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Abstract— Nonlinear dynamics are commonly encountered in
industrial applications, where manufacturing of higher quality
products very often requires that the process works within a
wide range of operating conditions close to the boundaries. Non-
linear Model Predictive Control (NMPC) appears as a solution
due to its capability to find optimal control actions for the case
of nonlinear processes with constraints. In this contribution,
the control problem is solved using the Nonlinear Extended
Prediction Self-Adaptive Control (NEPSAC) approach to model
predictive control (MPC), which besides of being a fast algo-
rithm also avoids explicit local linearization by directly using
the nonlinear model for prediction. The effectiveness of the
mentioned nonlinear controller and the procedure to express
a nonlinear model suitable for prediction is illustrated on a
simulation example of a highly nonlinear thermal process.
Furthermore, the benefits of NEPSAC are clearly shown by
comparing its performance to linear controllers such as linear
MPC, PI and PID controllers.

I. INTRODUCTION

Model Predictive Control (MPC) refers to a family of
control approaches, which makes explicit use of a model
of the process to optimally obtain the control signal by min-
imizing an objective function [1]. The effectiveness of MPC
strategies has been recognized due to the multiple successful
implementations in real-life applications as discussed in [2],
[3]. However, most of the implemented MPC techniques
are based on a linear model, although real processes are
in general inherently nonlinear. This, together with higher
product quality specifications and increasing productivity
demands, tighter environmental regulations and demanding
economical considerations in the process industry require to
operate systems closer to the boundary of the admissible
operating region, endangering the performance of linear
control techniques.

Linear predictive control is predominantly used because it
is easier and faster to obtain a linear model compared to a
nonlinear one. Another factor is that stability and robustness
are more difficult to address in the case of a nonlinear
MPC (NMPC). Additionally, some of the nonlinear models
and/or constraints lead to nonconvex nonlinear optimization
problems that are relatively complex to solve. Due to these
factors, the application of the nonlinear MPC in practical sit-
uations is still very limited although its potential is promising
[1].
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It is important to consider that in the case of a highly
nonlinear system, a single linear model cannot provide
acceptable results in all operating regions. In other words,
it cannot be linearly modeled to be adequate in all op-
erating regions, unless the process always works around
the operating point. A popular approach to approximately
model highly nonlinear systems includes the use of multiple
linear models in different operating points. Subsequently,
several local linear controllers can be ‘scheduled’ to yield
acceptable control system performance [4], [5]. However,
in many situations, coming up with a satisfactory controller
schedule can consume far more human resources than the
linearization and linear control design tasks. Moreover, the
stability of the resulting system cannot be guaranteed. In [6]
it is proposed another approach of model predictive control
for nonlinear systems, in which the model is adaptively lin-
earized along the prediction horizon in order to improve the
performance of the controller, especially for the case of large
prediction horizons. In that approach, the optimum results
of the previous sample time are utilized for linearization
at the current sample time, thus leading to a better control
performance.

In this contribution, the benefits of the Nonlinear Extended
Prediction Self-Adaptive Control (NEPSAC) approach to
NMPC are emphasized. This controller, fully described in
[7], uses the nonlinear model for prediction directly, taking
full advantage of the given nonlinear system dynamics to
generate a high-performance design without involving model
linearization or gain scheduling for its implementation. Addi-
tionally, the usually complex nonlinear optimization problem
is in the NEPSAC algorithm replaced by a more simple
iterative quadratic programming procedure. Furthermore, the
NEPSAC performance is evaluated against several linear
controllers including the linear MPC and the classical PI
and PID controllers.

The content of this paper is as follows. The process
description and modeling is presented in section II. Next the
Model Predictive Control methodology is briefly introduced
in section III. The performance of the proposed nonlinear
controller NEPSAC is then compared against linear model
predictive control, PI and PID in section IV. Finally a
conclusion section summarizes the main outcome of this
investigation.

II. PROCESS DESCRIPTION

The process considered in this paper consists of a heated
tank of which the level is controlled by a mechanical float
switch, resulting in a constant water volume V (Fig. 1). A
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submerged electrical heater delivers a constant heat flow Q,
which causes the liquid to warm up. Temperature control of
the outlet water is achieved by changing the outflow q(t) of
hot tank water, which allows an equal amount of cold tap
water to flow in.

Fig. 1. Schematic representation of the process.

