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ABSTRACT.— Darwin was one of the first to hypothesize a connection between niche differentiation and competition and 

species relatedness, offering an appealing framework to disentangle community assembly processes based on phylogenetic 
diversity patterns. Community assembly is, however, the result of several processes including potentially confounding fac- 
tors associated with dispersal limitations and spatial effects, casting doubt about the application of phylogenetic diversity 
metrics to infer community assembly processes. We implemented a spatially explicit model involving limited dispersal, 
drift, trait-based selection, and competition to simulate community composition under competing assembly processes in a 
landscape with contrasted habitat connectivity. The phylogenetic structure of communities globally varied depending on 
assembly processes and the combination thereof, validating the assumption, made by a large number of studies but seldom 

tested in a spatially explicit context, that different assembly processes indeed lead to significantly different patterns of com- 
munity phylogenetic structure. All the investigated alpha metrics exhibited a poor ability to detect overdispersion under 
stabilizing processes, and some even unduly recovered a signal of clustering. Some of the most widely used metrics, such as 
UniFrac, carry a redundant signal with non-phylogenetic metrics, and hence, poorly capture the phylogenetic signal in the 
data. We identified three metrics, namely Bst or Pst for abundance data and PIst for occurrence data, which best retrieved 

the correct signal of phylogenetic structure under different assembly processes. Spatial effects may blur the phylogenetic 
structure of communities and decrease our ability to infer underlying processes. However, meaningful results may be ob- 
tained when the appropriate comparisons are made. In particular, phylogenetic clustering under equalizing processes must 
be tested on inter-habitat comparisons because it is the differential filtering of species between habitats that reveals the im- 
pact of equalizing processes. Our simulations further suggest that a significant phylogenetic structure of communities can 
be retrieved even in species-poor communities, except when the communities being compared are dominated by a single, 
most abundant species. We therefore conclude with best practices to adequately infer assembly processes with useful phylo- 
genetic diversity metrics. [Community assembly mechanisms; community simulation; phylogenetic diversity; phylogenetic 
metrics.] 
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 metacommunity is defined as a set of local com-
unities where species coexistence depends on four
ain processes: niche differentiation, competition, drift,

nd dispersal ( Leibold et al. 2004 ). The relative impor-
ance of these processes, which may operate simulta-
eously ( Vellend 2010 ; Fournier et al. 2017 ), varies ac-
ording to the capacity of species to disperse, experience
heir environment, and interact with other individuals
 Livingston et al. 2012 ), but also depending on landscape
onnectivity and environmental heterogeneity. 

Niche differentiation and competition are the two in-
redients of a trade-off between selection of traits for a
iven environment, enhancing fitness in the latter, and
ompetition among closely related species. This trade-
ff was formalized by Chesson’s ( Chesson 2000 ) inte-
rative framework of species coexistence based on two
undamental processes. Equalizing processes minimize
tness differences between species, so that coexisting
pecies tend to share similar functional traits in a given
1

abitat, whereas distinct habitats can select contrasted
rait combinations. Stabilizing processes stabilize coex-
stence via negative density-dependent selection, such
s resource limitations, parasitism, and predation. Thus,
oexisting species tend to have dissimilar functional
raits to avoid competition for the same resources, easy
ransfer of parasites, or predator attraction (limiting sim-
larity). 

Darwin (1859) was one of the first to hypothe-
ize a connection between habitat selection, density-
ependent selection, and the relatedness among species.

n fact, closely related species tend to share the same
iche (phylogenetic niche conservatism ( Wiens and
raham 2005 ; Losos 2008 ; Wiens et al. 2010 ). They hence

ompete for the same resources ( Emerson and Gillespie
008 ; Violle et al. 2011 ), but also are more likely to share
arasites and diseases ( Stephens et al. 2019 , and refer-
nces therein). To avoid competitive exclusion, parasite
r predator transfer, the essence of stabilizing coexis-
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Table 1. Simulations of community assembly under different processes and expected patterns of community phylogenetic structure 

Process Process in habitat (C) 
Process in fragmented 

habitat (F) Prediction or question 

1/Stochastic 100% Stochastic (neutral) No phylogenetic structure 
2/Stabilizing 100% Stabilizing (competitive exclusion) Phylogenetic overdispersion 
3/Equalizing Specialist 100% Equalizing with specialist species (strong habitat 

filtering) 
Strong phylogenetic clustering 

4/Equalizing 
Generalist 

100% Equalizing with generalist species (moderate 
habitat filtering) 

Weak phylogenetic clustering 

5/Mixed Specialist Mixed specialist: equal contribution of equalizing and 

stabilizing processes with specialist species 
Which process affects the most the phylogenetic 
structure? 

6/Mixed Generalist Mixed generalist: equal contribution of equalizing and 

stabilizing processes with generalist species 
Which process affects the most the phylogenetic 
structure? 

7/Mass Effect 1 100% Stochastic 100% Equalizing with 
specialist species 

Does habitat filtering in habitat F affect the 
phylogenetic structure in habitat C? 

8/Mass Effect 2 100% Equalizing 
with specialist 
species 

100% Stochastic Does habitat filtering in habitat C affect the 
phylogenetic structure in habitat F? 
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tence processes, a newly colonizing individual should
be phylogenetically distant from the species already
present in the community. Communities should thus in-
clude distantly related species, resulting in a pattern of
phylogenetic overdispersion ( Wiens and Graham 2005 ;
Anacker and Strauss 2016 ). 

Empirical evidence for this hypothesis has, how-
ever, been conflicting ( Vamosi et al. 2009 ). This para-
dox, known as “Darwin’s Conundrum” ( Thuiller et al.
2010 ; Fan et al. 2023 ), reflects the fact that an individ-
ual has better chances to establish within a community
if its ecological niche is compatible with the environ-
ment of that community, the essence of equalizing co-
existence processes. This happens if the colonizing indi-
vidual shares the same adaptations for that environment
with the species already established in the community,
leading to a pattern of adaptive trait clustering and, in-
directly, of phylogenetic clustering if these adaptations
are phylogenetically conserved ( Graham and Fine 2008 ).

