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Abstract. The reconstruction problem concerns the ability to uniquely
determine an unknown word from querying information on the num-
ber of occurrences of chosen subwords. In this work, we focus on the
reconstruction problem when the unknown word belongs to a known
polynomial regular language, i.e., its growth function is bounded by a
polynomial. Exploiting the combinatorial and structural properties of
these languages, we are able to translate queries into polynomial equa-
tions and transfer the problem of unique reconstruction to finding those
sets of queries such that their polynomial equations have a unique in-
teger solution. Alongside combinatorial properties of the equations and
polynomials we completely characterize which queries are necessary to
uniquely reconstruct the word in the case of two loops. Further, we in-
tegrate techniques from real algebraic geometry and Tarski—Seidenberg
Theorem on quantifier elimination to show that we can decide for a con-
stant number of queries whether they suffice for a unique reconstruction.

Keywords: Regular languages ; Binomial coefficients of words ; Reconstruction
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1 Introduction

The binomial coefficient (Z) of two words u = a1 - - - a,, and v, where the a;’s are
letters, counts the number of times v appears as a subword of w,

u . .
(v> =#{i1 < - <iglay-a, =v}

The word reconstruction problem is usually expressed as follows [12, 16]. Let
X be a finite alphabet and g be a word of length n (to guess). With the knowledge
of the numerical values of the binomial coefficients ( qgl ), ey ( ;’t ) for some queries
Q,---,q:, one has to uniquely recover g. In the classical setting, one considers
all words ¢; of some length ¢ and the question is therefore to find the least

value ¢ = f(n) that allows one to uniquely determine — or, reconstruct — any
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word g of length n. For results about bounding f(n), see 6,13, 15]. Variants of
this problem exist: for instance, when the sequence of queries ¢, ..., q is not
predetermined, the choice of next query ¢;+1 depends on the previous values
( ;’1 ), ceey ( ‘i ) provided to the guesser. In such a dynamical setting, one tries
to determine a strategy and therefore the maximal length #(n) of an optimal
sequence of queries, in the worst case scenario, for words g € X™. For results in
that direction, see [21]. It is usual to assume that the length n of the word to
guess is given. However, this is not a strong requirement if one is allowed to ask
(9) for all letters a € X: n =3 .- (9).

In this article, we consider another variant of this reconstruction problem in
a setting where the word g to guess is chosen in a known language but not in
the whole set X™. This question is inspired by [8,9] where words are restricted
to lie in what the authors call some code-book.

As an introductory example, take a Sturmian word w € {0,1}* (i.e., an
infinite binary word with factor complexity equal to n + 1). Assume that the
word ¢ to determine is a factor of w, i.e., g belongs to the language L(w)
of w. It is a well-known result [22] that, for all factors g and ¢’ with the same

length n > 2 of a Sturmian word, we have ¢ = ¢’ if and only if (g) = (g/)

u

for all u € {0,1}%. The knowledge of (J), () and () is therefore enough to
characterize g. With these three values, we know the length |g| = |g|o + |g]1 and
we easily recover the four coefficients (?) for u € {0,1}2. One can therefore build
the list of factors of length |g| of w and compute the corresponding values of the
binomial coefficients for subwords of length 2. Such a table, e.g., Table 1, suffices

to determine g. As a conclusion, three queries are enough to reconstruct a factor

g l9lo |9l (éﬁ)
001001 2
001010
010010
010100
100100
100101
101001

=~

W Wk

6
5
4
3
2
5
4

W W NN NN

Table 1. The 7 factors of length 6 in the Fibonacci word.

of arbitrary length picked in a known Sturmian word. Unlike the general case,
where the number of queries is a function of the length of the word to be guessed,
here we are dealing with a constant number of queries, even without knowing the
length of the word to guess. Of course, knowing the input language is a crucial
information: we have n 4+ 1 candidates of length n in L(w) instead of 2" in the
full language {0, 1}™. Similar reconstruction results exist for the Tribonacci word
and hypercubic billiard words [14,28]. See also the recent paper [29] for more
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families of words. Indeed, for these words their 2-binomial complexity coincides
with their factor complexity. This means that binomial coefficients for subwords
of length 2 suffice to distinguish factors of the same length.

In this article, our aim is to consider words from a regular language with
polynomial growth, i.e., the number of words of length n is in O(n*) for some
integer k > 0. These languages have a well-known structure, see [25]. For more,
see also [23,24]. They are finite union of languages of the form

* *
L = ujvjusg -« - w0 ugy1 (1)

where £ > 1 and vy, ..., v; are non-empty. It is enough to consider a single such
component: If necessary, our reconstruction method may be applied separately
to each component.

As an example, consider ¢ = 2 and the language L = 1(01)*10(100)*0. Its
minimal automaton is depicted in Figure 1 (sink state and dead transitions have
not been represented). It exhibits the general structure of polynomial regular
languages: (layered) distinct closed paths that never intersect. We have a t-
layered automaton: when visiting a cycle, it is never possible to return to a
previously traversed cycle.

1 1 0 0
start —( 4o q1 @ q4 @

o

Fig. 1. A trim DFA accepting 1(01)*10(100)*0.

A motivation for considering this type of polynomial language arises from
the study of k-automatic sets, i.e., subsets S of N whose k-ary expansions form
a regular language. Indeed, the counting function 7g(n) = #(S N {0,...,n})
of such a set is either of the form ng(n) = O((logn)?) for some d > 1 or,
mg(n) > n® for some o > 0 and large enough n, see [27]. In the first case, the
set S is said to be sparse and is known to be a finite union of sets

[urviug - - - upvf up g1y for some w;,v; € {0,...,k —1}"

where [-];, denote the k-ary valuation, [10]. Such languages, for instance, play a
role in refinement of Christol’s theorem [1].

Problem 1 (Reconstruction problem — static form). Consider the language (1).
Randomly pick a word to guess g = u1v{ ug - - uvy*usr1 € L, that is, pick ¢
random non-negative integers 71, ...,7:. The task is to uniquely characterize g
from the knowledge of (-Z) for some selected words ¢’s in 7. How many queries
are sufficient? Does the number of queries depends on |g| or v1 + - -+ + ;7
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1.1 Owur contributions

First, we show that the information provided by subword queries (Z) can be en-
coded into a system of polynomial equations. In Section 3, with Proposition 2,
we show that each query translates into a polynomial identity whose unknowns
are precisely the loop exponents in the underlying regular expression (1). The re-
construction task is thus transferred, from a problem in combinatorics on words,
to the algebraic domain of Diophantine systems. Moreover, using a multivariate
Newton expansion, we give an alternative combinatorial interpretation of the
polynomials in Section 4.

