of the TC is given by:

Ḣcomp = ṁf(hdis − hsuc), (1.8)

where hsuc and hdis are determined from the corresponding temperature and pressure
values at suction and discharge, respectively. The electric power consumed by the motor
is measured with a wattmeter. The mechanical power transmitted to the displacer is then
obtained as:

Ẇmech = Pelec · ηmech, (1.9)

where ηmech = 0.9 is the mechanical efficiency of the motor coupled to the TC. Assuming
that energy conservation is satisfied for the TC, the useful heater heat Q̇h can be deter-
mined from:

Q̇h = Q̇k + Ḣcomp − Ẇmech. (1.10)

After the combustion process, the heat not recovered by the FHX is either absorbed by the
TC as useful heat or lost to the ambient. Therefore, the heat loss Q̇loss is determined from:

Q̇h + Q̇loss = Q̇fuel − Q̇fhx. (1.11)

The performance indicators of the TC are summarized in Table 1.3. Samples with negative
mechanical power indicate that the thermal input alone was sufficient to drive the entire
compression process, so no electric input was required. Since heat losses are not estimated
independently, it is not possible to fully validate the experimental data based on energy
conservation. Nevertheless, the data can still be assessed using a Gaussian Process (GP)
approach.

Symbol Description Range Unit

Q̇h Heater heat transfer rate 739–3753 W
Q̇k Cooler heat transfer rate 441–2581 W
Ẇmech Mechanical power –34.2–368.1 W
ṁf CO2 mass flow rate 4.1–44.3 g.s−1

Tdis Discharge temperature 37–67.2 ◦C

Table 1.3: TC performance-indicator ranges, either measured directly or calculated from
measurements.

1.3.5 Outliers detection with gaussian process

Gaussian process (GP) regression builds a smooth multivariate mapping between the out-
puts and the main input variables, while also providing predictive confidence intervals for
each estimate. These intervals quantify uncertainty and highlight abnormal data points.
The method is particularly effective for outlier detection and for assessing the sensitivity
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and relative importance of the input variables. It also performs well on sparse datasets
with noisy measurements, as noted by Quoilin and Schrouff (2016).

In addition to random noise, some measurements may take values that do not reflect
the true underlying physical behavior. This can result from sensor malfunction or from
unmodeled phenomena that affect the outputs. Such data points are considered outliers
and may need to be excluded. GP is well suited for this task: in regions with dense
data, outliers lie clearly outside the confidence bounds and are easily identified, while in
regions with sparse data the model expresses higher predictive uncertainty. This property
is desirable, since it prevents overconfident predictions in poorly sampled areas.

The method is applied to the performance indicators derived from the collected data,
and the results are shown in Figure 1.12. Blue points represent the measured data, the
black curve corresponds to the GP predictions, the gray area shows the 95% confidence
bounds, and red points are outliers lying outside these bounds. Based on this analysis, the
heater and cooler heat transfer rates both identify the same two samples as outliers, while
three additional samples are flagged from the mass flow rate, resulting in a total of five
samples removed before continuing with the filtered dataset in the next section. Further
details on the GP model are provided in Section 3.2.2.

1.3.6 TC performance metric

Performance characterization of Stirling-type machines depends strongly on the machine
type and its intended application. For instance, a Stirling engine is typically evaluated
based on indicated power and thermal efficiency (Cheng and Phung (2021)). In contrast,
a Stirling thermal compressor used in pulse-tube cryocoolers is assessed in terms of its
thermoacoustic power. Common performance metrics in such cases include the pressure
ratio (Pan et al. (2017)) and the peak-to-peak pressure oscillation (Lin et al. (2013)).

The TC investigated in this work, however, is designed to replace a mechanical com-
pressor in heat pump cycles. As such, different evaluation criteria are required. For a tra-
ditional mechanical compressor, isentropic and volumetric efficiencies are usually defined.
Isentropic efficiency measures how closely the actual compression process approaches a re-
versible adiabatic (isentropic) transformation, while volumetric efficiency quantifies how
effectively the compressor fills its displacement volume with fresh working fluid during
the suction stroke, accounting for valve timing, pressure drops, and re-expansion losses.

In contrast, a TC increases the internal pressure by heating the working fluid, rather
than by increasing its density through mechanical compression. Moreover, continuous
internal circulation of the working fluid between the hot and cold regions is essential to
its operation. In other words, the inherently non-isentropic and non-volumetric nature
of the TC is a necessary feature of its functioning. As a result, isentropic and volumetric
efficiencies are not applicable, and a new performance metric is needed.

Given the importance of energy conversion processes and temperature differences in
the system, exergy efficiency presents itself as a suitable metric. It quantifies the useful
work potential of the energy supplied, thereby aligning with the thermodynamic principles
governing this device. To generalize the analysis, the combustion process supplying heat
to the TC during the experiments is excluded from the exergy study. Instead, the heater
temperature Th is taken as the effective heat source temperature, regardless of whether
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Figure 1.12: TC collected data outliers detection using GP: (a) Heater heat transfer rate
Q̇h, (b) Cooler heat transfer rate Q̇k, (c) mechanical power Ẇmech, (d) mass flow rate ṁf,
and (e) discharge temperature Tdis.

the heat originates from combustion, waste heat, or biomass.

1.3.6.1 Exergy definitions

Whenever there is a temperature difference, useful energy can be recovered. The max-
imum useful energy, or availability, is the amount theoretically obtainable from such a
temperature difference. This is represented by the Carnot efficiency, which expresses this
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energy potential. Let the specific flow exergy be defined as:

ψ = h− Trefs, (1.12)

where Tref is the reference or ambient temperature.
The exergy transfer rate by heat into the TC through the heater is given by:

Ėh =

(
1− Tref

Th

)
Q̇h. (1.13)

Here, the heat source is not explicitly modeled; instead, Th represents the effective tem-
perature of the heater wall in thermal contact with the working fluid.

The exergy transfer rate to the water on the cooler side is:

Ėk = ṁw(ψk,w,out − ψk,w,in), (1.14)

and the exergy transfer rate to the CO2 flow undergoing compression is:

Ėcomp = ṁf(ψdis − ψsuc). (1.15)

Enthalpy and entropy are calculated from the temperature and pressure at suction and
discharge. The exergy transfer rate by work is equivalent to the mechanical power Ẇmech.

Assuming steady-state conditions, the exergy balance gives the total exergy destroyed
in the TC:

Ėdest,tc = Ėh + Ẇmech − Ėcomp − Ėk. (1.16)

The exergy efficiency of the TC is then defined as:

ηex,tc =
Ėcomp + Ėk

Ėh + Ẇmech

= 1−
Ėdest,tc

Ėh + Ẇmech

. (1.17)

In the next section, the exergy efficiency is plotted against the filtered experimental
data.

1.3.6.2 Performance evaluation

Following the experimental protocol, the exergy efficiency was plotted at different charged
pressure values while varying rotational speed and pressure ratio at heater temperatures of
700 and 800 °C. Figure 1.13 indicates only a small influence of rotational speed on exergy
efficiency, whereas a strong influence is observed from the pressure ratio. The scatter
points are mainly concentrated between 1.25 and 1.65. The exergy efficiency decreases as
the pressure ratio increases, with a more pronounced drop for rp > 1.4. Efficiency also
tends to increase at higher charged pressure values, ranging from 28 to 55 bar. Changing
Th from 700 to 800 °C does not appear to significantly affect the exergy efficiency.

Although informative, the data ranges are limited, especially with respect to heater
temperature and charged pressure values. To address this gap, we propose the devel-
opment of a high-fidelity physical model for the following reasons: (i) to gain a deeper
understanding of TC thermodynamics, particularly of the internal processes that were not
measured; and (ii) to provide a reference model capable of generating data beyond the
experimental campaign, such as for different heater temperature values or higher charged
pressure levels.
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Figure 1.13: TC exergy efficiency at different operating conditions covered by the experi-
mental campaign.

1.4 Conclusion

In this chapter:

• Stirling machines were introduced as the broader family to which the targeted ther-
mal compressor belongs. Particular attention was given to the Stirling engine, as
the most well-known type, by describing its components and thermodynamic cycle
phases. Building on this, the STC was presented as a distinct application that shares
a similar design with the Stirling engine. While the Stirling engine converts thermal
energy into mechanical work through phase-shifted volumes, the STC uses thermal
energy to raise pressure, operating with a single varying volume and equipped with
an orifice or valves instead of a power piston.

• The targeted TC investigated in this thesis is a specific type of STC with separate suc-
tion and discharge valves, designed by Boostheat as a substitute for a conventional
compressor in a heat pump. Its components and thermal compression processes
were described in detail.

• The TC was experimentally integrated for the first time into a single-stage heat pump
cycle. Key inputs such as pressure ratio, charged pressure, rotational speed, and
heater temperature were varied, while outputs including mass flow rate and dis-
charge temperature were measured. From these, additional figures of merit such
as cooler and heater heat transfer rates and mechanical power were derived to es-
tablish performance indicators. Direct validation was limited by unquantified heat
losses, but a Gaussian Process method was successfully applied to filter outliers and
provide a consistent dataset for analysis.

• Since the TC departs from conventional compressors and cannot be meaningfully
assessed with isentropic or volumetric efficiencies, a new exergy-based performance
metric was defined. Using the filtered dataset, exergy efficiency was analyzed under
different operating conditions. The results showed a strong influence of charged
pressure and pressure ratio, with smaller effects from motor speed, and almost
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negligible influence of heater temperature. The limited range of experimental con-
ditions, however, restricts broad generalization, motivating the development of a
high-fidelity physical model in the next chapter.

Overall, this chapter introduced the targeted TC and presented the experimental campaign
that provided the first dataset of its performance within a heat pump cycle. The results
also highlighted the complexity of the TC’s thermodynamic behavior, which depends on
tightly coupled heat and mass transfer processes that cannot be fully captured by the
experiments alone. To advance both understanding and predictive capability, the next
chapter develops a high-fidelity physical model of the TC. This model is essential not only
to investigate the internal processes that remain inaccessible experimentally, but also to
serve as a virtual platform for testing a wider range of operating conditions. In particular, it
enables extrapolation beyond the experimental dataset and supports design optimization.



Chapter 2

Thermal compressor third order
model

Abstract

This chapter primarily aims to develop a high-fidelity physical model simulation tool for
the targeted TC described in the previous chapter. Section 2.1 provides a review of third-
order modeling approaches for Stirling machines in general, dominantly used for STCs.
Section 2.2 derives a third-order model for the targeted TC. The TC is spatially discretized
using the finite volume (FV) method into several control volumes (CVs). For each CV,
mass, momentum, and energy balance equations are applied. The mass flow rates through
the suction and discharge valves are modeled using quasi-static relations, and empiri-
cal correlations for heat transfer and friction coefficients are defined. By connecting all
equations, the final model is a set of ordinary differential equations (ODEs), with initial
conditions defined in Section 2.3. The numerical solving strategy used to ensure model
convergence is also discussed. Afterwards, in Section 2.4, the model is validated in two
steps: (1) transiently, through comparison with computational fluid dynamics (CFD) anal-
ysis at a single periodic steady cycle, and (2) under steady conditions using previously
collected performance indicator data from Section 1.3.4. Finally, the validated model en-
ables a more detailed exergy analysis that captures internal losses and irreversibilities,
allowing identification of the components most in need of optimization (Section 2.5).

2.1 Introduction

2.1.1 Modeling approaches for Stirling machines

In order to successfully model a Stirling machine, it is necessary to describe with equations
what happens to the working fluid in the different components of the machine during op-
eration. If one chooses a level of detail where the actual working fluid flows are modeled,
then one must be able to account for oscillating, compressible flow in heat exchangers, in
a porous matrix, and in cylinder volumes. It is also necessary to model the solids or walls
of the machine with sufficient detail to determine the surface temperatures, as these play
a key role in the heat transfer processes.

Various models have been proposed to describe the thermodynamic behavior of a Stir-
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ling engine in the literature. These models are classified into four main levels correspond-
ing to their complexity. Attempts to categorize these modeling techniques were made by
Finkelstein (1960), Martini (1983), and Chen and Griffin (1983), until finally settling on
the arrangement by Dyson et al. (2004).

Zero-order models, or empirical models, correlate the output power and efficiency to
heater and cooler temperatures, piston displacement, engine speed, and mean pressure
based on experimental data. One notable example is Beale’s correlation, which estimates
the engine’s power output (West (1981)).

First-order models, or analytical models, are based on the theoretical development
of Schmidt (1871). Known as the Schmidt model, it provides a classical analysis of the
Stirling engine cycle for three common configurations: alpha, beta, and gamma. This
model assumes isothermal compression and expansion, along with perfect regeneration,
and describes a sinusoidal volume variation of the working space in reciprocating engines.

Second-order models, or numerical models, discretize the Stirling engine into elements
and solve the governing differential equations iteratively for each segment. Most exist-
ing models are based on second-order approaches first proposed by Finkelstein (1960).
This approach assumes the compression and expansion spaces to be adiabatic instead of
isothermal. Urieli and Berchowitz (1984) also derived an adiabatic model based on the
second-order approach and further improved its accuracy by including the effects of pres-
sure drop, non-ideal heat transfer, and regeneration in their equations, resulting in what
were called the simple model and the quasi-steady model. In a second-order model, the
engine is divided into five parts (cooler, heater, regenerator, expansion, and compression
spaces). Each part is considered as a CV, and the conservation laws of mass and energy
are applied individually.

Third-order models are more complex yet more accurate type of numerical models,
where a mono-dimensional flow is assumed, and the system is divided into a network of
nodes, each represented by ordinary differential equations (ODEs) derived from the mass,
momentum, and energy conservation laws. The resulting ODEs are then solved numeri-
cally, providing the instantaneous physical states of the working fluid. Due to the reliability
of this method, several simulation tools were created to model a Stirling engine based on
this method. For instance, ’Sage’ is a famous simulation tool deploying a third-order ap-
proach within an object-oriented framework. It is still available as mainstream commercial
software (Gedeon (2014)), with a user interface to simulate or optimize Stirling engines.

At an even higher level of fidelity, computational fluid dynamics (CFD) models offer a
fourth-order representation, considering two- or three-dimensional flow, making them the
closest to real-world behavior among all the modeling approaches (Chen et al. (2015)).
However, these models are also the most computationally expensive and time-consuming
to run. Typically, CFD models are reserved for situations where accuracy is of utmost
importance, though their complexity makes them impractical for control or optimization
tasks.

The importance of including fluid inertia in STCs was emphasized by Andersen (2006),
who showed that neglecting it leads to errors in predicting phase relationships between
pressure and mass flow oscillations. Since the targeted TC is one type of STC, a third-
order model is chosen, as it includes fluid inertia while at the same time requiring less
computation compared to multi-dimensional CFD, making it more reliable for design and
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optimization tasks.

2.1.2 Third-order modeling approach

In his thesis, Andersen (2006) presented a detailed third-order model of a Stirling engine
and proposed numerical techniques to accelerate convergence, reducing computational
time significantly. More recently, Wang et al. (2016) and Qiu et al. (2021) applied the
third-order framework with additional loss mechanisms, showing good agreement with
the well-known GPU-3 prototype. As noted by Ahmadi et al. (2017), GPU-3 remains the
benchmark experimental data set for Stirling engine validation, having been originally
built in 1965 by General Motors and later adopted by NASA. It is a beta-type machine
with a rhombic drive and typical working fluids such as hydrogen, helium, or nitrogen.
These studies confirm the accuracy and reliability of the third-order framework.

For Type 1 STCs, Dai et al. (2002) first proposed and experimentally tested a proto-
type intended to drive a pulse tube refrigerator. Subsequent studies improved design and
modeling, such as an annular regenerator with a novel piston design Lin et al. (2013),
validated third-order models with parametric studies on orifice valve impedance Pan et al.
(2017), and investigations of operating conditions and working fluids Wang et al. (2018).
Based on similar models, exergy and energy analyses have also been carried out Wang
et al. (2019), showing that optimizing external losses could raise exergy efficiency to
60%.

For Type 2 STCs, intended to replace mechanical compressors, an idealized approach
was introduced by Kornhauser (1996) and later extended by Edwards and Peterson (2007)
to include non-idealities. Simulation results suggested that reducing dead volumes, espe-
cially in the cold space, could improve efficiency. Experimental works include the intro-
duction of new displacer controls Thomas and Barth (2022), achieving higher output, and
investigations of prototypes for heat pump applications Ibsaine et al. (2016). However,
the latter neglected fluid inertia and validated the model only under off-load conditions.
In contrast, the present work re-investigates this prototype under full-load operation, in-
tegrating the TC into a CO2 heat pump cycle at the Boostheat laboratory. Unlike earlier
simplified approaches, the present model incorporates suction and discharge valve dy-
namics and non-ideal CO2 properties, thereby extending realism and applicability. Most
existing methods assume ideal gases, which is valid for helium or hydrogen, but becomes
challenging when applied to CO2 due to its strong deviation from ideality.

2.2 TC third-order model

A third-order modeling approach is used to describe the TC working fluid during oscilla-
tion, where a one-dimensional flow is assumed and the system is divided into a network
of nodes, each represented by ODEs derived from the mass, momentum, and energy con-
servation laws. These ODEs are solved numerically to provide the instantaneous physical
states of the working fluid. Thus, this section presents a novel third-order modeling ap-
proach for the TC. Some relevant assumptions are first considered:

• One-dimensional and compressible flow throughout the system.

• The physical field is uniform within each CV.
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• Real-gas properties of CO2 are used.

• Kinetic and potential energy contributions are neglected.

• No flow leakage is assumed between the cold and hot cavities.

• The heat capacities of the walls of the cooler, heater, and cold and hot cavities are
much greater than that of the working fluid; therefore, the wall temperatures are
taken as constants.

2.2.1 Governing equations

Figure 2.1(a) shows the schematic of the TC with its main components. In particular, the
TC is spatially discretized using the finite-volume (FV) method into N + 1 CVs along an
i-axis, where each CV between adjacent solid lines represents uniform pressure p, tem-
perature T , and density ρ. The velocity v and mass flow rate ṁ are considered uniform
between adjacent dashed lines, corresponding to a j-axis. This results in N +1 connected
ODEs, where the 0th and the N th represent the cold- and hot-cavity CVs, respectively.
This is shown in Figure 2.1(b).

Positive flow is defined from the cold cavity to the hot cavity. The time derivative
of a variable x(t) is written

(
∂x
∂t

)
when used in differential form for integration, and ẋ

when represented algebraically at an instant. Both have the same units but serve different
purposes. From a thermodynamics standpoint,

(
∂x
∂t

)
indicates the time derivative of a

point function (a thermodynamic property), while ẋ indicates the time derivative of a
path function. Applying the mass balance on each CV, we obtain

∂mi

∂t
= ṁj−1 − ṁj . (2.1)

From the energy balance, the temperature variation is

∂Ti
∂t

=
1

(mcv)i

[
Q̇i − Ti

(
∂p

∂T

)
ρ,i

(
V̇i −

1

ρi

∂mi

∂t

)
− hi

∂mi

∂t
+ ṁj−1hj−1 − ṁjhj

+

(
−KAcs

∂T

∂x

)
j−1

−
(
−KAcs

∂T

∂x

)
j

]
, (2.2)

where
(

∂p
∂T

)
ρ

is the partial derivative of pwith respect to T at constant ρ, and
(
−KAcs

∂T
∂x

)
j

is the heat conduction term at node j. The derivation of Equation 2.2 can be found in the
thesis of Bell (2011). Here, K is the thermal conductivity and Acs is the cross-sectional
area. The momentum balance is applied at CV interfaces to derive the velocity variation:

∂vj
∂t

=
1

mj
[Acs,j(pi−1 − pi) + (ρAcsv|v|)i−1 − (ρAcsv|v|)i − FrjAcs,j − (ρAcsv|v|)j ] .

(2.3)
The wall-temperature variation of the heat-exchanger surfaces directly in contact with
CO2 follows from the energy balance:

∂Twall,i

∂t
=

1

(mc)wall,i

[
−Q̇i +

(
−KAcs

∂T

∂x

)
wall,j−1

−
(
−KAcs

∂T

∂x

)
wall,j

]
. (2.4)
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(a)

(b)

Figure 2.1: TC schematic representation of (a) main components and (b) spatially dis-
cretized grid. The i-axis contains thermodynamic properties of the CO2 (p, h, ρ, etc.), while
the j-axis denotes interfaces carrying velocity and mass flow rate information (vj , ṁj). δx
is the length of one solid CV, while dx is the distance between two dashed lines.

The flow direction between CVs is determined by

ṁj = (ρvAcs)j , and thus hj =

hi, if vj > 0,

hi+1, otherwise.
(2.5)

Additionally, the convective heat-transfer rate between the CO2 and the surrounding wall
is

Q̇i = (AU)i
(
Twall,i − Ti

)
. (2.6)

where A denotes the wetted area and U is the heat transfer coefficient to be described
in Section 2.2.3. For CO2 flow inside the cold and hot cavities, several loss mechanisms
are included in the energy balance. These comprise working-fluid shuttle heat transfer,
displacer finite-speed effects, and displacer friction. Since the gap between the cold cavity
and the buffer space (motor casing) is very small, leakage losses are neglected in the cold
cavity. Similarly, leakage in the hot cavity is also neglected due to the small gap across the
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displacer. The mass and energy equations in the cold cavity (i = 0, j = 0) are then

∂mi

∂t
= ṁsuc − ṁdis + ṁj , (2.7)

∂Ti
∂t

=
1

(mcv)i

[
Q̇i + Q̇sh − Ti

(
∂p

∂T

)
ρ,i

(
V̇i −

1

ρi

∂mi

∂t

)
− hi

∂mi

∂t
+ ṁsuchsuc,i − ṁdishi

− ṁjhj −
(
−KAcs

∂T

∂x

)
j

−
(
δpi,finite + δpi,fric

)
V̇i

]
, (2.8)

where hsuc,0 is the entering enthalpy through the suction valve assuming isentropic flow.
The mass and energy equations in the hot cavity (i = N, j = N − 1) are

∂mi

∂t
= ṁj , (2.9)

∂Ti
∂t

=
1

(mcv)i

[
Q̇i − Q̇sh − Ti

(
∂p

∂T

)
ρ,i

(
V̇i −

1

ρi

∂mi

∂t

)
− hi

∂mi

∂t
+ ṁjhj

+

(
−KAcs

∂T

∂x

)
j−1

−
(
δpi,finite + δpi,fric

)
V̇i

]
. (2.10)

The literature reports various heat and pressure losses represented with mathematical
expressions. For instance:

– Shuttle heat-transfer loss Q̇sh, arising from heat conduction along the displacer wall
and enhanced by its oscillatory motion, results in net heat transfer from the hot to
the cold cavity Urieli and Berchowitz (1984):

Q̇sh =
πKdX

2
drd(TN − T0)

edLd
, (2.11)

where Xd, Dd, Ld, and ed are the displacer position, diameter, length, and the gap
width between the displacer and the cylinder, respectively.

– Finite-speed pressure loss δpfinite: according to the finite-speed thermodynamic prin-
ciple, the pressure over the displacer surface differs from the calculated instanta-
neous pressure in the cold cavity. During compression, the displacer-surface pres-
sure is larger than the instantaneous space pressure; during expansion it is smaller
Wang et al. (2016):

δpfinite = ± p |vd|
√

γCO2

RCO2 T
(2.12)

Here, |vd| is the absolute value of the displacer velocity, and γCO2 and RCO2 are the
isentropic exponent and the ideal-gas constant of CO2, respectively. The positive
sign (+) corresponds to the cold cavity, while the negative sign (−) corresponds to
the hot cavity.

– Friction pressure loss δpfric: mechanical friction between the displacer and cylin-
der is another source of pressure loss. Based on experimental data from internal-
combustion engines Wang et al. (2016):

δpfric = ±
(
0.97 + 0.045|vd|

)
× 105. (2.13)
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2.2.2 Suction and discharge valves

The suction and discharge valves are key components of the investigated TC, distinguish-
ing it from the single-orifice STCs used for pulse-tube coolers. The valves are poppet
type, operating in fully open or fully closed states, and the pressure difference required
for opening is assumed constant at 0.5 bar. The flow through the valves is assumed isen-
tropic, so the suction and discharge mass flow rates are determined from the Saint-Venant
equations for nozzle flow as follows:

ṁsuc = CdAcs,svρsuc, 0

√
2
(
hsuc − hsuc, 0

)
, if p0 < psuc − 0.5, (2.14)

ṁdis = CdAcs,dvρ0,dis

√
2
(
h0 − h0,dis

)
, if p0 > pdis + 0.5. (2.15)

Here, Cd is the discharge coefficient and Acs,sv and Acs,dv are the cross-sectional areas of
the suction and discharge valves, respectively. The parameters with subscripts “suc, 0”
and “0, dis” correspond to properties under the isentropic-flow assumption, i.e., hsuc, 0 =

CP(ssuc, p0) and h0,dis = CP(s0, pdis), obtained with CoolProp (CP).

2.2.3 Empirical correlations

The friction force Fr in the momentum Equation (2.3) and the heat-transfer coefficient U
in the energy Equation (2.2) are expressed using the friction coefficient fr, the minor-loss
coefficient L, and the Nusselt number Nu, respectively:

Fr = dx

(
fr

Dh
+

L

dx

)
ρv|v|
2

, (2.16)

U =
KNu

Dh
, (2.17)

where L = LK +
(
1 − Acs,1/Acs,2

)2 represents the minor-loss coefficient as a function of
bends LK and cross-sectional area variation (with Acs,1 < Acs,2). Dh is the hydraulic diam-
eter. The friction coefficient and Nusselt number are estimated from empirical correlations
depending on the flow regime (laminar or turbulent) and the medium type.

2.2.3.1 Heat exchangers and cylinder

In the heat exchangers and inside the cylinder, the friction coefficient of Gedeon (2014)
is adopted depending on the flow regime, i.e., laminar (Re < 2× 103) or turbulent (Re ≥
2× 103):

fr =


64

Re
, if Re < 2× 103,

0.11

(
ϵ

Dh
+

68

Re

)0.25

, if Re ≥ 2× 103,
(2.18)

where ϵ is the surface roughness. The Reynolds number Re is defined as

Re =
ρvDh

µ
, (2.19)

with µ the dynamic viscosity. The Nusselt number correlation according to Boroujerdi
et al. (2011) is

Nu =

1.86

(
RePrDh

δx

)0.333( µ

µwall

)0.14

, if Re < 2× 103,

0.023Re0.8 Prm, if Re ≥ 2× 103,

(2.20)
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where m = 0.4 for heated parts (heater and hot-cavity space) and m = 0.3 for cooled
parts (cooler and cold-cavity space). The Prandtl number is defined as

Pr = cp
µ

K
. (2.21)

2.2.3.2 Regenerator

For the porous-medium regenerator, the friction coefficient and Nusselt number correla-
tions of Gedeon (2014) are used:

fr =
129

Re
+ 2.91Re−0.103, (2.22)

Nu =
[
1 + 0.99 (RePr)0.66

]
ϕ1.79, (2.23)

with ϕ the porosity of the regenerator. The hydraulic diameter is defined according to
Urieli and Berchowitz (1984):

Dh = Dwire
ϕ

1− ϕ
, (2.24)

whereDwire is the wire diameter of the mesh screen. The hydraulic diameters of the cooler
and heater are the tube diameter and the internal annular diameter, respectively. The
geometrical parameters of these components are summarized in Table 2.1. All components
are stainless steel except for the cooler, which is aluminum.

Component Parameter Value

Cold cavity Clearance volume 348.24 cm3

Minimum volume 33 cm3

Hot cavity Clearance volume 362 cm3

Minimum volume 62.8 cm3

Cooler Type Tubes
Volume 32 cm3

Cooler dead volume Type Tubes
Volume 21 cm3

Regenerator Type Woven wire mesh
Porosity 0.5
Wire diameter 0.06 mm
Volume 76 cm3

Heater dead volume Type Annular
Volume 58 cm3

Heater Type Annular
Volume 10 cm3

Suction/Discharge valve Type Poppet
Volume 9.8 cm3

Table 2.1: TC component geometrical parameters.
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Figure 2.2: TC-3RD model scheme containing inputs (operating conditions and compo-
nent parameters), outputs at each CV and interface, suction and discharge mass flow rates,
and performance indicators.

2.3 Numerical model resolution

The coupling of Equations (2.1)–(2.4) results in a system of connected ODEs, forming
the ’TC-3RD model’. Figure 2.2 illustrates the scheme of this model, which includes the
operating-condition inputs (suction pressure psuc, discharge pressure pdis, heater temper-
ature Th, entering water or cooler temperature Tw,ret, rotational speed ωm, and suction
temperature Tsuc), as well as component parameters such as geometries from Table 2.1,
volume variations from Equations (1.2)–(1.3), and empirical correlations of friction and
heat-transfer coefficients (Section 2.2.3). At each CV i, the model predicts the instanta-
neous thermophysical properties (temperature, pressure, etc.) of CO2, velocities at inter-
face j, and suction and discharge mass flow rates. From these outputs, the performance
indicators are calculated (detailed in Section 2.3.3). To simulate the TC-3RD model, ap-
propriate initial conditions must first be specified, followed by a numerical solving strategy.
These two steps are described in the next subsections.