Different phylogenetic patterns are therefore ex-
pected depending on the relative contribution of equal-
izing and stabilizing processes to community assem-
bly ( Lemoine et al. 2015 ). The analysis of community
phylogenetic structure offers in this context an appeal-
ing framework to infer community assembly processes
( Webb et al. 2002 ; Cottenie 2005 ; Graham and Fine
2008 ). 

A large number of phylogenetic diversity metrics
have been developed to characterize the phylogenetic
structure of communities ( Tucker et al. 2017 ) but have
rarely been tested. Miller et al. (2017) identified the best
performing metrics in terms of statistical power and rate
of false positives. Their simulations, however, involved
the placement of individuals based on their traits, re-
gardless of dispersal limitations and spatial effects in
community assembly. Niche and dispersal processes are,
however, not independent from each other ( Vilmi et al.
2021 ). Dispersal limitations lead to patchy communi-
ties assembled under neutral processes ( Münkemüller
et al. 2012 ), thus influencing the distribution of diver-
sity ( Cadotte 2006 ; Myers and Harms 2009 ; Condit et 
al. 2012 ), the nature and strength of species interactions 
( Shurin and Allen 2001 ; Chase et al. 2010 ), and environ- 
mental filtering ( Réjou-Méchain and Hardy 2011 ). It was 
shown that the extent to which species are found in their 
optimal habitat is negatively correlated with the ratio 

between mean dispersal distance and the size of habi- 
tat patches ( Réjou-Méchain and Hardy 2011 ). Species 
co-occurrences thus quantitatively depend on local en- 
vironmental conditions, but also on neighboring occu- 
pancy. In particular, species abundant in one large habi- 
tat may invade a smaller neighbor habitat, where they 

are ill-adapted, due to the high number of dispersal 
events leading to rescue effects (i.e., the death of an ill- 
adapted individual is followed by its replacement by 

a new migrant). Such a phenomenon, known as the 
“mass effect,” “dilutes” species/environment relation- 
ships ( Shmida and Wilson 1985 ). 

In this context, whether community phylogenetic 
structure truly reflects assembly processes has been in- 
creasingly questioned ( Cadotte and Tucker 2017 ). First, 
species occurrence patterns are not only shaped by envi- 
ronmental filters, but also by biotic factors and dispersal 
limitations, which may interact in complex ways and re- 
sult in patterns of community composition and phyloge- 
netic structure that may erroneously be interpreted. Sec- 
ond, the link between phylogenetic clustering and en- 
vironmental filtering, and between overdispersion and 

limiting similarity, is ambiguous ( Cavender-Bares et al. 
2006 ; Valiente-Banuet 2007 ). 

Here, we implement numerical simulations integrat- 
ing the key processes of dispersal, drift, and selection 

underlying the dynamics of local accumulation of biodi- 
versity through time ( Vellend 2016 ; Fournier et al. 2017 ) 
as well as the level of species habitat specialization. 
Our approach allows us to simulate species assembly 

across a continuum of scenarios, from purely neutral to 

niche-structured by stabilizing or equalizing processes, 
or combinations of them, while considering the impor- 
tance of spatial effects in a fragmented landscape. In this 
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(a) (c)

(b)

Figure 1. Illustration of the community assembly simulation framework under stochastic, equalizing, and stabilizing processes, and the 
combination thereof, in a fragmented landscape. (a) Simulation of a phylogeny, with nine species traits mapped on it following a Brownian 
evolutionary model (equalizing and stabilizing processes will depend each on three independent sets of three traits). (b) Landscape configuration 
and sampling design. Within a landscape of 84 by 84 pixels folded on a torus (i.e., opposite sides of the grid are adjacent to avoid border effects) 
projected onto a square grid for easier visualization, two types of habitats occur: a fragmented habitat (light gray) made of 9 patches including 
each 196 pixels is embedded in a continuous habitat (dark gray). Border pixels are highlighted in blue. Each pixel contains 50 individuals, whose 
species are randomly sampled among the species of the phylogeny at the beginning of the simulation (gen 0). At the end of the simulation, 144 
plots combining 9 adjacent pixels (surrounded by a line) are used for analyses. We run 2000 generations where one generation consists of a number 
of steps equal to the total number of individuals (84 × 84 × 50 steps). Within each habitat, 36 core and 36 border plots are identified. (c) Community 
assembly over time and recruitment process. At each step, one individual dies and is replaced by another individual, either from the same pixel 
or from another pixel, with a probability and at a distance determined by a dispersal kernel. The probability Pr that the new individual establishes 
and replaces the dead individual depends on the process involved. Under neutral processes, Pr = 1. Under equalizing processes, Pr increases 
when the traits of the new individual approach optimal trait values for the habitat. Under stabilizing processes, Pr increases with the difference 
between the traits of the new individual and the traits of the other individuals from the pixel. One hundred replicates of 2000 generations are 
run for each of 8 scenarios involving an assembly process or combination thereof. Each replicate has a newly simulated metacommunity. The 
strength of selection for equalizing processes was high (“specialist species”) or low (“generalist species”), depending on the scenario simulated. 
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ramework, we address the following questions and test
he following hypotheses ( Table 1 ): 

� To what extent does the phylogenetic structure of
communities vary under different processes and
combinations thereof (Q1)? 

� To what extent does this structure vary depend-
ing on spatial and mass effects, that is, do phy-
logenetic diversity patterns vary within the core
and at the border of continuous versus frag-
mented habitats (spatial effects) (Q2a), and within
one habitat depending on the assembly process
taking place in a neighboring habitat (mass ef-
fects) (Q2b), potentially blurring the relationship
between assembly processes and phylogenetic
structure? 