Second, in Section 6, we solve the case of languages with two loops, i.e.,
Problem 1 with ¢ = 2. By carefully analyzing the polynomial equations that
arise in this setting, we exactly determine which queries are necessary and suf-
ficient to guarantee unique reconstruction: two well-chosen queries are enough.
This shows the feasibility of our method on a non-trivial but tractable class
of languages. Indeed, this apparently quite simple case leads to a surprisingly
non-trivial decision process in three steps (see Fig. 4). In particular, our analysis
shows that combinatorial relations among the elements vy, uz, vo constituting (1)
play a predominant role, e.g., commutation relation for k-binomial equivalence
of words v{'ua ~y ugvg for some integers «, 8. Characterizing the solutions of
such commutation relations is known to be challenging [30].

Third, in Section 7, we provide a certification mechanism for reconstruction
in the general case t > 3. More specifically, with Proposition 7, we show how to
decide whether a given set of queries always leads to a unique solution for all
admissible words in (1). This certificate is independent of any particular instance
and thus yields a structural guarantee of reconstructibility.

Finally, we address the algorithmic complexity of the approach. The certifica-
tion step relies on techniques from real algebraic geometry (3,4, 18], in particular
quantifier elimination in the theory of real closed fields and Tarski—Seidenberg
theorem [26]. While this procedure is in general exponential in the number of
variables, on randomly generated examples, we were able to effectively check the
reconstruction property with Mathematica for 3 loops and, in some cases, for 4
loops. This places the reconstruction problem within a decidable, though compu-
tationally demanding, framework. We have developed a Mathematica notebook?
to generate equations and run the various procedures presented in this article.
It also contains all the examples.

2 Background

For some general references on combinatorics on words and formal language
theory, we refer the reader to [15, 24].

Let X be a finite alphabet, i.e., a finite set of elements called letters. We let X*
denote the free monoid generated by X with concatenation as product operation.

3 available at https://orbi.uliege.be/handle/2268/336473, you may also download
a standalone Wolfram Player.
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The empty word is denoted by € and X = X*\ {e}. By |w| we denote the length
of w, i.e., the number of its letters and |w|, denotes the number of occurrences
of the letter a € X' in w. Further, w[i] for 1 < i < |w| denotes the letter at the

it" index in w. If w = wv for u,v € X* then we write v = wv™! and v = v~ lw.

A word u is a subword of a word w € X™ if there exist vy, -+, v)y 41 € 2" such
that w = vy u[l] v u[2] - - vjy uf|ul] vjy41. For ¥ = {a1,...,a,} for some n € N,
the Parikh vector of a word w € X* is given by ¥(w) = (Jw|ays-- -, |Wla, ). For

basics about combinatorics on words, we refer the reader to [15].
Recall that the binomial coefficient of the words g and ¢ is defined as

(Z) = #{ir <+ <idjg | glia] - gliyg] = ¢}

and counts the number of times g appears as a subword (understood as a sub-
sequence, also called scattered subword) of g.
Let £ > 1 be an integer. Two words x,y are k-binomially equivalent and we

write x ~j y, whenever
x
(- @)ese
w w

i.e., they share the same subwords of length at most k& with the same multiplic-
ities. For k£ = 1, this is exactly the abelian equivalence, i.e., the same Parikh
vectors. We refer the reader to [22,14] for details. As a consequence of [16], if
x,y have length at least k, then x ~ y if and only if (fj}) = (iyu) for all w € X*.
As an example, we have 0110 ~5 1001 but 0110 4¢3 1001. It is easy to see that
~, is a congruence: if z ~j 2’ and y ~, then zy ~, 2'y’. It is also cancellative:

if xy ~p xz, then y ~j, z.

3 A system of polynomial equations

When a word g belongs to a language of the form (1), binomial coefficients (%)
have a special form. Our aim is thus to introduce some useful polynomial mainly
obtained from the Chu—Vandermonde identity. But first, let us consider some
preliminary constructions. For v € Xt u € ¥* and i € N\ {0}, we let

(Uvu) . — v v
e 32 ()
U=U1 " U;

ul,...,ui62+

These integers serve as coefficients of some univariate polynomials B, ,. In par-
ticular, if u = ay - - - a),| with ay € X, for all ,

o — ()Y and ("™ = (7).
lul aq Ay ! U

Note that agv’u) =0 when i > |ul.
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Let & be a variable. Let i € N\ {0}. The expression (%) can be scen as a
polynomial in x of degree ¢ with rational coefficients:

<?> :%z@fl)w(x*””:%i

2

where we use the falling factorial notation [11].

Definition 1. Let v € XT. We set B, () = 1 and, for u # &, we define a
polynomial in Q[x] of degree at most |u| by

|l v,u
o)

By u(x) = Z i 2L,

If a‘(;)l’u) # 0, then deg(By.) = |ul.
Remark 1. Note that B, ,(0) =0 for all v,u € 2.

Lemma 1. Forv,u € X' and n € N, we have

(”u) — By(n).

Proof. To count the number of occurrences of u as a subword of v", we first
choose j copies (with j between 1 and min{|u|,n}) of the word v such that u
is obtained by concatenating j non-empty subwords contained in the selected
copies. There are exactly (?) ways to choose the j copies of v in v™. Hence

C mindleln) n [ v [ul n v,u
0" £ (0-()-E0

Jj=1 J=1
ul,‘.A,ujeZ"*'
For the last equality, observe that if n < |u|, then (7;) =0 when j > n. O
Any polynomial relationship among binomial coefficients of words can be
exported to these polynomials.

Lemma 2. Let uq,...,ux € X7 and Q[z1,..., k] be a polynomial. For all v €
YT, we have

[\m €Xt.Q ((“’) <w>> - o] = Q(By.u, (2), ..., By, (2)) = 0.