2.3.1 Initial conditions

The state vector of TC-3RD model is initialized as follows: The displacer is considered at
the top of the hot cavity (θm = 0), so the pressure profile is uniform and equal to the
suction pressure. The initial temperature profile of CO2 and the wall is linearly distributed
from a minimum at the cold cavity and cooler CVs, equal to the cooling water tempera-
ture Tw,ret, to a maximum at the heater and hot cavity CVs, equivalent to the measured
temperature on the tip of the heater wall Th. The velocity vector is set to 0.

2.3.2 Solving process

The numerical simulation of the TC-3RD model is illustrated with a flow chart in Figure
2.3. After initialization, the solver proceeds iteratively. At each iteration, the density and
temperature at every CV are first evaluated, and then used to compute the remaining
thermophysical properties of CO2 at that CV using CoolProp Bell et al. (2014). Next,
the empirical correlations (friction forces, heat transfer rates, and suction/discharge mass
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flow rates) are calculated. These quantities are then supplied to the system of ODEs, which
is solved using the third-order Runge–Kutta method (RK23) with the ’solve-ivp’ function
in the Python framework. This method offers a good compromise between computational
speed and numerical accuracy, which is particularly important for solving stiff models such
as the TC-3RD. The solving is performed directly over one full cycle from θm = 0 → θm =

2π. A periodic steady state is considered to be reached when the following criteria are
simultaneously satisfied:

ωm

2π

∫ t+tcyc

t

∑
i∈Ir

|Q̇i| dt < γ1, (2.25)

ωm

2π

∫ t+tcyc

t
|ṁsuc − ṁdis| dt < γ2, (2.26)

If these conditions are not satisfied, the wall temperatures of the regenerator are updated
to accelerate convergence according to the following relation Qiu et al. (2021):

Twall,i = Twall,i − γ3 · Q̇i, i ∈ Ir (2.27)

where γ3 = 0.02 is a convergence coefficient. Following this procedure, the TC-3RD model
simulation is executed, and the number of CVs assigned to each component is summarized
in Table 2.2.

Component Number of CVs

Cold cavity 1
Hot cavity 1
Cooler 4
Cooler dead volume 1
Regenerator 14
Heater dead volume 1
Heater 4

Table 2.2: TC components with the assigned number of CVs for simulation.

2.3.3 TC-3RD model-derived performance indicators

The performance indicators are calculated as cycle-averaged quantities from TC-3RD model
outputs once TC operation reaches periodic steady state. This state is attained when the in-
tegrated state variable no longer changes from one cycle to the next, i.e. x(t) = x(t+ tcyc).
Using TC-3RD model outputs, the mechanical power required to drive the displacer is ob-
tained as the cycle-averaged work rate in the cold and hot cavities:

Ẇmech =
ωm

2π

∫ t+tcyc

t

(
p0 V̇0 + pN V̇N

)
dt. (2.28)

The cooler heat transfer rate (heat rejected from the CO2 in the cooler CVs) is

Q̇k =
ωm

2π

∫ t+tcyc

t

∑
i∈Ik

Q̇i dt, (2.29)
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Figure 2.3: TC-3RD model numerical simulation flow chart.
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where Ik is the set of indices of the cooler CVs. The heater heat transfer rate (heat supplied
to the CO2 in the heater CVs) is

Q̇h =
ωm

2π

∫ t+tcyc

t

∑
i∈Ih

Q̇i dt. (2.30)

Finally, the compressor power output (net enthalpy flow) is the cycle-average of the dis-
charge minus suction enthalpy streams:

Ḣcomp =
ωm

2π

∫ t+tcyc

t

(
ṁdis hdis − ṁsuc hsuc

)
dt. (2.31)

These indicators are obtained from the numerical solution of the TC-3RD model, which is
implemented in Python as described next.

2.3.4 Python implementation

The numerical methods described above are implemented in Python to provide an open-
source and flexible simulation framework. While several Stirling engine simulation tools
have been developed in the past Andersen (2006), most are proprietary or written in
outdated programming languages, which limits their accessibility and reproducibility. The
Python implementation developed in this work overcomes these limitations by offering a
modern, transparent, and freely available platform Salame (2025a).

The modular structure of the code enables straightforward adaptation to different ma-
chine configurations. For instance, by removing the valve models and modifying the vol-
ume variations, the same framework can be directly applied to Stirling engines. This
open-source implementation thus facilitates both reproducibility of the present results and
future extensions of the model by the wider research community.

Having established the numerical framework and its implementation in Python, the
next step is to assess the validity of the TC-3RD model. This is done by comparing its
predictions with reference data, both from CFD simulations and from experimental mea-
surements.

2.4 Model validation with data

The validation of TC-3RD model is performed in two stages: First stage using a CFD data
containing the internal CO2 thermophysical properties varying in a periodic steady-state
cycle. Second stage is on steady-state data containing TC performance indicators collected
from experimental work in Chapter 1.

2.4.1 Transient validation with CFD

CFD is used by a hired company to simulate the internal thermophysical properties of CO2

while the TC is running under the following conditions: Th = 600 °C, Tw,ret = 30 °C,
ωm = 180 rpm, psuc = 45 bar, and pdis = 60 bar. The TC-3RD model is simulated under
similar conditions, and the results are compared to those from CFD. Figure 2.4 shows the
variations of (a) masses, (b) temperatures, (c) pressures, and (d) mass flow rates through
the suction and discharge valves during one periodically steady cycle. The solid curves
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correspond to the CFD predictions, while the dashed curves represent the TC-3RD model.
The transient trends of the two models are in good agreement, with notable differences
primarily in the temperatures of the hot cavity and heater space. From (d), we can see that
both methods start from the same point; however, the TC-3RD model predicts pressure
increases and decreases faster during oscillations. This is expected, considering that the
TC-3RD model is a simplified version that tends to underestimate internal losses. Given
that the TC-3RD model is 336 times faster than CFD, the results are deemed acceptable
and provide a satisfactory transient validation.
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Figure 2.4: TC-3RD model (dashed) vs CFD (solid) transient predictions during one peri-
odic steady cycle.

2.4.2 Steady-state validation

The TC-3RD model is validated at operating points with varying rotational speed ωm ∈
150, 200, 240 rpm, charged pressure pcharged ∈ 40, 50, 55 bar, and pressure ratios 1.23 <

rp < 1.58. Variations in pcharged and rp translate into changes in suction and discharge
pressures, which are direct model inputs. The heater and water return temperatures are
fixed at Th = 800 °C and Tw,ret = 20 °C, respectively, for all experimental (exp) and
simulated (sim) points. Experimental performance indicators are taken from Chapter 1,
while simulated values are calculated from Section 2.3.3.

As shown in Figures 2.5 and 2.6, increasing the pressure ratio reduces the heater
heat transfer rate due to weaker heat exchange with CO2, thereby lowering the mass
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flow rate and raising the discharge temperature. The rise in mechanical power is linked
to flow accumulation inside the TC, which further contributes to the higher discharge
temperature.

At pcharged = 56 bar, the increase in motor speed from 150 to 240 rpm leads to a higher
motor load and thus increases the mechanical power. It also causes a faster flow inside the
TC, resulting in greater heat exchange with the internal walls. Consequently, the heater
and cooler heat transfer rates increase, as observed in Figure 2.5. The mass flow rate
also increases at comparable pressure ratios, and the discharge temperature rises. Me-
chanical power further increases due to the higher rotational speed. The TC-3RD model
captures the general transient trends of these changes; however, it clearly underestimates
the mechanical power and cooler heat transfer rate while overestimating the discharge
temperature. The relative deviations between measured and predicted performance indi-
cators are 8.6% for the heater heat transfer rate and 25.1% for the cooler heat transfer
rate. In contrast, mechanical power is predicted with a relative deviation of 43.7%. The
predicted mass flow rate shows a deviation of 11.9%, while the discharge temperature is
overestimated by 9.6 K.

At ωm = 150 rpm, raising the charged pressure from 30 to 56 bar increases the CO2

density, thereby enhancing the heat exchange rate and resulting in a higher heater heat
transfer rate, as shown in Figure 2.6. Increasing the charged pressure from 30 to 50
bar has little influence on the cooler heat transfer rate, while the effect becomes more
significant when increasing to 56 bar. The mass flow rate clearly increases, and so does the
discharge temperature. The mechanical power, however, shows an unusual trend: while at
pressure ratios lower than 1.42 the mechanical power decreases with increasing charged
pressure, this trend is reversed once the pressure ratio exceeds 1.42. The derived TC-3RD
model is not able to capture this behavior. The relative deviations between measured and
predicted performance indicators are 16% for the heater heat transfer rate and 31.7% for
the cooler heat transfer rate. Conversely, mechanical power is predicted with a relative
deviation of 61.7%. The predicted mass flow rate shows a deviation of 14.4%, while the
discharge temperature is again overestimated by 14.8 K.

Overall, it is clear that the TC-3RD model needs improvements, as some physical as-
pects are not adequately captured. This means it cannot be used for generating data
reliably. However, the good physical trends it reproduces can be helpful to investigate the
influence of operating conditions on exergy destruction inside internal components and
identify which should be targeted in future improvements. This is done in the next section.

2.5 TC-3RD model-based exergy study

In this section, a detailed model-based exergy analysis is carried out on the TC to identify
the irreversibilities associated with its internal components.
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(a) Heater heat transfer rate.
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(b) Cooler heat transfer rate.
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(c) Mechanical power.
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(d) Mass flow rate.
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(e) Discharge temperature.

Figure 2.5: TC-3RD model validation—simulated (sim) vs experimental (exp, mark-
ers) performance indicators versus pressure ratio rp at three rotational speeds ωm ∈
{150, 200, 240} rpm.

2.5.1 Methodology

The exergy balance for a control volume is expressed as Çengel and Boles (2019):

∂Ecv

∂t
=

∑
in

ṁinψin −
∑
out

ṁoutψout +
∑
i

(
1− Tref

Ti

)
Q̇i − Ẇcv − Ėdest. (2.32)
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(a) Heater heat transfer rate.
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(b) Cooler heat transfer rate.
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(c) Mechanical power.
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(d) Mass flow rate.
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(e) Discharge temperature.

Figure 2.6: TC-3RD model validation—simulated (sim) vs experimental (exp, markers)
performance indicators as a function of pressure ratio rp at three charged pressures
pcharged ∈ {30, 40, 56} bar.

At periodic steady state, the transient storage term is zero, leading to:

Ėdest =
∑
in

ṁinψin −
∑
out

ṁoutψout +
∑
i

(
1− Tref

Ti

)
Q̇i − Ẇcv. (2.33)

The term Ėdest is obtained directly from the TC-3RD model outputs by averaging over
one cycle, ensuring that transient storage effects are eliminated. This approach allows
irreversibilities to be attributed to each internal component of the thermal compressor.
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2.5.2 Results

The mean pressure, rotational speed, and heater temperature were varied at different
pressure ratios to quantify the exergy destroyed in each component of the TC. The experi-
mental data analyzed in Section 1.3.6.2 highlighted a strong influence of charged pressure
and pressure ratio, with a smaller effect of rotational speed and heater temperature. How-
ever, the experimental ranges were limited, especially for charged pressure, rotational
speed, and heater temperature. The TC-3RD model was therefore used to extend the
ranges and investigate a broader operating map: heater temperature Th ∈ {500, 650, 800}
°C, rotational speed ωm ∈ {100, 180, 240} rpm, and charged pressure pcharged ∈ {30, 50, 70}
bar.

Figure 2.7 shows the breakdown of exergy destruction among the TC components at
fixed operating conditions: ωm = 180 rpm, Th = 650 °C, pcharged = 50 bar, and rp = 1.33.
The main outcome is that exergy is primarily destroyed in the regenerator, as expected
given the large temperature gradients and pressure drops. The cooler and heater con-
tribute comparably, while the cylinder has the smallest share.

Figure 2.8a shows the effect of heater temperature, indicating that increasing Th

slightly improves exergy efficiency.

Figure 2.8b illustrates the influence of rotational speed. The highest exergy efficiency
occurs at low ωm, and efficiency decreases significantly as rotational speed increases, in-
dicating limited benefit from operating at high speeds.

Figure 2.8c demonstrates the strong impact of charged pressure. The extended range
(30–70 bar) shows that exergy efficiency improves between 30 and 50 bar but deteriorates
at 70 bar, suggesting that an optimum lies in between. This result confirms the trend
already observed in experimental data.

A key outcome across all cases is the identification of a universal optimum pressure
ratio around rp = 1.2–1.4, after which efficiency deteriorates regardless of the varied
parameter. This makes rp a robust design and control target.

Cold side

11.7%Hot side

9.1%

Regenerator

68.7%

Cylinder

10.5%

Figure 2.7: Breakdown of exergy destruction by component at representative operating
conditions of the TC.
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Figure 2.8: Exergy efficiency of the TC as a function of pressure ratio under three different
operating conditions: (a) heater temperature Th, (b) rotational speed ωm, and (c) charged
pressure pcharged,

2.6 Conclusion

In this chapter:

• A detailed third-order physical model for a two-valve Stirling-type TC was devel-
oped, based on mass, energy, and momentum balance equations applied to dis-
cretized CVs using the FV method. The suction and discharge valve flow rates were
modeled, and empirical correlations for heat transfer and friction coefficients were
implemented.

• The resulting model is a system of connected ODEs, referred to as the TC-3RD model.
It takes operating conditions and component geometries as inputs and predicts the
thermophysical properties of CO2 across the CVs during oscillation. Performance
indicators are obtained as averages over one periodic steady cycle.

• A procedure was defined to accelerate convergence to periodic steady state. Initial
conditions and the solving procedure of the TC-3RD model were detailed.

• TC-3RD predictions of internal variations were evaluated against one CFD-simulated
operating point at periodic steady state, showing good agreement.
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• Steady-state experimental data were used to evaluate performance indicators. The
model predicted with the following average relative deviations:

– 14% for heater heat transfer rate,

– 28% for cooler heat transfer rate,

– 67.3% for mechanical power,

– 13.5% for mass flow rate,

– 13 K for discharge temperature.

• Although improvement is still possible, the TC-3RD model enabled component-level
exergy analysis. Results showed that exergy destruction is dominated by the regen-
erator (around 70%), followed by the cooler, heater, and cylinder. Future design
optimizations should therefore prioritize regenerator performance.

• Extended simulations revealed that an optimal pressure ratio exists around 1.2–1.4,
after which efficiency decreases. Increasing charged pressure from 30 to 50 bar
improves exergy efficiency, but at 70 bar performance drops sharply, suggesting an
optimum in between. Increasing heater temperature slightly improves efficiency,
though the effect was less evident in experimental data.

The TC-3RD model is thus a detailed physical representation of the Stirling-type ther-
mal compressor. While its accuracy is limited by empirical correlations and unmodeled
physical effects, and in the absence of internal measurements for further validation, the
model remains a valuable tool for assessing component-level exergy destruction and the
influence of operating conditions.
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Chapter 3

Thermal compressor empirical
models

Abstract

Although the TC-3RD physical model developed in the previous chapter is important for
understanding the physics, its resulting accuracy is not sufficient for reliable data gen-
eration. Therefore, in this chapter we use company-recorded data, in addition to the
experimental data from Chapter 1, to develop data-driven models. These models are po-
tentially fast and reliable, making them good candidates for integration into a dynamic
heat pump cycle model.

In Section 3.1, the collected dataset is extended with data available from earlier tests.
The data is then re-assessed and filtered using a Gaussian process regression (GPR) ap-
proach. Section 3.2 introduces three types of machine learning (ML) models to predict
the performance indicators of a TC based on main inputs that are easily measured. The
first type is regression models, including linear (LR) and polynomial (PR). The second is
GPR, and the third is an artificial neural network (ANN). These models are trained on the
collected data and evaluated using defined performance metrics. Based on these metrics,
the three models are compared in Section 3.3.

3.1 Data extension and re-assessment

The collected data lacked variations on heater temperature which is an important input.
Extending the data ranges is necessary for a more general performance characterization.
For this, we use available data from previous tests performed by colleagues. The tests were
carried on same TC technology also in a single stage cycle. The main difference was that
the heater was electrically heated, so no gas combustion has taken place and the electric
resistance power for heating is assumed to be absorbed by the TC. Therefore, no heat loss
is considered and it is omitted. The total collected data from all the experiments combined
is equal to 251 samples. Data is re-assessed again for filtering also using GPR model and
20 samples are found to be outliers thus excluded from the dataset. The filtered new
dataset is of Ns = 231 samples. The new inputs ranges are summarized in Table 3.1.

69



70 Chapter 3. Thermal compressor empirical models

Symbol Description Range Unit

psuc Suction pressure 22.6–48.7 bar
pdis Discharge pressure 34.2–64.2 bar
ωm Rotational speed 60–260 rpm
Th Heater temperature 500–800 ◦C

Table 3.1: TC input variables after data extension.

Figure 3.1: Inputs and outputs of TC-ML models.

3.2 Machine learning models

Most Stirling machine modeling efforts have relied on physical equations, with the re-
sulting models used to optimize performance based on geometry or operating conditions.
However, the availability of experimental data around targeted TC across various operat-
ing conditions makes it attractive to develop ML models for this optimization task. While
these models may lack certain physical insights, they offer fast and reliable performance
predictions. The TC-ML models derived in this section take the input vector and predict
the output vector that are summarized in Figure 3.1.

3.2.1 Regression models

Regression models are fundamental tools in statistics and ML for quantifying the relation-
ship between a dependent variable and one or more independent variables James et al.
(2013). The goal of regression analysis is to approximate the expected value of the de-
pendent variable based on the values of the independent variables. For example, Yazar
et al. (2017) compared different regression models for predicting compressor and turbine
parameters. Among these models, Linear Regression (LR) is the simplest form, assuming
a linear relationship between inputs and outputs. Let u(n) ∈ Rl be the input vector of
sample n, where l = 6 in our case, and let y(n) denote the corresponding output. The LR
model predicts

y
(n)
LR = α0 +

l∑
j=1

αj u
(n)
j , (3.1)
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where α0 is the intercept, αj are the regression coefficients, and u
(n)
j is the j-th input

feature of sample n. The optimal coefficients α are determined by solving the ordinary
least squares (OLS) minimization problem:

min
α

Ns∑
n=1

(
y
(n)
LR − y

(n)
meas

)2
, (3.2)

where Ns is the number of samples. While LR assumes linearity, it can be naturally ex-
tended to Polynomial Regression (PR) by augmenting the input vector with higher-order
terms of u(n).

The above formulation is implemented in Python using scikit-learn. Specifically,
PolynomialFeatures(degree) is applied to generate polynomial expansions of the input
features, which are then fitted using LinearRegression. Training and validation sets are
obtained by an 80/20 split with train_test_split, and model performance is assessed
through metrics such as R2 and mean absolute percentage error (MAPE). This provides a
simple yet effective baseline for comparing against more advanced ML models.

3.2.2 Gaussian process regression

The second type of ML model considered in this work is Gaussian process regression
(GPR). Following the definitions of Rasmussen (2004), a Gaussian process (GP) is a non-
parametric and probabilistic model that does not assume a fixed functional form, but
instead defines a distribution over functions through a covariance kernel. In addition to
detecting data outliers (Section 1.3.5), Quoilin and Schrouff (2016) applied GPR to an ex-
pander and absorption machine dataset, resulting in high accuracy comparable with that
of an ANN, but with fewer tuning parameters. We reserve GP for the prior process and use
GPR for the regression model throughout.

Given training data {(u(n), y(n))}Ns
n=1, the GPR predictive distribution at a new input

u∗ can be expressed as

yGPR(u∗) =

Ns∑
n=1

βn κ(u∗,u
(n)) + ε, (3.3)

where βn are weights obtained from the inversion of the regularized kernel matrix, κ(·, ·)
is the kernel (covariance) function, and ε is a noise term. The latent function is assumed
to follow a GP prior:

f(u) ∼ GP
(
m(u), κ(u,u′)

)
, (3.4)

where m(u) is the mean function and κ(u,u′) defines the covariance between two input
vectors u and u′. The choice of kernel is critical, as it encodes prior assumptions about
the function, such as smoothness, periodicity, or linearity. In this work, the radial basis
function (RBF) kernel is used:

κRBF(u,u
′) = Varf · exp

(
−∥u− u′∥2

2ℓ2s

)
, (3.5)

where ℓs is the length-scale hyperparameter controlling smoothness, and Varf is the signal
variance. This formulation allows the GPR model to flexibly capture nonlinearities in the
mapping u 7→ y, while also providing predictive uncertainty estimates.
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The GPR formulation above is implemented in Python using scikit-learn. For each
output dimension, a GaussianProcessRegressor is instantiated with an anisotropic RBF
kernel. Kernel hyperparameters are optimized by maximizing the log-marginal likelihood.

3.2.3 Artificial neural network model

Artificial Neural Networks (ANNs) are a cornerstone of ML, inspired by the structure and
functional aspects of biological neural networks Haykin (2009). Ziviani et al. (2018)
demonstrated the application of ANNs for a scroll expander and an injected scroll com-
pressor, achieving higher accuracy than semi-empirical models, since ANNs do not rely on
prior assumptions and can be directly trained with experimental data. An ANN consists
of interconnected processing units, called neurons, which are arranged into layers (input,
hidden, and output) to process data. Each neuron computes a weighted sum of its inputs,
adds a bias term, and passes the result through an activation function σ(·) to introduce
nonlinearity before propagating the signal to subsequent layers.

Let u(n) ∈ Rl denote the input vector of sample n, and wj the weight associated with
its j-th feature. The output of a generic neuron can be expressed as

y
(n)
ANN = σ

 l∑
j=1

wju
(n)
j + b

 , (3.6)

where b is a bias parameter that shifts the activation independently of the inputs. The
structure of a generic ANN neuron is illustrated in Figure 3.2.

Figure 3.2: Structure of a generic neuron in the ANN model.

In regression tasks, the ANN learns the weights and biases through training, where the
objective is to minimize prediction error between model-predicted outputs and measured
data. This structured approach enables ANNs to capture complex nonlinear relationships
within the data, thereby improving predictive accuracy on unseen samples. Following this,
an ANN model is developed for the tested TC. The model for each output variable consists
of an input layer, a hidden layer with up to 300 neurons, and a single-neuron output layer.
The rectified linear unit (ReLU) activation is used in the hidden layer, while the output
neuron is linear to suit regression tasks. The Adamax algorithm is chosen for training, and
the mean squared error (MSE) serves as the loss function:

MSE =
1

Ns

Ns∑
n=1

(
y
(n)
pred − y(n)meas

)2
. (3.7)
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Additional hidden layers or neurons could further increase accuracy, though at the risk
of overfitting. The implementation is carried out using Keras functions by Chollet et al.
(2015), a high-level neural network API integrated with TensorFlow.

3.2.4 Common implementation

The re-assessed data from Section 3.1 is used to fit the three described models: PR, GPR,
and ANN. In total, 80% of the available data is randomly selected for training, while
the remaining 20% is kept as test data for validation. Let ymeas denote the measured
values and ypred the corresponding model predictions. A common indicator of regression
model performance is the coefficient of determination (R2), which quantifies how well the
predictions follow the measured data. It is defined as

R2 = 100% ·
Cov(ymeas, ypred)√

Cov(ymeas, ymeas) · Cov(ypred, ypred)
, (3.8)

where Cov(·, ·) denotes population covariance. A value close to 100% indicates an almost
perfect fit, though excessively high values may also suggest overfitting. To complement
this, the MAPE is introduced to evaluate prediction accuracy in relative terms:

MAPE = 100% · 1

Ns

Ns∑
n=1

∣∣∣∣∣∣y
(n)
pred − y

(n)
meas

y
(n)
meas

∣∣∣∣∣∣ , (3.9)

where Ns is the number of samples. A value of 0% indicates a perfect match between pre-
dictions and measurements. MAPE is used for evaluating the accuracy of power and flow
rate predictions. For temperature outputs, the mean absolute error (MAE) is additionally
to reflect absolute deviations:

MAE =
1

Ns

Ns∑
n=1

∣∣∣y(n)pred − y(n)meas

∣∣∣ . (3.10)

Finally, to ensure scale uniformity across the input variables, both training and validation
datasets are normalized to the range (0.1, 0.9) according to

unorm = 0.8 · u− umin

umax − umin
+ 0.1, (3.11)

where umin and umax denote the minimum and maximum of the input vector u, and unorm
is the normalized result.

3.3 Models accuracies

The models accuracies are compared on the test data using parity plots shown in Figure
3.3. The x-axis and y-axis contain the measured and predicted performance indicators
respectively. The solid black line corresponds to an ideal line indicating a perfect fit. From
observing the plots, we see that GPR model exhibited the highest prediction accuracy,
closely followed by the ANN predictions. On the other hand, PR model failed to achieve
similar high accuracies specially in predicting ṁf and Ẇmech.
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Figure 3.3: TC-ML models accuracy comparison on main outputs: (a) heater heat transfer
rate, (b) cooler heat transfer rate, (c) mechanical power, (d) mass flow rate, and (e)
discharge temperature.

To ensure the robustness and generalization capability of the trained models, a 5-fold
cross-validation strategy is employed. In this approach, the entire dataset is split into five
equal parts, and the models were iteratively trained on four parts and validated on the re-
maining one. This procedure is repeated five times, each time using a different fold as the
test set. For each output target, performance metrics such as the R2, MAPE, and MAE are
computed in each fold and then averaged. This allowed a more reliable and statistically
sound comparison between models, as it mitigates the risk of overfitting or underfitting to



3.4. Conclusion 75

a single random data split. Cross-validation also enabled a clearer understanding of the
variability in model accuracy across different subsets of the data.

The results in Table 3.2 confirm the superior performance of the GPR model across
all targets. GPR consistently achieves the highest R2 scores and the lowest MAPE val-
ues, indicating excellent fit, accuracy, and generalization. The ANN model also performs
strongly, though slightly behind GPR. In contrast, PR is not suitable for mass flow rate and
mechanical power—its deviations are large—although it provides acceptable predictions
for the other outputs.

Since the selected ML model will be integrated into a dynamic heat pump model,
prediction latency is also important. GPR requires only 3.4 ms per iteration, compared to
660 ms for ANN models, making GPR roughly 200 times faster. This is justified considering
that ANNs involve far more hyperparameters. Accordingly, the GPR model is chosen as a
reliable predictor of TC performance indicators.

Target Model R2 [%] MAPE [%] or MAE [K]

ṁf

PR 97.0 ± 1.4 11.0 ± 2.0
ANN 98.5 ± 1.0 6.7 ± 2.3
GPR 99.7 ± 0.1 3.7 ± 0.6

Q̇h

PR 98.2 ± 0.6 49.8 ± 4.5
ANN 98.5 ± 0.9 42.8 ± 9.5
GPR 99.2 ± 0.7 27.6 ± 5.3

Q̇k

PR 98.0 ± 0.5 36.7 ± 7.0
ANN 98.9 ± 0.3 27.8 ± 6.3
GPR 99.1 ± 0.2 23.9 ± 2.5

Ẇmech

PR 91.4 ± 1.6 35.1 ± 5.8
ANN 97.8 ± 1.5 11.2 ± 1.9
GPR 99.1 ± 0.2 9.3 ± 3.4

Tdis

PR 97.5 ± 1.0 1.1 ± 0.2
ANN 97.7 ± 1.9 1.1 ± 0.7
GPR 99.3 ± 0.3 0.5 ± 0.0

Table 3.2: Cross-validation results of TC-ML models across performance-indicator outputs.
Metrics shown are mean ± standard deviation.

3.4 Conclusion

In this chapter:

• The dataset was extended and re-assessed: 251 samples combined from multiple
campaigns, with 20 outliers detected via GPR uncertainty filtering, resulting in Ns =

231 for training and testing.

• Several machine learning models were proposed, including regression models such
as LR and PR, ANN, and GPR. The structure of each and the corresponding Python
implementation are described. These are trained with 231 real data samples from



76 Chapter 3. Thermal compressor empirical models

previous experimental work, by taking main operating conditions as inputs and pre-
dicting performance indicators.

• The models’ accuracies were tested on unseen test data, revealing that GPR outper-
forms other models—slightly compared to ANN, but significantly compared to PR. A
k-fold cross-validation is used to ensure that models are reliable and can be general-
ized over data ranges. Additionally, GPR demonstrated 200 times faster predictions
thus more suitable to be integrated in a dynamic heat pump cycle.

In the next chapter, we integrate the selected surrogate into a complete three-stage TC
heat pump application and associated control framework.
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Chapter 4

Introduction

Abstract

Following the derivation of a data-driven model for the TC, the second part of this thesis
extends the analysis to the complete thermal compressor heat pump (TCHP) cycle devel-
oped by Boostheat. The cycle employs a three-stage TC in series, with CO2 as the working
fluid. To set the stage, the first chapter provides a general review of transcritical CO2 vapor
compression cycles (VCCs) and then introduces the targeted TCHP in this work together
with the corresponding experimental campaign.