� Can randomization tests of phylogenetic diversity
metrics be used in practice, and in which con-
ditions, to infer community assembly processes
(Q3)? 

Material and Methods 

Simulating Communities under Contrasting Assembly 

Processes 

We simulated the assembly of theoretical communi-
ies that meet the expectations of stochastic, equalizing,
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and stabilizing processes. An overview of the procedure
is presented in Figure 1 . 

Species phylogeny and traits.— For each replicate, a
different metacommunity was generated following a
Fisher’s log series (but assuming identical species abun-
dances) with an expected species count of 800 (function
fisher.ecosystem of package untb ; Hankin 2007 ). A phy-
logenetic tree for these species was simulated under a
pure Birth process with a speciation rate of 0.2 and an ex-
tinction rate of 0 with the TreeSim package ( Stadler 2009 ,
2011 ). The evolution of nine continuous traits was simu-
lated on that tree under a Brownian motion model with
a random deviation of 0.1 with the function rtraitcont of
the ape package ( Paradis and Schliep 2019 ). 

Community simulations.— The simulation of a commu-
nity starts by randomly assigning each of the 50 indi-
viduals of each pixel to one of the species from the sim-
ulated phylogeny. Then, 2000 generations are simulated
to ensure that key parameters, such as species richness
and proportion of failed recruitment, reach a plateau
( Supplementary Fig. S1 ), each generation including a
number of death-recruitment steps equal to the size of
the total community (number of pixels × number of in-
dividuals per pixel = 352,800). Each step was divided
into three phases: the death of one individual chosen at
random across all pixels, the random selection of a new
individual from the same or another pixel according to
a dispersal kernel, and the establishment probability of
this new individual to replace the dead one according to
an assembly process. 

Dispersal processes and establishment probability . The new
individual had a probability of (1) 0.0001 to originate
from the initial species pool (long-distance dispersal);
(2) 0.7999 to originate from the same pixel as the dead
individual (reproduction); and (3) 0.2 to originate from
a surrounding pixel following an exponential disper-
sal kernel with a mean dispersal distance of 1 grid unit
(distance between two adjacent pixels) (short-distance
dispersal). Accordingly, 80.2% of the new individuals
originated from the same pixel (reproduction) and the
longest dispersal distance was 4 grid units, with a prob-
ability of 7.10–4 ( Supplementary Fig. S2 ). The probabil-
ities of recruitment Pr under the different processes are
detailed in Supplementary Table S1 . When the probabil-
ity of recruitment Pr < 1, a random number, R , is drawn
between 0 and 1 and the new individual effectively es-
tablishes if R ≤ Pr . Otherwise, a new individual is chosen
following the dispersal process described above, until a
successful recruitment takes place, ending the step. 

Simulations of community assembly. We ran 100 repli-
cates of 2000 generations for each of eight processes of
community assembly ( Table 1 ). At the end of a simula-
tion, the community was sampled for further data anal-
yses, using plots made of 9 adjacent pixels (450 individu- 
als per sample). Within the core and border of each habi- 
tat type, we used 36 plots of core continuous habitat, core 
fragmented habitat, border continuous habitat, and bor- 
der core habitat for a total of 144 plots ( Fig. 1b ). 

Computation of Phylogenetic Alpha and Beta Diversity 

Metrics 

An array of phylogenetic diversity metrics has been 

proposed. These metrics can be classified based upon a 

series of properties ( Pavoine and Bonsall 2011 ; Tucker 
et al. 2017 ). Alpha metrics characterize a single commu- 
nity, whereas beta metrics quantify differences between 

communities. Metrics can further be differentiated de- 
pending on the type of data involved (occurrence vs. 
abundance) and their nature, that is, whether they char- 
acterize a richness (e.g., sum of phylogenetic distances 
among species) or a divergence level (e.g., mean phy- 
logenetic distance between species) ( Tucker et al. 2017 ). 
Here, we selected 31 of these metrics to cover the range 
of metric types ( Supplementary Table S2 ). 

For each scenario, we computed phylogenetic diver- 
sity metrics for each of the 100 replicates. Alpha met- 
rics were computed for each sample within core habi- 
tat and border type, resulting in 14,400 values per sce- 
nario across the 100 replicates. Beta metrics were com- 
puted for each pair of plots from the same habitat and 

border type (intra-core and intra-border comparisons), 
and from different habitats and border types (inter-core 
and inter-border comparisons), resulting in 10,296 val- 
ues per scenario per replicate. 

Statistical Analyses 

To determine whether diversity metrics vary signif- 
icantly depending on assembly processes and the com- 
bination thereof (Q1), we computed, for each simulation 

replicate, the average value across plots ( n = 144) (alpha 

metrics) and the average values among pairs of plots 
( n = 10,296) (beta metrics). We then sought for signifi- 
cant differences among community assembly processes 
across the 100 replicates per process using Dunn tests 
due to the non-homoscedasticity of the data and their 
departure from a normal distribution, as evidenced by 

Shapiro–Wilk and Brown–Forsythe tests, respectively. 
To summarize the variation of phylogenetic struc- 

ture, as reflected by the different metrics, under differ- 
ent assembly processes and in different environments 
(Q1), we implemented a Principal Component Analysis 
(PCA) ordinating replicates in the space of metrics, in- 
cluding both taxonomic and phylogenetic diversity met- 
rics to characterize the communities. For alpha diver- 
sity, taxonomic metrics included species richness and 

Simpson’s diversity index. For beta metrics, we included 

the two components of beta diversity, namely turnover 
(measured by Simpson’s similarity index, βsim) and 

nestedness ( βsne) ( Baselga 2010 ). 

https://datadryad.org/dataset/doi:10.5061/dryad.mcvdnck92
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To determine whether community phylogenetic
tructure varied among assembly processes within
ontinuous versus fragmented habitats and at their bor-
ers (Q2a), we used Dunn tests to determine whether

here was a significant difference in the average metric
alue across the 100 replicates between the continuous
nd fragmented habitat, contrasting core and border
abitats. To determine whether variation in community
ssembly in one habitat could affect community phylo-
enetic structure in the other habitat (Q2b), we also used
unn tests to determine whether there was a significant
ifference in the average metric value in the continu-
us habitat when the fragmented habitat was under
tochastic versus equalizing processes, respectively, and
ice versa. 