Uy Uk

Proof. If the words u;’s have length < d and @ has total degree n, then
Q(Bu,u, (), - -, Byu, (7))

is a univariate polynomial of degree at most nd. Using Lemma 1, evaluation at
r=1,2,...,nd + 1 gives Q({E) =Q ((Uw), ceey (Uw)> = 0 by assumption. As a

ul Uk

corollary of the fundamental theorem of algebra, Q = 0 identically. O

As an example, (76’) ('f) = (8‘1) + (ﬁ)) Hence, By, 10 = By,0Bv,1 — By,01. More

relations of this form can be found in [19].
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3.1 Building polynomial equations

Since the language (1) has a special form, we obtain a system of polynomial equa-
tions built from the polynomials B’s discussed above, with the aim to uniquely
determine the word to guess. The number of unknowns is equal to ¢ and the de-
gree of a polynomial equation is equal to the length of the corresponding query.
Recall that the unknown word picked in the language is ¢ and we may ask an
“oracle” the value of (Z) for a query q of our choice.

Let us recall the Chu-Vandermonde identity [15, Cor. 6.3.7].

Proposition 1. For all w, z,u € X*, we have

(-2 (0

Using Chu—Vandermonde identity, a query with ¢ € X7 yields

9\ _ ur (o1 fu2)  (ue) (Vi (et
<Q> _q=e1f1e;efffet ) ( ) (fl ) (62) (6t> (ft ) <€t+1)
ei fiex* ’
ARIP
= Z H ( J) HB’UJMfJ x] (2>

g=e1 fiez--et freey1 J=1
Eufzez

where the r.h.s. (2) is a multivariate polynomial in z1,...,z:. The degree of a
monomial (i.e., the sum of the exponents of all the variables within that mono-
mial) in H;:l By, 5, (x;) is at most |fi| + --- + |f¢| < |q|. Note that the r.h.s.
does not depend on g but only on the query ¢. In particular, the constant term
in the r.h.s. of (2) is given by
t+1
> I(Y)
q=€i1€e2- €t+1 j=1
e, X"

Indeed, if f; is non-empty, then B,, r, (x;) either vanishes or, is a polynomial in
x; with a zero constant term (see Remark 1). To emphasize the fact that the
r.h.s. depends only on the language and the query g, it deserves a notation

t+1

Py(z1,...,2¢) i= 3 I1 <“J> H B,, j, (x;)- (3)

g=e1 fiez et frerr1 j=1
e, fi€X”

When the query is a single letter a € X', we have

t

Po(z1,...,24¢) :Z\vi|axi+|u1uz~~ut+1 o (4)
i=1
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Remark 2. Let M, ,, be the generalized Parikh matrix associated with ¢ =
q1---qe of the word w = w; ---wy, where ¢;’s and w;’s are letters. By defi-
nition, for a € X, M, , is a unitriangular square matrix of size |¢| + 1 (with 1’s
on the diagonal) such that [My,]i;+1 = 1 if and only if ¢; = a. Hence Mg,
is defined as My 4, - - - Mg, and the upper-right corner of this matrix contains
(7(‘;) Then, the polynomial P, can be obtained as

[ My (My00)™ Moy - (Mg o)™ My u, s ] Lgl+1-

For details, see [5].

Definition 2. Letq € Xt and g in (1). Consider the polynomial in Q[z1, ..., x4

Eq,, = Polz1,...,2¢) — (g)

q
We say that Eq (71, ...,2¢) = 0 is the equation associated with the query g¢.

The following proposition should be obvious.

Proposition 2. Let g = ujv{ us - ugvy ugpq be in (1). For all ¢ € X, the
t-uple (1, - -, 7t) of non-negative integers is a solution of the equation Eq, , = 0.

Example 1. We emphasize here that the polynomial P, only depends on ¢ and
the equation Eq, , also depends on g. Consider the language 0(001)*110(1001)*0.
For convenience, we write x,y instead of x1,zs. With the query ¢ = 01, we get
the polynomial Py (z,y) = 22 + 4xy + 62 + 2y? + 4y + 2. Now if the word g is of
the form 0(001)71110(1001)720, the corresponding curves of equation Eq, 5; = 0
are depicted in Figure 2 for (y1,72) equal to (3,0), (2,2), (3,2) and (0, 3).

1 o

Fig. 2. Curves Eq, ,, = 0 for (y1,72) € {(3,0),(2,2), (3,2),(0,3)}.

Ezample 2. We present a first resolution of a system. Consider t = 2, u; = 0,
v1 = 10010, uy = 010, vo = 010 and uz = . With the word ¢; = 0, we get the
polynomial Py(z,y) = 3z + 2y + 3. With g5 = 10, we get

Pio(x,y) = 32% + 4oy + 5z +y*> + 2y + 1 (5)
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Finally, with g3 = 011, we get

502 3xy? bxy =« y° 2y
P =22° 4+ 32y + — e TE- I EY T R
011(x,y) x” +3x%y + 5 + 5 + 5 +2+3+y+3

Now assume that the word to guess is g = 0(10010)*010(010)3. The three queries

gives respectively,
<g> =21, (g) — 132, and <g> — 418.
q1 a2 a3

The system of two polynomial equations

Eqgo : 3x4+2y—18=0
Eq, 10322 +4zy + 5z + % +2y — 131 =0

has two solutions (z,y) = (4, 3) or (32/7,—7) but only one has non-negative in-
teger entries. Adding the third query provides a system with the unique solution
(4,3) as can be seen in Figure 3.

\\
O\

Fig. 3. Curves Eq, , = 0 for ¢1 = 0 (red), g2 = 10 (green) and g3 = 011 (blue).

Remark 3. The example given above could be misleading, the coefficients of P,
are not necessarily non-negative rational numbers. All of this depends on the
cancellations that can occur when we expand the falling factorials occurring
in the B, r,’s. Continuing Example 2, one can check that Pg111(z,y) contains

. . 2 2
several negative coefficients —%-, =%/, —%, —45 and —%.