First, the motivation and challenges of using CO2 as a refrigerant are presented in
Section 4.1. Section 4.2 defines a basic single-stage transcritical CO2 cycle and summa-
rizes architectural enhancements developed for such cycles. Section 4.3 then presents the
Boostheat TCHP as a three-stage system operating with CO2 in the transcritical regime,
describes the test bench and operating procedures, details the system actuators and their
influence on the process, and provides energy expressions derived from measurements.
Finally, Section 4.3 specifies the two types of data collected—(1) transient and (2) steady-
state—to be used later for model development and validation.

4.1 Carbon Dioxide as a refrigerant

4.1.1 Historical review

Until the 1930s, natural refrigerants such as carbon dioxide (CO2), ammonia (NH3), and
hydrocarbons were commonly used in mechanical refrigeration systems. The introduction
of the first synthetic refrigerant, R-12 (a chlorofluorocarbon (CFC)), in 1930 marked a
turning point. Synthetic refrigerants such as CFCs and hydrochlorofluorocarbons (HCFCs)
gained popularity due to their chemical stability, non-flammability, and ease of handling,
gradually replacing natural refrigerants in many applications. The harm done to the ozone
layer by such refrigerants did not come to notice until 1970.

In 1987, with the introduction of the Montreal Protocol (1987), there was a significant
shift away from CFC and HCFC refrigerants due to their high ozone depletion potential
(ODP). While the Montreal Protocol focused on phasing out ozone-depleting substances,
many of those substances were also strong greenhouse gases. Their replacements, hy-
drofluorocarbons (HFCs), were safer for the ozone layer but had high global warming
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potential (GWP). This shifted attention to climate change and led to the Kyoto Protocol
(1997), which was the first international treaty to set binding emission reduction targets
for developed countries. Later, the Paris Agreement (2015) expanded the effort by involv-
ing all countries and setting a global target to limit warming to well below 2°C. These
agreements encouraged a return to natural refrigerants such as CO2, valued for their low
environmental impact.

The study by Lorentzen (1994) revived the idea of using CO2 especially in transcrit-
ical cycles and motivated much research afterwards to study CO2 as a refrigerant. The
author presented it as a promising fluid and demonstrated that, with optimized operating
conditions, a high competing coefficient of performance (COP) could be achieved.

Kim et al. (2004) argued that the natural refrigerant CO2 is an alternative to synthetic
refrigerants because it has a very low GWP, is taken as the reference fluid, and does not
contribute to ozone layer depletion (zero ODP). Moreover, it offers certain advantages
over other natural refrigerants: it is non-toxic, non-flammable, and non-corrosive, and
can operate in a vapor compression cycle (VCC) over a wide temperature range.

4.1.2 Unique properties

Along with its environmentally friendly characteristics, CO2 exhibits two distinctive ther-
mophysical properties that set it apart from conventional refrigerants. In this thesis, we
use transcritical to refer to the cycle configuration and supercritical to refer to the thermo-
dynamic state of CO2.

Its low critical temperature (Tcrit = 31.1 °C). For instance, in conventional subcritical
VCCs, this low critical temperature becomes a challenge: it restricts the heat delivery
temperature to below Tcrit, thereby narrowing the effective operating range. As the system
approaches Tcrit, the enthalpy of vaporization drops significantly, which negatively affects
both heating capacity and overall performance (Kim et al. (2004)). However, CO2’s low
critical temperature provides the opportunity to operate in a transcritical manner.

Its high critical pressure (pcrit = 73.7 bar). Subcritical cycles typically operate at pres-
sures of 60–70 bar, whereas transcritical systems can reach pressures ranging from 80 to
110 bar or more. Although such high pressures pose challenges in terms of compressor
capability and component durability, they also present thermodynamic advantages. In
particular, CO2 benefits from high vapor density and a large volumetric heating capacity,
which allow for a reduced circulating mass flow to meet the same heating demand. This
enables the use of smaller components and more compact system designs, as stated by
Cavallini et al. (2005).

To illustrate the transition behavior around the critical point, Figure 4.1a shows the
pressure–temperature (p–T ) diagram. Three distinct fluid states are relevant in the super-
critical region: supercritical fluid (pressure and temperature both above critical values),
supercritical liquid (pressure above but temperature below the critical point), and su-
percritical vapor (temperature above but pressure below the critical point). Figure 4.1b
shows the pressure–enthalpy (p–h) diagram. The saturation dome clearly delimits the
two-phase region, while the dashed line at the critical pressure separates the subcritical
domain—comprising liquid, two-phase, and vapor states—from the supercritical domain.
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Figure 4.1: CO2 (a) p–T and (b) p–h diagrams with different states generated with the
CoolProp library.

4.2 Transcritical CO2 cycle

Several reviews have documented advances in transcritical CO2 cycles. Starting with
Austin and Sumathy (2011), the focus has been on the fundamentals of transcritical op-
eration, component-level improvements, and the impact of different configurations on
system performance. More recently, Song et al. (2022) expanded this perspective across
applications, highlighting the growing role of CO2 in building heating, mobility, and com-
mercial refrigeration, as well as the increasing importance of intelligent control strategies
in transcritical CO2 cycles.

4.2.1 Basic single-stage

A VCC transfers heat from a low-temperature reservoir to a high-temperature one, typi-
cally using mechanical power. In the conventional (subcritical) case, heat rejection occurs
below the critical point: the high-pressure heat exchanger acts as a condenser and the
working fluid condenses, benefiting from latent-heat release. By contrast, when heat re-
jection occurs above the critical point, condensation is not possible; heat is removed by
single-phase sensible cooling (gas cooling), and the condenser is then referred to as a gas
cooler. This operating mode is termed transcritical.

As shown in Figure 4.2a, a classical transcritical CO2 VCC consists of four essential
components: compressor, gas cooler, expansion valve, and evaporator. The cycle is gov-
erned by four key thermodynamic processes (Figure 4.2b). From state 1 to 2 (compres-
sion), CO2 enters the compressor as a superheated vapor at relatively low pressure and
is compressed to supercritical conditions, increasing both pressure and temperature; this
process is ideally isentropic but is polytropic in practice due to irreversibilities. From
state 2 to 3 (gas cooling), heat is rejected to the environment at approximately constant
high pressure without a phase change, producing a marked drop in temperature and en-
thalpy. From state 3 to 4 (expansion), the high-pressure fluid undergoes an isenthalpic
expansion through an expansion valve, causing a sharp pressure and temperature drop
with partial vaporization. Finally, from state 4 to 1 (evaporation), the refrigerant absorbs
heat from a low-temperature source at low pressure, fully evaporates, and increases in
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enthalpy to close the cycle.

While this section discusses a basic single-stage transcritical CO2 cycle, several archi-
tectural modifications have been developed to address CO2’s challenging characteristics
and enhance performance. Some of these are mentioned next.
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Figure 4.2: Transcritical CO2 (a) basic cycle scheme and corresponding (b) p–h diagram.

4.2.2 Architectural modifications

Several modifications to single-stage cycles have been proposed to enhance performance.
For instance, the use of two-stage instead of single-stage CO2 cycles dates back to the
19th century, primarily to mitigate the high discharge temperatures and pressures that
place mechanical stress on compressors (Kim et al. (2004)). In such configurations, a
flash tank (phase separator) or compressor intercooling is often incorporated to lower the
suction temperature of the second-stage compressor. Lorentzen (1994) outlined several
advanced CO2 cycle architectures, including two-stage cycles, cycles with internal cooling,
and cycles employing an expander in place of an expansion valve.

In particular, Robinson and Groll (1998) proposed expansion work recovery using an
expander to reduce throttling losses caused by large pressure drops, reporting a 25%
improvement in COP. Cecchinato et al. (2009) showed that combining intercooling with
an internal heat exchanger in a two-stage cycle resulted in COP gains of nearly 30%.
Building on the two-stage concept, Agrawal et al. (2007) optimized a transcritical CO2

cycle and found that flash-gas bypass configurations outperformed those using flash tanks
or compressor intercooling. On the other hand, Elbel and Hrnjak (2008) experimentally
demonstrated that ejector integration yielded a 7% COP improvement.

Overall, although CO2 is an environmentally friendly refrigerant needed to reduce
global warming and ozone-layer depletion, its challenging characteristics make it a unique
fluid that must be handled with tailored architectures. In the following, we turn our
attention to the targeted three-stage CO2 TCHP developed by Boostheat, which integrates
and adapts several of these architectural enhancements.
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4.3 TCHP architecture and experimental setup

This section introduces the Boostheat thermal compressor heat pump (TCHP)—a three-
stage transcritical CO2 cycle for residential heating—and its experimental setup. We first
present the process architecture and operating principle, along with the experimental con-
ditions. The unit under test is a commercial product installed in the Boostheat laboratory;
consequently, instrumentation is limited to production-grade sensors. We then specify
these sensors and their corresponding measurements, as well as the component charac-
teristics. Finally, the actuators and system inputs, together with their interactions with
outputs, are described, and the energy expressions to be used later for model validation
and control assessment are defined.

4.3.1 System architecture and operation

As illustrated in Figure 4.3a, the cycle of a TCHP consists of three TCs, three buffers
(BUFs), a gas cooler (GC), an evaporator (EV), an internal heat exchanger (IHX), a flash
tank (FT), high- and low-pressure expansion valves (HPV and LPV), one way valve (OWV),
and a fume heat exchanger (FHX). The process occurs on the CO2, water, TCs, and glycol
sides as follows:

On the CO2 side (green), the state changes are illustrated in the T–s diagram shown in
in Figure 4.3b: At evaporation pressure, CO2 enters the TC1 and exits at a higher pressure.
It is then cooled inside BUF1 by a water flow and mixed with the vapor exiting the FT
through a OWV at point MIX before entering the TC2. The CO2 then exits at a higher
intermediate pressure and is cooled again inside BUF2 before entering the TC3. The
pressure is then dampened in BUF3 which has no passage for circulating water. In fact, all
BUFs after each TC also act dampers for the pressure waves resulting from compression.
At its highest pressure level and temperature, CO2 rejects heat into the water entering the
GC. It is then cooled again while passing through one side of the IHX, being cooled by
the CO2 exiting the EV from the other side. After exiting the IHX, the CO2 refrigerant is
expanded in the HPV and enters the FT. There, the gaseous fraction is re-injected to the
suction of the TC2 through a OWV, while the remaining liquid expands in the LPV before
entering the EV, where it evaporates and becomes superheated. Finally, additional heat is
absorbed in the IHX, completing the cycle and returning the fluid to its initial state.

On the water side (red), heat is recovered from several heat exchangers. A smaller
portion of the water flow is directed to the BUFs and the TCs, where it is further subdivided
between the first two BUFs and then collected before passing through the TC coolers in
sequence from the first to the third stage. The larger portion of the return water goes
to the gas cooler, after which the two streams mix again before entering the FHX, where
the combustion fumes are cooled. The heated water finally leaves as supply water to the
user’s end.

On the TCs side: The top parts of the first two TCs (i.e., the heaters) are connected
to a burner fan, which delivers a methane/air mixture or burning gas (orange) to the top
surfaces of their heaters, where it is ignited to heat the surfaces. The resulting fumes (in
gray) from both chambers are collected on the top of TC3 and used to heat its heater
surface. The fumes are then directed to the FHX, where they are cooled before finally
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leaving.

On the glycol side (blue): The EV is heated by a glycol mixture of monopropylene
glycol and water (MPG). MPG is selected for its low freezing point, allowing the mixture
to withstand low outdoor temperatures without solidifying.
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Figure 4.3: TCHP (a) test Bench layout with the corresponding (b) T-s diagram of CO2 in
the cycle (maybe add numbering).

4.3.2 Experimental conditions

To mimic real environmental or household conditions around the TCHP during testing,
two other test benches were designed and installed at the Boostheat laboratory for water
and glycol mixture circulation. Glycol mixture interacts with the evaporator, so its tem-
perature is intended to be close to the outdoor temperature, therefore it is cooled using



4.3. TCHP architecture and experimental setup 85

a chiller to regulate its temperature to a desired testing point. While for the heating the
water in the TCHP, the water interacts with a cold-water source to simulate a real house
conditions.

4.3.3 Components

TCHP components and fluids (Figure 4.3a) characteristics are summarized in Table 4.1.

Component Type Volume [L] Area [m2]

Working fluid CO2 – –
Primary heat source fluid Burning gas – –

Secondary heat source fluid Glycol mixture – –
Heat sink fluid Water – –

IHX Vessel tube 2.5 –
BUF3 Vessel tube 1.8 –

BUF1 & 2 Vessel tube 2.5 –
FT Vertical tank 2 –
GC Brazed plates 1.65 1.0422
EV Brazed plates 1.917 1.235

LPV, HPV Electronic expansion valves – –

Table 4.1: TCHP specifications of components and fluids.

4.3.4 Measurements

The sensor types deployed on the TCHP (Figure 4.3a) and their corresponding accuracies
are summarized in Table 4.2. Pt100 sensors are used on the return and supply water
lines as well as at the inlet and outlet of the glycol circuit, chosen for their high precision.
On the CO2 cycle, Type T thermocouples are placed at the exits of the gas cooler and
evaporator, while Type K thermocouples are used to measure the heater temperatures, as
they can withstand high operating temperatures. A Huba Control Type 520 sensor is used
to measure the pressures at the evaporator and gas cooler exits. A Huba Control Type 200
vortex sensor is used to measure the volumetric flow in the water and glycol circuits. The
following section discusses the cycle actuators and the influence of the inputs on the TCHP
outputs or measurements.

Sensor Accuracy

Pt100 (RTD) ±(0.15 + 0.002T ) ◦C
Type T thermocouple ±1 ◦C
Type K thermocouple ±1.5 ◦C or ±0.4%

Huba Control Type 520 ±0.3%

Huba Control Type 200 ±1%

Table 4.2: TCHP test bench deployed sensor types and accuracies.



86 Chapter 4. Introduction

4.3.5 Actuators and system inputs

The TCHP system’s processes and outputs are influenced by several inputs, which are
depicted in Figure 4.4. The coupling between the inputs and the outputs is explained in
the following statements:

• The burner fan speed (ωbf) regulates the flow rate of the burning gas (primary heat
source), thus influencing the heater temperatures (Th1 and Th2), which consequently
affect the mass flow rates, discharge temperatures, and heat rejected by the coolers
in the TCs (As we saw in Part I). Also, ωbf also has a direct influence on the heat
exchanged with the fume heat exchanger, since it affects the fume temperature and
flow rate. Therefore, ωbf is considered a crucial input that influences the whole
system operation.

• The percentage opening of the high-pressure valve (φhpv) influences the thermody-
namic conditions (the mass flow rate) at the exit of the gas cooler, thus affecting the
gas cooler exit temperature (T8) and the high pressure (p8).

• The mass flow rate of CO2 entering the evaporator is directly affected by the percent-
age opening of the low-pressure valve (φlpv), which directly affects the superheat
(∆Tsh), defined as the difference between the TC1 suction temperature (T1) and the
evaporator outlet temperature (T14).

• The motor speeds of the three TCs (ωm1, ωm2, and ωm3), where the first affects the
thermodynamic condition at the outlet of the evaporator and the second two affect
the thermodynamic conditions at the inlet of the gas cooler. They also influence
the heat recovered by the coolers. However, their influence is less critical than the
burner fan speed, considering that TCHP operation mainly relies on gas rather than
electricity.

• On the evaporator side, the secondary fluid inputs are the glycol mixture mass flow
rate (ṁmpg) and the inlet temperature (Tmpg,in). The mass flow rate is typically
regulated to maintain a prescribed temperature difference between the inlet and
outlet glycol streams, while the inlet temperature is set according to the outdoor
conditions emulated in the test bench.

• The water circulation through several TCHP heat exchangers is governed by the
water mass flow rate (ṁw) and the return water temperature (Tw,ret). The mass
flow rate is usually regulated to guarantee a certain temperature difference between
the return and supply water, while the return temperature depends on the heating
demand imposed on the system.
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Figure 4.4: TCHP scheme showing the inputs and the outputs.

4.3.6 Energy Expressions

In an electrically driven heat pump, the COP is defined as the ratio between the total
heat recovered and the electric power consumed by the cycle. In this work, heat is the
primary source of energy. With a small contribution of electricity compared to heat, and
for simplicity, a TCHP is evaluated with a thermal COP (COPth), defined as the ratio
between the total heat recovered (Q̇rec,tot) and the fuel thermal power consumed (Q̇fuel):

COPth =
Q̇rec,tot

Q̇fuel

(4.1)

The circulating water recovers heat from several heat exchangers (Figure 4.3a), so the
total heat recovered is calculated as follows:

Q̇rec,tot = Q̇gc + Q̇k1 + Q̇k2 + Q̇k3 + Q̇buf1 + Q̇buf2 + Q̇fhx (4.2)

which can also be calculated from the temperature difference between the return and
supply water:

Q̇rec,tot = ṁwcpw(Tw,sup − Tw,ret) (4.3)

while the fuel thermal power is given by:

Q̇fuel = ṁCH4 · LHVCH4 , (4.4)

where ṁCH4 is the methane mass flow rate, correlated here as a function of burner fan
speed:

ṁCH4 =
(
ωbf − 1183

)
2.49× 10−8 (4.5)

where the methane lower heating value is LHVCH4 = 50 MJkg−1. An excess-air factor of
EXair = 0.2 is assumed. The resulting fume mass flow rate (equal to the air–fuel mixture
mass flow rate by conservation of mass) is:

ṁfume = [ 1 + (1 + EXair) rs ] ṁCH4 (4.6)



88 Chapter 4. Introduction

where rs = 17.125 is the stoichiometric air-to-fuel mass ratio for complete combustion of
methane. On the evaporator side, the heat-exchange rate is computed from the tempera-
ture difference of the glycol mixture between inlet and outlet:

Q̇ev = ṁmpg cpmpg (Tmpg,in − Tmpg,out) (4.7)

These equations quantify TCHP performance and will be used later to validate the model
and to evaluate the control strategy. With the system architecture, instrumentation, and
performance metrics defined, we now present the experimental datasets used for model
development and validation.

4.4 Collected experimental data

This section describes the data collected at Boostheat for model development and vali-
dation. The data are divided into two types: (1) transient—open-loop step tests used to
capture the system’s dynamic behavior. These data were monitored and collected by us,
and their procedure and architecture have already been described in Section 4.3.1; and
(2) steady-state—15 samples of TCHP outputs at different operating conditions. These
data were collected by colleagues at Boostheat on a similar TCHP cycle to the one intro-
duced, but equipped with additional sensors. It was analyzed in Hosseinzade and Sayyaadi
(2015).

4.4.1 Transient

The TCHP is excited by step tests on the inputs, with the aim of capturing the transient
responses of the corresponding outputs shown in Figure 4.4. For plotting, we focus on
the variables most relevant to control development: burner fan speed ωbf (consequently
heater temperatures Th1 and Th2), low-pressure valve opening φlpv, and high-pressure
valve opening φhpv. For the displayed outputs, we select those most affected by each
varied input (Section 4.3.5), mainly for the sake of clarity and simplicity. Thus, we present
here only a sample of the transient tests that are most relevant.

In each test, one input from Table 4.3 is varied, while the corresponding output re-
sponses from Table 4.4 are monitored, and the remaining inputs are fixed at the constant
values given in Table 4.5.

Variable Range Unit

ωbf 2000–9500 rpm
φhpv 11–100 %
φlpv 11–100 %
ωm1 60–240 rpm
ωm2 60–240 rpm
ωm3 60–240 rpm

Table 4.3: TCHP manipulated input variables, operating ranges, and units.

The varied low-pressure valve opening φlpv and corresponding outputs are plotted in
Figure 4.5. Closing the valve causes a decrease in mass flow rate entering the evaporator.
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Variable Range Unit

Th1 300–800 ◦C
Th2 300–800 ◦C
Tw,sup 24.5–49.6 ◦C
T1 − T14 0–14 K

p8 64.4–86.3 bar

Table 4.4: TCHP controlled output variables, typical value ranges, and units.

Parameter Value Unit

ωbf 4411 rpm
Tw,ret 28 ◦C
Tmpg,in 6 ◦C
ṁmpg 280 g.s−1

ṁw 230 g.s−1

ωm1 150 rpm
ωm2 150 rpm
ωm3 150 rpm
φhpv 50 %
φlpv 50 %

Table 4.5: TCHP inputs kept constant during transient tests.

This decreases the low pressure and consequently increases the superheat, considering
that the secondary heat source temperature (glycol mixture inlet temperature) is at a
constant value. However, opening the valve reverses this influence.

The varied high-pressure valve opening φhpv and corresponding outputs are plotted in
Figure 4.6. Closing the valve causes a decrease in mass flow rate leaving the gas cooler.
With the accumulation of mass inside, the high pressure increases and consequently the
gas cooler outlet temperature decreases, considering the return water temperature is con-
stant. However, opening the valve reverses this influence.

The burner fan speed ωbf is a crucial input, considering it is the primary source of
heat driving the TCs. The step tests on the burner fan speed cause a very slow variation
in the heater temperatures, as shown in Figure 4.7. A decrease step in burner fan speed
causes a slow decrease in heater temperatures. This results in an increase of evaporator
pressure due to reduction in leaving flow rate and a decrease of gas cooler pressure due to
a decrease of entering flow rate. A limitation of the transient dataset is that inputs were
varied one at a time, which restricts the excitation of multivariable interactions and limits
validation of coupled dynamics. In addition, the tested unit is a commercial product with
production-grade instrumentation, so several potentially informative measurements are
unavailable. These limitations are addressed by the steady-state dataset described in the
next section.
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Figure 4.5: TCHP experimental data from varying the low-pressure valve opening.

4.4.2 Steady-state

The performance of a fully automated TCHP was monitored at different outdoor temper-
atures. Its layout is the same as in Figure 4.3a, but the conducted test employed more
sensors than those mentioned in Section 4.3.4. The collected steady-state data were pre-
viously analyzed by Fallahsohi (2023) and are used in this work for tuning model corre-
lations and validating steady-state predictions. These tests are particularly important be-
cause the TCHP was fully automated, operating under various conditions. Consequently,
validation with this steady-state dataset is both valuable and complementary to validation
with transient data where each condition was changed one at a time.

To facilitate later reference during model tuning and validation, the steady-state inputs
and outputs are reported in the following tables: the TCHP inputs and outputs in Table 4.6,
the operating data of TCs in Table 4.7, the data around fume heat exchanger in Table 4.8,
and the overall performance indicators in Table 4.9.
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Figure 4.6: TCHP experimental data from varying the high-pressure valve opening.

Sample φlpv [%] φhpv [%] ωbf [rpm] Th1&Th2 [°C] p14 [bar] p8 [bar] T14 [°C] T8 [°C]

1 48 37 3226 521 35 63 6 23
2 54 46 4285 660 31 65 1 25
3 54 51 5084 731 29 66 -1 26
4 56 55 6000 800 27 67 -2 26
5 57 60 6245 800 27 68 -3 28
6 45 44 6000 800 25 69 -6 28
7 37 37 5555 800 23 69 -8 28
8 100 11 3000 533 35 67 9 27
9 93 46 3900 605 35 70 6 29

10 46 53 4900 699 33 76 4 31
11 48 54 6000 783 31 79 2 33
12 54 43 6200 800 30 82 1 33
13 65 11 5800 800 28 84 -3 35
14 29 11 5400 800 26 89 -4 38
15 13 11 5200 800 25 88 -6 40

Table 4.6: TCHP steady-state samples: valve openings, burner fan speed, heater tempera-
ture, pressures, and outlet temperatures.
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Figure 4.7: TCHP experimental data from varying Burner fan speed.

Sample ṁtc1 [g.s−1] Ttc1,dis [°C] Q̇k1 [kW] ṁtc2 [g.s−1] Ttc2,dis [°C] Q̇k2 [kW] ṁtc3 [g.s−1] Ttc3,dis [°C] Q̇k3 [kW]

1 9 38.6 0.9 12.9 55.8 1 12.9 37.6 0.3
2 11.6 46.8 1 15.8 62.1 1.1 15.8 45.6 0.5
3 12.4 51.9 1.2 16.9 65.1 1.2 16.9 50.7 0.6
4 13.4 56.1 1.3 18.4 66.8 1.3 18.4 54.8 0.8
5 12.3 58.8 1.3 19.7 71 1.6 19.7 57.2 1
6 7.3 58 1.3 14.2 68.8 1.3 14.2 56.2 0.8
7 5 58 1.3 11.1 69.1 1.3 11.1 55.7 0.8
8 3 47.6 0.7 5.7 67.2 1.2 5.7 45.7 0.3
9 5.9 55.2 0.9 12.5 73.7 1.3 12.5 53.5 0.4

10 8.8 62.6 1.3 15.6 74.8 1.2 15.6 60.7 0.6
11 10 69.4 1.5 17 78.4 1.3 17 67 0.8
12 8.4 72.4 1.5 14.3 82.4 1.4 14.3 69.3 0.8
13 5.3 75.2 1.6 8.8 88.6 1.6 8.8 70.8 0.8
14 2.3 74.6 1.6 6.2 86.4 1.5 6.2 69 0.8
15 0.8 73.9 1.7 5.2 84.4 1.3 5.2 67.7 0.8

Table 4.7: TCHP steady-state samples: TC1, TC2, and TC3 mass flow rates, discharge
temperatures, and cooler heat transfer rates.
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Sample Tfhx,fume,in [°C] Tfhx,w,in [°C] Tfhx,w,out [°C] Tfhx,fume,out [°C] ṁfume [g.s−1] ṁw [g.s−1] Q̇fhx [kW]

1 129.3 26.5 26.7 31.3 0.9 283.3 0.2
2 204.5 28.1 28.3 36.5 1.4 330 0.3
3 255.8 29 29.2 40.1 1.7 361.7 0.3
4 312.8 29.7 30.2 43.9 2.1 388.3 0.8
5 273.4 30.2 30.6 45.2 2.2 425 0.7
6 304.1 30.2 30.5 44.4 2.1 470 0.7
7 295.6 30.3 30.5 42.9 1.9 513.3 0.6
8 136.6 31.5 31.9 35.5 0.8 130.3 0.2
9 183 34.7 35.3 41.8 1.2 166.7 0.4

10 238.9 38.2 39.3 48.7 1.6 186.7 0.8
11 301.6 40.1 41.6 54.3 2.1 205 1.3
12 309.7 40.8 42.4 55.6 2.2 216.7 1.5
13 301.3 41.7 42.9 55.1 2 233.3 1.2
14 290.6 43.1 44.4 55.3 1.8 250 1.4
15 281.1 44.4 45.6 55.9 1.8 258.3 1.2

Table 4.8: TCHP steady-state samples: fume heat exchanger inlet/outlet fume tempera-
ture, inlet/outlet water temperature, fume and water mass flow rates, and recovered heat.

Sample Tw,ret [°C] Tw,sup [°C] Tmpg,in [°C] Tmpg,out [°C] Q̇rec,tot [kW] COPth [-] Q̇ev [kW] Q̇gc [kW]

1 22.8 27.1 5.4 2.2 5.1 2.1 1.9 1.7
2 24 28.8 2.4 -2.4 6.6 1.8 2.6 2.3
3 24.7 29.8 0.4 -5.2 7.7 1.6 2.8 2.3
4 25.1 30.6 -0.7 -7 8.9 1.5 3.1 2.3
5 26.5 31.6 -3.6 -6 9.1 1.5 2.8 2.7
6 27 31.5 -7.6 -9.1 8.9 1.5 1.7 1.5
7 27.7 31 -10.7 -11.8 7.1 1.4 1.2 0.9
8 26 31.9 8.1 7.4 3.2 1.5 0.7 0.6
9 28.3 35 5 3.5 4.7 1.4 1.3 1

10 30.5 38.8 2.2 0.7 6.5 1.5 1.9 1.7
11 32.4 41 0.2 -1.8 7.4 1.3 2.1 2.1
12 33.4 41.7 -0.8 -3.1 7.5 1.2 1.8 1.7
13 36.5 42.2 -3.5 -6.1 5.6 1 1.2 0.9
14 38.3 43.6 -7.6 -8.6 5.5 1.1 0.5 0.4
15 40.1 44.6 -9.9 -10.4 4.9 1 0.2 0.2

Table 4.9: TCHP steady-state samples: return and supply water/glycol temperatures, total
recovered heat, thermal COP, and evaporator and gas cooler heat-transfer rates.

4.5 Conclusion

In this chapter:

• Synthetic refrigerants have taken over natural ones for the last century. However,
environmental harm caused by these has forced serious measures to revive natu-
ral refrigerants in general, and CO2 in particular, mainly for their environmentally
friendly characteristics. However, its challenging characteristics, especially the low
critical temperature Tcrit = 31.1◦C and high critical pressure pcrit = 73.8 bar, have
made it difficult to valorize its usage with conventional systems.