Finally, we assessed whether phylogenetic diver-
ity metrics can be used in practice to detect phylo-
enetic clustering or overdispersion (Q3). To do so,
e implemented null models to determine whether

he observed value of a metric is significantly higher
r lower than expected by chance. The distribution
f the null hypothesis (i.e., the distribution of the
etric value expected in communities without any

hylogenetic structure) was generated by reshuffling
pecies positions among the tips of the phylogeny 100
imes, keeping only species actually sampled from the

etacommunity. 

Results 

The community assembly simulation model is de-
icted in Figure 1 , and descriptive features of the result-

ng communities in terms of variation in species distri-
ution patterns, trait values, abundance, and diversity
atterns under eight assembly processes ( Table 1 ) are de-

ailed in Supplementary Appendix 1 . 

Variation of Phylogenetic Diversity Metrics under Different 
Processes 

We selected mean phylogenetic distance (MPD) and
hyloSor, two of the most widely used metrics of alpha
nd beta phylogenetic diversity, respectively, to illus-
rate variations in phylogenetic structure resulting from
ifferent assembly processes. Average MPD was signifi-
antly lower under equalizing processes (reaching lower
alues with specialist than with generalist species) than
nder all other assembly processes ( Supplementary Fig.
3a ). PhyloSor was maximum under stabilizing pro-
esses, minimum under stochastic processes, and did
ot significantly differ, on average, between special-

st and generalist species under equalizing processes
 Supplementary Fig. S3b ). 

A PCA ordinating simulation replicates in the space
f diversity metrics showed that pure processes gener-
te different patterns of community phylogenetic struc-
ures, especially when characterized with beta met-
ics ( Fig. 2 ). Communities simulated under stabilizing
rocesses were well-characterized in the space of beta
etrics ( Fig. 2b1 ), but not in the space of alpha met-

ics ( Fig. 2a1 ), where they overlapped with communities
imulated under mixed processes. Phylogenetic metrics
uch as PD, AED, and PSR were highly correlated with
pecies richness ( Fig. 2a2 ). No phylogenetic beta met-
ic was correlated with the difference in species rich-
ess among communities ( βsne), but a series of phyloge-
etic beta metrics, including UniFrac, PhylosSor_turn,
nd PCD, were redundant with species turnover ( βsim)
 Fig. 2b2 ). Pst, Bst, and PIst were uncorrelated to all other
eta metrics ( Fig. 2b2 ), potentially expressing comple-
entary patterns. 

Impact of Mass and Spatial Effects on Phylogenetic 
Structure and Diversity 

Patterns of phylogenetic diversity were substantially
ffected by mass and spatial effects when equalizing
rocesses were involved ( Fig. 3 ). Alpha diversity esti-
ated by the MPD index was significantly lower in core

abitats than at their borders ( Fig. 3a1 ). At the limit
etween two habitat types indeed, both well- and ill-
dapted species, whose presence is influenced by the
eighboring community composition, occur. The same
ffects explain why MPD was significantly lower in both
he core and border of one habitat when the other habitat

as under stochastic rather than equalizing processes
 Fig. 3a2 ), as equalizing processes maintain phyloge-
etic divergence among species from different habitats.
imilarly, when one habitat was under stochastic pro-
esses, MPD was lower when the other habitat was un-
er equalizing processes ( Fig. 3a2 ) because species se-

ected in one habitat freely disperse into the other habi-
at. 

Among intra-habitat comparisons, beta diversity
uantified by the PhyloSor index was the lowest in core
ragmented habitat comparisons and the highest in core
ontinuous habitat comparisons ( Fig. 3b1 ), but, due to
patial effects, these differences were eroded in border
abitats. This was evidenced by the fact that (1) aver-
ge PhyloSor at the border of the continuous habitat did
ot significantly differ from average PhyloSor at the bor-
er of the fragmented habitat and (2) average PhyloSor
as significantly higher in inter-border than in inter-

ore habitat comparisons ( Fig. 3b1 ). PhyloSor was sig-
ificantly higher within one habitat when communities

n the other habitat were assembled under a different
rocess except in the case of the core continuous and
order fragmented habitats under equalizing processes
 Fig. 3b2 ). 

To What Extent Can We Retrieve Community Assembly 

Processes from Phylogenetic Diversity Metrics Associated 

with Null Models? 

The performance of 31 diversity metrics associated
ith a null model shuffling species among the tips of

