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Abstract—We explain how the TOTEM toolbox can be used
to engineer an operational network. TOTEM is an open source
TOolbox for Traffic Engineering Methods which covers IP-
based and MPLS-based intradomain traffic engineering (TE)
algorithms, but also interdomain TE. In this paper, we use the
toolbox as an off-line simulator to optimise the traffic of an
operational network. To help an operator to choose between an
IP-based or MPLS-based solution, or to find the best way to load-
balance a network for a given traffic, our case study compares
several IP and MPLS routing algorithms, evaluates the impact
of hot-potato routing on the intradomain traffic matrix, and
analyses the worst-case link failure. This study reveals the power
of a toolbox that federates many traffic engineering algorithms.

Index Terms—TOTEM, Traffic Engineering, TE, MPLS, IP,
BGP

I. I NTRODUCTION

RESEARCH in the traffic engineering field has been
carried out for some years. Solutions exist, but few of

these are actually used by operators to manage their network.
One reason is that these methods are specifically implemented
for research and simulation purposes. It is considered difficult
to integrate these methods in an operational environment. The
main objective of the TOTEM toolbox ([1], [2]) is to reconcile
the academic and the operational worlds by providing inter-
operable and user-friendly interfaces with existing tools. This
toolbox can also be used by a researcher whose objective is
to test, compare and promote his/her own research.

The design of the toolbox also allows different utilisation
modes. It can be deployed either as an on-line tool in an oper-
ational network or as an off-line traffic engineering simulator.
Moreover, a large variety of traffic engineering methods are
integrated. These methods can be classified with respect to
different axes like intradomain or interdomain, on-line oroff-
line, IP or MPLS (Multi Protocol Label Switching), centralised
or distributed.

TOTEM is a useful tool for network operators. With so
many algorithms combined in a common framework it is pos-
sible to test and evaluate several engineering solutions quickly.
The TOTEM toolbox is described in [2], which presents the
toolbox, its architecture, and a series of algorithms/methods
that are (or could be) integrated in it. The present paper applies
the toolbox to a real case study. It illustrates the utility of our
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toolbox for a network operator and shows how different TE
algorithms can be combined for a particular purpose (i.e. tosee
the effects of hot-potato routing in this case), which is oneof
the key advantages of a toolbox federating those algorithms.
The utility of the toolbox is much higher than the sum of
the utilities of the embedded algorithms. This case study has
been performed on an operational multi-gigabit network whose
topology is composed of about 20 nodes and 40 links. Link
capacities go from 155Mbps to 10Gbps (about 43% are 10
Gbps links, 3% are 5 Gbps and 54% are≤ 2.5 Gbps).

The goal of the case study is to provide a set of answers to
a wide variety of questions a network operator may have. For
example, to the question “Is it worthwhile to deploy MPLS in
my network?”, we provide the best routing schemes available
in IP and MPLS networks. With such a study in hand, an
operator can choose one among all possible solutions with full
knowledge of their pros and cons. To the question “Which link
is the most critical in my network?”, we provide a study of
worst case link failure. We also describe how to infer traffic
matrices on the network, considering hot-potato effects. This
is useful for an operator which needs some information about
the impact of a link metric change on the traffic of his/her
network. Note that it is also possible to evaluate the network
protection cost using local or global backup LSPs with the
TOTEM toolbox. Such a study can be found in [3].

The paper is structured as follows. In section II, we intro-
duce traffic engineering concepts. Section III briefly describes
the TOTEM toolbox and section IV details algorithms used in
the case study. Section V presents how to compute the traffic
matrix from netflow traces and the influence of link metrics
on the traffic matrix via Hot Potato routing effects. In section
VI we analyse the traffic and the network state considering all
possible IP and MPLS algorithms while section VII analyses
the effects of link failures on the network state. Finally, section
VIII concludes this study.

II. T RAFFIC ENGINEERING

Traffic engineering involves adapting the routing of traffic
to the network conditions, with the joint goals of good user
performance and efficient use of network resources. But how
can this be achieved in practice?

Consider a network running a classical intradomain IGP1

protocol (ISIS or OSPF). The routes in the network will be
computed by a Shortest Path First (SPF) algorithm based on
some link weights assigned by the network administrator. By
default, the weights can either be all set to 1 (leading to a

1Interior Gateway Protocol
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minimum hop routing) or to the inverse of the capacity of the
links (as recommended by CISCO), for example.

