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Abstract

This paper presents a novel design methodology for discrete-time internal model control (IMC) used to compute a
disturbance filter. The proposed method employs a generalized algorithm for disturbance rejection and for process
dynamics compensation. In IMC, the controller is designed based on a model of the process, while ensuring a desired
closed loop performance trajectory (for setpoint tracking). However, in some situations, for example poorly damped
systems, the open loop poles of the process affect the closed loop disturbance rejection dynamics. The novel design
methodology presented is able to compensate both process dynamics and input disturbances. The method is validated

both in simulations and in experimental tests on a poorly damped mass—spring—-damper testbench.
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I. Introduction

Feedback compensators have been recognized as being
key elements to guarantee the desired performance of a
process. Two main objectives are required: the ability to
track a desired setpoint (the servo problem) and to effi-
ciently reject disturbances (the regulatory problem)
(Jiang, 2006; Skogestad and Postlethwaite, 2005).
The challenge for the control engineer consists of
developing a strategy to deal with these conflicting
objectives, which assume some sort of trade-off between
fast closed loop dynamics and robustness.

Internal model control (IMC) techniques are model-
based control techniques, which are often used in
chemical process control, but recently have been uti-
lized in other applications (e.g. mechatronics). These
techniques have the potential to achieve good closed
loop performance, while taking into account the
model structure of the process (e.g. varying time
delays and periodic disturbances). Many successful
implementations in real life processes have been
reported, for example Rivera et al., (1986); Morari
and Zafiriou, (1989); Bequette, (2002), to mention a
few. It is however observed that, although basic IMC
provides adequate suppression of output disturbances,
it does a poor job in suppressing input disturbances
when the process dynamics are significantly slower

than the desired closed loop dynamics (Chien and
Fruehauf, 1990; Ho et al., 1994). Consequently, later
studies have focused on the search for new filters or/and
alternative procedures to improve closed loop band-
width and robustness, as presented in Campi et al.
(1994). The conventional filter was modified to improve
input disturbance attenuation on stable plants (Horn
et al., 1996), and was subsequently extended for
unstable plants (Lee et al., 2000). Some of the ideas
of robust control were introduced in Dehghani et al.
(2006) where a numerical design based on Hoo ideas
was used. Following the same trend, Alcantara et al.,
(2011a) proposed a simpler IMC-like Hoo, which
requires less assumptions, thus overcoming some
basic limitations of similar approaches. An improve-
ment to the previous method was obtained in
Alcantara et al., (2011b) where an analytical solution
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based on H, was proposed to achieve a compensator
which balances the input/output disturbances rejection
performance. One of the limitations of the previous
strategy is the difficulty of finding the required weight-
ing design parameters for the case of low-damping sys-
tems with more than one resonant frequency (i.e. higher
than second order).

In this paper we investigate the potential of the IMC
as an integrated solution for effective rejection of dis-
turbances entering at the input of the process.
Compared to previous studies, the proposed method-
ology does not require frequency weights to design the
controller. The proposed design methodology has tuning
parameters oriented to closed loop performance, making
of it a versatile method. It uses concepts of generalized
disturbance rejection by means of diophantine equa-
tions. Similar concepts are encountered in model-based
predictive algorithms (Meadows and Badgwell, 1998;
Maciejowski, 2002; Qin and Badgwell, 2002; Camacho
and Bordons, 2004), where the authors are well-experi-
enced in developing the extended prediction self-adap-
tive controller (EPSAC) (De Keyser, 2003). In the
EPSAC control formulation, if the main frequency of
the disturbance is known, it is possible to model it and
to provide this additional information to the controller,
obtaining significant improvement in closed loop
performance and disturbance rejection capability (De
Keyser and Ionescu, 2003).

The performance and efficiency of the proposed
strategy is experimentally evaluated, using a mass—
spring—-damper system with poor damping properties.
As such, this specific fourth-order system represents a
challenge regarding the design of any regulator
(Alcantara et al., 2011b).

The paper is organized as follows. The problem for-
mulation is presented in Section 2. In Section 3 the IMC
controller and the new extension of the IMC filter is pre-
sented. Next the mass—spring—damper system used as the
testbench for the proposed methodology is described in
Section 4. The design of the IMC with general disturb-
ance rejection properties is analyzed in Section 5. The
results of the IMC controller, along with some implemen-
tation aspects followed by the experimental outcomes are
presented in Section 6. A conclusion section (7) summar-
izes the main outcome of this work.