https://datadryad.org/dataset/doi:10.5061/dryad.mcvdnck92
https://datadryad.org/dataset/doi:10.5061/dryad.mcvdnck92
https://datadryad.org/dataset/doi:10.5061/dryad.mcvdnck92
https://datadryad.org/dataset/doi:10.5061/dryad.mcvdnck92
https://datadryad.org/dataset/doi:10.5061/dryad.mcvdnck92
https://datadryad.org/dataset/doi:10.5061/dryad.mcvdnck92
https://datadryad.org/dataset/doi:10.5061/dryad.mcvdnck92
https://datadryad.org/dataset/doi:10.5061/dryad.mcvdnck92
https://datadryad.org/dataset/doi:10.5061/dryad.mcvdnck92
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Figure 2. Principal Component Analysis of the communities assembled under different processes as a function of alpha (a1) and beta (b1) 
diversity metrics. Each dot represents one of 100 replicates of community assembly simulations per assembly process (stochastic, equalizing 
with specialist or generalist species, stabilizing, and mixed equalizing, with specialist or generalist species)/stabilizing processes. The inserts 
(a2 and b2) show the correlation between alpha and beta metrics, respectively, and the axes (see Supplementary Table S2 for abbreviations). 
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the phylogeny to identify the correct assembly process
is illustrated in Supplementary Figure S4 . The percent-
age of significant tests under stochastic processes (type
1 errors) was generally < 10% across all but “S” met-
rics. All alpha metrics failed to retrieve overdispersion
under stabilizing processes, with significant overdisper-
sion found in < 10% of the simulations. Worst, alpha
metrics retrieved, on average, 5–25% of significant clus-
tering under stabilizing processes ( Supplementary Fig.
S4a ). Alpha metrics evidenced significant clustering un-
der equalizing processes for specialist species in 37–64%
of the simulations, with the highest rates with MNTD. 

Beta metrics exhibited contrasting behavior and per-
formances ( Supplementary Fig. S4b ). Under stabilizing
processes, only Pst and Bst indicated significant phylo-
genetic overdispersion in a majority of replicates (80%).
Under equalizing processes for specialized species, Pst,
Bst, and PIst were also the only metrics detecting signif-
icant phylogenetic clustering in a majority of replicates
(52–68%) when comparing pairs of samples from differ-
ent habitats. 

Based on his, we selected one of the alpha met-
rics (MNTD) and two beta metrics (Bst for abundance
data and PIst for presence–absence data) that best per-
formed in terms of their ability to detect significant phy-
logenetic community structure under different assem-
bly processes. We examined the performance of these 
metrics under different combinations of assembly pro- 
cesses and spatial configurations ( Fig. 4 ). MNTD cor- 
rectly retrieved clustering under equalizing processes 
with generalist species at rates > 90% in the core con- 
tinuous and border habitats, and 75% in the core frag- 
mented habitat ( Fig. 4 ). The performance of MNTD 

was unexpectedly slightly lower in the case of spe- 
cialist species. When one habitat was under equaliz- 
ing process and the other one under stochastic pro- 
cess, MNTD retrieved clustering in both habitats at rates 
of > 70%. The performance of MNTD was poor under 
stabilizing processes, retrieving significant clustering in- 
stead of overdispersion in about 25% of the simulations. 
Under mixed equalizing/stabilizing processes, MNTD 

retrieved significant clustering in about 25% of the 
simulations. 

Abundance-based beta metrics had a higher sta- 
tistical power compared with presence-based metrics. 
For instance, Bst recovered overdispersion under sta- 
bilizing processes at 80%, whereas the equivalent met- 
ric using occurrence data (PIst) returned a rate of 
only 15%. 

Bst and PIst recovered clustering under equalizing 

processes with both generalist and specialist species 
at about 75% in inter-core habitat comparisons. When 

https://datadryad.org/dataset/doi:10.5061/dryad.mcvdnck92
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Figure 3. Impact of mass and spatial effects on community phylogenetic structure and diversity. Box plots (showing the 1st and third 

quartiles (upper and lower bounds), second quartile (center), 1.5 ∗ inter-quartile range (whiskers), and minima-maxima (beyond the whiskers) 
represent the variation of alpha diversity (quantified by MPD) (a) and of beta diversity (quantified by Phylosor) (b) in the core and border of 
each habitat when communities in both habitats are assembled under the same versus different processes (stochastic vs. equalizing for specialist 
species). The upper (a1 and b1) panel represents comparisons among habitat samples (core and border continuous, core and border fragmented) 
under equalizing processes. The lower (a2 and b2) panel compares the impact of different processes (with different colors) for each type of habitat 
sample. ns, ∗, ∗∗, and ∗∗∗ indicate whether selected comparisons are not significant or significant at the 0.05, 0.01, and 0.001 level, respectively, 
based on Dunn tests. 
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Figure 4. Performance, in terms of type 1 (false negative) and type 2 (false positive) errors, of selected metrics of phylogenetic diversity to 
retrieve the process under which communities were simulated. 1: stochastic, 2: stabilizing, 3–4: equalizing with specialist and generalist species, 
and combinations thereof (equal contribution of equalizing and stabilizing processes with specialist (5, Mixed Specialist) and generalist (6, Mixed 

Generalist) species, respectively; stochastic processes in the continuous habitat, equalizing processes in the fragmented habitat (7, Mass Effect 1) 
and vice versa (8, Mass Effect 2) (see Table 1 ) in a landscape composed of a fragmented and a continuous habitat and depending on neighboring 
occupancy (mass effects), whose impacts are examined within core and border plots. Bars represent the percentage of tests for which the statistic 
was significantly higher (in blue) or lower (in violet) across 100 replicates. 
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ixed stabilizing/equalizing processes were at play, Bst
nd PIst consistently recovered significant overdisper-
ion at > 75% or between 30% and 75%, respectively, in
ntra-core habitat comparisons. In intra-border habitat
omparisons, Bst retrieved clustering at 80% in the case
f both generalist and specialist species, whereas PIst
ecovered significant clustering at rates of 30% for gen-
ralist species and slightly less than 75% for specialist
pecies. Both metrics failed to detect a significant
hylogenetic structure in inter-core habitat com-
arisons for mixed scenarios with specialist
pecies. 