This (simple) routing configuration does not take traffic into
account and thus can lead to some problems. Indeed, one
link can be highly loaded (many flows are routed via this
link) while others are nearly not used. The high load of some
links can lead to congestion or at least to a high delay due
to packet queueing. In this case, it is known that the quality
of the network would be improved if some flows were routed
on a somewhat longer but less loaded (i.e. with more free
bandwidth) path. One high level objective of a simple traffic
engineering technique could be to balance the load over all
links by trying to decrease the load of the most loaded link(s).

The first technique that can achieve such an objective is
the following. Find a set of link weights such that when the
shortest paths will be computed with respect to these weights,
the load will be balanced on the whole network and the
maximum link load is minimised. This technique requires to
know some information about the network traffic, which is
usually aggregated and represented as a traffic matrix. The
problem of finding the set of weights that minimises the load
of the most loaded link(s) is combinatorial and some heuristics
to solve it have been proposed in [4].

A shortcoming of this approach is that these weights are
optimised for a given traffic matrix. If the actual traffic is
different, the optimum is not reached anymore. If we compute
a new set of link weights and update them in the network, this
may also lead to transient routing loops, if the updates are not
done in the right order. To circumvent this, a possible solution
is to optimise the set of weights for several traffic matrices,
such that the routing conditions arequite goodfor all of them,
without being really optimal for any.

A similar problem occurs when a link or a node fails. After
a transient period, the flows that were previously routed over
the failed resource are now routed on other links, which can
also lead to congested links. A solution to this problem can be
to optimise the set of weights so that the load is still reasonably
balanced under any failure scenario.

We notice that the problem gets more and more complex,
while adding new objectives (several traffic matrices, several
failure scenarios, ...). A combination of these objectivesshould
also reflect that the network should be better optimized under
normal conditions than under failure. Basically, if there are m
links in the topology, the optimizer has onlym - 1 variables
to tune to find the best compromise.

A completely different solution to this complex problem is
to factorise it into several simpler ones. MPLS is a technology
that allows one to establish tunnels, called Label Switched
Paths (LSPs), in the network. Thanks to these LSPs, the
paths (and the granularity) of all the flow aggregates of the
network can be chosen freely. With this kind of tunnel-based
technology, it is possible to route all the flows with the goalof
optimising one specific objective function (or a combination
of several ones). If the traffic matrix changes, it is possible to
reroute or reoptimize only some of the LSPs, while avoiding
classical transient loop problems. To recover from failures, it is
possible to precompute and pre-establish some backup LSPs.
One backup LSP will only be active when the corresponding

primary LSP has failed [5]. Again, the paths of these backup
LSPs can be freely chosen so that in case of any failure no
congestion will occur.

MPLS routing is thus somewhat more complicated than pure
IP routing, but it allows more flexibility and more degrees
of freedom than IP’s shortest path routing. This is true even
though IP routing can be optimized for a given objective
function and a given traffic matrix. It is also possible to use
hybrid solutions combining shortest path routing for most
flows and MPLS tunnels for some traffic aggregates. The
essential merit of this hybrid approach is to avoid a full mesh
of LSPs, which may be impractical for very large networks.

III. TOTEM TOOLBOX

In this section we briefly present the TOTEM toolbox. More
information about online and offline deployment of the toolbox
or its architecture can be found in [2].

A. Toolbox-related work

Several network optimisation tools exist, e.g., MATE (Cari-
den), Netscope (AT&T), Tunnel Builder Pro (CISCO), TSOM
(Alcatel), Conscious (Zvolve), IP/MPLSView (Wandl) and SP
Guru (Opnet). All these tools are centralised and propose
exact and heuristic optimisation methods. We refer to [2] for
a complete review of toolbox-related works.

TOTEM is different from all other network optimisation
tools. To the best of our knowledge, TOTEM is the only
open-source toolbox for intradomain and interdomain traffic
engineering of IP and MPLS networks, providing stable and
robust methods for IGP metric optimisation, primary and
backup LSP routing, and BGP2 simulations. These methods
can be easily compared, combined and extended.