2. Problem formulation

This section illustrates the fundamental difficulties that
arise when designing a compensator in order to effi-
ciently reject input disturbances. Although there are
other cases in which input disturbance rejection is
important, two cases are illustrated here: (1) that of
“close to integrating” systems; and (2) that of poorly
damped systems.

Figure |. Basic closed loop scheme.

The closed loop control scheme is depicted in
Figure 1, where P represents the process, R the com-
pensator, w the reference, d; the input disturbance and
d, the output disturbance.

2.1. Close to integrating systems

There are multiple examples in industry where integra-
tors appear, for example position control in mechatro-
nic systems, level control systems, pulp and paper
industry, temperature control in a well isolated reactor
etc. Close to integrating systems refer to the class of
systems with large time constants—in other words, sys-
tems with poles very close to the origin in the complex
plane. Consider the system presented in (1), with
K=-100, 7y =10 hours and 7, =0.02 hours

K

P = s s 1 1)

()

Two controllers are proposed in this example to show
the difficulty of designing a controller which effectively
rejects both input and output disturbances, a P control-
ler with gain K,=—1.3 and a PI controller with gains
K,=—1.3 and K;=—5, with the PID controller defined
as: K, + % + Kys. The controllers were tuned to achieve
good disturbance rejection using our in-house computer
aided design tool (De Keyser and Ionescu, 2006). As
observed in the simulation results depicted in Figure 2,
the P controller efficiently rejects the output disturbance
but it does not reject the input disturbance. On the other
hand, the PI controller provides a better input disturb-
ance rejection performance, at the cost of somewhat less
output disturbance rejection.

2.2. Poorly damped systems

Poorly damped systems always represent a challenge
for control design. Here, we consider a stable second-
order system with a pair of poorly damped poles as
originally proposed in Alcantara et al. (2011b). The
model is given by

K —sTy

PO = T + 2@ o +1°

(@)
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Figure 2. Output and input disturbance rejection for the case
of a P and PI controller.
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Figure 3. Output and input disturbance rejection for the case
of a P and PI controller in a poorly damped system.

where K=4, T;,=1 s, w,=0.5 rad/s and £=0.25. In
this example two controllers have been considered—a
PI with parameters K,=0.043 and K;=0.024; and a
PID with parameters K,=0.017, K;=0.022 and
K;=0.42. The controllers were tuned using the same
criteria as in the previous example. The results are
depicted in Figure 3. As expected, the PI controller
slowly rejects the output disturbance applied at 1=35s
and does not reject the oscillations caused by the input
disturbance since it does not have the necessary
degrees-of-freedom to compensate the complex conju-
gated poles of the process. On the other hand, the PID
controller presents a good performance for both
input and output disturbances, as the complex zeros
of the controller compensate for the complex poles of
the process.

As a preliminary conclusion, one can say that reject-
ing an input disturbance implies compensating the
dynamics of the system. For a poorly damped second-
order system, a PID with complex zeros presents a
good solution. However, if the system is higher than
second order, a higher order compensator should be
used. Some methodologies have been proposed as in
Alcantara et al. (2011b), although they might be diffi-
cult to tune in practice.

In this paper, we propose a discrete-time IMC algo-
rithm with generalized disturbance rejection properties.
The methodology allows efficient rejeciton of input dis-
turbances, even for the case of slow processes or sys-
tems with very low damping factor. The proposed
methodology is evaluated on a fourth-order system
with low damping factor, in both simulations and
experimental tests.

Note that, for the cases where the resulting tracking
performance is not satisfactory, its performance can be
increased by introducing a reference prefilter (Morari
and Zafiriou, 1989; Skogestad and Postlethwaite, 2005).
Alternatively, in case of measured disturbances a two-
degree-of-freedom topology might be used (Vilanova
and Serra, 1997).

3. Internal model control

IMC (Garcia and Morari, 1982; Rivera et al., 1986;
Morari and Zafiriou, 1989) is a control strategy which
belongs to the class of model-based controllers
(Bequette, 2002) and represents a special case of the
more generic model-based control strategy depicted in
Figure 4. In this section, a brief introduction to IMC is
given along with the proposed extension for efficient
disturbance rejection.