Accurate flow control is achieved using a peristaltic pump
driven by a 24V DC-motor, that provides linearity between
control voltage and flow. Finally, two PT100 sensors measure
the temperature: (1) of the cold incoming tap water Ti(t) and
(2) of the tank T (t).

A. Process modelling
The mathematical model that describes the relationship

between the outflow q(t) and the tank temperature T (t)
follows from the energy balance equation:

ρ cp V
dT (t)

dt
= Q+ρ cp q(t)(Ti(t)−T (t)) (1)

where ρ = 1Kg/l and cp = 4186J/Kg◦C are respectively
the density and the specific heat of water, V = 1 l is the
volume in the tank and Q = 6000W is the constant amount
of supplied heat. The small heat losses to the environment
are negligible. Notice that the model is nonlinear, as q(t) is
the control input (manipulated variable). The flow range is
0≤ q≤ 0.1 l/s, or equivalently, 0≤ q≤ 6 l/min.

Fig. 2. Input and output scheme.

To account for the dynamics of the actuator and sensor, a
second order transfer function (2) is considered as depicted
in Fig. 2. Notice that T (t) becomes a virtual variable repre-
senting the instantaneous change of temperature in the tank
used just for modelling purposes, while Tm(t) corresponds to
the actual measured value.

Tm(s)
T (s)

=
1

(1+4s)2 (2)

This kind of system is of interest for control engineers
because in many industrial applications the dynamics of the
system changes as a function of the manipulated variable
(e.g. heat exchangers). For this particular thermal process,

both the gain and time constant change as a function of the
flow q(t). This can be analised from (1) but also graphically
observed by implementing a staircase experiment, as shown
in Fig. 3. Although the steps applied to the flow are of the
same magnitude, these have a different effect on the temper-
atute depending on the current state of the system. This is,
nonetheless, not unexpected as this is the main characteristic
of any nonlinear system. For instance, during the step applied
from 200 to 400 seconds, the temperature decreases about
20◦C in 200s while the temperature decreases just 5◦C in
about 50s during the step applied from 1200 to 1400 seconds.

Fig. 3. Staircase experiment over the full range of the system.

B. Linearization of the model
In order to design the linear controllers (MPC, PID) which

will be used in the comparative study in section IV, the
nonlinear model (1) is linearized around the operating point
(q,T ) and represented in the Laplace operator ‘s’ using
deviation values:

4T (s)
4q(s)

=
K

1+ τs
(3)

with τ = V
q and K =− Q

ρCpq2 .

The transfer function (3) is evaluated in 4 different points
to illustrate the important change in both time constant τ and
gain K as summarized in table I.

TABLE I
LINEARIZED MODEL AT 4 DIFFERENT POINTS

T q q K τ
◦C l/s l/min ◦Cs/l s
30 0.0796 4.78 -226 13
60 0.0299 1.79 -1607 33
90 0.0184 1.10 -4245 54
50 0.0377 2.26 -1007 27

By considering the steady-state values of T (t) in Fig. 3
and plotting them against the corresponding value of the
flow q(t), the static characteristic of the plant is built.
This relationship describes the nonlinearity of the system as
depicted in Fig. 4. In this study, the temperature of T = 50◦C
in the middle of the plant’s range is chosen as a working
point. It should be noted that the modelling error increases
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nonlinearly by deviating from the linear model represented
with the dotted red line.

Fig. 4. Static characteristic of the system over the full operation range.

Eventually, the transfer function of the process including
the sensor and actuator dynamics at T = 50◦C is obtained:

4Tm(s)
4q(s)

=
−1007

(1+27s)(1+4s)2 (4)

III. MODEL PREDICTIVE CONTROL

Among the different MPC methodologies available in
literature, the Extended Prediction Self-Adaptive Control
(EPSAC) proposed by [7] has been chosen as it presents
interesting features, especially in its nonlinear version (NEP-
SAC). A brief introduction to this algorithm is presented in
this section.