B. Software architecture

The toolbox contains different modules:

• Topology module: contains the set of classes related to
the network topology which allows for example to add or
remove some links, to add or remove some LSPs, to check
some properties on the network (e.g. the connectivity), or
to obtain some statistics (e.g. the network utilisation);

• Traffic matrix module: contains some functionalities
related to traffic matrices like reading files, checking the
consistency of the traffic matrix with respect to the link
capacities and generation of traffic matrices;

• Scenarios module:contains the classes related to simu-
lation scenarios providing the ability to read, execute or
generate scenarios (explained below);

• Algorithm repository: contains all the traffic engineering
algorithms. This is the central part of the toolbox. The
algorithms of this repository that are used in this study
are described in detail in section IV;

• Chart module: contains some functionalities related to
charts generation. This module allows the user to auto-
matically generate charts using various data sources;

2Border Gateway Protocol
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• Graphical User Interface (GUI): provides an easy inter-
face to test the toolbox methods. This interface displays
a view of a network topology and allows a user to see
the effect of an action taken on the network on the link
loads, e.g. a link failure, a change of an IGP metric or a
change of the LSP routing policy.

C. Simulation scenarios

To simplify the use of the toolbox in simulation mode, we
set up a kind of scripting language by means of scenario XML
files. The content of a scenario XML file is a sequence of
events that will be executed by the toolbox. We defined a set
of basic events (”linkDown”, ”linkUp”, ”LSPCreation”, ”load-
Domain”, etc.) which already allow to build very complex
scenarios. An example of a scenario file could be:

• load a topology and a traffic matrix;
• display the resulting link loads using a SPF algorithm;
• optimise the IGP weights using IGP-WO3;
• display the link loads with updated weights.

All the results presented in section V were obtained thanks to
the toolbox and scenario files.

The language defined by the scenario XML files can be
easily extended, i.e. it is easy to write new events. These new
events can be based on already integrated algorithms or on new
algorithms that are plugged into the toolbox during runtime.

D. Data flows in the toolbox

The process to engineer a network from data collection to
analysis report is described in Figure 1. The first step is to
collect data and aggregate them to produce a topology, one
or more traffic matrices and a BGP routing table. The second
step is to create a simulation scenario (of section III-C) that
will control the toolbox execution. The toolbox will simulate
the scenario and produce some reports (text file or simple
graph). With this process, it is simple to simulate link failure,
traffic matrix evolution or IGP metric optimisation and to
analyse the impact on link loads, path delay variation or other
kind of operational requirements. It is also possible to replace
the simulation scenario with the use of the Graphical User
Interface.

IV. TE ALGORITHMS USED IN THIS PAPER

In this section, we present the algorithms integrated in the
toolbox that we will use in our simulations.

A. Classical algorithms

We first describe basic algorithms, which can be used as a
starting point for comparison purposes or as building blocks
of more complex methods.

One well-known problem is to find the shortest path, the
minimum cost path or the minimum total weight path be-
tween two nodes of a network. We have implemented several

3IGP-WO (Interior Gateway Protocol-Weight Optimiser) is described in
section IV-B.

algorithms that perform shortest path computations (more
information in [6], [7]), including:

• Dijkstra’s shortest path algorithm (SPF): it computes the
shortest path tree to all other nodes, or simply a path to
a given node. We have used a priority queue under the
form of a binary heap to implement this algorithm. This
allows us to obtain a complexity ofO((V + E) log V )
whereV is the number of vertices (nodes) andE is the
number of edges (links);

• CSPF (Constraint Shortest Path First): it computes the
shortest path that satisfies some bandwidth constraints,
i.e. all links on the path must have enough free bandwidth
to route the demand. It is basically Dijkstra’s algorithm
applied on a pruned topology, where links with not
enough free bandwidth are removed. This algorithm can
be used to route an LSP which needs to reserve a certain
amount of bandwidth on the path.

B. IGP-WO

The IGP-WO [4] (Interior Gateway Protocol-Weight Opti-
misation) module aims at finding a link weights setting in the
domain for an optimal load balancing. It provides a routing
scheme adapted to one or more traffic matrices.

The main inputs to the IGP-WO module are:

• Network topology: routers (nodes), links (arcs) and link
capacities;

• Traffic matrices: for each (origin, destination) pair, the
requested bandwidth.

The program provides as output a set of weights for the
links in the network. If multiple paths of equal cost exist in
the network, the traffic is supposed to be split equally among
all of these shortest paths. This is known as equal cost multi-
path (ECMP). The algorithm tries to minimise an objective
function which is explained in section VI-A.