Some of the basic properties of the IMC controller
are listed here:

e If the plant is exactly known, the system behaves as
an open loop and the stability issue is trivial.

e Zero steady state error to step input; inherent inte-
gral action can be achieved without additional
tuning parameters.

e The basic IMC structure has only one tuning par-
ameter and will thus be easy to tune as compared to,
for example, the PID structure.

The IMC philosophy relies on the internal model prin-
ciple, which states that control can be achieved only if the
control system encapsulates, either implicitly or explicitly,
some representation of the process to be controlled. In
particular, if the control scheme has been developed
based on an exact model of the process, then perfect con-
trol is theoretically possible (Bequette, 2002). The general
structure of an IMC controller is depicted in Figure 5.
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Figure 5. Schematic overview of the IMC structure.

In this figure, d is an unknown disturbance affecting
the system. The manipulated input u is introduced to
both the process and its model. The process output, y,
is compared with the output of the model %, resulting in
a signal d. If the process is well known then a perfect
estimation of the disturbances will be reached. It is
important in IMC control to avoid an unstable or non-
causal compensator transfer function when designing
the controller by adding a filter F(¢~') to make the
compensator proper (Bequette, 2002), and to the
model into “invertible” (P,) and ‘“‘noninvertible” (P;)
transfer functions, such that P= PP,

3.1. Principles of the IMC formulation

In a discrete-time formulation, the objective of a model-
based controller is to use the process input sequence at
each sampling instant, calculating an inverse function
which intends to compensate for the process dynamics.
Usually, the process model is a nonlinear dynamic

relationship between the process output y and the
manipulated process input u (i.e. y(@)=fy(t—1),...,
u(t—1),...]). However, IMC assumes that a linear
approximation of the process dynamics is available.

A closed loop control scheme is depicted in Figure 1,
where R denotes the controller and P the process.
Within the IMC context, the controller is designed

based on compensating the process dynamics
while ensuring a desired closed loop performance
trajectory.

In order to make use of the inverse of the process to
compensate dynamics, one must split the process into
an invertible (good) part and a noninvertible (bad) part.
This implies that, if the process has nonminimum phase
dynamics or time delays in the transfer function, they
are part of the noninvertible (bad) part of the process,
i.e. By(g"). The remaining, invertible (good), part of
the process is then denoted by Bg(qfl) and the inverse is
a causal and stable transfer function with

B~ ") =B,q "By(g ).
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A “basic” IMC filter, designed to follow step
changes in the setpoint w and to reject step disturbances
d at the output of the process, is given by

(1+a)"

M= Ty

(€)

with steady state gain F(1) =1 and « a design parameter
defined as a = —e~+/* where T is the sampling period.
The (negative) values of this design parameter are in the
range 0 < |a| <1 and it is related to the closed loop
speed: if A is bigger, |a| is closer to 1, and the settling
time will be bigger.

An “extended” IMC filter, designed to follow a ramp
setpoint and to reject ramp disturbances at the output
of the process or step disturbance at the input of the
process, is given by

1 n
o) = o =S+ @)
with
f=l by +2by43by. . mby)  (5)
l+a

and the parameters b; the coeflicients of the bad part of
the process

Byg ) =0+big +bg 2+ -+ bpg™

S b= 1= By(1) .

i=1

3.2.

The idea introduced in this paper is based on modeling
principles borrowed from model-based predictive algo-
rithms (Maciejowski, 2002; De Keyser, 2003; Camacho
and Bordons, 2004). In the model-based predictive con-
trol formulation (De Keyser and Tonescu, 2003), if the
main frequency of the disturbance is known, it is pos-
sible to model it and provide this additional informa-
tion to the controller.