Mass effects played a substantial role by eroding or
ven modifying the phylogenetic structure in one habi-
at depending on the process at play in the other habi-
at. Under equalizing processes with generalist species,
st and PIst among habitats both characterized strong
hylogenetic clustering among core plots but almost no
ignal among border plots. Under equalizing processes
ith specialist species, the proportion of significant Bst

alues dropped from about 75% to about 50%, but PIst
hifted from a strong signal for clustering to a weak
ignal of overdispersion. When the two habitats were
imulated under different assembly processes (stochas-
ic vs. equalizing), PIst retrieved a signal of clustering at
he border and within the core of the two habitats. Bst
etrieved a signal of overdispersion at the border and
ithin the core of the two habitats. 

Discussion 

Community Phylogenetic Structure under Different 
Assembly Processes 

The phylogenetic structure of communities globally
aried under equalizing, stabilizing, and stochastic pro-
esses, and the combination thereof. This validates the
ssumption, made by a large number of studies aim-
ng at disentangling the importance of competition and
abitat filtering ( Qian and Jiang 2014 ; Zhang et al. 2018 ;
i et al. 2022 ; Galvan-Cisneros et al. 2023 ), but seldom

ested in a spatially explicit context ( Münkemüller et al.
012 ), that different assembly processes indeed lead to
ignificantly different patterns of community phyloge-
etic structure. Unlike previous simulations of commu-
ity assembly that focused on pure processes, our results
urther revealed that combinations of processes more
ikely to occur in real communities also leave identifi-
ble patterns of phylogenetic structure. 

Performance of Phylogenetic Diversity Metrics to Retrieve 
Phylogenetic Structure under Competing Assembly 

Processes 

Whether different processes left a strong signature
n phylogenetic diversity patterns varied among met-
ic kinds and processes. Our results confirm that differ-
nt metrics of phylogenetic diversity exhibit very con-
rasting performances to detect phylogenetic cluster-
ng and overdispersion, and hence, indirectly, infer as-
embly processes ( Münkemüller et al. 2012 ; Miller et
l. 2017 ), and further highlight under which conditions
hich metrics are most appropriate. 
In line with the fact that stabilizing processes gener-

ted alpha diversity patterns that could not be distin-
uished from those generated under mixed processes,
ll the investigated alpha metrics exhibited a poor abil-
ty to detect overdispersion under stabilizing processes.
ven worse, metrics such as MNTD and AED recov-
red a signal of clustering. This contrasts with previ-
us findings that alpha metrics based on mean relat-
dness, such as MPD, are most powerful for detecting
hylogenetic overdispersion due to competitive exclu-
ion ( Miller et al. 2017 ). In Miller’s et al. (2017) simu-
ations in fact, individuals were placed on a grid based
n their traits, thereby forcing unrelated species to co-
ccur under stabilizing processes. Communities simu-

ated based on an actual assembly process taking dis-
ersal limitations into account may not include the most
istantly related species, highlighting the crucial im-
ortance of spatially explicit simulations when assess-

ng the responses of biological communities to assembly
rocesses ( Wiegand et al. 2017 ). 

Compared with alpha metrics, some of the beta met-
ics performed extremely well in recovering overdisper-
ion under stabilizing processes. In line with evidence
hat species abundance data, but not occurrence data,
arry information regarding species interactions ( Botta-
ukat and Czucz 2016 ; Blanchet et al. 2020 ), the metrics

hat exhibited the highest statistical power under sta-
ilizing processes were Bst and Pst. These abundance-
ased metrics in fact substantially outperformed equiv-
lent metrics based on occurrence data, such as
Ist. 

Altogether, two lines of evidence lead us to recom-
end, among beta metrics available, the application of

st or Pst and PIst for abundance and occurrence data,
espectively. First, although most beta phylogenetic met-
ics range between 0 and 1, the actual value of Bst and
Ist is informative regarding the identity of the pro-
ess at play. Indeed, Bst and PIst can be negative, in-
icating spatial phylogenetic overdispersion, or posi-

ive, indicating spatial phylogenetic clustering. Second,
nlike divergence metrics, which are based on aver-
ge distance among species within versus among com-
unities, richness metrics, which sum up the propor-

ion of shared branch lengths between two communi-
ies ( Tucker et al. 2017 ), were correlated with their taxo-
omic counterpart (species turnover). This suggests that
uch metrics differentiate communities assembled un-
er different processes due to the different patterns of
pecies richness and composition generated by those
rocesses, but that the signal included in those met-
ics is not driven by the phylogenetic structure of com-
unities. Such phylogenetic metrics are thus redun-

ant with their taxonomic counterparts. We therefore
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suggest that metrics such as UniFrac, although one
of the most widely used in analyses of community
phylogenetic structure ( Jin et al. 2015 ; Shooner et al.
2018 ; Lazzaro et al. 2020 ), could usefully be replaced
by other metrics, such as Bst and PIst, which carry a
signal that is independent from that of the taxonomic
metrics. 

Can Community Assembly Processes Be Unambiguously 

Inferred from Phylogenetic Diversity Patterns? 

Our simulations revealed that specific assembly pro-
cesses lead to expected patterns of phylogenetic clus-
tering under habitat filtering and overdispersion un-
der limiting similarity when appropriate metrics are
employed. Inferring assembly mechanisms from com-
munity phylogenetic structure requires, however, a
careful interpretation because phylogenetic clustering
or overdispersion is not a synonym of environmen-
tal filtering and limiting similarity, respectively. In
fact, other processes than competition, for instance
niche convergence ( Cavender-Bares et al. 2004 ) or fa-
cilitation ( Valiente-Banuet 2007 ) among phylogeneti-
cally unrelated species, can also lead to phylogenetic
overdispersion, challenging the interpretation of the
latter. 