• A basic single-stage transcritical CO2 VCC was described, and architectural modifica-
tions from the literature were outlined—including multistage cycles, flash tanks, and
internal heat exchangers—that aimed to enhance the performance of these cycles.
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• The Boostheat three-stage CO2 TCHP cycle was introduced. The process and test
bench were described, along with the main components and available instrumenta-
tion. The actuators and system inputs were listed and their influence on key outputs
was outlined; the major actuators are the burner-fan speed and the low- and high-
pressure valve openings. Energy expressions based on measurements were defined,
including the thermal COP and the decomposition of total recovered heat.

• Two complementary datasets were identified: (1) transient data from open-loop step
tests where one input is varied at a time, with representative samples shown to illus-
trate internal TCHP transient responses from key inputs and corresponding outputs;
and (2) steady-state data from a fully automated TCHP over different operating con-
ditions, collected by colleagues, which was richer in terms of measurements due to
the presence of more equipped sensors.

In overall, this chapter introduced transcritical CO2 cycles in general and the targeted
three-stage TCHP in particular, providing an understanding of its operation and the rela-
tion between inputs and outputs. Two complementary datasets—transient step tests and
steady-state samples—were curated to capture both dynamic responses and equilibrium
conditions. The observed multivariable couplings (e.g., between ωbf , φhpv, φlpv and Tw,sup,
p8, ∆Tsh), together with strict operating constraints on pressures and temperatures, mo-
tivate the development of a dynamic, physics-based model capable of reproducing both
steady-state and transient behavior. Such a model forms the natural bridge between data
collection and controller synthesis. Accordingly, the next chapter develops and validates a
dynamic model of the three-stage CO2 TCHP, calibrated with the steady-state dataset and
stress-tested against the transient dataset.



Chapter 5

Dynamic model for the TCHP

Abstract

A simulation model is essential for any optimization task, whether it concerns system
design, architecture selection, or the development of control strategies. While a steady-
state model is sufficient for the first two tasks, a dynamic model is indispensable for control
design. This chapter therefore develops a dynamic model of the targeted Boostheat TCHP
introduced in the previous chapter and validates it using the previously collected transient
and steady-state experimental data.

Section 5.1 reviews dynamic modeling approaches for vapor compression cycles (VCCs)
in general, and on transcritical CO2 cycles in particular. These approaches are commonly
grouped into two families: finite-volume (FV) and moving-boundary (MB). For the TCHP,
Section 5.2 presents the component submodels, with some parts described by differen-
tial equations and others by algebraic relationships. The differential part adopts the FV
method, while the quasi-static part is tuned using the TCHP steady-state data introduced
in the previous chapter. In Section 5.3, the components are assembled into the final model
architecture and the numerical solution procedure is outlined. Finally, Section 5.4 vali-
dates the model using the steady-state and transient datasets introduced in the previous
chapter.

5.1 Literature review of dynamic models for vapor compres-

sion cycles

The first dynamic models of VCCs date to the 1980s: Chi and Didion (1982) devel-
oped a first-order lumped-parameter model for a residential air-to-air heat pump, and
MacArthur and Grald (1989) presented a finite-volume (FV) model of a heat pump with
mass, momentum, and energy balances; the model’s transient responses were validated
against experiments. After three decades of VCC dynamic model development, compre-
hensive reviews by Rasmussen (2012) and Afram and Janabi-Sharifi (2014) summarized
FV, moving-boundary (MB), and data-driven approaches for VCCs. In practice, these are
typically applied to the heat exchangers, while the compressor and expansion valve are
treated with algebraic relations: heat exchangers dominate the slow dynamics, whereas
the compressor and valve respond more rapidly and are reasonably approximated by

95
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steady-state maps, eventually resulting in a simpler model version. Much of this litera-
ture is ultimately motivated by control design.

5.1.1 Physics-based: Finite volume and moving boundary methods

Physics-based models are often used for real-time representation of a real system. Due to
their physical nature, they can be used to investigate ranges that are not achievable with
real experiments. The most famous physics-based dynamic models are the FV and MB
methods.

In general, FV models are built by directly applying conservation equations to discrete
CVs. The result is a high-order dynamic model that is parametrically rich and capable of
representing transient behavior in detail, as demonstrated by Eborn (2001). Unlike the
MB approach, which uses the mean void fraction to represent the two-phase region, the
FV method assumes average fluid properties within each CV, making the prediction of re-
frigerant charge heavily dependent on the discretization level. Bendapudi et al. (2002)
applied the FV method to model a centrifugal liquid chiller, achieving high accuracy in
steady-state predictions and good agreement with transient trends. However, simulating
this model can be computationally slow due to stiffness arising from the coupling between
pressure and mass flow rate. Quoilin (2011) addressed this issue by assuming a uniform
pressure across all CVs, allowing the pressure variation to be computed only once; the
resulting pressure drops were then estimated using quasi-static correlations. More re-
cently, Husmann and Aschemann (2022) developed a dynamic FV-based model for a VCC,
likewise adopting the uniform-pressure approach—referred to as the vanishing-pressure
method—and additionally providing a nonlinear state-space formulation.

The MB approach is often used as a simpler alternative to FV modeling for simulating
the transient behavior of VCCs. While FV models gain accuracy from fine spatial dis-
cretization (Bendapudi et al. (2008)), MB models aim to capture the essential dynamics
of phase-change heat exchangers using lumped parameters and by tracking the moving
boundaries between fluid regions (liquid, two-phase, vapor). Rasmussen and Alleyne
(2006) provided a technical report in which they detailed the derivation of MB models
for evaporators and condensers under different phase-change conditions. A constraint of
using the MB approach is that the phases of the working fluid at the component exits must
be assumed beforehand. This can also be an issue if the phase is changing between single-
and two-phase regions or between subcritical and supercritical states. To deal with this,
McKinley and Alleyne (2008) proposed a switching algorithm to accommodate different
representations of a component according to phase.

An attempt to compare both methods was made by Bendapudi et al. (2008) on cen-
trifugal chillers, concluding that while the FV method resulted in longer computation time
compared to MB, it was more robust. In another comparison attempt, Desideri et al.
(2016) concluded that MB achieves comparable performance to FV with reduced compu-
tation time, without highlighting its lower robustness. Overall, both models obey physical
laws and have proven their reliability in predicting real VCC responses. .
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5.1.2 Dynamic models for transcritical CO2 cycles

In the literature, several dynamic models are derived for transcritical CO2 cycles in par-
ticular. For instance, Pfafferott and Schmitz (2004) developed a Modelica-based tran-
sient model using mass and energy balances discretized via the FV method, showing good
agreement in steady-state and transient regimes. Rasmussen and Alleyne (2004) derived
a reduced-order model from a detailed 11th-order nonlinear MB model by isolating fast
and slow dynamics, resulting in a simplified 5th-order version suitable for control design.
Zheng et al. (2015) created a MB model of a transcritical CO2 ejector cycle incorporat-
ing variable ejector efficiencies, accurately capturing behavior under changing valve and
ejector settings. Using Simscape, Ko et al. (2020) developed an FV dynamic model of a
transcritical CO2 heat pump and validated transient mass flow, compressor power, pres-
sures, and COP with good agreement. Diniz et al. (2021) presented a one-dimensional
distributed FV model for a solar-assisted CO2 water-heating heat pump, showing that
lower flow rates increase outlet and compressor temperatures. Artuso et al. (2021) de-
veloped and validated an FV dynamic model for a reversible CO2 air-to-water heat pump
for heating, cooling, and district water heating. Wolscht et al. (2024) provided a vali-
dated Modelica model of a 35 MW transcritical CO2 heat pump for district heating, using
segmented heat exchangers and property tables to match plant transients.

Most of the implementations were based on object-oriented models developed in sim-
ulation environments such as Dymola or Modelica, and were generally applied to conven-
tional electric heat pumps with a maximum of two stages. In contrast, the TCHP model
developed in this work is built entirely from scratch in Python. The targeted application
is a thermally driven system with three stages of compression and a specifically designed
thermal compressor.

In this chapter, we develop a dynamic model of the TCHP cycle, a multi-stage CO2

system with several heat exchangers. A MB formulation depends on the refrigerant regime
in the high-pressure heat exchanger (condenser/gas cooler), which must be known or
switched a priori. Because the preferred operating range often reaches the supercritical
regime, the regime cannot be guaranteed in advance. To avoid hybrid MB models with
regime switching (McKinley and Alleyne (2008)), we adopt the FV method. A second
motivation is the robustness of the FV approach, which is particularly important for a
multi-stage TCHP with tightly coupled component dynamics.

5.2 TCHP hybdrid dynamic model

Each component of a TCHP cycle is first modeled individually and then assembled into a
coupled hybrid model consisting of differential equations for the dynamic parts and quasi-
static surrogate/algebraic models for the remaining parts. The final model is referred to
as the TCHP hybrid (TCHP-HYB) model throughout the remainder of the thesis.

In conventional electrically driven heat pump systems, the expansion valve and com-
pressor are often assumed to operate in steady state, as their dynamics are much faster
than those of the heat exchangers (Rasmussen and Alleyne (2006)). Consequently, they
are typically represented quasi-statically, while the wall and secondary fluid temperatures
in the evaporator and gas cooler (or condenser) are described by differential equations
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that dominate the system’s transient response. This approach reduces complexity and
mitigates numerical stiffness.

In a TCHP, however, this assumption no longer holds: the TCs exhibit the slowest
dynamics in the cycle, primarily due to the high thermal inertia of their heaters. This
inertia causes gradual variations in the working fluid’s mass flow rate, temperature, and
pressure. Fully representing the TC dynamics would be computationally expensive, so we
instead treat the heater temperature—which evolves slowly—as an input variable (as used
in Chapter 3). By selecting heater temperature as the input, the TCs can be modeled using
quasi-static models without losing predictive accuracy for the slow dynamics of interest.
However, to reach a complete independent TCHP model, the heater-temperature dynamics
as a function of burner-fan speed must be modeled separately.

The valves exhibit significantly faster dynamics than the heat exchangers due to their
fast response. The fume heat exchanger—being outside the main CO2 cycle—has a faster
response due to the direct influence of burner-fan speed.

As a result, the valves, fume heat exchanger, and TCs are modeled quasi-statically,
while the dynamic behavior of the cycle heat exchangers, flash tank, and heater tempera-
tures is captured using differential equations.

5.2.1 Differential equations of the TCHP-HYB model

This section is dedicated for the TCHP-HYB model components that are represented with
differential equations.

5.2.1.1 Cycle heat exchangers

As shown in Section 4.3.1, a TCHP cycle incorporates several heat exchangers, including
the gas cooler, evaporator, internal heat exchanger, and the first two buffers, all of which
are dynamically represented. For modeling the heat exchangers, the following assump-
tions are made:

• Pressure drops are neglected on both the working-fluid and secondary-fluid sides.

• Heat conduction through the walls is neglected.

• Two-phase regions in the heat exchanger are homogeneous.

• The secondary fluids are assumed to be incompressible.

Each heat exchanger is spatially discretized using the FV method into N CVs with a corre-
sponding i-axis, where each CV between adjacent solid lines represents uniform pressure p
and enthalpy h. The mass flow rates ṁf are considered uniform between adjacent dashed
lines, corresponding to the j-axis. For the CO2 working fluid, the continuity principle
yields the following expression for the time derivative of the density in the i-th CV:

a1i
∂pi
∂t

+ a2i
∂hi
∂t

= ṁf,j−1 − ṁf,j (5.1)

While applying the energy conservation principle yields the following equation:

a3i
∂pi
∂t

+ a4i
∂hi
∂t

= ṁf,j−1 hj−1 − ṁf,j hj − Q̇f,i (5.2)
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where the coefficients are defined as:

a1i = Vi

(
∂ρi
∂pi

)
hi

a2i = Vi

(
∂ρi
∂hi

)
pi

(5.3)

a3i = Vi

[
hi

(
∂ρi
∂pi

)
hi

− 1

]
a4i = Vi

[
hi

(
∂ρi
∂hi

)
pi

+ ρi

]
. (5.4)

These equations are adopted from Rossi and Braun (1999). Here, the thermodynamic
derivatives

(
∂ρ
∂h

)
p

and
(
∂ρ
∂p

)
h

denote the partial derivatives of density with respect to

enthalpy at constant pressure, and with respect to pressure at constant enthalpy, respec-
tively. As reported by Quoilin (2011), these equations are stiff and thus result in slow
solving. The author therefore proposed considering one mass variation per component, so
that Equation (5.1) is applied one time per component, and pressure variations are equal
across CVs:

∂p1
∂t

= .... =
∂pi
∂t

= ... =
∂pN
∂t

(5.5)

The mass flow is thus uniform across all other CVs. In addition, no mass variation is
considered in buffer 1 and the internal heat exchanger, so Equation (5.1) is not applied at
these two components. For heat exchangers with water or glycol mixture as the secondary
fluids, the temperature variation is described by:(

mc
∂T

∂t

)
sf,i

= Q̇sf,i + ṁsf,jhsf,j − ṁsf,j−1hsf,j−1 (5.6)

In the internal heat exchanger, Equation (5.2) is applied to both sides as CO2 flows in
both. The temperature variation of the heat exchanger wall is modeled as:(

mc
∂T

∂t

)
wall,i

= −(Q̇f,i + Q̇sf,i) (5.7)

The heat transfer rates for the working fluid (CO2) and secondary fluid (water or glycol

Figure 5.1: Heat exchanger spatial discretization into N CVs. Each CV on the i-axis carries
uniform pressure and enthalpy, while the j-axis carries uniform mass flow rate informa-
tion.

mixture) are expressed as:

Q̇f,i = Uf,iAi(Twall,i − Tf,i) (5.8)

Q̇sf,i = Usf,iAi(Twall,i − Tsf,i) (5.9)
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The determination of the heat transfer coefficient (Uf) is required to model heat exchange
between CO2 and the wall. This coefficient varies with the phase of CO2 (supercritical,
subcritical, or two-phase) and the direction of heat transfer (cooling or heating). Although
extensive research has been conducted to define suitable correlations for CO2, no univer-
sally reliable generalization has emerged. The heat transfer coefficient is calculated from
Nusselt number (Nu) as follows:

U =
K ·Nu
dh

(5.10)

We thus choose from the literature the Nu correlations, based on CO2 phase, as follows:

• For heat exchangers in the supercritical region where pressure is higher than the
critical pressure (p > 73.8 bar) and CO2 is cooled, the correlation proposed by Yoon
et al. (2003) is used:

Nu = 0.14Re0.66 Pr0.6 (5.11)

• In the subcritical region where pressure is lower than the critical pressure (p <

73.8 bar), in the two-phase regime where vapor quality is between zero and one
(0 < q < 1): if undergoing evaporation, the heat transfer coefficient is evaluated
using the model of Cheng et al. (2006), while when condensing, the correlation by
Shah (1979) is used. In both cases, the expressions are complex, so they are not
reproduced here.

• In subcritical and single-phase (liquid or vapor) conditions, the standard Dittus–Boelter
correlation is applied:

Nu = 0.023Re0.8 Pr0.4 (5.12)

The standard Dittus–Boelter correlation is also used for the secondary-fluid heat transfer
coefficient Usf .

5.2.1.2 Flash tank

For the flash tank, the model provided by Qiao et al. (2015) is adopted, where it is modeled
as a lumped CV with one inlet and two outlets (Figure 5.2), and the following simplifica-
tions are considered:

• Phases are ideally separated.

• The vapor and liquid in the flash tank are at thermodynamic equilibrium.

• The pressure drop within the flash tank is negligible.

• The flash tank is assumed adiabatic.

The governing equations obtained from applying mass and energy balances on the flash
tank CV are:

a1ft
∂pft
∂t

+ a2ft
∂hft
∂t

= ṁft,in − ṁft,l,out − ṁft,v,out (5.13)

a3ft
∂pft
∂t

+ a4ft
∂hft
∂t

= (ṁh)ft,in − (ṁh)ft,l,out − (ṁh)ft,v,out (5.14)
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where the coefficients a1ft, a2ft, a3ft, and a4ft are determined by the formulations in (5.3)
and (5.4). The outlet enthalpies of the vapor and liquid streams are dependent on the
state of the refrigerant in the flash tank. If CO2 in the flash tank is in a two-phase state,
i.e., the enthalpy of the flash tank hft lies between the saturated liquid enthalpy hft,l and
the saturated vapor enthalpy hft,v (hft,l < hft < hft,v), then the outlet enthalpies of both
streams are taken as the mean enthalpy:

hft,v,out =
hft
2

(5.15)

hft,l,out =
hft
2

(5.16)

while if CO2 in the flash tank is in a single-phase state, i.e., hft ≤ hft,l or hft ≥ hft,v, the
vapor and liquid are assumed to separate perfectly:

hft,v,out = hft,v (5.17)

hft,l,out = hft,l (5.18)

The mass flow rates of the streams into and out of the flash tank are discussed later in
Section 5.2.2.2.

Figure 5.2: Flash tank schematic with the corresponding flow streams.

5.2.1.3 TC heaters

This section models the dynamic variation of the heaters’ temperatures. The heaters are
externally heated by methane-air mixture combustion and internally cooled by CO2. Since
the detailed study of the combustion chamber lies outside the scope of this work, and be-
cause the internal dynamics of the TC operate at a much smaller time scale than the
overall TCHP cycle, the TC is treated as a black box. Accordingly, the external and inter-
nal heat transfer effects are represented by the burner fan and motor rotational speeds,
respectively. System identification is then performed using experimental step tests (from
Section 4.4.1) to obtain suitable models. Three different data sets are used: (i) a pseudo-
random binary sequence (PRBS) applied to the burner fan speed, (ii) step tests, and (iii)
step tests on the motor rotational speeds. The PRBS excitation ensures coverage of the
minimum and maximum burner fan speeds. The input ranges for motor rotational speeds
are 60 ≤ ωm1, ωm2 ≤ 240 rpm and for burner fan speed is 2000 ≤ ωbf ≤ 9500 rpm. The
dynamics of the heater temperatures Th1 and Th2 are represented by nonlinear system
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identification models. The parameters of these models are obtained through minimiza-
tion of the ordinary least squares error between the measured and predicted Th1 and Th2,
respectively, leading to the following identified discrete-time models:

Th1(k + 1) = 0.45 + Th1(k) + 2× 10−4 ωbf(k)− 7.6× 10−9 ω2
bf(k)− 1.1× 10−3 ωm1(k)

(5.19)

Th2(k + 1) = 0.51 + Th2(k) + 1.8× 10−4 ωbf(k)− 6.4× 10−9 ω2
bf(k)− 1.3× 10−3 ωm2(k)

(5.20)

The fitting of both models is shown in Figures 5.3 and 5.4, which indicate relatively high
accuracy, with MAEs of 15.9 K and 16.8 K and R2 scores of 0.96 and 0.94 for heater
temperatures 1 and 2, respectively. Relative to the heater temperature range of 220 to
800 °C (about 580 K difference), the MAE values correspond to relative errors below 3%.
These results demonstrate that the identified models reliably predict heater temperature
variations and can therefore be confidently used as part of the TCHP-HYB model. The
figures also reveal that burner fan speed has a stronger influence on heater temperature
compared to rotational speed, and thus a greater impact on system operation.
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Figure 5.3: Heater 1 temperature Th1 identified model validation. MAE is 15.86 K and R2

is 0.96, indicating a good fit. The bottom plot shows the burner fan speed and motor 1
rotational speed over time, illustrating their influence on Th1 dynamics.

5.2.2 Quasi-static part of the TCHP-HYB model

This section is dedicated to the part of the TCHP-HYB model represented quasi-statically.
Unlike the differential equations, which are mostly deterministic—except for the heater
temperatures described—these models rely greatly on tuning using real data. For this, the
TCHP steady-state data from Section 4.4.2 are used.
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Figure 5.4: Heater 2 temperature Th2 identified model validation. MAE is 16.77 K and R2

is 0.94, indicating a good fit. The bottom plot shows the burner fan speed and motor 2
rotational speed over time, illustrating their influence on Th2 dynamics.

5.2.2.1 Thermal compressors

The TCs are crucial components in the TCHP cycle, due to their contribution to the mass
flow rates, discharge temperatures, and heat recovered through their coolers. In this
section, we employ the Gaussian process regression (GPR) machine learning model type
derived in Chapter 3, which has proven to be a suitable candidate—showing higher ac-
curacy than polynomial regression and faster computation than artificial neural networks.
Since we have direct heater temperature measurements on the first two TCs, GPR can be
used as a prediction model for predicting the outputs: mass flow rates (ṁtc1 and ṁtc2),
discharge temperatures (Ttc1,dis and Ttc2,dis), and cooler heat transfer rates (Q̇k1 and Q̇k2).
Prior to this, the TC data used to train the GPR model is extended with TCHP steady-state
data (Table 4.7), then GPR is re-trained and validated afterwards. Since GPR is non-
parametric, it cannot be represented with equations here, but the implementation can be
found in Salame (2025b).

Since TC3 lacks direct heater measurement, an independent model is derived based
on TCHP steady-state data only. Due to the small number of samples, and to avoid over-
fitting, a simple linear regression (LR) model is chosen. LR models for TC3 define the gas
cooler inlet mass flow rate (ṁtc3), so the third buffer between TC3 and the gas cooler is
considered part of this model, discharge temperature (Ttc3,dis), and heat recovery (Q̇k3)

ṁtc3 = 10−4
(
− 769 rp3 + 0.58Th2 − 4.3Ttc3,w,in + 0.081ωm3 + 2.5Ttc3,suc

)
+ 0.056

(5.21)

Ttc3,dis = −58.9 rp3 + 0.059Th2 + 1.2Ttc3,w,in − 0.01ωm3 + 0.36Ttc3,suc + 298 (5.22)

Q̇k3 = 203.2 rp3 + 1.13Th2 − 5.6Ttc3,w,in + 3.5ωm3 + 6.3Ttc3,suc − 990 (5.23)

The independent variables are: pressure ratio rp3, second heater temperature Th2 to in-
clude inertia, inlet water temperature Ttc3,w,in which leaves TC2 cooler, rotational speed
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ωm3, and suction temperature Ttc3,suc. The fitting of the GPR model on TC1 and TC2
outputs is illustrated using parity plots in Figures 5.5 and 5.6, respectively, and for TC3 in
Figure 5.7. The accuracies (MAE, MAPE, and R2) are summarized in Table 5.1. The result-
ing metrics indicate that the models achieve acceptable accuracy levels. Having accurate
TC models is important for predicting mass flow rates, discharge temperatures, and cooler
heat transfer rates during simulation as they contribute to the overall prediction accuracy
of the TCHP-HYB model.
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(c) Cooler heat transfer rate.

Figure 5.5: GPR model steady-state parity plots showing the predicted outputs of TC1
compared to measured ones.
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Figure 5.6: GPR model steady-state parity plots showing the predicted outputs of TC2
compared to measured ones.
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Figure 5.7: LR model steady-state parity plots showing the predicted outputs of TC3 com-
pared to measured ones.
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Output Variable MAPE [%] / MAE [K] R2

TC1 & TC2: GPR

ṁtc1 15.2 % 0.9
Ttc1,dis 1.9 K 0.96
Q̇k1 4.4 % 0.95
ṁtc2 9.9 % 0.93
Ttc2,dis 1.7 K 0.95
Q̇k2 3.7 % 0.85

TC3: LR

ṁtc3 8.8 % 0.95
Ttc3,dis 1.3 K 0.98
Q̇k3 2.2 % 0.99

Table 5.1: TC models prediction accuracy for each output: MAPE for flow and power
variables, MAE for temperatures, and R2 for all outputs.

5.2.2.2 Valves

In a TCHP cycle, there are three flow streams connecting the flash tank with different
cycle components (Figure 5.2). The outlet liquid mass flow rate ṁft,l,out flows through
a low-pressure expansion valve, connecting the flash tank to the inlet of the evaporator.
The inlet mass flow rate ṁft,in flows through a high-pressure valve. Both these valves
are electronic type and their openings can be regulated. On the other hand, the outlet
vapor mass flow rate ṁft,v,out flows through a one-way valve of fixed opening area to the
suction point of the second TC (MIX point). The flow through these valves is considered
isenthalpic and is modeled using the following equations:

ṁlpv = (CdA)lpv

√
ρft,l (pft − pev) (5.24)

ṁhpv = (CdA)hpv

√
ρgc (pgc − pft) (5.25)

ṁowv = (CdA)owv

√
ρft,v (pft − pmix) (5.26)

The combined value of the product (CdA) of the low- and high-pressure valves can be
obtained by a regression relation with the percentage valve opening φ Qiao et al. (2015):

(CdA)lpv = 10−9 (−100 + 6φlpv) (5.27)

(CdA)hpv = 10−9 (63.8 + 4.76φhpv) (5.28)

The coefficients are obtained by tuning against TCHP steady-state data (Table 4.7), where
the mass flow rate in the low-pressure valve is equal to that in TC1 and in the high-
pressure valve equal to that in TC2 and TC3 considering steady-state conditions. The
resulting predicted mass flow rates in the low- and high-pressure valves from the fitted
correlations are represented in Figure 5.8.

The effective flow area of the one-way valve is assumed constant and set to

(CdA)owv = 10−6 (5.29)
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Due to missing pressure measurements at the mixing point in the TCHP steady-state data,
the correlation could not be calibrated with real data. The chosen value was instead se-
lected arbitrarily based on simulations of the complete TCHP-HYB model. The importance
of determining flow rates through the valves lies in well establishing pressure and en-
thalpy variations inside the flash tank as well as the connected components (evaporator,
gas cooler, and mixing point at TC2 suction), and thus affecting the overall predictions of
the TCHP-HYB model.
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Figure 5.8: Expansion valve models steady-state parity plots showing the predicted mass
flow rates from fitted Equations (5.27) and (5.28), compared to the measured ones.

5.2.2.3 Fume heat exchanger

In a TCHP cycle, the fume heat exchanger is the last heat exchanger where water re-
covers heat. Its heat exchange rate is considered faster than cycle heat exchangers from
Section 5.2.1.1, as it is directly influenced by the burner fan speed instead of the heater
temperatures. For this reason, it is modeled quasi-statically using the logarithmic mean
temperature difference (LMTD) method. Figure 5.9 shows the schematic of the fume heat
exchanger, where the inlet fume temperature Tfhx,fume,in rejects heat to the inlet water tem-
perature Tfhx,w,in, and the streams leave at Tfhx,fume,out and Tfhx,w,out, respectively. Along
with the mass flow rates ṁw and ṁfume, the corresponding steady-state data are given in
Table 4.8. According to the LMTD method:

Q̇fhx = (AU)fhx∆Tlm (5.30)

Where:
∆Tlm =

∆T1 −∆T2
ln(∆T1/∆T2)

(5.31)

With:
∆T1 = Tfhx,fume,in − Tfhx,w,out ∆T2 = Tfhx,fume,out − Tfhx,w,in (5.32)

From the inlet and outlet temperatures, mass flow rate on both sides, and the measured
heat transfer rate at the fume heat exchanger, (AU)fhx can be retrieved from data and
then tuned as a function of ωbf and Tfhx,w,in:

(AU)fhx = 0.000598ωbf + 0.687Tfhx,w,in − 16.34 (5.33)
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Substituting this fitted correlation in Equation (5.30) gives a MAPE of 15.8% and an R2 of
0.96 between predicted and measured heat exchange rate (Figure 5.10). For integrating

Figure 5.9: Fume heat exchanger schematic.
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Figure 5.10: Fume heat exchanger model steady-state parity plots showing the predicted
heat transfer rate from fitted Equation (5.33) compared to the measured ones.

in the TCHP-HYB model, an LMTD iterative model is proposed (Figure 5.11). At each itera-
tion it finds the appropriate Tfhx,w,out, Tfhx,fume,out, and Q̇fhx by taking Tfhx,fume,in, Tfhx,w,in, ṁw, ṁfume,

fume and water specific heats (cpfume
and cpw), and tuned (AU)fhx as inputs. In short, the

method computes these variables while ensuring the energy balance on both water and
fume sides is satisfied. The iteration continues until the difference between guessed and
computed Q̇fhx is less than 10−6. Since the inlet fume temperature is not measured, it is
correlated from steady-state data as a function of burner fan speed:

Tfhx,fume,in = 0.056ωbf − 36.5 (5.34)

While the inlet water temperature is computed from other heat exchangers in the TCHP.
After deriving all these component-level models, they are connected to form a final system-
level complete TCHP to be validated.
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Figure 5.11: Fume heat exchanger LMTD iterative method.

5.3 Numerical resolution

After modeling each component of the TCHP cycle, the submodels are connected to form
a complete, independent TCHP-HYB model. This section summarizes the final model,
describes its overall architecture and solving process, and presents its Python implemen-
tation.