A. EPSAC algorithm
In the EPSAC algorithm, the model output x(t) represents

the effect of the control input u(t) on the process output y(t).
It can be described by the following equation:

x(t) = f [x(t−1),x(t−2), . . . ,u(t−1),u(t−2), . . .] (5)

Notice that x(t) represents here the model output, not the
state vector. Also important is the fact that f can be either
a linear or a nonlinear function. The generic model of the
EPSAC algorithm is:

y(t) = x(t)+n(t) (6)

where y(t) is the measured output of the process, x(t) is the
model output and n(t) represents model/process disturbance,
all at discrete-time index t. The disturbance n(t) can be
modeled as coloured noise through a filter with the transfer
function:

n(t) =
C(q−1)

D(q−1)
e(t) (7)

with e(t) uncorrelated (white) noise with zero-mean and
C, D monic polynomials in the backward shift operator q−1.
The disturbance model must be designed to achieve robust-
ness of the control loop against unmeasured disturbances and
modelling errors. A ‘default’ choice to remove steady-state
control offsets is n(t) = 1

1−q−1 e(t) [8].
A fundamental step in the MPC methodology consists

of the prediction. Using the generic process model (6), the
predicted values of the output are:

y(t + k|t) = x(t + k|t)+n(t + k|t) (8)

for k = N1 . . .N2, where N1 and N2 are the minimum
and the maximum prediction horizons. The prediction of
the process output is based on the measurements available
at sampling time instant t, {y(t),y(t− 1), . . . ,u(t− 1),u(t−
2), . . .} and future (postulated) values of the input signal
{u(t|t),u(t + 1|t), . . .}. The future response can then be
expressed as:

y(t + k|t) = ybase(t + k|t)+ yopt(t + k|t) (9)

The two contributing factors have the following origin:
• ybase(t + k|t) is the effect of the past inputs u(t −

1),u(t−2) . . ., a future base control sequence ubase(t +
k|t) (which is pre-specified, ref. section III-B) and the
predicted disturbance n(t + k|t).

• yopt(t + k|t) is the effect of the optimizing control
actions δu(t|t), . . . ,δu(t +Nu− 1|t) with δu(t + k|t) =
u(t + k|t)−ubase(t + k|t), in a control horizon Nu.

The optimized output can be expressed as the discrete-
time convolution of the unit impulse response coefficients
h1, . . . ,hN2 and unit step response coefficients g1, . . . ,gN2 of
the system as follows:

yopt(t + k|t) = hkδu(t|t)+hk−1δu(t +1|t)+ . . .

+gk−Nu+1δu(t +Nu−1|t)
(10)

Using (9) and (10), the key EPSAC-MPC formulation
becomes:

Y = Y+G.U (11)

where:
Y = [y(t +N1|t) . . .y(t +N2|t)]T

Y = [ybase(t +N1|t) . . .ybase(t +N2|t)]T

U = [δu(t|t) . . .δu(t +Nu−1|t)]T
(12)

G =

 hN1 hN1−1 . . . gN1−Nu+1
hN1+1 hN1 . . . . . .
. . . . . . . . . . . .
hN2 hN2−1 . . . gN2−Nu+1

 (13)

Once the output is predicted, it is possible to optimize the
control signal U by minimizing the cost function:

J(U) =
N2

∑
k=N1

[r(t + k|t)− y(t + k|t)]2 (14)

Notice that the controller cost function (14) can be easily
extended to many alternative cost functions (similar to the
approach in optimal control theory) as described in [7].
The horizons N1, N2 are design parameters and r(t + k|t)
is the desired reference trajectory, chosen here as a 1st -order
reference trajectory as specific implementation example:

r(t + k|t) = α r(t + k−1|t)+(1−α)w(t + k|t) (15)

for k = 1 . . .N2 and initialization r(t|t) = y(t). The signal
w(t) represents the setpoint and α a design parameter that
plays an important role in tuning the MPC performance [9].
The optimal input solution of the EPSAC algorithm can be
written in matrix form:

U∗ = [GTG]−1[GT(R−Y)] (16)

with R being the vector notation of the reference trajec-
tory, R = [r(t +N1|t) . . .r(t +N2|t)]T and [GT G] of dimen-
sion Nu xNu. Only the first optimal control input u(t) =
ubase(t/t) + δu(t/t) is applied to the plant and the whole
procedure is repeated again at the next sampling instant t+1.
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B. NEPSAC algorithm

The calculation of the predicted output with (9) involves
the superposition principle. When a nonlinear system model
f [.] is used in (5), above strategy is only valid -from a
practical point of view - if the term yopt(t + k|t) in (9) is
for example 10 times smaller than the term ybase(t + k|t).
When this term would be zero, the superposition principle
would no longer be involved. The term yopt(t + k|t) will be
small if δu(t + k|t) is small, see (10).

This can be realized iteratively, by executing the following
steps at each controller sampling instant:
1. Initialize ubase(t + k|t) as: u1

base(t + k|t) = u∗(t + k|t−1),
i.e. the optimal control sequence as computed during the
previous sampling instant; in other words: u∗(t + k|t−1)
is used as a first estimate for u∗(t + k|t).