3.2 Chen—Fox—Lyndon relations

There exist some dependencies among the polynomials P,’s. This result is related
to the famous Chen—Fox—Lyndon relation presented for binomial coefficients of
words in [15, Prop. 6.3.25]. For h,r, s € X* we have

() ()= Zrren()

weX*
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where u 1 v is the infiltration product of the words v and v and (u 1 v, w)
denotes the coefficient of the word w in this formal polynomial. As an example,
since 01 10 = 2- 001 + 010 + 01, using the next proposition, we get

h h h h h
<Ol> (0> B 2(001) + (Olo) T <01> and  Pg;.Po = 2Pgo1 + Po1o + Por.

Proposition 3. Let L = ujvius - - uviusy1 be a polynomial regular language.
For all r,s € YT, with notation (3), we have

Pr . PS = Z <7’ T 57w>Pw.
wes*
Proof. Let (m1,...,m;) € Nt. For all ¢, we have
mi, L. My
Py(my,...,my) = <U1'Ul ;Ltvt ut_,,_l)'

We may apply Chen—Fox—Lyndon relation and get

me

m m m m m
UU] TV U\ (U107 Uy P U ULV] Ty U4
= g (rts,w) .
r s w

weX*
This means that, for all (my,...,m;) € N,
(Pr-P)(ma,...ome) = D (11 s,w)Py(ma,...,my).
weX*

We conclude using the following result? (Schwartz—Zippel Lemma, also referred
to as polynomial principle). Let F be an infinite field, d > 0, and A4;,..., A, CF
be sets such that #A4; = d+ 1 for all ¢ € {1,...,n}. If a polynomial P €
Flx1,...,2,] has total degree < d and satisfies

P(ay,...,a,) =0 forevery (ai,...,a,) € A1 X -+ X Ay,
then P is identically 0. ad

As a consequence of this result, it is thus enough to consider Lyndon words as
queries. Any polynomial equation can be obtained as a combination of equations
associated with Lyndon words. See [20, Thm. 6.4].

4 An alternative expression for the polynomials

Since the polynomials P, play a central role in our developments, we present
an alternative way to obtain them. We take into account Remark 3 and get an

4 For a multivariate polynomial P having infinitely many zeros is not enough to imply
P = 0 identically. As an example, the polynomial xy has infinitely many zeros.
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expression with a combinatorial explanation. Let f(x1,...,2:) € Q[zy,...,x¢].
For each multi-index k = (k1, ..., k) € NY, define

x\  [x1\ (22 Ty
k) \k ko kt
and the forward-difference operators
Ap, f(x) = flx1,.. i+ 1,000,2) — f(o, .0, Ty ooy @),

with the iterated difference A% = Akt o... 0 Ake,

Theorem 1 (Multivariate Newton Expansion). Let f(x) € Q[z1,...,x4].
There is a unique expansion

x
f(x):Zak<k>7 aker
keNt
given by
ax = (A¥f)(0,...,0).
Moreover, f(NY) C N if and only if ax € N for all k.
We may apply this theorem to (2).

Proposition 4. A query with ¢ € X7 yields

Po(xe,..om) = Y <E)

keN?
ki4-+ke<|q|

() G G ) ()
(G ()G

Proof. The combinatorial interpretation is the following one, the result follows
from the uniqueness of the expansion. Fix k = (ki1,...,k;) € N be such that
ki + -+ ki < |q|. With this choice, we may build particular occurrences of ¢
appearing as a subword of g. Pick k; non-empty subwords in k; distinct copies
of v;. These subwords are denoted by f;1,..., fj;. This correspond to the
factorization

where ayx 1s equal to

g=e1fi,1f1,k €2 et fr,1 o fr kpetq1
ei,fi ;€5
fi,j7#¢€ if ki>0

q= €1f1,1 : "fl,k1€2 : "etft,l te ft,kt€t+1

where e; is a (possibly empty) subword of u;. The word g contains z; copies
of v;, we thus have to choose k; copies among v;. Hence the number of this
particular type of subwords occurring in g is given by ax (’l:) To get (Z ), one has
to sum over all possible t-uples k.
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Ezample 3. We continue Example 2. The polynomial (5) can be expressed as

(1) +o(z) +2(0) +1(0) () +2(3) +»

5 Unique reconstruction versus unique solution

Several regular expressions may describe a language. We can always assume that
if w;41 is non-empty, then v; and w41 start with distinct letters. Indeed, if a is
the first letter of both v; and w;1, then

viuie = ala” via)*a  uig.
One can iterate this transformation until the first letters in v; and w;4q dif-
fer or, w;4+1 is empty. In particular, if w41 is a prefix of v;, then viu;41 =
i1 (u; 4 vuis1)*. Also, the number ¢ of loops occurring in (1) can be assumed
to be minimal. One has to built the minimal automaton of (1) which is unique
up to isomorphism, to obtain a convenient regular expression that we said to be
reduced. As an example, the language (01)*(0101)* is actually replaced by (01)*.

Remark 4. When the word to reconstruct does not use all the loops, the situation
can be more complicated. As an example, take the language

L = (011)*(1001)*011(011)*.

Its minimal automaton has 3 loops. Let g = (011)7(1001)72011(011)" € L. If
~v2 = 0, the word ¢ belongs to (011)*011(011)* = 011(011)*. So any equation
Eq, , having (v1,0,73) as solution also has (4,0, v1 +vy3—i) fori = 0,...,y1+73 as
solution. However, all these solutions correspond to the same word (001)7+73+1,
So there is a distinction between searching for a unique word to reconstruct and
a system of equations having a unique solution.

When a word to reconstruct is generated, there are 2! ways to choose when
the v;’s are either zero or positive. If for all z € {0,...,¢ — 1} and for all indices
1 <j1 < -+ < j, <t the minimal automaton of the language (1) where
Vj,,...,v;, are set to the empty word has ¢ — z loops, then L is said to be full.
For instance, the language in Remark 4 is not full.

6 The surprisingly interesting case of two loops

Assume L = wjviusviug is in reduced form with v1,v3 € X, sot = 2 in
Problem 1. The word to guess is of the form g = ujvfusvius. Since we only
have two variables, for the sake of notation, we use x,y instead of z1,x2. The
polynomial equation (2) becomes

(fl> N 2 f[l (:j) By, 1 (2) By, 1 (y)- (6)

g=ei fiez--etfrett1
e, [i€X”
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As already observed in (4), if |¢| = 1, i.e., ¢ = a € X, then the above equation is
simply

(Z) = 010z + |v2|ay + |urusus|a (7)

which is a polynomial of degree at most 1.