5.3.1 Final model summary

The final TCHP-HYB model consists of two parts. The quasi-static part includes the non-
parametric GPR models for TC1 and TC2 (Chapter 3), the linear regression model for
TC3 (Equations (5.23)), the valve mass flow rate correlations (Equations (5.24)–(5.26))
for the LPV, HPV, and OWV, together with the iterative LMTD model of the fume heat
exchanger (FHX) shown in Figure 5.11.

The differential part includes the mass, energy, and wall and secondary fluid temper-
ature conservation Equations (5.1)–(5.7) for the evaporator (EV), gas cooler (GC), and
second buffer (BUF2). The internal heat exchanger (IHX) is modeled with only the en-
ergy and wall temperature balances (Equations (5.2), (5.7)), while the first buffer (BUF1)
includes the energy, wall and secondary fluid temperature balance Equations (5.2), (5.7),
and (5.6), and the TC2 suction point (MIX) includes the mass and energy balances (Equa-
tions (5.1), (5.2)). The flash tank (FT) is modeled with its specific balance Equations
(5.13) and (5.14). Equation 5.5 is applied to all these components for the purpose of
reducing stiffness, as mentioned in Section 5.2.1.1. For simulation, the GC, EV, and IHX
are discretized into 10, 12, and 4 CVs, respectively, which offers a trade-off between ac-
curacy and computational efficiency. BUF1, BUF2, MIX, and FT are modeled with a single
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CV each, as heat exchange in these volumes is less critical; except for BUF1, their main
role is to capture pressure variations at critical points of the cycle. In addition, the heater
temperatures Th1 and Th2 are also modeled with differential equations through a system
identification technique. The identified models are represented by Equations 5.19 and
5.20. Taking into account all the assumptions made so far, the component submodel char-
acteristics are summarized in Table 5.2.

Component Model class Equations / references Notes

quasi-static part

TC1 GPR Chapter 3 Non-parametric Salame (2025b)
TC2 GPR Chapter 3 Non-parametric Salame (2025b)
TC3 LR Equations (5.23) -
LPV Valve correlation Equations (5.24), (5.27) Electronic expansion valve
HPV Valve correlation Equations (5.25), (5.28) Electronic expansion valve
OWV Valve correlation Equation (5.26) One-way valve, constant (CdA)

FHX LMTD Equations (5.30), (5.33) Iterative model, Fig. 5.11

Differential part

GC FV balances Equations (5.1)–(5.7) 10 CVs
EV FV balances Equations (5.1)–(5.7) 12 CVs
IHX Energy + wall balance Equations (5.2), (5.7) 4 CVs
BUF1 Lumped CV Equations (5.2), (5.7), (5.6) 1 CV (no mass balance)
BUF2 FV balances Equations (5.1)–(5.7) 1 CV (buffer)
MIX Lumped CV Equations (5.1), (5.2) 1 CV (TC2 suction)
FT Lumped CV Equations (5.13), (5.14) 1 CV, phase separator
Th1 System identification Equation (5.19) -
Th2 System identification Equation (5.20) -

Table 5.2: Summary of component submodels used in the final TCHP-HYB model.

The resulting TCHP-HYB model’s differential equations can also be expressed in a state-
space representation, with the resulting state vector given as:

x = [pgc, h̄gc, T̄gc,wall, T̄gc,w, pev, h̄ev, T̄ev,wall, T̄ev,mpg, pmix, hmix, hbuf1,

Tbuf1,wall, Tbuf1,w, pbuf2, hbuf2, Tbuf2,wall, Tbuf2,w, h̄ihx1, h̄ihx2, T̄ihx,wall, pft, hft] (5.35)

Here, the characters with a bar denote vector quantities, whose dimensions correspond to
the number of discretized volumes in the GC, EV, and IHX. The input vector u and output
or measured vector y are:

u = [φhpv, φlpv, ωbf , ωm1, ωm2, ωm3, Tw,ret, ṁw, Tmpg,in, ṁmpg] (5.36)

y = [Th1, Th2, pgc, pev, Tgc,out, Tev,out, Tw,sup, Tmpg,out] (5.37)

The resulting differential part of the TCHP-HYB model is a set of ordinary differential
equations (ODEs):

ẋ = f(x, u) (5.38)

The mapping connecting all the described components is given next.
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5.3.2 Final model architecture

The TCHP-HYB final model architecture, showing the interconnection of all refrigerant-
side submodels, is illustrated in Figure 5.12. Inputs are shown in blue, outputs in green,
and model parameters in yellow. Information flow is determined by the arrows. The fig-
ure emphasizes the strong coupling and interdependence between refrigerant-side com-
ponents, while the water- and fume-side connections are omitted for clarity and presented
separately in Figure 5.13. The links according to refrigerant-side components are summa-
rized as follows:

1. TC heaters: Take burner fan speed (ωbf) and motor speeds (ωm1 and ωm2) as inputs,
and return heater temperatures (Th1 and Th2) as intermediary inputs for the TCs.

2. TCs: TC1 suction pressure and temperature correspond to those at the outlet of
the IHX (pev and Tihx2,out), while the discharge pressure is that at the MIX volume
(pmix). The external inputs are heater temperature Th1 and rotational speed ωm1.
The returned outputs are mass flow rate (ṁtc1) and discharge temperature (Ttc1,dis).

TC2 suction pressure and temperature correspond to those at the outlet of the MIX
volume (pmix and Tmix), while the discharge pressure is that at the BUF2 volume
(pbuf2). The external inputs are heater temperature Th2 and rotational speed ωm2.
The returned outputs are mass flow rate (ṁtc2) and discharge temperature (Ttc2,dis).

TC3 suction pressure and temperature correspond to those at the outlet of the BUF2
volume (pbuf2), while the discharge pressure is that at the GC (pgc). The external
inputs are heater temperature Th2 and rotational speed ωm3. The returned outputs
are mass flow rate (ṁtc3) and discharge temperature (Ttc3,dis).

3. Valves: LPV takes inlet pressure corresponding to the FT and outlet pressure at the
EV and returns the liquid mass flow rate leaving FT (ṁlpv). HPV takes inlet pressure
corresponding to the GC and outlet pressure at the FT and returns mass flow rate
(ṁhpv). OWV takes inlet pressure corresponding to the FT and outlet pressure at the
MIX volume and returns the vapor mass flow rate leaving FT (ṁowv).

4. EV: The enthalpy at the EV inlet is equal to the enthalpy of liquid CO2 in the FT, i.e.,
hev,in = hft,l. The inlet mass flow rate corresponds to that of the LPV (ṁlpv), while
the outlet mass flow rate corresponds to that of TC1 (ṁtc1).

5. GC: The enthalpy at the GC inlet is the discharge enthalpy of TC3, i.e., hgc,in =

htc3,dis. The inlet mass flow rate corresponds to that of TC3 (ṁtc3), while the outlet
mass flow rate corresponds to that of the HPV (ṁhpv).

6. IHX: The enthalpy in the last CV of the EV serves as the inlet to the IHX, i.e., hihx2,in =

hev,out. The enthalpy of CO2 at the outlet of the GC is equal to the inlet enthalpy of
the IHX, i.e., hihx1,in = hgc,out. No mass accumulation is considered; the mass flow
rates on both sides are equal to those at the outlets of the EV and GC, respectively.

7. FT: The enthalpy at the FT inlet is equal to the outlet enthalpy of the IHX on the GC
side, i.e., hft,in = hihx1,out. The inlet mass flow rate corresponds to that of the HPV
(ṁhpv), while the outlets are for the LPV (ṁlpv) towards the EV, and for the OWV
towards the MIX volume (ṁowv).
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Figure 5.12: Refrigerant-side architecture of the TCHP-HYB model.

8. BUF1: The inlet enthalpy of BUF1 is the outlet enthalpy of TC1, i.e., hbuf1,in =

htc1,dis. No mass variation is considered, so the mass flow rate across the component
equals that of TC1 (ṁtc1). Wall balances are included.

9. BUF2: The inlet enthalpy of BUF2 is the outlet enthalpy of TC2, i.e., hbuf2,in =

htc2,dis. The inlet mass flow rate corresponds to that of TC2 (ṁtc2), while the outlet
mass flow rate corresponds to that of TC3 (ṁtc3).

10. MIX: The inlet enthalpy of MIX is the mass-weighted combination of the outlet en-
thalpies of TC1 and the FT vapor stream. The inlet mass flow rates correspond to
those of TC1 (ṁtc1) and the OWV (ṁowv), while the outlet mass flow rate corre-
sponds to that of TC2 (ṁtc2).

In addition to the refrigerant backbone, the TCHP-HYB integrates a secondary water
and fume circuit demonstrated by architecture in Figure 5.13, whose role is to recover
and deliver heat. The circulating water enters the system at the return boundary with
temperature Tw,ret and mass flow rate ṁw. A fraction ṁw2 = 0.7ṁw is directed to the GC,
while the remaining flow ṁw1 is split equally between BUF1 (ṁw11 = 0.5ṁw1) and BUF2
(ṁw12 = 0.5ṁw1) before recombining. For illustration, the inlet water temperature to TC1
can be expressed as

Ttc1,w,in =
ṁw11 Tbuf1,w,out + ṁw12 Tbuf2,w,out

ṁw1
. (5.39)

The water then recovers heat sequentially from TC1, TC2, and TC3. The outlet water
temperature of each TC can be calculated from predicted cooler heat transfer rate as
follows:

Tk,w,out = Tk,w,in +
Q̇k

ṁw1cp,w
(5.40)
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The flow is mixed again with the stream leaving the GC before entering the FHX, and can
be retrieved as follows:

Tfhx,w,in =
ṁw1 Ttc3,w,out + ṁw2 Tgc,w,out

ṁw
. (5.41)

The outlet water temperature retrieved from FHX is the final supply temperature Tw,sup.
In contrast, the refrigerant-side architecture in Figure 5.12 focuses solely on pressures,
enthalpies, and mass flow rates. The thermal compressor outputs in this representation
are limited to ṁtc1, ṁtc2, ṁtc3 and Ttc1,dis, Ttc2,dis, Ttc3,dis. The associated heat transfer
rates Q̇k1, Q̇k2, Q̇k3 and Q̇fhx are instead explicitly represented in the water- and fume-side
schematic to highlight their role in energy delivery to the secondary loops.

Figure 5.13: Water and fume-side architecture of the TCHP-HYB model.

5.3.3 Solving process

The solution sequence is outlined in Figure 5.14. First, component parameters (coeffi-
cients and geometry) are specified and the initial states are set. At each iteration, the
quasi-static submodels are evaluated and their outputs provided to the system of differ-
ential equations (5.38), which are integrated using the third-order Runge–Kutta method
(RK23). The updated state vector, containing pressures and enthalpies, is then used to
compute thermo-physical properties (density, temperature, etc.) and the required partial
derivatives.

On the refrigerant side, mass and energy balances are inherently satisfied by the for-
mulation. On the water side, however, balances are not automatically enforced; they are
imposed explicitly to ensure consistency. In particular, to avoid violating the energy bal-
ance of the thermal compressors, the cooler heat transfer rate of TC3 is determined from
an overall energy balance across the TCs. Convergence is achieved when ∂x/∂t < 0.01.
The final outputs, summarized in Figure 5.12, are then retrieved for validation against
both steady-state and transient datasets.

5.3.4 Python implementation

Unlike most implementations in the literature, which rely on object-oriented simulation
environments such as Dymola or Modelica, the TCHP-HYB model is developed entirely
in Python. The only built-in solver employed is solve_ivp. The scripts are organized as
an object-oriented library and made available on GitHub for reuse and extension Salame
(2025a). With minor modifications, the code can also be adapted for other types of VCCs.
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Figure 5.14: Flow chart of the TCHP-HYB model solution procedure.

The accuracy of the derived model depends on several factors: the fidelity of the quasi-
static submodels (mass flow rates, discharge temperatures, heat transfer rates), the choice
of empirical correlations, and the discretization resolution. The next section presents the
validation of the TCHP-HYB model with experimental data.

5.4 Model Validation

The validation of the TCHP-HYB model is conducted on the TCHP steady-state data and
the open-loop transient data described in Section 4.3. The steady-state data consist of
15 experimental samples at steady state under various operating conditions, while the
transient data contain the step tests on the inputs.

5.4.1 Steady State

The validation is carried out on the measured outputs (from Section 4.3.4), which are:
high pressure pgc, low pressure pev, supply water temperature Tw,sup, glycol mixture out-
let temperature Tmpg,out, the evaporator heat transfer rate Q̇ev, the gas cooler heat transfer
rate Q̇gc, the total recovered heat transfer rate Q̇rec,tot, and the thermal COP COPth (calcu-
lations in Section 4.3.6). These outputs were selected as performance indicators relevant
for later control development. To assess the accuracy of the model’s steady-state predic-
tions, parity plots comparing predicted and measured values (Table 4.9) are presented.

Figure 5.15 shows parity plots for high pressure and the gas cooler heat transfer rate.
Simulation results for both outputs are in good agreement with the data. High pressure
and gas cooler heat transfer rate are predicted with average MAPE values of 1.7% and
17.5%, respectively. This accuracy depends on other predictions such as inlet temperature
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(Figure 5.7b), entering mass flow rate (Figure 5.7a), leaving mass flow rate (Figure 5.8b),
as well as the empirical heat transfer coefficient correlations in single-phase cooling, sub-
critical condensation, and supercritical cooling discussed in Section 5.2.1.1. Overall, the
prediction accuracy is considered acceptable.

Figure 5.16 shows parity plots for low pressure and the evaporator heat transfer rate.
Simulation results for both outputs also align well with the data. Low pressure and evap-
orator heat transfer rate are predicted with average MAPE values of 3.2% and 19.9%,
respectively. This accuracy depends on other predictions such as inlet temperature (Fig-
ure 5.5b), entering mass flow rate (Figure 5.8a), leaving mass flow rate (Figure 5.5a), as
well as the empirical heat transfer coefficient correlations in subcritical evaporation and
single-phase heating (Section 5.2.1.1). Thus, the predictions are judged acceptable.

Figure 5.17 presents parity plots for the total recovered heat transfer rate and the
thermal COP. Simulation results for both outputs are in good agreement with the data.
These predictions are directly influenced by the accuracy of the gas cooler heat transfer
rate (Figure 5.15); the accuracies at the coolers (Figures 5.5c, 5.6c, and 5.7c), the buffers,
and the fume heat exchanger (Figure 5.10) are also relevant. This explains why the error
on the total recovered heat transfer is smaller than that on the gas cooler.
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Figure 5.15: TCHP-HYB model steady-state parity plots showing the gas cooler predicted
outputs compared to the measured ones.

The importance of showing R2 is to evaluate whether the model changes are coherent
with the data under different operating conditions, where the inputs are distinct in each
case. The resulting MAPE and R2 for the main model predictions in steady state are sum-
marized in Table 5.3. The model shows strong explanatory power across most variables,
with high R2 values (> 0.8). Overall, the model performs well in fitting and predicting
key variables, although there are accuracy limitations in the heat-exchange rates for the
evaporator and gas cooler, that are justified by influencing other predicted inputs and the
multi-stage error accumulation.

5.4.2 Transient Validation

The transient validation focuses on varying three key inputs: the low-pressure valve open-
ing φlpv, the high-pressure valve opening φhpv, and the burner-fan speed ωbf , which in
turn governs the heater temperatures. The variation is performed in step-test fashion and
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(b) Evaporator heat transfer rate.

Figure 5.16: TCHP-HYB model steady-state parity plots showing the evaporator predicted
outputs compared to measured ones.
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Figure 5.17: TCHP-HYB model steady-state parity plots showing the performance outputs
of a TCHP.

Output MAPE [%] or MAE [bar] R2

pgc 1.3 0.96
pev 1 0.82
Q̇ev 19.9 % 0.83
Q̇gc 17.5 % 0.83
Q̇rec,tot 5.7 % 0.92
COPth 5.7 % 0.83

Table 5.3: MAPE, MAE (for pressure), and R2 of model output predictions under steady-
sate data conditions.

was introduced in Section 4.4.1. These tests are used here to validate the model’s ability
to reproduce transient changes in the outputs validated in Section 5.4.1, except for the
gas cooler heat transfer rate, which is not available from the transient test data.

Figure 5.18 illustrates the outputs when the low-pressure valve opening is varied in
a step-test manner (LPV test). The greatest influence is seen on the low-pressure level,
owing to its strong correlation with mass-flow-rate changes driven by the low-pressure
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valve. It also affects the evaporator heat transfer rate. Both transient trends are well
captured by the model. A smaller impact is observed on high pressure and on the total
recovered heat transfer rate. However, a discrepancy is observed in how these outputs
are influenced. Specifically, variations in high pressure are mirrored in the total recovered
heat and consequently in the thermal COP. This reflects the strong coupling between high-
pressure dynamics and overall heat recovery. In contrast, the influence of changes in the
low-pressure valve opening is not fully propagated to the high-pressure side, indicating a
limitation in the current model’s ability to capture this interaction.

Figure 5.19 presents the output variations when the high-pressure valve opening is
changed in a step-test manner (HPV test). The largest influence is observed on the high-
pressure level, where the model exhibits transient behavior consistent with the data. The
effect on the total heat recovery rate due to changes in high pressure is also evident and
well captured. Closing the valve and decreasing the outlet mass flow rate causes the
pressure to rise to the supercritical state; however, the total recovered heat and the thermal
COP decrease. This is due to a large reduction in mass flow rate to the stage, such that
the heat transfer becomes less efficient. Some lag is also observed between the predicted
and measured outputs, which is attributed to the single mass or pressure variation being
governed by quasi-static mass flow rate equations.

Figure 5.20 shows several step changes applied to burner fan speed over a period of
250 minutes, reflecting the slow dynamics of the heater temperatures (BF test). Variations
in burner fan speed (together with heater 1 and heater 2 temperatures) directly affect the
mass flow rates, discharge temperatures, and the cooler heat-transfer rates of the TCs,
which explains the observed variations in all outputs. The fast response due to sudden
change of step test is not shown neither with data nor with model. This can be due to
small step changes which are not too relevant on total recovered heat. So we evaluate our
model with the PRBS done on burner fans speed

The model successfully captures both the fast response caused by sudden changes in
BF and the slower response driven by the gradual evolution of heater temperatures. The
resulting MAPE and R2 metrics for each test are summarized in Table 5.4. Negative R2

values in the LPV and HPV tests for gas cooler and evaporator pressures, respectively, stem
from weak input–output correlations and measurement noise, which limit the model’s
explanatory power in those cases. In particular, the limited influence of the LPV on the
high-pressure side, noted earlier, is reflected here in poor prediction of pgc. In contrast,
the BF tests (BF in Table 5.4) show an acceptable fit across all outputs due to the direct
influence of BF on heater temperatures and thus on overall system behavior.

From theR2 results, we conclude that HPV and BF have the strongest impact on system
performance and are therefore critical control variables whose regulation can optimize key
outputs. The negative R2 values in the LPV and HPV cases for gas cooler and evaporator
outputs may also reflect unmeasured dynamics in intermediate components (i.e., the flash
tank and BUF1), for which no instrumentation is available. Nevertheless, the model effec-
tively reproduces the dominant dynamics associated with HPV and BF and is considered
suitable for subsequent control and optimization studies.
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Figure 5.18: TCHP-HYB model transient validation with real experimental data varying
the low-pressure valve opening. The real data is in solid, while simulated model is dashed.

Output
MAPE [%] or MAE [bar] R2

HPV LPV BF HPV LPV BF

pev 0.97 1.2 0.68 -3.1 0.93 0.65
Q̇ev 14.4 22.2 15.2 0.40 0.72 0.81
pgc 1.5 0.84 1 0.94 -3.3 0.74
Q̇rec,tot 4.7 4.0 3.7 0.61 -3.4 0.96
COPth 4.7 4.0 3.7 0.61 -3.4 0.84

Table 5.4: MAPE, MAE (for pressure), and R2 of model output predictions under transient
step tests for LPV, HPV, and BF.

5.5 Conclusion

In this chapter:

• A literature review of dynamic modeling approaches for VCCs in general, and tran-
scritical CO2 cycles in particular, was presented. These models enable real-time
system representation and are indispensable for control development.

• A dynamic model of the TCHP was developed using the FV method. Each cycle com-
ponent was modeled individually: slow dynamics (cycle heat exchangers, flash tank,
and heater temperature variations) were represented by differential equations de-
rived from mass and energy balances on CVs obtained through spatial discretization,
while fast dynamics (thermal compressors, valves, and the fume heat exchanger)
were modeled quasi-statically using empirical correlations tuned to steady-state ex-
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Figure 5.19: TCHP-HYB model transient validation with real experimental data varying the
high-pressure valve opening. The real data is in solid, while simulated model is dashed.

perimental data.

• The component submodels were connected into a complete TCHP-HYB model. Their
interconnections highlight the coupling and dependencies across the cycle. The solv-
ing process of the hybrid model was described in detail.

• The model was validated against both steady-state and transient data. Steady-state
validation assessed prediction accuracy across different operating conditions, while
transient validation examined the model’s dynamic response to single-input varia-
tions. These complementary tests confirmed the model’s validity, with acceptable
MAPE and R2 values in both steady and transient regimes. The resulting TCHP-HYB
model can therefore serve as a reliable reference for future control and optimization
studies.

The derived TCHP-HYB model provides a reliable representation of the real system. The
steady-state validation confirmed that the model captures the influence of input variations
across a wide range of operating conditions, while the transient validation demonstrated
its ability to reproduce the main dynamic trends with acceptable accuracy. Together, these
results establish the model as a valid reference for analyzing system behavior. Neverthe-
less, the full TCHP-HYB model remains computationally demanding due to the level of
detail in the differential submodels and the iterative nature of the solution process. For
real-time applications such as control and optimization, reduced-order models are there-
fore required. The next chapter addresses this challenge by developing simplified dynamic
representations of the system, based on data-driven approaches, and by introducing a new
model predictive control (MPC) strategy built upon these reduced models.
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Figure 5.20: TCHP-HYB model transient validation with real experimental data varying
the burner fan speed. The real data is in solid, while simulated model is dashed.
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Chapter 6

RNN reduced model and MPC
control for a TCHP

Abstract

Building on the hybrid TCHP-HYB model developed and validated in the previous chap-
ter, this chapter addresses the design of an advanced control strategy for the TCHP. The
objective is to enhance the system’s energy efficiency and ensure a more sustainable use
of natural gas through improved control. Since the experimental TCHP prototype is no
longer available at the time this topic was studied during the PhD thesis, the proposed
strategy is implemented and tested on the validated TCHP-HYB model, which serves as
the reference system for control development.

Section 6.1 reviews control strategies for VCCs and the reduced models required for
their implementation. Since a TCHP operates as a transcritical CO2 cycle, this section dis-
cusses the significant influence of operating high-pressure values on performance, which
has led to several attempts to derive optimal correlations. It then reviews control meth-
ods specific to such cycles. The review highlights the increasing relevance of advanced
strategies in response to growing energy efficiency demands and regulatory constraints.
Section 6.2 then formulates the control problem for the targeted TCHP application. The
current control strategy is described and evaluated on a real case study to expose its lim-
itations. As a replacement, a new strategy based on model predictive control (MPC) and
a recurrent neural network (RNN)-type prediction model is proposed. Section 6.3.1 in-
troduces the two RNN-based reduced models considered: the vanilla RNN and the long
short-term memory (LSTM), both trained on real and TCHP-HYB model-generated data
and validated on unseen samples. The MPC design, including the objective function, is
presented in Section 6.3.2. Finally, Section 6.3.3 compares the MPC strategy with the
existing control strategy using the TCHP-HYB model, by varying the water-supply temper-
ature setpoints and evaluating both the temperature error and the thermal COP.

6.1 Control strategies for vapor compression cycles

The primary objective of any control system is to ensure optimal and stable performance
under varying operating conditions. In VCCs, this involves meeting heating or cooling
demands while maintaining desired temperature levels. However, the intrinsic nonlinear-
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ities of the thermodynamic processes, the strong coupling between system variables, and
the dependence of performance on boundary conditions (e.g., ambient temperature, load
fluctuations) make this task particularly challenging. These challenges become even more
critical under increasing energy restrictions, creating a growing need for more flexible and
advanced control systems.

VCC control is generally organized into two levels: supervisory control and local con-
trol (Figure 6.1). The supervisory layer coordinates multiple local controllers by pro-
viding set-points—typically the supply temperature or power output—while considering
variables such as outdoor conditions and power consumption (Péan et al. (2019)).

In contrast, local controllers focus on maintaining system stability and accurately track-
ing the set-points provided by the supervisory layer, often without directly optimizing for
energy efficiency. As reviewed by Goyal et al. (2019), local control strategies in VCCs
range from basic on/off and proportional–integral-derivative (PID) control to advanced
mofrl predictive control(MPC) implementations. The literature highlights the benefits of
multivariable control over conventional single-input single-output (SISO) loops, particu-
larly for handling the coupled dynamics of VCCs. This chapter extends primarily on local
control approaches for VCCs.

Figure 6.1: VCC overview of a hierarchical control scheme (reproduced from Beghi et al.
(2017)).

6.1.1 Degrees of freedom

In a single stage VCC, degrees of freedom are the independent variables that can be ma-
nipulated to control system outputs. As detailed by Jensen and Skogestad (2007), the
system thermodynamic state can be fully defined by three enthalpy values (at the outlets
of the evaporator, condenser, and compressor), one pressure (or temperature), and the re-
frigerant mass flow rate. This gives five independent variables which, theoretically, could
all be used for control. However, in practical applications, only two degrees of freedom are
commonly manipulated: the compressor speed and the expansion valve opening. These
allow for regulation of key performance metrics while letting other parameters vary based
on external conditions.
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6.1.2 History of control systems

Initial control strategies in VCCs were primarily based on on/off switching and refrigerant
bypass as applied by Zubair and Bahel (1989). The introduction of variable-speed drives,
electronic expansion valves, and micro-controllers has enabled more advanced control
possibilities Braven et al. (1993). In practice, this meant moving from simple on/off
operation to continuous modulation of cycle components, which has since become widely
adopted. This shift opened the door to numerous control strategies aimed at optimizing
performance under varying operating conditions.

Early implementations of feedback control used variable-speed compressors and con-
trollable expansion valves in single-loop or decoupled PI structures. Based on a VCC
model, Vargas and Parise (1995) showed that the closed-loop system achieves significant
energy savings compared with on/off operation. Qureshi and Tassou (1996) reviewed
several capacity control methods for refrigeration systems, concluding that variable-speed
control is the most relevant. Outtagarts et al. (1997) developed and tested two control
algorithms to operate the opening and closing of an electric expansion valve in a refrigera-
tion system, validating their performance under both steady-state and transient conditions
to ensure stable refrigerant flow and accurate superheat control. Compared to a thermo-
static valve, the authors also showed that using an electric expansion valve resulted in
faster response and better stability.

Later, Wu et al. (2005) developed a simplified lumped-parameter dynamic model for
a multi-evaporator air conditioner and proposed a novel control strategy using suction
pressure to modulate compressor speed and room air temperatures to regulate electronic
expansion valves, incorporating a self-tuning fuzzy control algorithm that demonstrated
effective and stable control performance in simulations. Marcinichen et al. (2008) demon-
strated a dual-PI control architecture—one loop for cooling capacity via compressor speed,
and another for superheat via valve opening. Both input/output relations were described
by linear first-order models with delay, and Ziegler–Nichols was used for tuning the PID
parameters. Although effective near the design point, these methods struggled under
wide operating conditions, as they could not adequately handle the strong interactions
and nonlinearities between cycle variables. This limitation motivated the move toward
multivariable and advanced control strategies, which explicitly account for system cou-
pling and operating flexibility.

6.1.3 MPC and advanced control

He et al. (1997) was among the first to question the adequacy of SISO control in a VCC. To
this end, the authors developed a MB model for a VCC and studied the effects of control
inputs such as compressor speed, condenser fan speed, and expansion valve, showing
strong coupling between inputs and outputs, thus suggesting multi-input multi-output
(MIMO) controllers as a solution. He et al. (1998) then translated this by introducing a
linear–quadratic–Gaussian MIMO controller for a VCC, showing improved response time
and robustness compared to traditional SISO systems.

MPC, known for handling multivariable constraints and anticipating disturbances, has
been used for VCCs. For a refrigeration system, Leducq et al. (2006) developed an MPC
controller for delivering the desired refrigerating capacity while maximizing the COP by
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finding the optimal compressor speed and condenser flow rate. The method experimen-
tally increased the COP by 8–20%. Elliott and Rasmussen (2008) employed a MIMO
MPC to control the cooling capacity and superheat of each evaporator by adjusting the
compressor speed and discharge valve opening, while standard PI controllers regulated
system pressures. Wallace et al. (2012) developed a linear MPC with an offset-free mech-
anism. Controlling both the expansion valve and compressor speed with the MPC resulted
in higher efficiency compared to dual SISO PIDs. Focusing on destroyed exergy as a per-
formance criterion, Jain and Alleyne (2015) developed a MIMO MPC controller for a VCC,
resulting in reduced destroyed exergy across components and highlighting the importance
of MIMO controllers. Prášek et al. (2020) developed and validated a heat pump controller
using range MPC control, replacing fixed setpoints with a funnel of time-varying soft con-
straints to optimize efficiency under feasible operation.