For instance, if a repetitive (e.g. sinusoidal) disturb-
ance is present in the system, this can be modeled and
used as a filter in the IMC algorithm. This can be best
viewed in Figure 6, where the nominal closed loop can
be defined, as in the next equation, based on the IMC
control structure (Figure 3) and on the fact that

B(¢g")=B,(q ")Byqg "

Proposed extension

7(0) = Byg~HF(g~ " w(®)

- )
1= By R S

b

o =impulse l o

P@@™)

Figure 6. Model of the disturbance effect.

where A(7) is a discrete-time unit impulse. The disturb-
ance model can be defined as a function of the type and
location of the disturbance

e step at process output g}gj; =
. Cg™!
e step at process input DEZ*‘; = 0= Hag
g™

® ramp at process output 5o - = (=g 1)

¢ _
D(g™") T (I=e*Tsg=H(1—e7*Tsg™h)

e periodic/repetitive

However, other kinds of dynamics than repetitive dis-
turbances can be filtered. For instance, for input disturb-
ance, the process dynamics will appear in the output.
These can also be filtered if the disturbance filter is
designed as proposed in the remainder of this section.

Effective disturbance rejection can be achieved by
including the dynamics of the disturbance signal (poly-

nomial D(g~")) in the filter F(g~") = 2243

bad poles of the disturbance dynamic response become
zeros in the controller. In this way, perfect compensa-
tion can be achieved (if a perfect model is available). Of
course, in reality, we always have modeling errors.
Following this reasoning, the numerator of
[1—By(g HF(g™")] has to explicitly include D(¢"),
which employs the following equivalence

Hence, the

Fp(qg™") = By YFV(g ) =D(@H0(@™")  (8)

Given D(¢™"), Fp(¢~"), and By(¢~"), one needs to
find the polynomials Fy(¢~") and Q(¢~") using concepts
of generalized disturbance rejection via the diophantine
equation

By(g VN )+ D Y0 ) =Fp(g™") (9
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Figure 7. Schematic representation of the mass—spring—damper system.

Knowing that the controller R(¢~") for an IMC
structure (Figure 3) is given by

Al HF(g™)
By(q~") — F(g~H)B(¢™")

it can be seen that the poles D(¢~") of the disturbance
filter are then indeed poles of the controller.

Rig") = (10)

4. Process description

The mass—spring—damper system used in this paper (see
Figure 7) is an electromechanical system with two mov-
able masses m1 and m2 (the third mass in the picture is
fixed for this experiment), three springs with spring
constants k1, k2, and k3, a damper with damping con-
stant ¢l, and a motor which drives the system. The
input of the system is the voltage to the motor wu(r)
and the outputs are the mass displacements y(¢) and
vo(t) expressed in centimeters. Therefore a complete
model of the electromechanical plant should describe
the dynamics from u(¢) to y(¢) and from u(z) to y,(?).
The (fast) dynamics of the electrical motor can be neg-
lected; hence, the motor can be represented by a pure
static gain F(f) = Ku(t) , with F(f) the force on the 1st
mass and the gain of the motor K=3.5 N/V. The par-
ameters of the set-up are: m; =1.85Kg, m,=1.35Kg,
ki =k, =800 N/m, k3 =450 N/m, and ¢; =9 N/(m/s).

This system has two eigen-frequencies
w1 =20.8rad/s and w,=39.1rad/s, and damping fac-
tors {; =0.08 and £, =0.08.

To derive the physical model of the mass—spring—
damper system (Figure 7), the first step is to derive
the transfer functions from the motor to masses ml
and m2 (cm/Volts). Thus, we derive the two differential
equations that describe the mass—spring—damper
systems

Kty = my1 + kayr + kiyr — koya (11)

0 =mis +kayr + ksys —koyr + 12 (12)
with F(¢) = K u(?)

Taking the Laplace transform of equations (11) and
(12) the following equations are obtained

F(s) = mis Yi(s) + k2 Yi(s) + ki Yi(s) = k2 Ya(s)  (13)

0 = ma5? Ya(s) + ko Ya(s) + k3 Ya(s) — ka Y1 () + ¢15Ya(s)
(14)

where Y(s) is the Laplace transform of y(¢), Y»(s) is
the Laplace transform of y,(¢) and U(s) is the Laplace
transform of u(¢).

Solving equations (13) and (14) for Y,(s) and Y»(s),
and by inserting the numerical values for all param-
eters, the following transfer functions are obtained

350(1.35s% 4 9s + 1250)

t = 15
f1st_dof(®) den (15)
and
280, 000
Y2and_dof®) =— (16)
with den =2.4985* + 16.65s + 4473s> + 14,4005 +

1,360,000 and the step responses of the corresponding
transfer functions are depicted in Figure 8.