Unexpectedly, overdispersion (negative Bst or Pst
statistics) was detected under equalizing processes with
specialist species in intra-habitat comparisons. We ob-
served these patterns when the effective number of
species per sample (i.e., the inverse of the sum of squares
of species frequencies) was very low, about < 2.5. In
those conditions, one or a few closely related adapted
species dominate the two samples being compared,
along with a few rare, ill-adapted species brought by
immigration or mass effect. Hence, the negative Bst or
Pst values observed in such conditions results from the
comparison of random mean abundance-weighted phy-
logenetic distances among species within each sample
and low mean abundance-weighted phylogenetic dis-
tance among species among samples. This means that, to
be able to detect equalizing processes, Bst and PIst must
thus be tested on inter-habitat comparisons (i.e., habitats
must filter species traits on distinct optima), because it is
the differential filtering of species between habitats that
reveals the impact of equalizing processes. In those con-
ditions, meaningful results may be obtained, according
to our empirical evaluation, in species-poor communi-
ties, that is, much below the minimum of 10 species per
samples imposed by Miller et al. (2017) , except when the
communities being compared are dominated by a single,
most abundant species. 

Regarding the ability of the investigated metrics to
recover phylogenetic clustering under equalizing pro-
cesses, the alpha metrics that performed best in our sim-
ulations, such as MNTD, consistently recovered phy-
logenetic clustering under equalizing processes, with
a similar power with regard to the spatial configura-
tion of the habitat (border vs. core habitat). By compar- 
ison, the beta metrics that performed best in our sim- 
ulations, such as Bst, Pst and PIst, recovered phyloge- 
netic clustering in the case of generalist species at a 

much lower rate in inter-border habitat than in inter- 
core habitat comparisons. Worst, metrics based on oc- 
currence data such as PIst further exhibited a low sta- 
tistical power at recovering phylogenetic clustering in 

inter-border habitat comparisons, even under stringent 
equalizing processes involving specialist species. Such 

metrics thus appear highly sensitive to the homogeniza- 
tion of the communities among habitats, either due to 

low species specialization levels and/or spatial configu- 
rations favoring the migration of poorly adapted species 
(mass effects). The apparent high ability of alpha met- 
rics such as MNTD to recover phylogenetic clustering, 
whatever the spatial configuration of the habitat, must, 
however, be interpreted with caution. In fact, MNTD er- 
roneously recovered a signal of clustering in habitats un- 
der stochastic processes when the other habitat was un- 
der equalizing processes, whereas beta metrics ambigu- 
ously recovered both significant clustering and overdis- 
persion at low rates ( < 25%), characterizing a complex 

situation. 

Limitations of the Simulation Framework 

As in all simulations, the conclusions made in the 
present study apply within the range of a series of ex- 
plicit assumptions based on the choices made at each 

step. A first assumption was made by generating a re- 
gional species pool with an expected species count of 
800. The size of the species pool is an important param- 
eter because, with a small number of species either in- 
cluded in the community or excluded by the assembly 

process, the probability of any given combination of taxa 

arising by chance in the null model is high ( Kraft et al. 
2007 ). Here, 800 represented a trade-off between a large 
number, increasing computation time, and a low num- 
ber resulting, in the most stringent simulations, in a too 

low species richness in the local communities. With a 

species richness of 800 in the metacommunity, 13.4 plots 
out of a total of 144 had already to be removed, on aver- 
age across 100 replicates, from the analysis under equal- 
izing processes with specialist species for hosting a sin- 
gle species. The ca. 800 species included in the regional 
species pool exceed by a factor of 2–3 the species pool 
implemented by Kraft et al. (2007) , who reported that the 
statistical power decreases with increasing pool size for 
communities simulated by competition. In the present 
analyses, however, the selected metrics (Bst and Pst) had 

a somewhat higher statistical power to retrieve overdis- 
persion under stabilizing processes than clustering un- 
der equalizing processes. In addition, when mixed pro- 
cesses were implemented, stabilizing processes left a 

stronger imprint on community phylogenetic structure 
than equalizing processes. In fact, phylogenetic overdis- 
persion was retrieved when both stabilizing and equal- 
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zing processes were at work in all habitat comparisons,
hereas clustering in inter-habitat comparisons would

ave been expected. 
A second assumption involved the use of a pure Birth

rocess for simulating phylogenies and of a Brownian
odel to map trait evolution on them. The Brownian
odel of trait evolution involves that traits continu-

usly evolve along branches at a constant rate and with-
ut directionality ( Elliot and Mooers 2014 ). Although
eing the most common model for the evolution of
ontinuous characters, this model does not accurately
escribe the evolution of traits under selection, and
ence, exhibiting directional tendencies, or of traits un-
er punctuated evolution. Although other models could
e implemented, we suggest that the specific evolution-
ry model is not critical for our results as long as it leads
o a phylogenetic signal so that, although trait conver-
ence among unrelated species may occur by chance
 Hardy and Pavoine 2012 ), the degree of trait sharing is
roportional to that of phylogenetic relatedness. 

A third strong constraint imposed in the present sim-
lations was the implementation of a short-tail disper-
al kernel. Dispersal can have a strong effect on com-
unity phylogenetic structure, generating non-random

atterns under stochastic processes ( Kembel 2009 ). Im-
lementing dispersal kernels with fatter tails would
ost likely increase the likelihood of colonization of ill-

dapted species. Although this would decrease commu-
ity phylogenetic structure and hence, affect statistical
ower, this would not necessarily affect the relative per-

ormance of different metrics to retrieve phylogenetic
tructure under different assembly processes. 

Fourth, the choice of the null model may also substan-
ially impact type 1 error rates ( Kembel 2009 ; Miller et al.
017 ). The null model implemented here (1s in Hardy
008 ) was among the ones producing the lowest type 1
rror and the most robust under limited dispersal. More-
ver, it allows testing specifically whether the phylo-
enetic relationships among species affect the phyloge-
etic diversity metrics while keeping intact the spatial
atterns of species distribution. 