We let ¥(w) denote the Parikh vector of the word w where the alphabet X' is
assumed to be totally ordered. Figure 4 gives the structure (or, even a decision
diagram) of the results.

[ Are U(v1),¥(v2) }

linearly independent?

LN

Step 1 E no: v s J
1 ’\"1 Vy

es: Lemma 3
4 da,be X : is non-zero?

2 linear equations suffice / \

Step. 2 Step_3 5
yos: Lomma 4 not s s
) Lemma 5

2 equations suffice

2 equations suffice

Fig. 4. Synopsis

Step_1. We start with an easy situation: we begin by considering the case of two
independent Parikh vectors. This allows us, in the subsequent steps, to assume
the alternative situation.

Lemma 3. Let L = ujvfusviug be a language where vi,vy € X and uy, ug, ug €
X* are given. If the Parikh vectors W(vy),¥(va) are linearly independent over Q,
then a word in L (of unknown length) can be uniquely reconstructed with two
queries (of length 1).

Proof. Since ¥(v1),¥(vsy) are linearly independent over Q, there exist two letters
a,b € X such that
det [v1la [v2]a 0.
<|m oals ) 7

Hence, two queries for ¢ = a and ¢ = b gives for (7) a system of two linear
equations having a unique solution (by Cramer’s rule):

-1
Ty _ |Ul‘a |U2|a |g|a - |u1u2u3|a
Y [v1lp [valp l9le — [uruzuslp
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Geometrically, the two equations are describing in the plane R2, two straight
lines of distinct slope —|v1|q/|v2|q and —|v1]p/|va|p respectively. By usual con-
vention, when |va|, = 0 (resp. |vz|y = 0), this corresponds to a vertical line. O

We can mention here the direct extension to more loops.

Proposition 5. Let L = wujviug - uvfugiy with vy,...,v; € XF be given.
If U(v1),...,%(vy) are linearly independent, then any word in L (of unknown
length) can be uniquely reconstructed with t queries.

Remark 5. The same reasoning as in the previous proof applies. In this case, the
assumption implies that #3 > t. Then t queries with well-chosen letters give
equations of ¢ hyperplanes of R? intersecting in exactly one point and the word
to guess can be uniquely reconstructed.

Step_2. From now on, we assume that there exist coprime integers «, 5 > 1 such
that a¥(v;) = S¥(vg). This can be written as

vff ~ vf (8)
i.e., these powers of v; and v are abelian equivalent.

In the situation we are now dealing with, for any two letters a, b appearing
in vy (and thus in vy), (7) yields the same equation Eq, ,(x,y) = 0 which is

g
[v1]o® + |v2]ay + |u1ugus|e = (a>

and can be rewritten as

y= —éx—i- [v7"v3%]a
o [v2lq

(9)

Geometrically, the two straight lines Eqg ,(x,y) = 0 and Eq, ,(z,y) = 0 have
the same slope

—lvila/[v2la = —|v1lo/[v2]s = —B/a
and thanks to Proposition 2, we know that they share a common point: they

coincide. So all queries with a single letter lead to the same linear equation (or,
to an empty equation when the letter does not appear in vy).

Lemma 4. Let L = ujvfusviug be a language where vi,vy € X and uy, ug, ug €
2* are given and v§ ~q vg for some coprime integers o, 8 > 1. If there exist
a,b € X such that the quantity

o o vy v
oo uzla = [of aluals + (3 ) = ( ) (10)

is non-zero, then a word in L (of unknown length) can be uniquely reconstructed
with two queries (of length 1 and 2 respectively).
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Proof. Our aim is to show that an extra equation with a query of length 2 is
indeed enough.

e Assume first that two distinct letters a, b appear in v; (and thus also in vy
because the Parikh vectors are linearly dependent). Again (6) with ¢ = ab be-
comes here

ab
() (2o

# B () + (1) st + (M)

A term of degree 2 may come, for i = 1,2 and z = x, y, from

z v; |’U7;|a|’l)i‘b 2 V; ‘Ui|a|’l]7;|b
Bv' ab\%) = 1la|Vi = ———Z -
i b( ) |’U| |'U |b(2)+( l)Z B + b 9 z

or, from By, o(2)Buy, 5(y) = |vil|a|v2]pxzy. We can thus write

0=(zy) M (5) + (lvlla(uzl)u3> + @1) [oale + (ZZ) N W) !

(9) = By, ab() + Buyab(y) + By a(®) Bu, v(y)

=:2D
UULU3 g U3 U U2 V2 [va]alv2lp
# () = ()« (e () = (0 Y () - 25722 )
= F =:2F

(12)

where, setting p := o/, the matrix for the homogeneous quadratic part is

1 [ vilalvife [vilalvzfe _vialvile <1 M>
5 =5 2
2\ Joalalvzly [vzlalvzlo 20\
and using the fact that |va|. = ulvi|c for ¢ € {a,b}. The determinant of M is
zero. We conclude that (11) is the equation of a parabola. See, for instance, [17].
We still have to determine whether or not this conic is degenerate.

Consider the 3 x 3 matrix @ whose upper-left corner is M and whose last
row and column consist of (D EF ) Because of the relation existing among the
rows (or equivalently, columns) of M, the determinant of @ is equal to

[v1]a]v1]n 2 [v1]alv1le 2
el py2 = _[0elWle g py2,
5 (E—puD) 252 (BE — aD)

For instance, subtract p times the first row from the second row. Since we are
interested to know when det @ = 0, we only have to look at the factor

v vt
2(BE — aD) = [vf [pluzla — [vF |a]uzls + (a?)) a (alb)
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The above equality comes from

vf v «
(9)-<(3)+ Qs

indeed one can find ab within one of the a blocks v; or, choose two blocks vy
among « and pick a in the first block and b in the other one. Replacing (g) with
ala—1)/2, we get

o (1) < ladelny (1) 2
ab 2 ab g el

B
and a similar computation is done for (Z%) We have a degenerate parabola if

and only if det @ = 0. This is equivalent to the fact that (10) is zero. Since a
degenerate parabola is made of two parallel lines, by Proposition 2, one of these
lines has equation Eq, ,(z,y) = 0. This means that Eq, ,,(z,y) has Eq, ,(,y)
as a factor.