To identify models for the electromechanical plant
from input-output data, a parametric identification
method (the prediction error method—PEM) was con-
sidered. A sinesweep signal with an amplitude between -
1 Vand 1 V which can be seen in Figure 9(a) is used for
identification. From the mathematical model we have
the resonant frequencies of the system: a peak at 20 rad/
s and a peak at 37rad/s (Figure 9(b)). Therefore, in
order to perform identification, the initial frequency
for the sinesweep is taken at 5 rad/s and the frequency
at target time 15 s is taken to be 100 rad/s (linear
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Figure 8. Step responses of the continuous transfer functions for the two masses.
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Figure 9. (a) The generated sinesweep signal; (b) Bode plot for transfer function of the 2nd mass.

distribution of the frequencies). The Bode plots of
the theoretical and the identified transfer functions for
the second mass (ffonqdor) are represented in
Figure 9(b).

5. Numerical example

This section describes the necessary steps for IMC con-
troller design. The objective is to control the position of
the second mass of the mass—spring-damper system
described in the previous section.

In order to implement the transfer function of the
process in real time, we need to find its equivalent in
discrete time. A suitable sampling period 7 of 10ms

has been chosen. The discrete-time equivalent transfer
function expressed in ¢~ is given by

(4.58¢7" +49.26¢7% +48.61¢7> +4.4047*)
1—3.76¢7" +5.4642 — 3.63¢3 +0.93¢~*
(17)

10
P(g "=

Next, we split B(g~") in a good part and a bad part
defined as in

By(g7") =107 %(0.97 + 0.09¢™ ")

1 I 2 ; (18)
By(q~") =0.0472¢™" +0.5027¢ + 0.4501¢~
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The basic filter used to make the transfer function of
the controller semi-proper is given by

» (1 + a)n
Fpasic@) :(1 Yag 1y
B 0.027
T 1-21¢7' 414772 —0.34¢73

(19)

The order of the basic filter is 7 =3, and the value of the
parameter a is taken to be —0.7. The disturbance
applied to the system is a step disturbance at the input
of the process, and the simulation (Figure 10) shows
that the disturbance is not efficiently rejected when
the basic filter is used. For the extended IMC controller,
the order of the filter is equal to 4, and ¢ = —0.7, thus the
extended filter is given by the following transfer function

0.10 — 0.09¢~"!
1 —28¢ 1 +294g2 —137¢ 3 +0.24¢%
(20)

Fext(q™") =

From the simulation results (Figure 10), we notice
that, even if the extended filter is used, the disturbance
is not efficiently rejected. Therefore, we conclude that the
dynamics of the poorly damped system play an import-
ant role and therefore need to be taken into account
when the filter is designed. Hence, the next step is to

0 0 0 0 0 1
004 0 0 0 0 —4.76
0.5 004 O 0 0 922
045 05 004 O 0 -9.10

0 045 05 004 0 457

0 0 045 0.5 0.04 —0.93
0 0 0 04 05 0
0 0 0 0 04 0

propose a filter based on the diophantine equation
(D-IMC). If one envisages to compensate the dynamics
of the system, then the disturbance model should include
the denomgnq]lor of the transfer function of the system
such that D’Ez,l)) = (1751—11) YRR In this case, the den.ormr.l-
ator of the disturbance model transfer function is
given by

D(g ") =1-476¢g""+9.22¢7> - 9.10¢"*

+4.5774-0.93¢7° @l
As already mentioned in Subsection 3.2, the idea is to
remove the disturbance modes from the closed loop by
including the polynomial D(¢~') in the controller.