Since the problem of finding the optimal weight setting is
NP-hard (no efficient algorithm available), a heuristic algo-
rithm is applied to find agood but not necessarily optimal
solution. The algorithm is based on a well-known meta-
heuristic technique, called tabu search.

C. DAMOTE

DAMOTE [8] (Decentralised Agent for MPLS Online Traf-
fic Engineering) is a routing algorithm whose purpose is to
compute LSPs under constraint. DAMOTE is more sophis-
ticated than a mere CSPF algorithm. The difference is that
DAMOTE finds the path that minimises a given objective func-
tion under bandwidth constraints. Examples of such objective
functions are: resource utilisation (DAMOTE operates as a
CSPF with a hop-count metric in this case), load balancing,
hybrid load balancing (where long detours are penalised),
preemption-aware routing (where induced reroutings are pe-
nalised).

DAMOTE is generic for several reasons. Firstly, the score
function is a parameter of the algorithm. Secondly, constraints
can be combined quite freely. For example, we can define a
capacity constraint for different class types (CT) of traffic.
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Fig. 1. Traffic engineering analysis using the toolbox

In each CT, several preemption levels can be defined. The
admission control algorithm will accept a new LSP only if
there is enough free bandwidth on all the links of this LSP.
The free bandwidth on a link is computed taking into account
only the reserved bandwidth of lower preemption level LSPs
(these LSPs are more important). This allows us to preempt
less important LSPs if needed. In this case, DAMOTE is able
to choose the “best” set of LSPs to preempt.

DAMOTE computes in an efficient way a near optimal
solution. It is also compatible with MAM [9] (Maximum
Allocation Model) which has been proposed by the IETF
MPLS Diff-Serv working group.

DAMOTE can also compute backup LSPs ([3]). Each
primary LSP is protected by a series of local detour LSPs.
These backup LSPs start from the immediately upstream node
of each link of the primary LSP. Doing so, they protect the
downstream node (if possible) and the downstream link. They
merge with the primary LSP somewhere between the protected
resource (exclusive) and the egress node (inclusive). These
LSPs have to be established in advance if rapid restoration is
required. Also, bandwidth must be reserved for these LSPs, as
we want to be sure that there will be enough free bandwidth on
all the links in case of failure. In terms of bandwidth consump-
tion, this scheme is only efficient if detour LSPs can share
bandwidth among them or with primary LSPs. DAMOTE
achieves this under the hypothesis that only one node or link
will fail at the same time (single failure hypothesis)4.

DAMOTE can achieve a full protection of all the primary
LSPs against link and node failures for an increase in the
bandwidth consumption of less than 100% of the resources
reserved for primary LSPs (depending on the topology). For
comparison, SDH/SONET-based protection leads to an in-

4This assumption is implicit in all the single backup path-based protection
schemes. Indeed, if we want to protect traffic against doublefailures in the
network, we have to protect backup paths against failures aswell.

crease of bandwidth consumption of 100% without protecting
the nodes of the network.

D. C-BGP

C-BGP is a BGP routing solver ([10]). It aims at computing
the interdomain routes selected by BGP routers in a domain.
The route computation relies on an accurate model of the BGP
decision process as well as several sources of input data. The
model of the decision process takes into account every decision
rule present in the genuine BGP decision process as well as
the iBGP hierarchy (route-reflectors).

The input data required by C-BGP includes intradomain
and interdomain information. First, the knowledge of the
interdomain routes learned through BGP from the neighbor
domains is required. This information can be obtained from
MRT dumps collected on the genuine BGP routers or it can
be introduced manually. The route computation also relies on
the knowledge of the intradomain structure.

The internal representation of the domain also contains a
model of BGP routing. This includes nodes that are modelled
as BGP routers and the BGP sessions that are established
between the BGP routers.

Then, C-BGP makes it possible to run the path computation
and later extract information on the path computation results.

V. M EASURING THE TRAFFIC MATRIX AND THE EFFECTS

OF HOT POTATO ROUTING

A. Traffic matrix computation

To execute our simulations, we have produced a high
number of traffic matrices (TM) using Netflow traces5. We
have produced 113 traffic matrices, one per day when the
network load is the highest. The traffic is aggregated on 15
minutes.