With the assumption that there exist a, b such that (10) is non-zero, we are in
the non-degenerate case. The eigenvalues of M are 0 and p? + 1 with respective

orthogonal eigenvectors (1 -1/ u)T and (1 /L)T. Recall that the parabola extends
in the direction of the eigenvector corresponding to the zero eigenvalue. Hence a
straight line with slope —1/u intersects the parabola exactly once. Consequently
the queries ¢ = a and ¢ = ab are enough to uniquely determine g.

e We have also to deal with the case where v1 = a” and vy = a® for some
r,s > 0. If ug € {a}*, then (Z) gives the total number of a’s in the word g and
this is enough for unique reconstruction (even though the regular expression
(a")*uz(a®)* is not reduced). The system may have several solutions but they
all provide the same word. Now assume that us contains a letter b distinct from

a. Hence, the quantity (10) reduces to —|v$|q|v2|s| and is non-zero. O

Ezample 4. If we consider the same language as in Example 2, ¥(vy) and ¥(vy)
are linearly independent. The queries with 0 and 1 are enough: the two linear
equations 3x + 2y — 18 = 0 and 2z + y — 11 = 0 are depicted in red and yellow
resp. on the left of Figure 5.

“’ \
-
1

Fig. 5. The cases where the Parikh vectors are linearly independent or dependent.
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If we consider instead v; = 110000 and vo = 001. The queries with 0 and 1
give the same equation 2z + y — 7 = 0. The query with 01 gives the parabola of
equation 422 + 4y + 2x + y? + 4y — 65 = 0. Both are depicted on the right of
Figure 5.

Remark 6 (Combinatorial interpretation of the condition). Observe that when
(10) is zero for all @, b € X, two cases may occur: the two main terms contributing
to (10) are both zero or, they are opposite and compensate each other.

So, either, for all a,b € X,

B
v§ v
(alb) - <a2b> and v |p|uzla = |07 ]a|uzle.

In particular, the Lh.s. equality means that v§f ~q vg and the r.h.s. equality

means that ¥(v{) and ¥(ug) are linearly dependent. So, in that case, v{ ~g vg
if and only if ¥ (v{) and ¥(uz) are linearly dependent.
Or, there exist letters a,b € X such that

a B
v V.
oflotunks — oflolual = (1) = (22) 0.

Proposition 6. Let L = ujviusviuz be a language where vi,v2 € YT and
U1, U2, u3 € X* are given and v ~ vg for some coprime integers o, 8 > 1.

Let k > 2. Assume that the word g = ujv]*usvy*us to guess is long enough
to guarantee that |v1/o| + |y2/B] = k. All queries q such that 2 < |g| < k do
not provide any more constraints on the set of solutions than the linear equation
provided by letter a occurring in v, i.e., the two systems

{Eq,, =0} and {Eq, , =01 <|q| <k}
have the same sets of solutions, if and only if v{'ug ~x uQvg.

Proof. <= The condition is sufficient. Assume that v{fus ~y uQvg . Let N > 0.
With the assumption about k-binomial equivalence, we directly have

W) ug (V)N g ug(09)N, Vi€ {0,...,N}.

Let my,mo > 0, 11 < « and ro < B be integers such that m; + mo > k.
The latter condition will become clear in the next few lines. Since k-binomial
equivalence is a congruence and using the above relation with N = mq +msy, we
have

Wi i= ug 0] (08 ug (5 )™ ™2 =1 20~ wg vl g (V5) ™ 2020 = W

for all i € {0,...,m; +ma}.
Let g be a word of length at most k. By (3), we have

Pia+ 11, (m1+mg —i) B +re) = (Vqu) = (I/ZO).
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This means that the polynomial P,(z,y) takes the same value on mq +mg + 1
points belonging to the line of equation

y:—éx+ﬁ(m1+m2+r—l)+r2- (13)
« «

The reader may notice that the word Wy only depends on m1, ms, 71, 72. Hence,
the univariate polynomial of degree at most k

Py (xv—ﬁf+5(m1+m2+ﬁ) +7”2> - <W0>
« «Q q

has i a+ry asazero for alli € {0,...,m;+ms}. As a corollary of the fundamental
theorem of algebra, since m; +mgo 4+ 1 > k, we conclude that this polynomial is
identically zero. Hence, we have a factorization of the form

P, (x,y) — (”;0> _ |:y n gx .y (m1 +mg+ %) - Tz} Q(z,y)

for any query ¢ such that |¢| < k.
Let a € ¥. From (8), we get

alvi|e = Blvz]a-

Let g = upv]* usvy®us be the word to guess. The above discussion was made for

arbitrary mi,ms,r1,72. Now, we specialize these values as follows. Consider the
Euclidean divisions: 71 = mia + r1 and 2 = mof + r2. Assume that g is long
enough to ensure my + mo > k. In particular, note that the word Wy above is
nothing else but g. The equation Eq, ,(z,y) is again (9). It is easy to see that
the constant term can be rewritten as

1 g v 3% |a
— Juugusgl, | = ——=—.
lvala a |va]a

and is equal to B(my +ma +71/a)+7r2. So Eq, ,(2,y) = 0 exactly matches (13).
Hence every solution (z¢,yo0) satisfying Eq, , (70, y0) = 0 is such that

() =

and is thus a solution of Eq, ,(z,y) = 0. So queries g such that 2 < [q| < k do
not give any extra constraints on the solutions, when added to linear equations
provided by letters. Otherwise stated, substituting y from qu’a(x,y) = 0 into
Eq, ,(z,y) = 0 leads to a trivial equation.

= Conversely, assume that, for all ¢ such that 1 < |¢| < k, Eq, ,(,v)
vanishes when substituting y as above. This means that every solution of the
form (ia+7y, (m1+mae—1i)B+r2) of Eq, ,(7,y) = 0 also satisfies Eq, ,(z,y) = 0.
Thus, for all ¢ € {0,...,m1 +ma},

P,ia+ 11, (m1+mg —4) B +re) = (z)
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Since the r.h.s. is constant, we conclude that
urvp (vf) ua (v3 )™ T 0 Ry~ un o] (U g (v]) ™ T T v g
for all 7,5 < my + ms. Take i = 1 and j = 0. By cancellation, we get

v ug ~g uQvg.