In summary, due to the strong coupling in VCC dynamics, MIMO controllers generally
outperform decoupled SISO strategies. Among these, MPC has become the most widely
accepted, both in research and industrial applications, thanks to its ability to handle mul-
tivariable constraints and anticipate disturbances. A crucial enabler of such controllers
is the availability of reduced models, which provide sufficiently accurate dynamics while
being computationally efficient for real-time optimization.

6.1.4 Reduced models

Reduced models serve different purposes across control strategies: for PID controllers,
they are often used for parameter tuning (Outtagarts et al. (1997)), while for MPC they
serve optimization tasks (Wallace et al. (2012)). These models may be mathematically
derived from reducing physics-based approaches such as FV and MB formulations (Sec-
tion 5.1), as in Rodriguez and Rasmussen (2016), or obtained directly from data that
can be retrieved from experiments or physical model through system identification or
machine learning. Compared to reduced physics-based models, data-driven models are
more widely used for control because they are faster to develop and can achieve high
accuracy within their training domain. Their main limitation, however, is that validity is
often restricted to the conditions under which they were identified or trained. For this
reason, model structure and order must be chosen carefully—ideally informed by physical
insight—while remaining minimal enough to avoid overfitting. The objective is to cap-
ture the essential dynamics with the simplest model that still satisfies control performance
requirements.

Another critical step is the design of excitation tests. The input signals must excite the
system dynamics sufficiently to reveal nonlinearities, while remaining within safe limits
so as not to invalidate the model. These tests form the basis for system identification,
where mathematical models of dynamical systems are obtained by observing their in-
put–output behavior. System identification techniques, extensively investigated by Ljung
(1999), have been widely applied in VCCs. For example, Lin and Yeh (2007) linearly
identified evaporator wall temperature and superheat with compressor speed and valve
opening as control inputs. Similarly, Shah et al. (2004) derived a state-space model for
automotive air-conditioning systems based on a MB formulation, while Rasmussen and Al-
leyne (2006) proposed control-oriented modeling approaches and recommended system
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identification methods also grounded in MB models.

Machine learning approaches, especially deep networks, have recently been applied
to complement and extend classical system identification tools, and their role is expected
to grow further Pillonetto et al. (2025). Unlike linear or MB-based identification meth-
ods, neural network (NN) models can capture highly nonlinear relationships and complex
system dynamics, which makes them particularly relevant for VCC cycles. For example,
Nanayakkara et al. (2002) proposed a dynamic NN to control an ammonia evaporator
process, and Bechtler et al. (2001) introduced an ANN-based framework for dynamic
modeling of vapor-compression liquid chillers.

A common limitation, however, is that standard feedforward NNs are not well-suited
for time-series modeling when used in system identification. To overcome this, recurrent
neural networks (RNNs) have emerged as more appropriate tools due to their ability to
retain memory of past inputs and outputs through hidden states. For instance, Parlos et al.
(1994) suggested an RNN structure for modeling transient responses of a heat exchanger,
while Ma et al. (2024) developed a GRU-based model to represent VCC components while
explicitly enforcing physical conservation laws.

The ability of NNs to capture nonlinear dynamics also makes them highly attractive for
integration with MPC, where accurate and adaptable models are essential for real-time op-
timization Ren et al. (2022). In HVAC applications, most NN–MPC implementations have
been explored at the supervisory level, particularly for building energy management sys-
tems Afram et al. (2017). At the local control level of vapor-compression cycles, however,
only one attempt was found: Turgut and Çoban (2020) proposed an NN–MPC approach
for a vapor-compression refrigeration cycle, testing multiple objective functions (COP and
exergy efficiency) while tracking a desired cooling load.

6.1.5 Control of transcritical CO2 cycles

Having outlined control strategies for general VCCs, we now turn to approaches tailored to
the unique characteristics of CO2 systems. Among these, the regulation of high-side pres-
sure has received particular attention due to its dominant influence on cycle performance
and its role as a primary control variable in transcritical operation.

6.1.5.1 Optimal high-pressure

In a subcritical heat pump cycle, once the evaporation and condensation temperatures
are fixed, system performance is fully determined. In contrast, in a transcritical CO2

cycle, where the working fluid operates above the critical point, temperature and pressure
become independent variables. When the outlet temperature of the gas cooler is specified,
the high-side pressure directly impacts the enthalpy of the fluid and therefore the cycle
efficiency. Numerous theoretical and experimental studies have shown that the COP of a
transcritical CO2 cycle depends strongly on the high-pressure setting. Consequently, much
effort has been devoted to identifying the optimal high-pressure that maximizes COP.

Theoretically, and based on mathematical models, Kauf (1999) proposed a correlation
to estimate the optimal pressure based solely on the CO2 temperature at the gas cooler
outlet, valid for temperatures between 35 °C and 50 °C. Liao et al. (2000) extended this by
including the evaporator temperature and compressor isentropic efficiency, while Sarkar
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et al. (2004) derived expressions to estimate optimal pressure, optimal gas cooler inlet
temperature, and corresponding COP, for evaporator temperatures ranging from –10 °C to
10 °C, and gas cooler outlet temperatures between 30 °C and 50 °C. Chen and Gu (2005)
derived an optimal high-pressure correlation highlighting the importance of using an IHX.

Enriched with experimental work, Aprea and Maiorino (2009) studied a CO2 split-
system for residential cooling. Based on a simplified predictive model validated by experi-
ments, the authors found an optimal high-pressure correlation and proposed an algorithm
to regulate the real high-pressure according to setpoint by control an electronic back-
pressure valve. Zhang et al. (2010) developed a new correlation by analyzing a system
with dual expansion valves, reducing the deviation from experimental data to less than
1%. Qi et al. (2013) provided a simplified correlation for optimal pressure as a function
of the gas cooler outlet temperature, with respective errors of 5% for pressure and 6% for
COP, valid for outlet temperatures from 25 °C to 45 °C and ambient temperatures between
–15 °C and 30 °C.

The gas cooler exit temperature depends on the secondary fluid inlet temperature;
thus, for any given discharge pressure, the cooler exit temperature is fixed by the inlet
condition. The existence of an optimal pressure for a fixed cooler exit temperature is
supported by the following argument from Sarkar et al. (2004). The COP in heating mode
for a transcritical CO2 cycle (Figure 4.2a) is given by:

COP =
Q̇gc

Ẇ
=
ṁ(h2 − h3)

ṁ(h2 − h1)
(6.1)

If the discharge pressure increases from p2 to p
′
2 while maintaining a constant gas cooler

outlet temperature (transition from point 3 to 3’ in Figure 6.2), the COP becomes:

COP =
(h2 − h3) + ∆h3 +∆h2

(h2 − h1) + ∆h2
(6.2)

∆h3 = h3−h
′
3 and ∆h2 = h

′
2−h2. From Figure 6.2, it is observed that ∆h3 > ∆h2, which

explains the initial increase in COP. However, beyond a certain pressure, the compression
work outweighs the gain in heat transfer, and the COP starts to drop. This critical point
defines the optimal cycle pressure. Around the critical pressure, the heat delivered to the
hot side increases rapidly, while the compression work rises linearly. The COP follows this
trend and reaches a maximum at the optimal pressure.
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blue, each at a different high-pressure value.

From the various correlations derived in the literature, it is clear that no generalized
high-pressure correlation exists for all CO2 heat pumps; instead, each unit must establish
its own relation, either from experimental data or through reliable simulation models, a
process that can be time consuming. Once an optimal high-pressure correlation is defined,
a control law is required to ensure the system follows it, often implemented by regulating
the expansion valve (Aprea and Maiorino (2009)). However, due to their lack of generality
and the effort required to derive them, the use of such correlations has been questioned.
For instance, Cecchinato et al. (2010) emphasized the need for real-time optimization
rather than relying on simplified correlations. Similarly, Minetto (2011) observed that
the parameters commonly used in optimal high-pressure correlations are insufficient, and
therefore proposed an adaptive control logic after conducting both theoretical and exper-
imental studies on a CO2 heat pump for domestic hot water.

6.1.5.2 Control methods

This section expands on control methods for transcritical CO2 cycles reported in the liter-
ature. For instance, Zhang and Zhang (2011) proposed a correlation-free online optimal
control strategy that dynamically adjusts the high-pressure setpoint to maximize COP.
Along similar lines, Cecchinato et al. (2012) employed an online ANN model combined
with real-time optimization to determine the high-pressure that maximizes COP, achieving
close tracking of the optimal high-pressure and outperforming Liao’s correlation, thus re-
ducing energy consumption. Baek et al. (2013) optimized the gas-cooler pressure of a CO2

heat pump by jointly controlling the expansion valve opening and outdoor fan speed, iden-
tifying operating points that maximized COP under varying compressor frequencies and
ambient conditions. Salazar and Méndez (2014) compared PID and nonlinear controllers
on a lumped transcritical CO2 model, showing that nonlinear control improved stabil-
ity in handling the challenging gas cooler dynamics. Peñarrocha et al. (2014) proposed
a real-time, model-free optimization strategy that minimizes compressor power using a
perturb-and-observe algorithm with auto-tuned controllers, and validated it experimen-
tally. Hu et al. (2015) applied extremum-seeking control on a Modelica-based simulator
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to maximize COP in a model-free manner, showing effective adaptation to varying ambi-
ent conditions. Rampazzo et al. (2019) applied extremum-seeking control experimentally,
showing improved COP tracking and outperforming offline optimal high-pressure corre-
lations. Beghi et al. (2017) applied reinforcement learning for model-free optimization,
enhancing energy efficiency and enabling smart grid integration. Qin et al. (2019) ana-
lyzed the influence of compressor frequency on system performance and derived a new
dimensionless correlation for the optimal discharge pressure using the Buckingham pi
theorem. Lastly, Wang et al. (2021) proposed an MPC leveraging a nonlinear data-driven
state-space model to maximize COP while meeting water temperature demand.

Control strategies for VCCs have evolved from basic on/off and PID regulation toward
more advanced methods such as MPC, reflecting the need for improved efficiency under
increasing energy restrictions. For transcritical CO2 systems, this evolution has led from
simple PID control with offline correlations for high-side pressure to online optimization
schemes based on MPC or extremum seeking. In parallel, NNs have shown strong poten-
tial in capturing complex nonlinear dynamics, yet their application in VCC control remains
limited. Since the performance of MPC depends critically on the accuracy of its prediction
model, this work proposes the integration of RNNs into an MPC framework. The contribu-
tion is to design and evaluate an RNN–MPC control strategy of a TCHP, ensuring accurate
supply water temperature tracking while minimizing energy consumption.

6.2 TCHP control problem formulation

As a residential heating application, a TCHP aims to deliver the user’s heating demand
efficiently. The control objective is therefore to track the supply water temperature set-
point while minimizing gas consumption. To achieve this, a baseline control strategy has
been implemented, which is described below together with an experimental case study
evaluating its performance.

6.2.1 Baseline control strategy

To operate a fully automated TCHP, the system inputs and outputs are coordinated through
a hierarchical control logic designed to ensure stability and proper operation. This hierar-
chy (Figure 6.1) spans from high-level user commands, such as selecting a desired room
temperature, down to low-level actuator decisions like the opening of expansion valves.
Within this framework, the manipulated variables, disturbances, controlled outputs, and
setpoints are summarized in Table 6.1. Supervisory control is rule-based, defining set-
points through correlations. For instance, the supply water temperature setpoint T sp

w,sup

is derived from a heating-curve correlation based on outdoor conditions and the user’s
comfort settings. From this, the total recovered heat setpoint Q̇sp

rec,tot is defined by a PID
that minimizes the error between measured and target supply water temperature:

Q̇sp
rec,tot = PID(Tw,sup, T

sp
w,sup). (6.3)

This required heat is then mapped to the first heater temperature setpoint using a linear
correlation g1:

T sp
h1 = g1(Q̇

sp
rec,tot), T sp

h1 ∈ [500, 800]◦C. (6.4)
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Variable name / Description Unit

Manipulated variables
ωbf Burner fan speed [rpm]
φhpv High-pressure valve opening [%]
φlpv Low-pressure valve opening [%]
ωm1 Motor 1 speed (TC1) [rpm]
ωm2 Motor 2 speed (TC2) [rpm]
ωm3 Motor 3 speed (TC3) [rpm]

Disturbances
Tw,ret Water return temperature [◦C]
Tmpg,in MPG inlet temperature [◦C]
ṁw Water mass flow rate [g·s−1]
ṁmpg MPG mass flow rate [g·s−1]

Controlled outputs
Tw,sup Water supply temperature [◦C]
Th1 Heater 1 temperature [◦C]
Th2 Heater 2 temperature [◦C]
pgc Gas cooler pressure [bar]
∆Tsh Superheat [K]

Setpoints
T sp
w,sup Water supply temperature setpoint [◦C]
T sp
h1 Heater 1 temperature setpoint [◦C]
T sp
h2 Heater 2 temperature setpoint [◦C]
psp
gc Gas cooler pressure setpoint [bar]

∆T sp
sh Superheat [K]

Table 6.1: System variables categorized for control design.

The burner fan speed is controlled by a PID to track this heater setpoint (Figure 6.3a):

ωbf = PID(Th1, T
sp
h1). (6.5)

To prevent heater 2 from exceeding its thermal limit (Th2,max = 800◦C), motor 2 speed is
regulated with a PID that tracks the same setpoint as heater 1:

ωm2 = PID(Th2, Th1). (6.6)

The speeds of TC1 and TC3 are interpolated from the heat demand using empirical map-
pings g2 and g3:

ωm1 = g2(Q̇
sp
rec,tot), ωm3 = g3(Q̇

sp
rec,tot). (6.7)

For pressure regulation, a correlation g4 relates the gas cooler outlet temperature to an
optimal pressure setpoint:

psp
gc = g4(Tgc,out) = 1.47Tgc,out + 31, (6.8)
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(a) Heater 1 temperature Th1 controlled by burner fan ωbf and heater 2 temperature Th2 controlled
by motor 2 speed ωm2 using two separate PIDs.

(b) Gas cooler pressure pgc controlled by HPV
valve opening φhpv using PID control.

(c) Superheat ∆Tsh regulated by LPV valve
opening φlpv using PID control.

Figure 6.3: TCHP SISO PID schemes.

which is followed by the high-pressure valve opening through a PID (Figure 6.3b):

φhpv = PID(pgc, p
sp
gc). (6.9)

Finally, the superheat setpoint (∆T sp
sh = 5 K) is enforced by controlling the low-pressure

valve opening with a PID (Figure 6.3c):

φlpv = PID(∆Tsh,∆T
sp
sh ). (6.10)

A PID controller is expressed as:

PID(x, xsp) = Kp(x
sp − x) +Ki

∫
(xsp − x) dt+Kd

d(xsp − x)

dt
, (6.11)

where xsp is the setpoint, x is the measured variable, and Kp, Ki, and Kd are the pro-
portional, integral, and derivative gains. Equations (6.3)-(6.10) constitute the baseline
control of the TCHP. While the baseline strategy coordinates all manipulated variables,
this thesis focuses on the two most influential ones: burner fan speed ωbf (and thus heater
temperatures) and high-pressure valve opening φhpv. As shown in Chapter 5, these inputs
exert the strongest influence on total recovered heat Q̇rec,tot, supply water temperature
Tw,sup, and thermal COP (COPth). Their importance is illustrated in Figure 6.4 and eval-
uated in the experimental case study that follows.

6.2.2 Experimental case study

The test is performed on a fully automated TCHP in the Boostheat laboratory using the
same test bench as in Figure 4.3a and with the same control strategy described in the
previous section. The outputs—supply water temperature, heater temperatures, and high-
pressure values—are plotted in Figure 6.5, while the corresponding inputs, high-pressure
valve opening and burner fan speed, are plotted in Figure 6.6. When varying the supply
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Figure 6.4: PID-based control strategy: The TCHP-HYB model is controlled using two
parallel PID loops. The first loop adjusts the burner fan speed ωbf to track T sp

h1, which is
correlated to T sp

w,sup via g1. The second loop controls the HPV opening φhpv to regulate pgc,
where the setpoint psp

gc is determined through the mapping g4(Tgc,out).

water temperature setpoint, the heater temperature setpoint also changes, which activates
the PID on burner fan speed to track this setpoint. However, by doing so, the control disre-
gards the faster response of the supply water temperature compared to that of the heater.
This results in large overshoots. Another issue arises during the last step change, where
tracking the high-pressure setpoint caused a deviation from the supply water temperature
setpoint.

This difference in dynamics explains why the overshoot in the supply water temper-
ature Tw,sup is not caused by the heater temperatures or solely by poor PID tuning, but
rather by the rapid variation of ωbf . Indeed, the overshoot trend in Tw,sup mirrors that
of ωbf . While improved PID tuning could reduce overshoots in the heater temperatures,
the core issue lies in the control strategy itself. A more robust approach would link ωbf

directly to the supply water temperature T sp
w . A simple PID would not be able to cor-

rect this, considering the constraints on heater temperature for not exceeding a maximum
Th1,max = 800 °C. For this, an MPC is proposed, due to its ability to handle constraints and
to control the two inputs ωbf and φhpv simultaneously.

6.3 MPC-RNN proposed control strategy

A MIMO control strategy of the MPC type is thus proposed. This control is able to take
into account the burner fan speed and the high-pressure valve opening simultaneously,
in order to regulate the supply water temperature while minimizing energy consumption
and respecting physical constraints. To achieve this, a suitable predictive model and an
informative objective function must be defined. The new control strategy focuses mainly
on burner fan speed and high-pressure valve opening as control inputs, while the other
control logic described in Section 6.2 is kept the same. The MPC-based strategy is designed
to replace these two SISO PID loops (Figure 6.4), as illustrated in Figure 6.7.

6.3.1 RNN reduced models

The performance of MPC critically depends on the accuracy of the underlying prediction
model. To construct this model, a system identification approach based on NNs is em-
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Figure 6.5: TCHP baseline control strategy: real evaluation showing variation of outputs:
supply water temperature Tw,sup, heater temperatures Th1 and Th2, and high-pressure pgc.

ployed due to the nonlinear behavior of TCHP processes. While conventional feedforward
NNs offer one-way connections between neurons, RNNs introduce feedback connections
that enable information to persist across time steps, making them well-suited for time-
series modeling. In short, their ability to capture nonlinear behavior, provide fast compu-
tation, and incorporate inherent time-series learning makes RNN-type models an attractive
choice as prediction models for MPC Ren et al. (2022).

Here, we implement two RNN-type models for system identification: a vanilla RNN,
originally proposed by Elman (1990), and an LSTM, introduced by Hochreiter and Schmid-
huber (1997).

6.3.1.1 Vanilla RNN

Since an RNN represents a discrete-time dynamical system, it is particularly well-suited
for modeling sequential data where temporal dependencies play a critical role. In contrast
to classical state-space models, where the state vector x(k) has a direct physical interpre-
tation, an RNN maintains a latent internal state h(k) that evolves recursively and captures
the system memory. This hidden state implicitly encodes temporal correlations through a
first-order Markov structure. A vanilla RNN by Elman (1990) used for output prediction
is described by the following equations:

h(k) = σ(Wzz(k) +Whh(k − 1) + bh), (6.12)

ŷ(k) =Wyh(k) + by, (6.13)

where z(k) includes past control inputs and outputs, σ is a nonlinear activation function
(e.g., hyperbolic tangent tanh), and Wz, Wh, Wy, bh, and by are matrices and vectors
learned during training by minimizing the error between predicted outputs ŷ(k) and mea-
sured outputs y(k).
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Figure 6.6: TCHP baseline control strategy real evaluation of system. Variation of inputs:
burner fan speed ωbf and high-pressure valve percentage opening φhpv.

6.3.1.2 LSTM

LSTM is a type of RNN proposed by Hochreiter and Schmidhuber (1997) to address the
vanishing gradient problem in vanilla RNNs by incorporating internal gating mechanisms.
This makes LSTM more suitable for long input sequences and, consequently, for system
identification tasks. LSTM networks extend vanilla RNNs by introducing a memory cell
c(k) that enables long-term information retention. The hidden state h(k) serves as short-
term memory, while a gating mechanism regulates the flow of information. Each LSTM
cell includes an input gate i(k), forget gate f̃(k), candidate cell state c̃(k), and output gate
o(k). The update equations are defined as follows:

i(k) = σ(Wiz(k) +Rih(k − 1) + bi),

f̃(k) = σ(Wfz(k) +Rfh(k − 1) + bf ),

c̃(k) = tanh(Wgz(k) +Rgh(k − 1) + bg),

o(k) = σ(Woz(k) +Roh(k − 1) + bo),

c(k) = f̃(k)⊙ c(k − 1) + i(k)⊙ c̃(k),

h(k) = o(k)⊙ tanh(c(k)),

ŷ(k) =Wyh(k) + by.

(6.14)

Here, ⊙ the Hadamard (element-wise) product. The LSTM weights are grouped as {Wi,Wf ,Wg,Wo}
for the network input z(k) and {Ri, Rf , Rg, Ro} for the hidden state h(k). The correspond-
ing bias vectors are {bi, bf , bg, bo}. This formulation follows the standard LSTM structure.

6.3.1.3 RNN architecture

Both models are designed to capture the dynamic evolution of the supply water temper-
ature, using input–output data from experiments on the real system and the TCHP-HYB
model. To ensure consistency, they adopt an encoder–decoder structure: the encoder
processes past outputs and control inputs, while the decoder recursively predicts future
outputs over a specified horizon, conditioned on known future control inputs (Figure 6.8).
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Figure 6.7: MPC-based control strategy: This model predictive control framework relies
on a learned model of the system based on vanilla RNN or LSTM as reduced models. The
optimizer computes the optimal control actions φopt

hpv and ωopt
bf over a prediction horizon

to track the T sp
w,sup, given the current return water temperature Tw,ret and water mass

flow rate ṁw. The optimizer uses predictions from the reduced model, which captures
the system dynamics. The optimized inputs are applied to the TCHP-HYB model, and the
resulting outputs Tw,sup and Th1 are fed back to the MPC block.

The input vector for both vanilla RNN and LSTM is z(k) = [y(k − 1), u(k), d(k)]⊤,
where the measured output is y = Tw,sup, the control inputs are u = [ωbf , φhpv]

⊤, and
the disturbances are d = [ṁw, Tw,ret]

⊤. Training requires y measured under sufficiently
exciting variations of u and d.

6.3.1.4 Data processing

To provide sufficient excitation and expand the available dataset (transient sequences from
Section 4.4.1), the TCHP-HYB model was further stimulated with step changes of varying
amplitudes in u and d, staying within the bounds in Table 6.2. The resulting dataset con-
tains 60,000 samples at one-second resolution, with approximately 30% from experiments
and the remainder from simulations. Each subset was split chronologically into training
(80%), validation (10%), and test (10%) partitions to preserve temporal continuity. All
inputs were standardized (zero mean, unit variance) for numerical stability.

For multi-step prediction, the data was reshaped into overlapping sequences using
a sliding window. Each training sequence consists of 10 past time steps (lseq = 10) as
encoder input, while the decoder predicts the following 10 steps (lpred = 10).

6.3.1.5 Model training

Both vanilla RNN and LSTM models use a single recurrent layer with 16 hidden units,
followed by a fully connected output layer. A dropout rate of 10% is applied after the re-
current layer to mitigate overfitting. Models are trained with the Adam optimizer (learning
rate 0.001) and mean squared error (MSE) loss, using mini-batches of size 32. Training
lasted up to 200 epochs with early stopping based on validation loss. The best model was
selected by validation performance and evaluated on the test set using MSE and R2.

The vanilla RNN converged in about 21 minutes, reducing MSE validation loss from
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Figure 6.8: Encoder–decoder RNN architecture unrolled over time steps. The encoder
processes past inputs z(1) to z(lseq), and the decoder recursively predicts future outputs
ŷ(1) to ŷ(lpred), conditioned on known future inputs. This structure allows the model to
capture temporal dependencies and generate multi-step predictions.

5.22 K2 to 0.0871 K2. The LSTM required around 40 minutes, with MSE validation loss
decreasing from 3.7 K2 to 0.06 K2. These results confirm the ability of RNN-type models
to capture nonlinear, dynamic behavior effectively.

Parameter Description Range

φhpv High-pressure valve opening 11–100 %
ωbf Burner fan speed 2000–9500 rpm
Tw,ret Return water temperature 20–45 ◦C
ṁw Water mass flow rate 130–450 g.s−1

Tw,sup Supply water temperature 25–55 ◦C

Table 6.2: Operating ranges of input and output variables used for training the RNN
reduced models.

6.3.1.6 Models validation

As a prediction model for MPC, both models must be evaluated over multiple future steps.

Figure 6.9 illustrates the model’s performance on a test sample of length 5050 from
the test dataset. The vanilla RNN is initialized five times using 10 previous samples, and
then recursively predicts the next 500 time steps. The supply water temperature Tw,sup is
predicted with a MSE of 0.84 K2 and an R2 score of 0.975.

Figure 6.10 shows the validation of the LSTM prediction over the next 500 steps, using
the same setup as for the vanilla RNN. The supply water temperature Tw,sup is predicted
with a MSE of 0.76 K2 and an R2 score of 0.977.

Both the vanilla RNN and LSTM models achieve satisfactory prediction accuracy and
can be used as forecasting models in a MPC with a prediction horizon of 10 steps, for
which the reduced-order models are expected to perform even better than over the 500-
step horizon. LSTM performs slightly better, likely due to its enhanced internal structure.
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In the following, since model validation performances are quiet similar, both models are
used for control performances evaluations.
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Figure 6.9: Vanilla RNN model validation on unseen data from experiments (blue) and
TCHP-HYB model (purple). The model is initialized using 10 previous samples, followed
by prediction of the next 500 samples. The transition between initialization and prediction
is indicated by the black dashed line. The plot shows the predicted and true values of the
supply water temperature Tw,sup. The RNN achieves a MSE of 0.84 K2 and an R2 score of
0.975, indicating high predictive accuracy over the forecasting horizon.

6.3.2 MPC design

MPC is a model-based control strategy that has gained widespread adoption in industrial
applications requiring optimal, constraint-aware control Qin and Badgwell (2003). The
performance of MPC depends primarily on four components: (1) an accurate prediction
model (here, the previously derived vanilla RNN and LSTM models), (2) the formulation
of the cost function, (3) constraint handling, and (4) the choice of optimization algorithm,
which are delivered in this section.

6.3.2.1 Objective function

The main control objective is to deliver the desired heating by tracking the supply water
temperature setpoint ysp = T sp

w,sup with minimal gas consumption. The controller com-
putes the optimal burner fan speed u1 = ωbf and the optimal high-pressure valve opening
u2 = φhpv by minimizing the following objective function:

min
u1,u2

J = α1

np∑
j=1

(
ŷ(k + j|k)− ysp(k + j|k)

)2
+

nc−1∑
j=0

α2 u1(k + j|k)2

+

nc−1∑
j=0

(
α3∆u1(k + j|k)2 + α4∆u2(k + j|k)2

)
+ α5

np∑
j=1

Lconstraint
(
T̂h1(k + j|k)

)
,

(6.15)
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Figure 6.10: LSTM model validation on unseen data from experiments (blue) and TCHP-
HYB model (purple). The model is initialized using 10 previous samples, followed by
prediction of the next 500 samples. The transition between initialization and prediction
is indicated by the black dashed line. The plot shows the predicted and true values of the
supply water temperature Tw,sup. The LSTM achieves a MSE of 0.76 K2 and an R2 score
of 0.977, indicating high predictive accuracy over the forecasting horizon.

subject to

ŷ(k + j|k) = frnn
(
y(k − lseq), . . . , y(k), u(k − lseq), . . . , u(k), d(k − lseq), . . . , d(k)

)
, j = 1, . . . , np,

(6.16)

T̂h1(k + j|k) = fh1
(
ωbf(k + j|k), ωm1(k + j|k)

)
, j = 1, . . . , np,

(6.17)

umin ≤ u(k + j|k) ≤ umax, j = 0, . . . , nc − 1.

(6.18)

In this formulation, the prediction model frnn corresponds to either the trained vanilla
RNN or LSTM model derived in the previous section, while the heater model fh1 is repre-
sented by Equation (5.19). The soft constraint term

Lconstraint(Th1) = max (0, Th1 − Th1,max)

is zero when the heater temperature remains within its limit and positive otherwise, thus
penalizing unsafe operation. The weight vector α = [α1, α2, α3, α4, α5] balances the con-
tribution of each term in the cost:

• α1 > 0 penalizes the tracking error between predicted supply water temperature
and its setpoint.

• α2 > 0 discourages excessive burner fan speed ωbf .

• α3 > 0 penalizes variations in burner fan speed ∆ωbf .

• α4 > 0 penalizes abrupt changes in high-pressure valve opening ∆φhpv.
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• α5 > 0 penalizes exceeding the maximum heater temperature Th1,max.