Finally, the sampling design may also impact the
tatistical power of the tests. To decrease the degree
f spatial autocorrelation in the data, sparse sampling
ould be implemented. We compared the statistical
ower of the tests under equalizing processes for spe-
ialist species, selecting eight spatially correlated sam-
les ( Supplementary Fig. S5b ) versus one sample out of
ach of the nine clusters of four samples ( Supplementary
ig. S5c ) (sparse sampling). The proportion of signifi-
ant MPD values across replicates was 53% and 28% for
parse sampling and 52% and 16% for spatially corre-
ated sampling in continuous and fragmented habitats,
espectively. With PIst among core continuous and core
ragmented habitats, 67% and 50% of the tests based
n sparse versus spatially correlated sampling, respec-
ively, retrieved significant clustering. This suggests that
parse sampling could help enhancing statistical power.
nvestigating the impact of the sampling design on the
ower of the tests of phylogenetic structure would, how-
ver, require a thorough investigation. In this perspec-
ive, all the parameters fixed in the present study (e.g.,

odels of trait evolution, dispersal kernels . . .), as well
s the sampling design, can be changed to perform new
imulations under different sets of assumptions based
n the code available from Dryad: https://doi.org/10.
061/dryad.mcvdnck92 

Range of Applications 

Different biological systems involving species disper-
al in a fragmented landscape (e.g., epiphytes, arthro-
od communities associated with bird-nest ferns, wood-

ands in a matrix of open habitat . . .) could correspond
o the setting of the present simulations. We suggest that
pecies-rich forest tree communities would represent a
ypical example of application (see, e.g., Hardy et al.
012 ). Each pixel could represent a 0.1–1 ha forest patch
ontaining 50 reproducing trees within a landscape of
ens to hundreds square kilometers hosting several hun-
reds of tree species. This is, for example, the case of

ropical rainforests. In Amazonia, 3–357 (121 on aver-
ge) tree species per ha () and 829 tree species across
1 0.9–2.5 ha plots within a 400 km2 area ( Pitman et al.
999 ) have been reported, mimicked by the 2–30 species
er plot and the 800 species included here in the meta-
ommunities. In such environments, seed dispersal is
ypically extremely limited, with median dispersal dis-
ances of < 1 to > 80 m ( Dalling et al. 2002 ) and about 80%
f established progeny remaining within the same 1 ha
atch of the mother tree ( Hardy et al. 2019 ; Angbonda
t al. 2021 ; Bhasin et al. 2024 ), as modeled by the dis-
ersal kernel implemented in our simulations. Under

he 100% stochastic scenario, all tree species are equally
dapted to the forest environment, which is uniform.
his could mimic a diverse tropical rainforest showing
ery low environmental variation through space, and
ssuming that neutral processes prevail ( Latimer et al.
2005 ). 

Under scenarios involving equalizing processes, only
he species having specific combinations of environmen-
al adaptation traits survive and reproduce in one of the
wo habitat types. Here, these traits filtered by the envi-
onment could represent, for example, a position along a
rade-off between drought and waterlogging tolerance.
he two simulated habitats could be analogous to the
osaic formed by a continuous terra firme forest (habitat

) interrupted with patches of swamp forest occurring in
opographic depression, or of white sand forests (habi-
at 2), which typically occur as habitat islands hosting
pecialized species assemblages across the Amazonian
ainforest ( Fine and Bruna 2016 ). 

Under scenarios involving stabilizing processes,
pecies compete locally (one-hectare scale) for resources
f they have similar resource acquisition traits. These

https://datadryad.org/dataset/doi:10.5061/dryad.mcvdnck92
https://datadryad.org/dataset/doi:10.5061/dryad.mcvdnck92
https://datadryad.org/dataset/doi:10.5061/dryad.mcvdnck92
https://datadryad.org/dataset/doi:10.5061/dryad.mcvdnck92
https://datadryad.org/dataset/doi:10.5061/dryad.mcvdnck92
https://datadryad.org/dataset/doi:10.5061/dryad.mcvdnck92
https://doi.org/10.5061/dryad.mcvdnck92
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traits could correspond to a position along the trade-off
between slow-growing shade-tolerant and fast-growing
light-demanding strategies, favoring species with the
most original resource acquisition traits in the species
pool. The simulated community receives random mi-
grants from the species pool, which is comparable to
the seed rain landing in a forest after occasional long-
distance dispersal events from similar or dissimilar
plant communities occurring in the same region. 

Conclusions and Perspectives 

Our simulations formalize the idea that equalizing
and stabilizing processes leave a distinct signature in
the phylogenetic structure of communities, which can
provide insights into community assembly processes.
With real data, the actual underlying assembly process
is, however, unknown. This makes it necessary to im-
plement null models, with a statistical power that sub-
stantially varies among metrics and depending on the
assembly processes involved, to determine whether the
phylogenetic structure observed in the data is indeed
stronger than expected by chance. Simulating commu-
nities expected under competing assembly processes,
generating the corresponding range of expected phylo-
genetic diversity metrics, and determining to which of
these simulated phylogenetic diversity metrics the ones
that were actually observed in natural communities best
correspond, would represent a much appealing way to
move forward. Such an approach is frequently used in
phylogeographic studies, wherein coalescence simula-
tions are implemented within an Approximate Bayesian
Computation (ABC) framework to determine the histor-
ical scenario that best fits with observed patterns of ge-
netic variation ( Collin et al. 2021 , and references therein).
The number of parameters to be estimated in such sim-
ulations (e.g., effective population sizes, migration rates
. . .) represents, however, one of the major challenges
in such approaches ( Bertorelle et al. 2010 ). The prob-
lem would be worst in community ecology, wherein the
number of parameters to be assessed exceeds the already
large number of parameters in coalescence analyses. In
this context, recent advances in machine learning have
increasingly facilitated the development of simulation-
based inference ( Cranmer et al. 2020 ) with mounting ap-
plications in population genetics (e.g., Saada et al. 2023 ),
and could provide an appealing solution to address this
challenge. 
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