Step_3. From now on, we may assume that (10) is zero, for all a,b € X.

Remark 7. As observed in the proof of Lemma 4, if (10) is zero, for all a,b € X,
then Eqg ., (7,y) has Eq, ,(z,y) as a factor. Hence, adding the set of quadratic
equations {Eq, ,(z,y) = 0 : |¢| = 2} does not modify the set of solutions given
by the linear equation Eq, ,(7,y) = 0 (assuming a occurs in v;). Hence, by

Proposition 6, in the current situation, we have vffug ~q ugvg.

Note that we cannot have v{'us = ugvg . Indeed, if uy is empty, then v = vg

and v1, ve are power of the same word (thanks to Fine-Wilf theorem). However,
the regular expression has been assumed to be reduced. If us is non-empty, this
imply that us and vy start with the same letter which is also impossible.

So there exists a largest K > 2 (bounded by |v{us| — 1) such that

o B I B
viug ~i ugvs,  and  viug A1 ugvl.

Lemma 5. In the situation described above (with the definition of K ), a word in
L (of unknown length) can be uniquely reconstructed with two queries (of length 1
and K + 1 respectively).

Proof. By Proposition 6, there exists a word ¢ of length K + 1 such that when
substituting y with (9) in Eq g,q the equation does not vanish (because otherwise,
K would not be maximal). Let

()
q q
Since Eq, o1 (7,y) = 0 describes two parallel lines of slope —f3/a, we have the
following periodicity of the bivariate polynomial

Eq,01(z + .y — B) = Eq, 01 (2, 9). (14)

In particular, the homogeneous quadratic part of the equation is thus (8z+ay)?.
Assume first y > 8 and that z,y € N. Now observe that

qu,q(x +a,y— 6) - qu,q(x7y) = Pl](‘r + Ol,y) - Pq(Ly + ﬂ)

B (ulv‘f+°‘u2v§’_6u;;) B (uwfuzvgu;;) _s
q q
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Indeed, let w = u1v{ and z = vy P z, by Chu—Vandermonde identity

(wv?uw) _ (w) N <v?uzz> N Z (w) (Uf‘uzz)
q q q a=qnge \d1 q2

q1,92€5+

and proceed similarly with quvgz. Since v{ugz ~g uQvgz and |g2] < K, we

conclude that

(wv?uzz> <wu21)§z> B (vf‘uy;) <u2v2ﬁz) B (vf‘u2> <u2v§> s
q q q q q q '
To get rid of z, apply Chu—Vandermonde again. Since the equality

qu,q('x + a,y — ﬁ) - qu,q(x7y) =0

holds on an arbitrary large grid of integer points, the polynomial identity holds
for all x,y € R (applying Schwartz—Zippel Lemma as in the proof of Proposi-
tion 3).

Proceed to the division of Eq, ,(z,y) by Eq, o (%,y) assuming the monomial
order z > y. Since qum(x, y) contains a leading term in 2, we get an expression
of the form

Ea, . (z,y) = Q(x,y) Eq, 01 (2, y) + R(z,y)

where
R(z,y) =z A(y) + B(y)

for some A, B € Q[y]. In general, nothing can be expected about the degree of
A and B. We only know that no term of the remainder R is divisible by z2. Our
aim is to show that A(y) is a constant and B(y) has degree at most 1.

Shifting (z,y) — (x + a,y — B) and using the periodicity of (14), we also
have

Eqy.(z+ o,y —B) =Q(z+ o,y — B)Eqy o1 (2, y) + R(z + o,y — B)

Subtracting the last two relations, we get

0= [Q($ +o,y— 6) - Q(x’y)] qu,Ol(xvy) + R(Z‘ tao,y— 6) - R($7y)

We now argue on the degree of x appearing in the different terms. The Lh.s. is a
constant, deg, Eq o;(7,y) = 2 and deg, (R(z + a,y — 8) — R(x,y)) < 1. Hence,
Q(z + o,y — B) — Q(z,y) must be zero. Now, we have

d=[A(ly— B) — A(y)lz + Ay — B)a+ B(y — ) — B(y).

Again, the Lh.s. is constant. Hence A(y — 8) — A(y) = 0 for all y. This means
that the polynomial A is constant, say A. Thus,

6 —Aa=B(y—p) - B(y).
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So, we get B(y) = AaTﬂgy + k for some constant k. Hence, we conclude that the
remainder is linear:
Aa— 0§

qu,q(gjvy) :Q(zvy)quol(x7y)+>\x+ 6 y+’i

Now substituting y with (9) provides a linear equation in z. Indeed, when sub-
stituting y with (9) in Eqg o, (,y), this factor vanishes because v{uz ~2 ugvg.
Moreover, we have chosen ¢ such that quyq(x,y) does not vanish when sub-
stituting y with (9). So the linear equation is not identically zero and we can
uniquely determine z, then y from (9). O

Remark 8. In [30] the commutation relation uv ~j vu is studied. In particular,
if |u| = |v| then, it is shown that wv ~j vu if and only if u ~p_1 v. However,
the question about the conjugacy relation uv ~j vw is far from being solved. It
is thus an open problem to describe the exact combinatorial conditions under
which the relation v{us ~x uQvg holds.

Under the extra assumptions that vf* ~g vg and |v§| = |uz], then more can
be said. We must have us ~x_1 v{. It is a consequence of the next two results
from Whiteland [30].

Lemma 6. Lety,z € X* and k,n > 1 be integers. If y™ ~y 2", then y ~y, z.

Theorem 2. Let k > 2 be an integer and let u,v € X* be words such that
|u| = |v|. Then wv ~y vu if and only if u ~_1 v.

Corollary 1. Let u,v,w be words of the same length such that v ~, w. Then
wv ~g wu if and only if u ~k_1 v (and also u ~p_1 w).