Here, np and nc denote the prediction and control horizons, respectively. The notation
k + j|k refers to the predicted value at time k + j based on information available at time
k. Equation (6.18) enforces hard bounds on the control inputs u(k + j|k), while penalties
on ∆u(k + j|k) ensure smooth actuator behavior.

The MPC controller operates in a receding-horizon fashion: at each time step k, the
optimal control sequence uopt(k + 1) = {uopt

k+1|k, . . . , u
opt
k+nc|k} is computed. Only the first

element uopt
k+1|k is applied to the system. At the next time step k + 1, the state is updated,

and the optimization problem is solved again, enabling continuous real-time adaptation.

6.3.2.2 Parameters

The prediction horizon is set to match the capacity of the reduced-order models, i.e.,
np = lpred = 10, while the control horizon is fixed at nc = 2. The weighting factors in
the objective function are selected as α1 = 0.95, α2 = 0.002, α3 = 0.02, α4 = 0.002, and
α5 = 0.001. MPC operates with a sampling time of 1 s. The objective function is solved
with the Nelder–Mead algorithm in Python’s minimize function. In the next section, we
validate the defined control strategies on the TCHP-HYB model.

6.3.3 Control strategies validation

This section covers the evaluation of the proposed MPC control strategy (Section 6.3) in
comparison to the PID-based one (Section 6.2). The MPC is coupled with both vanilla
RNN and LSTM models for comparison. As a result, the three evaluated control strategies
are: PID-based, MPC-RNN, and MPC-LSTM.

6.3.3.1 Evaluation conditions

Similarly to Section 6.2.2, the evaluation is done by step changes in the supply water
temperature setpoint. However, the evaluation in this section is applied on the TCHP-
HYB model, since we had no opportunity for real implementation on the TCHP machine.
Supply water temperature setpoint step changes are induced by varying the outdoor tem-
perature between 2 °C and 7 °C over 5000 seconds, with a step change every 1000 seconds.
The inlet glycol mixture temperature is assumed equal to the outdoor temperature. The
water and glycol mixture flow rates are fixed at 230 g.s−1. φlpv is regulated with a PID to
maintain a superheat of 5 K, and ωm2 is regulated with a PID so that Th2 tracks Th1. A key
point in this simulation is that disturbances are present, and the robustness of the control
strategies is also being assessed.

The transient performance of the control strategies is monitored, and a comparison of
their rise time, settling time, overshoot, average temperature error, and average thermal
COP is conducted.

6.3.3.2 Transient evaluation

The transient responses of the TCHP system under the control strategies are shown in Fig-
ures 6.11 and 6.12, corresponding to the outputs (pgc, Tw,sup, and Th1) and inputs (φhpv

and ωbf), respectively. Both MPC-RNN and MPC-LSTM are able to follow the setpoint,
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achieving a smaller error than with PID control. The offset with T sp
w,sup can be attributed

to the independent control of pgc, which also influences Tw,sup. The system also exhibits
significant overshoot, especially during setpoint increases. This is mainly because ωbf reg-
ulates Th1 and not Tw,sup directly, meaning that good tracking of T sp

h1 does not necessarily
translate to good tracking of T sp

w,sup. This also results in a long settling time of about 200 s.
Both issues have already been observed in the real case study (Section 6.2.2) and are re-
produced here by simulation. In contrast, the MPC strategy directly connects ωbf to Tw,sup

using a reduced model (RNN or LSTM) and uses both φhpv and ωbf as direct inputs. Thus,
it avoids both issues resulting from the baseline control strategy.

6.3.3.3 Average evaluation

The average thermal COP and temperature error of the three strategies during simulation
are shown with bar plots in Figure 6.13. The left figure shows the highest thermal COP for
MPC-LSTM, closely followed by MPC-RNN, with a significantly lower value for PID. The
right figure shows that the smallest average temperature error is achieved by MPC-LSTM,
closely followed by MPC-RNN, with a significantly higher error for PID.

Table 6.3 summarizes the performance metrics of the applied control strategies. Com-
pared to the PID strategy (COPth = 1.57), both MPC-RNN and MPC-LSTM show clear
improvements, achieving higher average thermal COP values of 1.72 (+9.7%) and 1.82
(+15.8%), respectively. Similarly, the average temperature error decreases from 0.20 °C
under PID to 0.092 °C (-50.3%) with MPC-RNN and 0.09 °C (-52.7%) with MPC-LSTM.
The average temperature errors from both MPC strategies are relatively close, with a simi-
lar behavior on ωb and Th1, as seen in Figures 6.12 and 6.11. However, the higher thermal
COP obtained with MPC-LSTM shows that it is closer to the optimal high pressure com-
pared to MPC-RNN. For the PID strategy, the use of fixed correlations (g1 and g4) leads to
poor performance because: (1) it is difficult to consider all influencing inputs within the
correlation, (2) such correlations are derived under steady-state assumptions, neglecting
transient behavior, and (3) system behavior may change over time.

In terms of computation time, using a prediction length equal to the prediction horizon
avoided iterations in the optimization process, significantly reducing computation time.
Nevertheless, computation time still increased from 0.008 ms (PID) to 20 ms (MPC-RNN)
and 24 ms (MPC-LSTM) during each iterative step. This cost could be reduced further by
using approximate MPC, for instance, by generating optimal control inputs offline across
multiple operating points and learning a control policy via a NN. Another alternative is to
linearize the trajectory online, enabling faster optimization using simpler solvers.

Despite their effectiveness, a limitation of both MPC-RNN and MPC-LSTM is the rel-
atively high number of hyperparameters that must be tuned to ensure stability and good
performance. Finally, the proposed control strategy is also applicable to more conven-
tional electrically driven heat pumps by replacing the burner fan speed with the electric
motor speed as the manipulated variable.

6.4 Conclusion

In this chapter:
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Figure 6.11: Transient evaluation of PID, MPC-RNN, and MPC-LSTM: resulting supply
water temperature Tw,sup, first heater temperature Th1, high pressure pgc, and their corre-
sponding setpoints.

Controller Average COPth [-] Average error [K] Settling time [s] Computation time [ms]

MPC-LSTM 1.82 0.09 30 24
MPC-RNN 1.72 0.09 30 20
PID 1.57 0.19 200 0.01

Table 6.3: Average performance evaluation of PID, MPC-RNN, and MPC-LSTM controllers.

• A general review of control strategies for VCCs was provided. The control of these
cycles was hierarchically divided into supervisory and local levels. The focus was
mainly on local control, ranging from basic on/off and PID to more advanced strate-
gies, particularly MPC. These strategies rely heavily on reduced models, which were
also reviewed in the context of VCCs. The literature highlighted the increasing need
for advanced control strategies in energy systems, driven by stricter energy regula-
tions and efficiency requirements. In particular, control strategies for transcritical
CO2 cycles were briefly discussed, with emphasis on high-side (gas cooler) pressure
control.

• A TCHP, a transcritical CO2 cycle developed for residential heating, was then con-
sidered. The control problem of a TCHP was formulated from the user’s demand
down to the internal operation of the cycle. The system variables were classified
into manipulated, disturbance, and controlled variables. The TCHP control objective
of delivering a target supply temperature and the corresponding PID-based control
strategy were explicitly described. A real case study was then provided by applying
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Figure 6.12: Transient evaluation of PID, MPC-RNN, and MPC-LSTM: resulting control
inputs of burner fan speed ωbf and high-pressure valve opening φhpv (percentage).
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Figure 6.13: Average evaluation of PID, MPC-RNN, and MPC-LSTM: (a) thermal COP and
(b) supply water temperature error, shown as bar plots.

step tests on setpoints to evaluate the baseline control strategy, highlighting its limi-
tations. A new control strategy coupling MPC with a reduced RNN was subsequently
proposed.

• Two types of reduced RNN models were developed: a vanilla RNN and an LSTM.
The main inputs to be regulated and the outputs to be controlled were identified,
and the structure of each model was defined. For training, representative data were
required. In addition to the real transient data introduced in Section 4.4.1, further
data were obtained by exciting the previously validated TCHP-HYB model. The data
were processed, models were trained, and then validated on unseen data.

• A new MPC design was proposed to replace two PIDs. The new MPC strategy was
tested on the TCHP-HYB model and compared with the previous PID-based one. The
MPC–LSTM coupling increased the COP by 15.8 % and reduced the supply water
temperature error by 52.7 %. Although PID produced smoother input trajectories,
MPC strategies clearly avoided overshoots, demonstrated robustness to disturbances,
and achieved much shorter settling times. Furthermore, the computation time of
MPC (20–24 ms) was well below the 1 s sampling time, ensuring feasibility for real-
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time implementation.

• The improved performance of MPC–RNN and MPC–LSTM came at the cost of higher
computation times compared to PID, underlining the need for approximate MPC
schemes to reduce complexity. Future work could also extend the reduced mod-
els by including evaporator dynamics to increase degrees of freedom. Overall, this
study demonstrates that intelligent control strategies are increasingly necessary in
modern heat pump applications, as they can enhance performance while ensuring
compliance with operational constraints. The method can be generalized and is not
restricted to a TCHP-type machine.

In summary, this chapter presented a novel MPC–RNN control method applied to a TCHP
for residential heating. The approach is not restricted to TCHPs and can be generalized
to other VCC systems. The RNN effectively captured the nonlinear and complex system
dynamics, enabling the MPC to control two key inputs simultaneously and optimize them
online. As a result, the supply water temperature setpoint was accurately tracked with
reduced energy (gas) consumption. Unfortunately, real validation was not possible as
the TCHP machine was no longer available at Boostheat. Future work could focus on
accelerating computation, for example by learning MPC optimizations for faster solutions,
and on extending the framework to additional inputs such as water mass flow rate, which
was not considered here.



Chapter 7

Conclusions and perspectives

This thesis has addressed the problem of performance optimization of a CO2 thermally
driven heat pump (TCHP) intended for residential heating applications. The starting point
of this work was the recognition that natural gas remains a dominant heating fuel world-
wide, yet conventional gas boilers are inefficient and environmentally harmful. The de-
velopment of an alternative solution, namely the TCHP, relies on a novel component—the
thermal compressor (TC)—which uses natural gas to provide mechanical compression
in a fundamentally different way compared to electric compressors. The complexity of
this system, driven by strong nonlinearities, multi-component interactions, and the spe-
cific thermodynamic characteristics of CO2, necessitated an integrated research effort that
combined experimental studies, physical modeling, data-driven approaches, and the de-
velopment of advanced control strategies.

In the first part of the manuscript, particular attention was devoted to the TC as the key
component distinguishing TCHPs from conventional vapor compression cycles. A detailed
review of Stirling-type machines helped situate the TC within its technological family
and clarify its similarities and differences with the classical Stirling engine. An extensive
experimental campaign was then carried out, integrating the TC into a single-stage heat
pump test bench. This setup enabled the collection of valuable measurements, which were
first processed to detect and filter outliers, and then used to define relevant performance
indicators. From these indicators, an exergy-based performance metric was established
to provide a unified criterion for evaluating the TC under different operating conditions.
These results already highlighted the potential of the TC concept but also emphasized
the sensitivity of its performance to external conditions such as rotational speed, charged
pressure, and heater temperature.

To complement the experimental analysis, a third-order finite volume (FV) physical
model of the TC was developed, denoted as ’TC-3RD’. This model, spatially discretized
into control volumes, allowed the application of mass, momentum, and energy balances
to capture the transient thermodynamic behavior of the machine. The model was vali-
dated against experimental measurements in both steady-state and transient conditions,
the latter being supported by CFD simulations. A detailed exergy analysis was then per-
formed, quantifying irreversibilities across the internal components of the TC and provid-
ing deeper insight into optimization opportunities. However, due to its computational cost
and stiffness, this physical model was not suitable for integration into a full system simu-
lation or real-time control. Therefore, data-driven approaches were introduced. Based on
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the extended experimental database, polynomial regressions, Gaussian process regression
(GPR), and artificial neural networks (ANNs) were trained and compared. While polyno-
mial models showed limitations, the neural network (NN) achieved high accuracy at the
cost of large computational time. The Gaussian process regression model provided the
best compromise, offering accuracy equivalent or superior to the NN while being drasti-
cally faster, thus representing the most promising candidate for integration into a dynamic
heat pump model.

The second part of the thesis extended the analysis to the complete three-stage TCHP
system. The motivation for using CO2 as a working fluid in transcritical cycles was re-
called, underlining its environmental advantages but also its specific challenges in terms of
cycle optimization. The experimental setup of the three-stage TCHP developed by Boost-
heat was presented, and data were collected under both steady-state and transient condi-
tions. Based on this dataset, a comprehensive hybrid dynamic model of the system was
derived, denoted as ’TCHP-HYB’. This hybrid model combined FV formulations for heat
exchangers with quasi-static models of other components such as valves and TCs (GPR
from Part I), resulting in a detailed yet computationally manageable framework. Valida-
tion against experimental data confirmed its ability to reproduce both steady-state maps
and transient responses. The TCHP-HYB then served as the basis for the development and
evaluation of advanced control strategies.

Building on this foundation, the problem of controlling the TCHP was addressed. Tra-
ditional PID-based strategies, while simple, proved insufficient to deal with the strong
couplings and nonlinearities of the system. To overcome these limitations, a new control
approach based on Model Predictive Control (MPC) was proposed. Since the reference
model was too complex for direct use in MPC optimization, reduced-order models based
on recurrent neural networks (vanilla RNN and LSTM architectures) were identified and
trained on both experimental and simulated data. These reduced models captured the
essential system dynamics and enabled the design of an MPC strategy capable of handling
multiple inputs and outputs simultaneously. The proposed MPC was validated through
simulations and experimental data, showing clear advantages over baseline control in
terms of transient response, setpoint tracking (-52.7% error), and overall energy efficiency
(+15.8% COP). The ability of MPC to anticipate system evolution and to coordinate mul-
tiple actuators highlighted its relevance as a candidate for real implementation in future
TCHP units.

Overall, the contributions of this thesis are manifold. At the component level, the work
has provided both a validated FV physical model and efficient data-driven models of the
TC, supported by dedicated experimental campaigns. At the system level, it has delivered
a hybrid dynamic model of a three-stage TCHP, also validated with real measurements.
On the control side, it has introduced and demonstrated the potential of advanced MPC
strategies supported by reduced-order RNN models. All the developed tools have been
implemented in Python and made available in an open-source framework, ensuring repro-
ducibility and future extensions by the research community.

In perspective, several directions are worth pursuing. Experimentally, more exten-
sive campaigns covering a wider range of operating conditions would allow improving
the robustness of the data-driven models. At the modeling level, further refinement of
heat exchanger correlations and valve dynamics could enhance the predictive accuracy of
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the system model. On the control side, real-time implementation is limited primarily by
computational speed rather than control quality: the MPC performs well on the validated
hybrid model, and future work will focus on acceleration and robustness to uncertainties.
Coupling the developed control strategies with supervisory energy management systems
could also open new perspectives, especially for integrating TCHPs into smart grids or hy-
brid renewable-based systems. Finally, the adoption of natural refrigerants and thermally
driven solutions such as TCHPs contributes to the broader effort of reducing greenhouse
gas emissions in the residential heating sector, and the tools developed in this work repre-
sent a solid basis for accelerating this transition.

In conclusion, this thesis has demonstrated that combining experimental characteriza-
tion, physical modeling, data-driven approaches, and advanced control strategies provides
an effective methodology for tackling the complexity of novel thermally driven cycles.
The developed results not only enhance the understanding and optimization of TCHPs
but also pave the way toward their practical deployment as a sustainable alternative to
conventional gas boilers.
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Appendix A

Résumé étendu en français de la
thèse

Le gaz naturel reste le principal combustible de chauffage dans les bâtiments à l’échelle
mondiale, représentant environ 40 % de la demande totale d’énergie de chauffage en 2022
selon l’Agence Internationale de l’Énergie (AIE). Les chaudières à gaz conventionnelles
couvrent encore la majeure partie de cette demande, malgré leur contribution aux émis-
sions de gaz à effet de serre. Une alternative prometteuse est la pompe à chaleur à com-
presseur thermique (TCHP), une pompe à chaleur entraînée thermiquement qui utilise
également le gaz naturel mais d’une manière fondamentalement différente. Au lieu de
convertir directement le combustible en chaleur, comme le font les chaudières, la TCHP
utilise le gaz naturel pour actionner un compresseur thermique (TC), qui transfère ensuite
de la chaleur supplémentaire à partir d’une source externe telle que l’air ambiant ou l’eau.
Cela permet à la TCHP de fournir plus de chaleur que l’énergie du combustible qu’elle
consomme, ce qui en fait un remplacement potentiellement plus économe en énergie que
les chaudières à gaz conventionnelles.

Une TCHP est un cycle à trois étages qui utilise le CO2 comme fluide de travail dans
sa phase supercritique. L’innovation principale réside dans sa technologie de TC, qui est
le composant qui reçoit la chaleur et remplace un compresseur électrique conventionnel.
Cependant, la présence de multiples composants interconnectés en raison des différents
étages du cycle, les fortes non-linéarités et la sensibilité du TC aux conditions de fonction-
nement rendent le contrôle d’une TCHP particulièrement complexe. Ces difficultés exigent
des stratégies avancées qui vont au-delà des approches de contrôle traditionnelles. Pour
répondre à ce défi, l’objectif final de cette thèse est de développer une nouvelle stratégie
de contrôle capable d’améliorer la performance globale de la TCHP. À cette fin, divers
outils de simulation et analyses de performance sont mis en œuvre afin de soutenir la
conception et la validation de la solution de contrôle proposée.

La première partie de cette thèse (chapitres 1, 2 et 3) est consacrée au TC, en tant que
composant clé d’une TCHP. Pour acquérir une compréhension détaillée de ce composant,
une revue des machines de type Stirling est d’abord présentée, mettant en évidence les
caractéristiques uniques du TC étudié. Une campagne expérimentale est ensuite menée
sur un TC intégré dans une pompe à chaleur à un étage afin d’évaluer ses performances.
À partir des données collectées, plusieurs modèles empiriques (boîte noire) sont dévelop-
pés afin de fournir des prédictions rapides et fiables. Ces modèles sont destinés à leur
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intégration dans un modèle dynamique de pompe à chaleur et à l’appui de la oncep-
tion de stratégies de commande, sans réalisation d’étude paramétrique d’exergie basée
sur l’apprentissage automatique. Pour compléter l’approche boîte noire et permettre une
compréhension physique plus approfondie, un modèle physique en volumes finis (VF) est
également développé. Ce modèle permet de quantifier les destructions d’exergie au sein
des composants internes du TC et constitue une base flexible pour l’optimisation.

La deuxième partie de la thèse (chapitres 4 5 et 6) étend l’analyse au système TCHP
complet. Elle commence par une revue des cycles transcritiques au CO2, discutant de leurs
caractéristiques spécifiques ainsi que des techniques de modélisation et de contrôle asso-
ciées. Le cycle et le procédé de la TCHP sont décrits, et des travaux expérimentaux dédiés
sont menés. Un modèle dynamique VF de l’ensemble du système est ensuite proposé et
validé par rapport aux données expérimentales. En combinant les mesures réelles avec
les résultats de simulation, des modèles réduits de type réseaux de neurones récurrents
(RNN) sont identifiés afin de fournir des représentations efficaces de la dynamique du sys-
tème. Enfin, une nouvelle stratégie de contrôle prédictif par modèle (MPC) est introduite,
reposant sur les modèles réduits pour permettre un contrôle optimal du système TCHP.

En résumé, cette thèse fournit à la fois des outils de modélisation au niveau des com-
posants et au niveau du système, validés expérimentalement, et introduit une nouvelle
stratégie MPC pour une TCHP. Ces contributions soutiennent non seulement le développe-
ment de TCHP efficaces comme alternative durable aux chaudières à gaz, mais offrent
également une base pour de futures études d’optimisation.

Mots-clés : pompe à chaleur à compresseur thermique, CO2 transcritique, compresseur
thermique, analyse exergétique, méthode des volumes finis, modélisation empirique, réseaux
de neurones récurrents, contrôle prédictif par modèle

Chapitre 1

Ce chapitre présente une analyse expérimentale et numérique d’un TC destiné aux cy-
cles de pompe à chaleur, en s’appuyant sur la famille des machines de type Stirling pour
cadrer le fonctionnement et la terminologie. Il commence par rappeler les principes des
moteurs de Stirling, machines à combustion externe, fermées et régénératives, où un flu-
ide de travail accomplit des transformations cycliques grâce à un gradient de température
entre une source chaude et une source froide. Les éléments constitutifs usuels — volume
de compression, refroidisseur, régénérateur, réchauffeur et volume d’expansion — sont
décrits conjointement au déplacement assuré par un déplaceur et un piston moteur. Le
cycle théorique est présenté sur les diagrammes p–V et T–s comme une suite idéalisée de
compression, transfert régénératif à volume quasi constant, expansion et retour, dont le
rendement ne peut égaler Carnot qu’en présence d’un régénérateur parfait et d’échangeurs
idéaux. Les écarts réels proviennent notamment des irréversibilités d’échange, des perfor-
mances non idéales du régénérateur et des volumes morts induisant des gradients spatio-
temporels des grandeurs thermodynamiques.

Le chapitre distingue ensuite le TC de type Stirling, ou STC, d’un moteur de Stirling.
Le STC est un système ouvert qui convertit une fourniture de chaleur en élévation de pres-
sion afin d’acheminer un fluide de travail du côté chaud vers le côté froid. En remplaçant
le piston moteur par un orifice et par des soupapes d’aspiration et de refoulement, on sup-
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prime le couplage cinématique piston–déplaceur et on ne conserve qu’un entraînement
électrique du déplaceur pour vaincre les pertes mécaniques, d’où une demande électrique
faible au regard de la puissance thermique d’entrée. Contrairement au moteur de Stirling
qui s’appuie sur un déphasage volumétrique compression–expansion, le STC engendre les
ondes de pression par la seule variation harmonique d’un volume effectif unique, assimil-
able à la combinaison des cavités chaude et froide. La littérature distingue un STC de type
1, à chemin d’écoulement unique visant la réfrigération par tube à pulsations, et un STC
de type 2, muni de soupapes distinctes d’aspiration et de refoulement pour remplacer un
compresseur mécanique dans des applications comme les pompes à chaleur.

Le TC étudié est précisément un STC de type 2 à soupapes séparées, conçu pour
s’insérer à la place d’un compresseur mécanique dans un cycle de pompe à chaleur à
compression de vapeur. Sa géométrie est détaillée à partir d’une coupe verticale: une
cavité froide et une cavité chaude séparées par un déplaceur, reliées par des échangeurs
à volumes constants comprenant un refroidisseur traversé par une chemise d’eau de re-
froidissement, un réchauffeur annulaire alimenté thermiquement et un régénérateur en
matrice poreuse à fils fins. Des volumes morts existent entre refroidisseur et régénérateur
et entre réchauffeur et régénérateur. Les soupapes d’aspiration et de refoulement se con-
nectent à la cavité froide pour admettre et livrer le débit au cycle thermodynamique. La
cinématique repose sur un mécanisme bielle-manivelle qui impose au déplaceur un mou-
vement quasi sinusoïdal; les variations volumétriques des cavités froide et chaude sont en
phase, si bien que le volume de travail total ne varie que faiblement et que la boucle p–V
totale est étroite et suit l’orientation de la cavité froide, à l’inverse d’un moteur de Stirling
où le déphasage crée une aire utile importante et orientée comme l’expansion.

Le processus de compression thermique est rendu intelligible en traçant la pression
interne supposée uniforme en fonction de la position du déplaceur. Lorsque les soupa-
pes sont fermées et que le déplaceur descend, le fluide se réchauffe en migrant vers la
zone chaude, ce qui élève la pression jusqu’à dépasser la pression de refoulement et ou-
vrir la soupape de refoulement; symétriquement, lorsque le déplaceur remonte, le fluide
retourne vers la zone froide, la pression chute jusqu’à passer en-dessous de la pression
d’aspiration et la soupape d’aspiration s’ouvre. Le cycle utile résulte ainsi de deux phases
adiabatiques internes à volume total presque constant, séparées par des phases de refoule-
ment et d’admission commandées par les soupapes.

L’évaluation expérimentale intègre pour la première fois le TC dans un cycle de pompe
à chaleur CO2 à un étage comprenant TC, condenseur, détendeur électronique et évapo-
rateur, avec un échangeur de fumées récupérant une partie de la chaleur des gaz de com-
bustion qui chauffent le réchauffeur. Le banc comprend une boucle d’eau qui récupère la
chaleur au refroidisseur puis au condenseur et enfin au récupérateur de fumées, et une
chambre de combustion isolée dont la température de paroi du réchauffeur est régulée
par la vitesse d’un ventilateur-brûleur via une boucle PID. La métrologie associe, côté eau,
des Pt100 de haute précision et un débitmètre vortex; côté CO2, des thermocouples T aux
orifices d’aspiration et de refoulement, un thermocouple K au niveau du réchauffeur, des
capteurs de pression à haute précision pour psuc et pdis et un débitmètre massique Corio-
lis en aval du détendeur. L’acquisition synchronise les automates de contrôle du banc et
l’interface logicielle de pilotage du TC qui règle vitesse moteur et vitesse du ventilateur-
brûleur.
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Le protocole de tests explore l’influence des grandeurs d’entrée suivantes: température
d’eau de retour Tw,ret imposée par le groupe froid, température de réchauffeur Th asservie
par la vitesse du brûleur ωbf, rapport de pression rp = pdis/psuc modulé par l’ouverture
de la vanne de détente électronique φeev, pression moyenne de charge pcharged ajustée par
ajout ou retrait de CO2, vitesse de rotation ωm du mécanisme, température d’aspiration
Tsuc laissée flottante. Des campagnes à différentes pressions de charge (environ 30, 40,
50 et 56 bar) balaient des combinaisons de ωm et φeev, pour un total de 118 échantil-
lons, avec Th fixé à 700 ou 800 °C en raison de limitations de stabilité de flamme. Les
intervalles opératoires couvrent typiquement psuc ∈ [22,6, 48,7] bar, pdis ∈ [34,2, 64,2] bar,
ωm ∈ [100, 245] rpm, Tw,ret ∈ [17,5, 24] °C et Tsuc ∈ [3, 21,6] °C.

Les indicateurs de performance sont définis à partir d’un schéma d’énergie mettant en
évidence la puissance thermique de combustible, la chaleur utile absorbée au réchauffeur,
la chaleur récupérée au refroidisseur et à l’échangeur de fumées, les pertes thermiques, la
puissance mécanique transmise au déplaceur et la puissance de compression déterminée à
partir des états d’aspiration et de refoulement. Les bilans permettent d’estimer la chaleur
au réchauffeur par conservation d’énergie autour du TC et d’en déduire les pertes ther-
miques par différence avec l’énergie non récupérée dans les fumées. Les plages observées
indiquent des transferts au réchauffeur de l’ordre de 0,7 à 3,8 kW, au refroidisseur de
0,44 à 2,58 kW, des puissances mécaniques parfois négatives ou modestes (–34 à 368 W),
des débits massiques CO2 de 4 à 44 g.s−1 et des températures de refoulement de 37 à 67
°C, confirmant que la chaleur d’entrée pilote l’augmentation de pression et le débit utile
tandis que l’appoint mécanique reste secondaire.

Afin d’assurer la cohérence du jeu de données et d’écarter les mesures aberrantes in-
duites par le bruit, des défauts de capteurs ou des phénomènes non modélisés, une ré-
gression à processus gaussiens est utilisée pour établir des relations lisses multivariées
entre indicateurs et variables d’entrée, assorties d’intervalles de confiance prédictifs. Les
points sortant des bandes à 95 % sont identifiés comme valeurs atypiques; sept échantil-
lons ont ainsi été retirés, produisant un ensemble filtré mieux adapté à l’analyse et à la
modélisation.

Étant donné que le TC ne réalise ni compression isentropique ni remplissage volumétrique
au sens d’un compresseur mécanique, les rendements isentropique et volumétrique usuels
ne sont pas pertinents. Le chapitre introduit donc une métrique unifiée fondée sur l’exergie,
qui mesure le potentiel de travail utile associé aux transferts d’énergie. L’exergie apportée
par la chaleur au réchauffeur est calculée à l’aide du facteur de Carnot (fonction de la
température de la source chaude et de la température ambiante). L’exergie transmise à
l’eau au refroidisseur s’obtient à partir des débits d’eau et des variations de fonctions de
flux, et l’exergie de compression du CO2 se déduit des variations de ces mêmes fonctions
entre refoulement et aspiration. À l’état stationnaire, l’exergie détruite dans le TC résulte
de la différence entre l’exergie fournie (chaleur au réchauffeur et puissance mécanique)
et l’exergie utile produite (compression du fluide et chaleur récupérée au refroidisseur).
L’efficacité exergétique est définie comme le rapport entre l’exergie utile (compression
plus récupération au refroidisseur) et l’exergie fournie (chaleur au réchauffeur plus puis-
sance mécanique). L’analyse des données filtrées montre que l’influence de la vitesse de
rotation sur cette efficacité est faible, tandis que le rapport de pression exerce un effet
marqué: l’efficacité tend à décroître lorsque le rapport augmente, plus nettement au-delà
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d’environ 1,4. À pression de charge plus élevée, les efficacités observées sont en moyenne
supérieures, suggérant l’effet favorable de la densité accrue sur les échanges thermiques
et les pertes internes. La variation de la température de la source chaude de 700 à 800 °C
n’apparaît pas déterminante dans la plage explorée, probablement du fait de limitations
de commande et parce que la source chaude est déjà très supérieure à l’ambiante, ce qui
limite l’effet du facteur de Carnot.