2. Compute the G matrix using directly the nonlinear model
of the process (5) to obtain (13).

3. Calculate δu1(t +k|t) using the linear EPSAC algorithm.
4. Calculate the corresponding y1

opt(t + k|t) with (10) and
compare it to y1

base(t+k|t), which is the result of u1
base(t+

k|t).
5. In case y1

opt(t + k|t) is not small enough compared to
y1

base(t + k|t): re-define ubase(t + k|t) as u2
base(t + k|t) =

u1
base(t + k|t)+ δu1(t + k|t) and go to 2. The underlying

idea is that u1
base(t + k|t) + δu1(t + k|t) - which is the

optimal u∗(t+k|t) for a linear system - can act as a second
estimate for the optimal u∗(t +k|t) in case of a nonlinear
system.

6. In case yi
opt(t+k|t) is small enough compared to yi

base(t+
k|t): use u(t) = ui

base(t+k|t)+δui(t+k|t) as the resulting
control action of the current sampling instant (notice that
i = 1,2, . . . ,) according to the number of iterations)

This algorithm results after convergence to the optimal
solution for the underlying nonlinear predictive control prob-
lem. The number of required iterations depends on how far
the optimal u∗(t+k|t) is away with respect to u∗(t+k|t−1).
In quasi-steady-state situations, the number of iterations is
low (1 . . . 2). On the other hand, during transients the number
of iterations might raise to 10 (refer to Fig. 9).

IV. CONTROL PERFORMANCE

In this section, the performance of the NEPSAC is evalu-
ated, using as a reference the classical PI/PID controller on
the one hand, and the linear MPC on the other hand. Notice
that in all circumstances, the incoming cold water Ti and the
heater power Q are considered to be constant, equal to 12◦C
and 6000W respectively.

A. PI and PID

A PI controller has been designed to compensate the
slowest time constant of the system (4), giving as result
the parameters Kp = −0.001 and Ti = 27. The performance
of the controller is tested with and without implementing
an Anti Reset-Windup (ARW) as depicted in Fig. 5. It
is noticeable how the performance of the controller with
ARW improves, by decreasing the big overshoot presented

during the start-up. Although this example clearly shows the
benefit of introducing ARW schemes, without the need of
re-designing the controller, its implementation is sometimes
forgotten in practice.

Fig. 5. Comparison PI controller with and without anti reset-windup
(ARW).

The PID controller was tuned using the Frequency Re-
sponse toolbox (FRtool) described in [10], to compensate
the process time constants 27 and 4, thus resulting in the
controller parameters: Kp = −0.002, Ti = 31 and Td = 3.5.
The performance of the PID controller is tested also in both
cases with and without anti reset-windup (ARW) as presented
in Fig. 6.

Fig. 6. Performance comparison between PID with and without anti reset-
windup (ARW).

The PID is faster compared to the PI as observed in Fig. 6
during the period from 500 to 600 seconds. Nevertheless, this
is another aspect which is very often neglected in practice
as tuning the derivative action is not an obvious task.

B. Linear Model Predictive Control (EPSAC)
The MPC involves the use of a model suitable for pre-

diction. In the case of the EPSAC algorithm, we require
to express the output Tm(t) as a function of the previous
measured values as in (5). For the linear case, this can
be obtained in a straightforward manner by discretizing (4)
using a sampling time of Ts = 4s. Using then the equivalent
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notation presented in Fig. 2 for the input u(t)≡ q(t) and for
the output x(t)≡ Tm(t), it results in:

x(t) = 1.598x(t−1)−0.7698x(t−2)+0.1167x(t−3)
−14.85u(t−1)−35.48u(t−2)−5.073u(t−3)

(17)

The performance of the EPSAC controller tuned using
Nu = 1, N1 = 1, N2 = 5 and α = 0.5 is depicted in Fig. 7.

Fig. 7. Linear Model Predictive Control (EPSAC).