Proof. Assume that uv ~p wu. Since v ~j w, we have uw ~g uv ~j wu. By
the above theorem, we conclude that u ~j_1 v. Since v ~j_1 w, we also have
u ~j_1 w. The converse is a direct application of Lemma 6. a

7 Investigating more loops

We now consider the general case. Let m > 2 and qi, ..., ¢, € Y. With these
words, we can associate a system of m polynomial equations Eq,, = 0 for
i=1,...,m (recall Definition 2). If g = u10]" - - - wpv;* us11, we known that this
system has at least one non-negative integer solution (v1,...,7:). It would be
enough to show that the map

F:N 5 N™ x = (21,...,2) — (Pg, (x),...,Pg,. (x))

is injective. For fixed q1,...,q, € X7, if the map F is injective, there exists a
unique t-uple x = (z1,...,x;) such that

(Pgy (%), -+, Pg,, (X)) = ((i)""’ (qi))
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and g can thus be uniquely reconstructed.
We extend the domain to the non-negative real numbers and consider the
map
G:RYy = RZy, x=(21,...,2) = (Pg (x),...,Pg, (x)).

Indeed, as described below, using quantifier elimination, the theory of the real
numbers is decidable whereas Matiyasevich’s theorem implies that the corre-
sponding theory over the integers is not. For the question of decidability over
the purely existential fragment, more efficient algorithms have been devised: their
complexity is simply exponential, instead of doubly exponential in the number
of variables. See, for instance, [18]. For some general reference on real algebraic
geometry, see [2].

Injectivity is trivially defined by the sentence in the existential theory of the
reals,

t
- 35317733t7y177yt20\/xg7éyg/\G(X):G(Y) . (15>

J=1

Tarski—Seidenberg theorem [26] states that the projection on a linear subspace
of any semialgebraic set in R"*! (i.e., a finite union of sets defined by polynomial
equalities and polynomial inequalities) is again a semialgebraic set in R™. Since
existential quantification corresponds to a projection, this result thus allows

to replace a formula (Jz,41)¥(21,...,Tn+1) by some equivalent quantifier-free
formula @(x1,...,x,), i.e.,
Bxpn+1)¥(x1,y ..y Tpg1) & @(x1, ..o 20).

By induction, it follows that any quantified formula may be replaced by a
quantifier-free one. In the case of the sentence (15), since there is no free variable,
this process results in True or False. As a summary, the result is often stated
as follows.

Theorem 3 (Tarski—Seidenberg Theorem). For every first-order formula
over the real field, there exists an equivalent quantifier-free formula. Furthermore,
there is an explicit algorithm to compute this quantifier-free formula.

Mathematica can handle quantifier elimination: QEPCAD-B [3] and ver-
sions of cylindrical algebraic decomposition [4] have been implemented [18] in
the software. The command Resolve[expr] can, in principle, always eliminate
quantifiers if expr contains only polynomial equations and inequalities over the
real numbers.

Ezample 5. We have randomly generated a thousand instances of non-empty
words uy,...,us,v1,02,v3 € {0,1}* of length at most 11 and considered the
queries ¢1 = 0, g2 = 1, g3 = 01, g4 = 001 and g5 = 011. Considering the first
three (resp. four, five) polynomials, injectivity of the corresponding map G was
certified for 695 (resp. 962, 994) languages of the sample. Five cases where it
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was not possible to prove injectivity, are trivial situations, e.g., v1 = vy = 00
and uy = 0. In such a case, the minimal number of loops is not 3 but 2. The
only non-trivial case where injectivity is not proved is

L =(10)*01(01100111)*1000(10)*.
In that particular case, we get a polynomial

323 g? 2 107z 107
Poo1($,172)=£+i+ﬂ+ﬂ+3x2+322+6x2+—x+ i

26
6 6 2 2 6 6+

satisfying
P()Ul(ib‘7 1,2) = PO()l(LL' +1,1,2— 1) = POOl(CE —1,1,z+ 1)

Similar relations hold for Py1;. Hence these queries are useless to prove injectiv-
ity. However, the queries ¢1, g2, ¢3 and g¢ = 0111 are enough to get injectivity.

Proposition 7. Let q1,...,qm be queries and G(x) = (Py, (x),...,P,, (x)) be
the corresponding polynomial map. If the quantifier elimination of (15) returns
True, then any word in the language (1) can be reconstructed in a constant
number of m queries.

Proof. Since G is injective on RY ), the same holds for F. Otherwise stated, the
system (Eq ., (x),...,Eq,, (x)) has a unique solution. We may assume that
among the m queries, we have queries (Z) for all the letters of the alphabet.

This information provides us with an obvious upper bound for each x;:

z; < min (Z) ~ [urtz - tiala
1 =
Z‘ .
o 0 [oila

Hence, there is only a finite number of ¢-uples of candidates to test and only one
is valid. a

Ezxample 6. With four loops, an example such a
L =0(10010)*010(010)*10(001)*110(1001)*010

is certified to be reconstructed using the queries 0, 1, 01 and 011. Without the
last query, injectivity fails. However, simply modifying a bit the language (e.g.,
vz = 0011 instead of 001) leads Resolve to not terminate. Hence, we face the
limit of the exponential decision procedure.

With four loops but over a 3-letter alphabet, the situation is once again
under control. We have randomly generated several thousand of languages, as in
Example 5 with components of length at most 10, Resolve yields a certification
with the queries 0, 1, 2, 01, 02 and 21. Dealing with quadratic polynomial surely
helps.
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Remark 9. In the literature, we also found other techniques to ensure injectivity
of polynomial maps over the positive orthant. In [7], the authors characterize
injectivity of classes of maps (on cosets of a linear subspace) by injectivity of
classes of matrices. Their method avoids quantifier elimination and only uses
linear algebra but it is unfortunately not suited for our case study. For the in-
terested reader, we have considered the language 00(0100)*10(10)*(101)*1. With
notation from [7], considering the queries 0, 1 and 01 give three polynomial maps
encoded by two matrices (one for the coefficients, the other for the corresponding
exponents):

101003000 000001112\ "
A=[201001000|, B=[001120010
7122118633 120100100

Then, one has to look at the kernel of
A.diag(k1,. .., ko). B.diag(A1, A2, A3)

if all the parameters x; and A; are set to 1 except kg = 2, then the determinant
of the matrix is equal to zero. Thus the kernel is not restricted to {0} which does
not permit us to apply the method from [7].
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