En synthèse, ce premier chapitre établit le socle conceptuel et expérimental pour
l’étude d’un TC destiné aux cycles CO2. Il précise le fonctionnement spécifique d’un STC
de type 2, son architecture, ses lois de commande et ses grandeurs pertinentes de mesure,
formalise les indicateurs énergétiques et propose une métrique d’évaluation par l’exergie
mieux adaptée qu’un rendement isentropique ou volumétrique. L’exploitation d’un banc
instrumenté intégrant la machine dans un cycle réel a fourni un jeu de données inédit,
nettoyé par apprentissage bayésien, qui met en évidence les rôles prépondérants du rap-
port de pression et de la pression moyenne de charge, face à un effet secondaire de la
vitesse et un effet marginal de la température de réchauffeur dans les conditions testées.
Les limites intrinsèques des campagnes — étendue réduite des niveaux de température de
la source chaude et de pression de charge, accès incomplet aux variables internes et aux
pertes — motivent le développement, au chapitre suivant, d’un modèle physique à haute
fidélité. Ce modèle permettra d’éclairer les mécanismes internes non mesurés, d’extrapoler
au-delà du domaine expérimental et d’ouvrir la voie à l’optimisation de la conception et
des conditions opératoires du TC.

Chapitre 2

Ce chapitre est consacré au développement d’un modèle physique détaillé de troisième
ordre appliqué au TC étudié dans le cadre de ce travail. Alors que les modèles de données
élaborés dans le chapitre précédent se sont révélés utiles pour prédire les performances
et identifier les conditions de fonctionnement optimales, ils ne permettent pas de diag-
nostiquer les déficiences internes du compresseur. L’objectif ici est donc de combler cette
lacune en développant un outil de simulation basé sur une modélisation physique de haute
fidélité.

La première partie du chapitre s’attarde sur une revue des approches de modélisa-
tion existantes pour les machines de type Stirling. Ces approches sont classées selon leur
niveau de complexité. Les modèles de premier ordre, analytiques, se basent sur des hy-
pothèses simplifiées comme des compressions et expansions isothermes, et un régénéra-
teur parfait. Les modèles de second ordre introduisent une approche numérique en con-
sidérant les espaces de compression et d’expansion comme adiabatiques et en divisant la
machine en plusieurs volumes de contrôle. Les modèles de troisième ordre, plus détaillés,
reposent sur la discrétisation spatiale et l’application des équations de conservation de la
masse, de l’énergie et de la quantité de mouvement sur chaque volume. Ils permettent
une meilleure précision tout en restant moins coûteux en calcul que les modèles de dy-
namique des fluides numériques (CFD). Dans ce travail, ce niveau de détail est jugé le
plus adapté car il intègre l’inertie des fluides, élément indispensable à la modélisation des
compresseurs thermiques de type Stirling.

Sur cette base, un modèle de troisième ordre spécifique au compresseur étudié est
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dérivé. Le compresseur est discrétisé spatialement par la méthode des volumes finis en
plusieurs volumes de contrôle, chacun étant caractérisé par une pression, une tempéra-
ture et une densité uniformes. Les équations de bilan de masse, d’énergie et de quantité
de mouvement sont établies et reliées entre elles afin de constituer un système d’équations
différentielles ordinaires. Les pertes réelles, telles que les pertes thermiques par effet de
navette et les pertes dues à la vitesse finie et les frottements mécaniques, sont incluses.
Les valves d’aspiration et de refoulement, éléments caractéristiques de cette machine par
rapport aux machines de type Stirling classiques, sont également modélisées en consid-
érant des relations statiques et un écoulement isentropique. Enfin, des corrélations em-
piriques issues de la littérature sont utilisées pour évaluer les coefficients de transfert de
chaleur et de frottement dans les échangeurs de chaleur, le cylindre et le régénérateur. Les
paramètres géométriques de chaque composant sont rassemblés pour définir la base du
modèle.

Le couplage de ces équations aboutit à la formation d’un système d’équations différen-
tielles interconnectées appelé modèle TC-3RD. Ce modèle prend en entrée les conditions
de fonctionnement (pressions d’aspiration et de refoulement, vitesse de rotation, tempéra-
tures des sources chaude et froide) ainsi que les paramètres géométriques des composants.
En sortie, il fournit l’évolution temporelle des propriétés thermophysiques du dioxyde de
carbone ainsi que les débits massiques et les flux de chaleur. À partir de ces résultats, les
indicateurs de performance du compresseur, tels que la puissance mécanique, les échanges
thermiques et la température de refoulement, peuvent être calculés sur un cycle complet.
Les conditions initiales sont définies à partir d’une répartition linéaire des températures et
d’une pression uniforme, puis le système est résolu numériquement à l’aide de la méthode
de Runge–Kutta. Pour accélérer la convergence vers l’état périodique, des techniques is-
sues de la littérature sont employées, notamment l’ajustement progressif des températures
du régénérateur.

Une validation du modèle est réalisée en deux étapes. Tout d’abord, les résultats tran-
sitoires obtenus avec le TC-3RD sont comparés à une simulation CFD pour un point de
fonctionnement donné. Les tendances générales des variations de masse, de température,
de pression et des diagrammes pression–volume sont bien reproduites, malgré quelques
écarts au niveau des températures de la cavité chaude et de l’espace du réchauffeur.
Compte tenu de la rapidité du modèle par rapport au CFD, ces écarts sont jugés accept-
ables. Ensuite, une validation en régime permanent est menée en comparant les prédic-
tions du modèle avec les données expérimentales collectées précédemment. Les résultats
montrent que le modèle capture les tendances globales mais présente des écarts notables,
notamment une sous-estimation de la puissance mécanique et des transferts de chaleur
dans le refroidisseur, ainsi qu’une surestimation de la température de refoulement. Les
écarts relatifs observés varient de 8 à 16 % pour les transferts de chaleur, d’environ 14
% pour les débits massiques et dépassent 40 % pour la puissance mécanique, mettant en
évidence la nécessité d’améliorations.

Malgré ces limites, le modèle TC-3RD constitue un outil précieux pour analyser les
phénomènes internes et, en particulier, pour réaliser une analyse exergétique détaillée.
Cette étude montre que la majorité des destructions d’exergie se produisent dans le régénéra-
teur, suivi par les échangeurs de chaleur, tandis que les cavités chaude et froide contribuent
de manière plus marginale. L’analyse paramétrique révèle qu’il existe un rapport de pres-
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sion optimal compris entre 1,2 et 1,4, au-delà duquel l’efficacité exergétique se dégrade
fortement. L’influence de la pression de charge est également déterminante : une augmen-
tation jusqu’à 50 bar améliore l’efficacité exergétique, mais celle-ci diminue au-delà de 70
bar. L’augmentation de la température de la source chaude a un effet positif mais limité.
Ces résultats orientent les perspectives d’optimisation vers la conception du régénérateur
et l’adaptation des conditions de fonctionnement.

En conclusion, le modèle physique de troisième ordre développé dans ce chapitre ap-
porte une compréhension approfondie du comportement interne du TC et met en lumière
les mécanismes de pertes les plus critiques. Bien qu’il nécessite encore des améliorations
pour fournir des prédictions quantitatives précises, il reste un outil adapté pour l’analyse
exergétique et l’optimisation des composants. Sa lourdeur computationnelle le rend en re-
vanche inadapté aux besoins de contrôle en temps réel, justifiant le recours à des modèles
réduits pour les chapitres suivants.

Chapitre 3

Ce chapitre aborde le développement de modèles empiriques du TC en s’appuyant sur
les données expérimentales collectées par l’entreprise et lors des campagnes précédentes.
Alors que le modèle physique de troisième ordre présenté au chapitre précédent apporte
une compréhension fine des phénomènes internes mais reste limité en précision et en coût
de calcul, l’objectif ici est de construire des modèles d’apprentissage statistique capables de
fournir des prédictions rapides et fiables des performances du compresseur. Ces modèles
constituent des candidats prometteurs pour leur intégration dans un modèle dynamique
de pompe à chaleur.

La première étape consiste à enrichir et réévaluer la base de données disponible. Les
mesures initiales étaient limitées en termes de variation de température de la source
chaude, une variable clé pour caractériser les performances du compresseur. Pour pallier
cette lacune, des données issues de tests antérieurs réalisés sur une technologie similaire
sont ajoutées. Dans ces essais, la chauffe était assurée électriquement, ce qui permet de
considérer l’apport thermique sans pertes par combustion. Au total, 251 échantillons sont
rassemblés, puis un filtrage est effectué par une approche de régression gaussienne pour
détecter les valeurs aberrantes. Vingt points sont ainsi exclus, ce qui conduit à un jeu de
données final de 231 échantillons, couvrant des gammes élargies de pressions d’aspiration
et de refoulement, de vitesse de rotation et de températures de chauffe.

Sur cette base, trois familles de modèles d’apprentissage supervisé sont mises en œu-
vre pour prédire les indicateurs de performance du compresseur à partir de grandeurs
d’entrée facilement mesurables. La première famille correspond aux modèles de régres-
sion linéaire et polynomiale, qui offrent une base simple mais limitée dès que les relations
deviennent fortement non linéaires. La seconde est la régression par processus gaussiens,
un modèle probabiliste non paramétrique capable de capturer les relations complexes tout
en fournissant une estimation de l’incertitude. Enfin, la troisième famille est représentée
par les réseaux de neurones artificiels, qui permettent de modéliser des comportements
hautement non linéaires grâce à des architectures comprenant plusieurs couches et de
nombreux paramètres ajustables. L’ensemble des modèles est implémenté en Python à
l’aide de bibliothèques standards, entraîné sur 80 % des données disponibles et validé sur
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les 20 % restants. Les performances sont évaluées au moyen de métriques classiques telles
que le coefficient de détermination R2, l’erreur absolue moyenne (MAE) et l’erreur relative
moyenne (MAPE).

Les résultats montrent que les modèles de régression polynomiale atteignent une préci-
sion acceptable pour certaines grandeurs thermiques mais échouent sur le débit massique
et la puissance mécanique, en raison de la complexité des relations. Les réseaux de neu-
rones offrent une nette amélioration, avec des R2 élevés et des erreurs faibles, mais leur
temps de calcul moyen par itération (environ 660 ms) constitue un frein pour une utili-
sation en simulation dynamique. À l’inverse, le modèle basé sur les processus gaussiens
parvient à une précision équivalente, voire supérieure, tout en réduisant drastiquement le
temps d’inférence à environ 3,4 ms, soit près de 200 fois plus rapide. Ce compromis préci-
sion–vitesse fait de la GPR le candidat privilégié pour servir de modèle de substitution du
TC.

Une validation approfondie est menée par une stratégie de validation croisée en cinq
plis, garantissant la robustesse et la généralisation des résultats. Les indicateurs de per-
formance montrent que la GPR domine systématiquement les autres méthodes, avec des
écarts réduits et une excellente cohérence entre données prédites et mesurées. L’ANN con-
serve de bonnes performances mais se montre légèrement moins fiable en généralisation.
Quant à la régression polynomiale, elle se révèle inadaptée pour certaines sorties critiques.

En conclusion, ce chapitre démontre que les approches fondées sur l’apprentissage au-
tomatique permettent de développer des modèles rapides, fiables et suffisamment précis
pour être intégrés dans des modèles dynamiques de cycle complet et utilisés pour la com-
mande. Parmi elles, la régression par processus gaussiens s’impose comme la solution la
plus équilibrée, combinant précision et rapidité d’exécution. Cette approche ouvre la voie
à l’optimisation des conditions de fonctionnement d’un TC dans une pompe à chaleur à
trois étages, présentée dans le chapitre suivant.

Chapitre 4

Ce chapitre introduit la deuxième partie de la thèse, consacrée à la modélisation dy-
namique et au contrôle d’une TCHP à trois étages. Après avoir développé un modèle
empirique du TC, l’analyse s’étend ici au cycle complet de la pompe à chaleur, utilisant le
dioxyde de carbone comme fluide frigorigène et intégrant trois compresseurs thermiques
en série. L’objectif est d’établir une compréhension globale du cycle, de ses particularités
et de ses données expérimentales afin de préparer le développement et la validation d’un
modèle dynamique utilisable pour la synthèse de stratégies de commande avancées.

Le chapitre commence par un retour sur l’utilisation du dioxyde de carbone comme
réfrigérant. Historiquement remplacé par les fluides synthétiques pour des raisons pra-
tiques, le CO2 a connu un regain d’intérêt suite aux accords internationaux tels que le
Protocole de Montréal et le Protocole de Kyoto, qui ont souligné les effets néfastes des
CFC et HCFC sur la couche d’ozone et le climat. Le CO2 présente l’avantage d’être non
toxique, non inflammable et sans impact sur la couche d’ozone, tout en ayant un potentiel
de réchauffement global extrêmement faible. Néanmoins, ses propriétés thermophysiques
singulières, notamment une température critique très basse (31.1 °C) et une pression cri-
tique très élevée (73.7 bar), en font un fluide difficile à valoriser dans des cycles classiques.
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Ces caractéristiques justifient le recours à des architectures spécifiques opérant en régime
transcritique. Les avantages en termes de densité de vapeur et de capacité volumétrique
permettent toutefois de concevoir des systèmes plus compacts et efficaces, à condition de
maîtriser les contraintes mécaniques et thermodynamiques.

Le fonctionnement d’un cycle transcritique au CO2 est ensuite présenté. Contraire-
ment aux cycles subcritiques, où le rejet de chaleur s’effectue par condensation, le CO2

en régime transcritique rejette sa chaleur par refroidissement sensible dans un refroidis-
seur de gaz. La description du cycle simple à un étage permet de rappeler les quatre
transformations fondamentales : compression, refroidissement, détente et évaporation.
La littérature a proposé de nombreuses variantes architecturales pour améliorer le rende-
ment : cycles à deux étages, utilisation de réservoirs séparateurs ou de refroidissement
intermédiaire, échangeurs internes et dispositifs de récupération de travail par détendeur
ou éjecteur. Ces évolutions visent à réduire les températures de refoulement, améliorer le
coefficient de performance et limiter les pertes par étranglement. Plusieurs études expéri-
mentales et numériques démontrent que de telles solutions peuvent améliorer le COP de
7 à 30 %, selon la configuration.

Après cet état de l’art, le chapitre introduit le système cible de cette thèse : la pompe
à chaleur Boostheat à TC à trois étages. L’architecture est décrite en détail. Le cycle
comprend trois compresseurs thermiques, trois ballons tampons, un refroidisseur de gaz,
un évaporateur, un échangeur interne, une bouteille de détente, des vannes de détente
haute et basse pression, un échangeur de fumées et divers organes de liaison. Le CO2

circule au travers de boucle principale, échange de la chaleur avec de l’eau du côté chaud,
avec un mélange eau-glycol du côté froid, et reçoit son apport thermique des brûleurs à
gaz alimentant les compresseurs. Les ballons tampons ont un double rôle d’échangeurs et
d’amortisseurs des pulsations de pression. L’échangeur interne améliore la performance en
refroidissant le fluide avant détente et en réchauffant le fluide à la sortie de l’évaporateur.
L’ensemble du système illustre une intégration complexe visant à exploiter les atouts du
CO2 tout en maîtrisant ses contraintes.

Les conditions expérimentales sont ensuite décrites. Le banc d’essai a été conçu pour
reproduire des conditions réalistes de fonctionnement résidentiel, avec une boucle d’eau
pour simuler le réseau de chauffage et une boucle d’eau glycolée pour reproduire les tem-
pératures extérieures. Les capteurs disponibles incluent des sondes de température Pt100
et thermocouples, des capteurs de pression et de débit, reflétant les limites d’instrumentation
d’un produit commercial. Les actionneurs principaux sont identifiés : la vitesse du ven-
tilateur de combustion, les ouvertures des vannes de détente haute et basse pression, et
les vitesses des moteurs des compresseurs. Leurs influences respectives sur les tempéra-
tures, pressions et débits circulants sont expliquées, montrant la forte interdépendance
entre variables manipulées et variables de sortie. Les expressions énergétiques permettant
de calculer le COP thermique et les bilans de chaleur sont également définies à partir des
mesures disponibles.

Deux jeux de données expérimentales sont mis en avant. Le premier est constitué
d’essais transitoires en boucle ouverte, où un actionneur est excité par échelon et les
réponses du système sont enregistrées. Ces données permettent d’analyser les dynamiques
propres à chaque entrée, mais sont limitées car elles n’explorent pas les interactions multi-
variables. Le second jeu est un ensemble de quinze points en régime permanent, collectés
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sur une machine similaire mais mieux instrumentée, incluant davantage de mesures in-
ternes. Ces données sont particulièrement précieuses pour valider les corrélations de mod-
èles et calibrer les équations énergétiques. L’ensemble fournit une base complémentaire
couvrant à la fois le comportement transitoire et les équilibres stationnaires.

En conclusion, ce chapitre montre que le dioxyde de carbone, malgré ses défis tech-
niques, est un candidat incontournable pour les systèmes de chauffage respectueux de
l’environnement. Le cycle transcritique et ses variantes architecturales offrent des solu-
tions prometteuses, et l’unité expérimentale développée par Boostheat illustre concrète-
ment ces avancées. L’analyse met en évidence la complexité du système, le rôle crucial de
certains actionneurs et l’importance des jeux de données recueillis. Cette étape prépare le
terrain pour le développement d’un modèle dynamique du TCHP, capable de reproduire
le comportement transitoire et stationnaire de la machine, en vue de la conception et de
l’évaluation de stratégies de contrôle avancées.

Chapitre 5

Ce chapitre présente le développement d’un modèle dynamique hybride de la pompe
à chaleur à compresseurs thermiques (TCHP) destiné à l’analyse et à la conception de
stratégies de contrôle avancées. Une première partie rappelle les approches existantes de
modélisation dynamique des cycles à compression de vapeur, principalement basées sur
les méthodes à volumes finis et à frontières mobiles. Les premières offrent une précision
élevée mais sont coûteuses en calcul, tandis que les secondes sont plus rapides mais néces-
sitent des hypothèses simplificatrices sur les régimes d’écoulement. Dans le cas du cycle
transcritique au CO2, les transitions fréquentes entre sous-critique et supercritique justi-
fient le choix d’une approche à volumes finis, plus robuste pour représenter les couplages
entre composants.

Le modèle hybride est construit en combinant des sous-modèles transitoires et en
régime permanent. Les composants décrits de manière différentielle incluent les échangeurs
de chaleur (refroidisseur de gaz, évaporateur, échangeur interne, réservoir tampon), la
cuve flash, le mélangeur, ainsi que la dynamique thermique des chauffages du TC (élé-
ments chauffants), modélisée par identification système. Les équations de conservation
de la masse, de l’énergie et de la température de paroi y sont appliquées. Les composants
décrits en régime permanent regroupent les compresseurs thermiques, représentés par
des modèles empiriques (régression gaussienne pour TC1 et TC2, régression linéaire pour
TC3), les vannes de détente et l’échangeur de fumées décrit par la méthode du LMTD.
L’ensemble est interconnecté pour restituer les flux de masse, d’énergie et les échanges
thermiques entre le circuit frigorigène et les boucles secondaires eau et fumées. Le sys-
tème est formulé sous forme d’espace d’état et résolu numériquement par un schéma de
Runge–Kutta.

La validation est réalisée en régime permanent et transitoire. En régime permanent,
quinze points expérimentaux montrent une bonne cohérence entre prédictions et mesures.
Les pressions au gaz refroidisseur et à l’évaporateur sont reproduites avec une erreur ab-
solue moyenne inférieure à deux bars et des coefficients de détermination supérieurs à
0,8, tandis que les puissances thermiques et les COP sont prédits avec une erreur relative
inférieure à 6 %. En régime transitoire, des essais en échelon sur l’ouverture des vannes et
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sur la vitesse du ventilateur de combustion confirment la capacité du modèle à reproduire
les tendances dynamiques principales, en particulier la forte sensibilité à l’ouverture de la
vanne haute pression et à la variation du débit de fumées. Certaines limites apparaissent
toutefois, comme la faible propagation de l’influence de la vanne basse pression vers la
haute pression et la présence de valeurs négatives de R2 dues au bruit de mesure.

En conclusion, le modèle TCHP-HYB fournit une représentation fidèle du comporte-
ment réel de la machine, tant en régime permanent qu’en régime transitoire. Il permet
d’analyser l’impact des paramètres d’entrée et de valider la conception du système, mais
il reste coûteux en temps de calcul, ce qui limite son utilisation directe pour des applica-
tions de commande en temps réel. Ces résultats justifient le recours à des modèles d’ordre
réduit, plus adaptés aux stratégies de contrôle prédictif, qui seront développés dans le
chapitre suivant.

Chapitre 6

Ce chapitre s’appuie sur le modèle hybride TCHP-HYB développé et validé précédemment
afin de concevoir une stratégie de contrôle avancée pour la TCHP. L’objectif est d’améliorer
l’efficacité énergétique du système et d’optimiser l’utilisation du gaz naturel grâce à un
contrôle plus performant. En l’absence de prototype expérimental disponible, la stratégie
proposée est implémentée et testée sur le modèle validé TCHP-HYB, qui sert de référence
pour le développement et l’évaluation du contrôle.

La revue de la littérature sur les stratégies de contrôle appliquées aux cycles à com-
pression de vapeur met en évidence les difficultés spécifiques liées à la nature fortement
non linéaire de ces systèmes et au couplage prononcé entre les variables. Les premières
approches de contrôle, limitées au fonctionnement tout ou rien et aux boucles PID sim-
ples, se sont révélées insuffisantes face aux exigences accrues d’efficacité énergétique et de
flexibilité. Progressivement, des stratégies plus avancées telles que le contrôle multivari-
able (MIMO) et, en particulier, le contrôle prédictif par modèle (MPC), ont été introduites
afin de mieux gérer les interactions et les contraintes. Ces méthodes nécessitent toutefois
des modèles réduits précis et rapides, capables de représenter la dynamique du cycle tout
en étant adaptés à une utilisation en temps réel.

Dans le cas des cycles transcritiques au CO2, l’importance de la pression haute a con-
duit à de nombreuses tentatives d’optimisation, reposant souvent sur des corrélations
dérivées de données expérimentales ou de modèles simplifiés. Toutefois, ces corrélations
montrent leurs limites, car elles sont rarement généralisables et nécessitent des recali-
brages fréquents. Face à ces contraintes, la recherche récente privilégie les approches de
type optimisation en ligne et MPC, parfois couplées à des méthodes d’apprentissage au-
tomatique. L’intérêt des réseaux de neurones, en particulier des modèles récurrents (RNN,
Recurrent Neural Networks et LSTM, Long Short-Term Memory), est d’offrir une capacité
accrue à capturer les dynamiques temporelles complexes et les non-linéarités, rendant
possible une intégration efficace dans une boucle MPC.

La problématique de contrôle du TCHP est ainsi formulée en prenant en compte la
nécessité de suivre une consigne de température de l’eau de sortie tout en minimisant
la consommation de gaz. La stratégie de contrôle de référence, basée sur des boucles
PID appliquées au ventilateur de combustion et à la vanne haute pression, a montré ses
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limites lors d’essais expérimentaux. Les résultats ont mis en évidence des dépassements
de consigne et des temps de stabilisation élevés, liés à l’incapacité de cette stratégie à
gérer simultanément les dynamiques rapides de la température de l’eau et les contraintes
thermiques imposées aux composants.

Pour dépasser ces limitations, une nouvelle stratégie de type MPC est proposée. Celle-
ci repose sur des modèles réduits obtenus par apprentissage supervisé : un RNN simple
et un LSTM. Ces modèles sont entraînés à partir de données réelles et simulées (issues
du TCHP-HYB), en utilisant une architecture encodeur–décodeur adaptée aux séries tem-
porelles. Ils permettent de prédire l’évolution de la température de l’eau de sortie sur un
horizon prédictif d’une dizaine de secondes, à partir des commandes appliquées (vitesse
du ventilateur et ouverture de la vanne haute pression) et des conditions de fonction-
nement (température de retour de l’eau, débit massique). La qualité des prédictions a
été validée par des tests sur échantillons non vus, avec des coefficients de détermination
supérieurs à 0,97 et des erreurs quadratiques moyennes faibles.

L’intégration de ces modèles dans un cadre MPC permet d’optimiser simultanément
les deux variables de commande, tout en respectant les contraintes physiques, telles que
la limite maximale de température des chauffages du TC. L’objectif de la fonction de coût
est de minimiser l’écart entre la température de l’eau de sortie et sa consigne, de lim-
iter la consommation de gaz, et de réduire les variations excessives des actionneurs. Les
résultats de simulation montrent que le MPC couplé au RNN ou au LSTM améliore consid-
érablement les performances par rapport au contrôle PID : le coefficient de performance
thermique est accru d’environ 15 à 20%, l’erreur moyenne sur la température est réduite
de moitié, et les dépassements de consigne sont largement diminués. Le temps de sta-
bilisation passe de plusieurs minutes avec le PID à quelques dizaines de secondes avec le
MPC. Parmi les deux architectures, le MPC–LSTM s’avère légèrement plus performant que
le MPC–RNN, grâce à sa meilleure capacité à capturer les dépendances à long terme.

Ces améliorations se font au prix d’un coût de calcul plus élevé : une vingtaine de
millisecondes par pas de calcul pour le MPC–RNN et le MPC–LSTM, contre moins d’une
milliseconde pour le PID. Néanmoins, ce coût reste compatible avec une implémenta-
tion en temps réel, compte tenu d’un temps d’échantillonnage d’une seconde. Des pistes
d’optimisation sont envisageables, notamment par l’utilisation de MPC approché ou de
politiques apprises hors ligne.

En conclusion, ce chapitre démontre la pertinence d’associer des modèles réduits basés
sur des RNN ou LSTM à une stratégie de contrôle MPC pour améliorer la performance
énergétique et la robustesse des cycles transcritiques au CO2. La méthode proposée permet
de dépasser les limites des corrélations empiriques et des PID classiques, en garantissant
un suivi précis de la consigne de température de l’eau et en réduisant la consommation
de gaz. Bien que la validation ait été limitée au modèle TCHP–HYB, les résultats obtenus
confirment le potentiel de généralisation de cette approche à d’autres pompes à chaleur
ou cycles à compression de vapeur. Les perspectives de recherche incluent la réduction du
coût de calcul, l’extension à de nouvelles variables de commande, ainsi que des validations
expérimentales sur systèmes réels.
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Conclusion générale

Cette thèse a montré qu’une démarche intégrée, articulant expérimentation, modélisation
physique et apprentissage statistique, permet d’aborder efficacement la complexité d’une
TCHP au CO2 et d’en optimiser le contrôle. Au niveau du composant, le TC a été car-
actérisé sur banc et décrit par deux familles de modèles complémentaires : un modèle
physique en volumes finis de troisième ordre, apte à révéler les mécanismes internes et
les destructions d’exergie, et des modèles empiriques rapides — en particulier une régres-
sion à processus gaussiens — suffisamment précis pour leur intégration dans le modèle
dynamique de pompe à chaleur et la synthèse de lois de commande. Au niveau du cycle
complet, un modèle dynamique hybride de la pompe à chaleur a été construit et validé,
établissant un référentiel cohérent pour la synthèse de lois de commande. Sur cette base,
des modèles réduits récurrents ont été identifiés et couplés à un contrôle prédictif par mod-
èle ciblant directement la température d’eau de sortie et la pression haute, ce qui a permis
d’améliorer nettement le suivi de consigne, de réduire les dépassements et d’augmenter le
coefficient de performance par rapport à une stratégie proportionnelle–intégrale–dérivée
fondée sur des corrélations statiques. Si l’absence d’une validation finale sur machine et le
coût de calcul supérieur au contrôle classique restent des limites, les résultats démontrent
la faisabilité d’une commande avancée en temps réel avec des horizons courts, et ouvrent
des perspectives concrètes : élargissement du domaine d’identification, allègement du cal-
cul (contrôle prédictif approché ou politiques apprises hors ligne), prise en compte de
degrés de liberté additionnels et intégration dans des stratégies de pilotage multiénergies.
Plus largement, les outils développés — modèles, données, méthodologie de contrôle —
constituent une base robuste pour accélérer la maturation des TCHP et, au-delà, de cycles
transcritiques au CO2 plus sobres et compatibles avec les objectifs de décarbonation du
chauffage résidentiel.
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