To obtain a proper/semi-proper transfer function of
the controller, the filter order of the proposed D-IMC
needs to be minimally n ="7. The parameter ¢ was set to
the same value as for the basic and extended filter
(—0.7). The denominator Fp of the filter is given by

FplgH)=1-49¢"41029¢2 — 12¢7> +8.4¢7*
—3.52¢7° +0.82¢7% — 0.08¢77
(22)

Based on the diophantine equation from (9), we have
a matrix form

0 0 AT 1T
1 0 || —4.9
476 1 || A 10.29
922 —476 || A'|_| —12 o3
—9.10 9.22 || 8.4
457 —=9.10 || go —3.52
093 457 || g 0.82
0 —0931lgpl [—0.08.
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from where the unknown coefficients can be determined

V' =10.30

N=-1.19

V=176

AV =-117

V=029 @)
go = 1.00

q1 = —0.15

qr = 0.23

Thus, the filter obtained by employing the diophantine
equation is

0.30 — 1.19¢' +1.76¢7% — 1.17¢73
+0.29¢74
1 —4.9¢7 ' +1029¢% — 123 +8.4¢~*
—3.52¢7° +0.82¢7% — 0.08¢~

Fq )=

(25)
The resulting transfer functions of the controllers R

computed with (10) are given by

27.82 —104.6¢7" +152.1¢g7% — 101.2¢73

o +26.02¢74
Rpasicld™) = 1 —2¢7"4+1.24¢7% — 0.20¢73 — 0.03¢~*

106.3 —497.7¢7" +949.6¢7> — 922.2¢3
+455.7¢7% — 91.62¢

—1y _
Rext@™) = 157047+ 26142 = 1074 + 0.14¢
+0.02¢73
317.3 = 2427¢7" 4+ 8195¢72 — 1.59¢04¢ 3
+1.96e04¢™* — 1.55¢04¢~> + 78014~
_ —2255¢77 4+ 287.9¢7"
Riiola™) = 5 !

1 —481¢g7"4+9.69¢g72 —10.6¢7> +6.93¢*
—2.93¢7° +0.82¢7° — 0.09¢77 — 0.0247
(26)

In order to reject the disturbance and to compensate
the dynamics of the plant, the zeros of
(1 — By(¢g~")F(g™")) should cancel the poles of the dis-
turbance model. The poles of the disturbance model
D are

0.9154 4+ 0.3572i
0.9154 — 0.3572i
1.0000

0.9652 + 0.1931i
0.9652 — 0.1931i

27)

For the D-IMC filter the zeros of (1 — By(¢~")F(g™"))
are

0.0767 + 0.4753i
0.0767 — 0.4753i
0.9154 4 0.3572i
0.9154 — 0.3572i
1.0000

0.9652 +0.1931i
0.9652 — 0.1931i

(28)

The simulation results for disturbance rejection using
the proposed D-IMC filter and the corresponding
controller are illustrated in Figure 10. One may notice
that the basic and the extended IMC controllers cannot
efficiently reject the disturbance. However, this is
achieved with the IMC design based on diophantine
equations for the cases where the disturbance signal
can be identified or the disturbance is periodic. This
approach can also be used to compensate for special
dynamics in the system.

6. Experimental results and discussion

As observed from the simulation results presented in
the previous section, the IMC with the filter based on
diophantine equations outperforms IMC both with
basic and extended filters. Consequently, this design
was utilized on the real-time system. For experimental
validation we considered the real-time mass—spring—
damper system presented in Figure 7, i.e. the ECP
210 rectilinear plant with a Labview Real-Time inter-
face. The controller is downloaded and run in real-time
from an FPGA system integrated within the National
Instruments framework. The current implementation
allows working with an integer precision of 16 bits,
which results in quantization errors with respect to
the values of control effort. The value of the step dis-
turbance applied at the input of the process is 0.9V and
was implemented in software to ensure repeatability.

Analysis of the time evolution of the output of the
system presented in Figure 11(a) suggests that the
results obtained in simulation (section 5) concur with
the real-time experiments illustrated in this section. We
may conclude that the disturbance is efficiently rejected
and the dynamics of the system are well compensated if
an adequate filter is used.

Figure 11(a) depicts the results obtained after imple-
menting the IMC designs with basic, extended, and
diophantine filters. The results confirm that the dio-
phantine filter is able to efficiently reject the disturb-
ance. The control effort obtained during this
experiment is depicted in Figure 11(b). The oscillations
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Figure 11. Comparison between the IMC designs (basic, extended, and diophantine) for the real-time experiment: (a) Disturbance

rejection; (b) Control effort.

Table I. Performance index for output error in the different
control strategies.