C. Nonlinear Model Predictive Control (NEPSAC)
As for the linear case, NEPSAC requires a discrete-time

model of the system suitable for prediction. The procedure
to express the nonlinear model as in (5), starts by dicretizing
the nonlinear differential equation (1), resulting in:

T (t) = T (t−1)+
Ts

V

[
Q

ρCp
+q(t−1) [Ti−T (t−1)]

]
(18)

The two first-order filters representing sensor and actuator
(2) are replaced by their discrete-time representation again
using the equivalent notation for input u(t)≡ q(t) and output
x(t)≡ Tm(t):

x(t) = 0.736 x(t−1)−0.135 x(t−2)+0.399 T (t) (19)

Representing T (t−1) from (19), it follows that:

T (t−1) =
1

0.399
[x(t−1)−0.736x(t−2)+0.135x(t−3)] (20)

The procedure to calculate x(t) at time t from previous
measured values is summarized as follows:
1. Calculate T (t−1) from (20) using [x(t−1) . . .]
2. Calculate T (t) from (18) using u(t−1) or ≡ q(t−1)
3. Calculate x(t) from (19)

Finally, an excellent performance of the controller was
achieved for the design parameters: Nu = 1, N1 = 1, N2 = 5,
α = 0.5 as depicted in Fig. 8.

An important aspect to be discussed regarding the NEP-
SAC implementation is the computation of the G matrix, as
mentioned in section III-B. One of the advantages of the
NEPSAC methodology is the fact that it does not require
of explicit linearization of the nonlinear model, instead it
computes the G matrix from the coefficients of the step
applied to the nonlinear model (5). An alternative procedure
consists in computing the G matrix from the step response
coefficients of the linearized model of the complete system

(4), leading however to a lower closed-loop performance
especially for the case of large changes in the setpoint.

The results obtained for both the correct and alternative
implementations of NEPSAC are depicted in Fig. 8, where
LG and NLG represent the linearized and nonlinearized
approaches to compute the G matrix, respectively. There are
quite large differences between the two implementations, as
the control effort for the linearized implementation is higher
it results in overshoot for big changes in the setpoint and a
higher number of iterations as depicted in Fig. 9. Notice that
as expected the number of iterations for both cases increases
at the moment that a change in the setpoint occurs, and
remains in one during steady-state.

Fig. 8. Nonlinear Model Predictive Control (NEPSAC) performance for
two different implementations using a linearized LG and nonlinearized NLG
way of computing the G matrix.

Fig. 9. Number of iterations required for NEPSAC for the two different
implementations using a linearized LG and nonlinearized NLG way of
computing the G matrix.

Comparison details at Design temperature T = 50◦C
Special attention is paid now to the performance of

the controllers close to the design temperature T = 50◦C.
All controllers perform similar except the PI controller as
observed in Fig. 10. As mentioned above in section IV-A,
this is the disadvantage of excluding the derivative action. A
less agressive control effort is achieved with NEPSAC NLG
compared to the NEPSAC LG and EPSAC controllers.
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Fig. 10. Comparison at design temperature T = 50◦C

Comparison details at Low temperature T = 40◦C
At low temperature the PI again responds worst, while the

PID and EPSAC controllers achieve similar results in terms
of settling time and overshoot despite the slight difference
in the control effort as shown in Fig. 11. In this temper-
ature range the NEPSAC outperforms the other controllers
although it requires a bigger control effort. Also in this case
the differences between the correct and alternative ways to
compute the G matrix in NEPSAC are visible, where the
correct implementation EPSAC NLG describes a smoother
control effort.

Fig. 11. Comparison at low temperature T = 40◦C.

Comparison details at High temperature T = 80◦C
At high temperature, the difference in the performance

becomes more evident, as illustrated in Fig. 12. The PID
and EPSAC both react similarly aggressive, also presenting
an overshoot of about 30%. The PI presents the worst
performance as it is a sluggish controller, and therefore
slow, presenting the same overshoot as the other linear
controllers. Finally, the NEPSAC controller produces a de-
sired performance due to its fast response without overshoot
and smallest control effort. Although, in this temperature

range the NEPSAC NLG and NEPSAC LG have similar
performance, still NEPSAC NLG presents a preferred, less
aggressive, control action.

Fig. 12. Comparison at high temperature T = 80◦C.

V. CONCLUSIONS
In the present contribution, an effective and efficient non-

linear predictive controller has been evaluated and compared
against linear controllers. First, a complete methodology to
represent a suitable model for prediction has been presented
for linear and nonlinear predictive control. Second, it has
been illustrated by means of a simulation example the great
benefit of NEPSAC to deal with processes that require a wide
operation range. Finally, insight in the computation of the
G matrix for nonlinear systems is described, and compared
to the performance obtained by linearizing the system each
sample around the current operating point.
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