Controller ISE IAE ITAE

IMC nom 2.243 12.773 18.756
IMC ext 3.033 18.156 30.746
IMC dio 7 1.165 7.452 9.9853

of the control action are induced by the input disturb-
ance signal, the effort to compensate for the dynamic of
the system, and also by the quantization error effect.
To further prove the effectiveness of the proposed
methodology, the performance of the controllers is
evaluated using the well known performance indices:
integral of the square of the error (ISE), integral of the

absolute magnitude of the error (IAE), and integral of

time multiplied by the absolute value of error (ITAE)
with their mathematical definition given by the
equations

ISE = /error2 dr IAE = /|err0r| dr
(29)
ITAE = /z|err0r| ds

The results are summarized in Tables 1 and 2 for the
output error and control effort, respectively. The errors
were calculated with respect to zero for both output
and control effort. From these values, the conclusion
can be summarized as twofold: the IMC design with the
diophantine filter gives the best results both in terms of
disturbance rejection and minimal control effort. Since
the controllers are designed in discrete-time, is not
necessary to have a proper/semi-proper transfer func-
tion of the controller. Therefore, different orders can be

Table 2. Performance index for control effort in the different
control strategies.

Controller ISE IAE ITAE

IMC nom 169.49 180.19 368.32
IMC ext 190.51 184.16 369.45
IMC dio 7 159.47 164.19 339.99

chosen for the IMC filters, but this analysis is out of the
scope of this paper. Even so, we have to take into
account that if the sampling time is small, then the
discrete-time is closer to its continuous-time equivalent.

In order to test the robustness of the designed con-
trollers, a variation of £25% of the parameter k, in the
nominal transfer function of the process (16) have been
investigated. We choose to alter k, (representing the
spring between masses) because it affects the numerator
as well as the denominator of the process transfer func-
tion (hence a strong effect). The new transfer functions
of the process are described by

rocess, = 210,000
p %) 7 4985% +16.655 + 383352 + 12, 6005
+1,110,000
(30)
rocess = P00
p (%) ) 4985 +16.655° + 511352 + 16,2005
+1,610,000
(31)

The variation of the magnitude and phase of the
nominal process compared with the process +25%
variation is represented in the Bode plot from
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Figure 13. Robustness analysis of the IMC controllers when k; is varying with —25% (k, = 600): (a) Disturbance rejection; (b)

Control effort.

Figure 6. As can be noticed from the figure, the reson-
ant frequencies of the system have also been changed,
thus the second peak is at 33 rad/s and 41 rad/s respect-
ively compared with the nominal process where the
peak is at 37rad/s. As can be observed from the defin-
itions of the new transfer functions, the process has a
big variation in the gain as well as in the pole location.
The output of the system and the corresponding control
effort are illustrated in Figures 13 and 14. From the
simulation results it can be concluded that the proposed
controller is stable, but the performances are subopti-
mal due to modeling error. This is due to the fact that
the IMC controller cannot perfectly compensate the

pole of the system and thus the oscillation behavior
of the output signal. Obviously, if we put in the effort
to achieve a good approximation of the model, the
results are drastically improved (see Figure 10).

7. Conclusions

A novel methodology for discrete-time internal model
control incorporating disturbance rejection properties
has been proposed in this paper. The proposed strategy
makes use of diophantine equations to effectively reject
input/output disturbance. Based on seminal ideas from
model-based predictive control, the diophantine



Journal of Vibration and Control 23(1)

(@os
= = IMC basic
N == IMC ext
04f —IMC Dio |

-0.6

Time (s)

(b) 0.2
= = |MC basic|
0 === IMC ext
—IMC Dio

o
R

o
»

Control Effort (V)
5 & ¢ )
(-] (=2}

"
-
T

L
)
>

1.4
1
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equation can also be used in the internal model con-
troller to effectively compensate the dynamics of the
process, allowing a fast disturbance rejection even for
poorly damped processes. The controller is designed
based on the model of the process while ensuring a
desired setpoint tracking. The load disturbances enter-
ing the process are challenging problems from a control
engineering point of view due to the dynamics of the
process itself. The performance of the proposed method
is compared against basic and extended IMC filters.
The obtained results indicate that the proposed meth-
odology provides good performance in both disturb-
ance rejection and robustness.
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