5A set of traffic matrices generated from netflow traces has been made
publicly available ([11]).
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1) Building the Interdomain Traffic Matrix:We have ob-
tained the NetFlow data collected on each router of the
network. Basically, netflow data contains information about
flows passing through the network. NetFlow data is dumped
every 15 minutes. Flows are cut by NetFlow timer (120 sec).
Every flow is recorded by the ingress node, i.e. the node by
which the flow enters the network.

We have chosen to aggregate NetFlow data by source
prefix and destination prefix. As the route of a flow in an
IP network is determined by longest prefix match, we do
not loose any useful information (for our usage of course).
Indeed we aggregate flows using BGP information, i.e. the
advertised BGP prefixes (we explain how to get them in the
next paragraph). When aggregated, NetFlow data results in
simple text files (one per node) containing for each pair of
source and destination prefixes a corresponding flow size in
bytes (with a sample rate of1/1000 in our case). To build the
intradomain traffic matrix from this aggregated information,
we need the ingress node and the egress node for each source
and destination prefix pair. The ingress node is simply the node
on which the flow has been recorded. To compute the egress
node (which is the BGP next-hop), it is more complicated and
we need the C-BGP simulator. At this stage, the aggregated
netflow information grouped by ingress node is called the
interdomain traffic matrix.

2) Collecting BGP data:BGP is the protocol used for
interdomain routing. It relies on TCP sessions to exchange
interdomain routes. Sessions between routers of the same
Autonomous System (AS) are called iBGP (internal BGP)
sessions. Sessions between routers belonging to differentASes
are called eBGP (external BGP) sessions. Routers in a network
use these iBGP and eBGP sessions to exchange routes. Each
BGP router sends to its peers (iBGP and eBGP sessions) its
best route towards all destinations. A router receiving routes
through BGP sessions determines its own best routes using the
BGP decision process which is made of several criteria (see
next subsection for details). Inside an AS, there is usuallya full
mesh of iBGP sessions, such that each router in the domain
knows the routes of all other routers to all destination prefixes.
It is the case for the network we consider.

To collect BGP traces, a monitoring machine has been
installed inside the network. This monitoring machine is part
of the iBGP full-mesh and records all the exchanged BGP
messages into BGP traces. The BGP traces we have are daily
dumps containing all the routes received by the monitoring
machine.

3) From the interdomain traffic matrix to the intradomain
traffic matrix: Now that we know how BGP traces are
recorded and how the data have been aggregated, we need
to know how to compute the egress node for each destination
prefix. To this end, we need to know the (interdomain) routing
table of each router. We do not have this information in the
BGP dump. We will use the C-BGP routing solver from the
toolbox to recompute the routing tables for each router based
on the BGP dumps. C-BGP is able to replay all message
exchanges and all decision processes that took place in the
iBGP full-mesh, so that each node will have a best route to
each destination.

To replay all the exchanges of BGP messages, we have first
to enhance the topology of the network with iBGP and eBGP
session information. We added an iBGP full-mesh. To add
eBGP sessions, we have used the BGP dump. When a router
has sent to the monitoring machine its best route telling that
it has a route towards an external prefix received through a
given external peer, we know that this router has an eBGP
session with this peer. We checked that, using this technique,
we had all the eBGP sessions present on the network.

As there are about 150000 prefixes, which is huge to replay
in C-BGP, we grouped them into clusters, i.e. we group
prefixes that are announced in exactly the same way (i.e.,
on the same nodes, from the same peers, with the same
BGP parameters6), and we only advertise one of the prefixes
belonging to one cluster. This allows us to advertise only about
400 prefixes into C-BGP. For each prefix for which we need to
know the next-hop on a given node, we find the corresponding
advertised prefix belonging to the same cluster and retrievethe
routing table of the concerned node where we find the next-
hop. This next-hop is the egress point of the network for this
destination prefix.

B. Influence of hot-potato routing

In this section we show that the set of IGP link metrics has
an influence on the intradomain traffic matrix and how.

The BGP decision process is made of several criteria:
1) Prefer routes with the highest local preference which

reflects the routing policies of the domain;
2) Prefer routes with the shortest AS-level Path;
3) Prefer routes with the lowest origin number, e.g., the

routes originating from IGP are most reliable;
4) Prefer routes with the lowest MED (multiple-exit discrim-

inator) type which is an attribute used to compare routes
with the same next AS-hop;

5) Prefer eBGP learned routes over iBGP learned ones;
6) Prefer the route with the lowest IGP distance to the egress

point;
7) If supported, apply load sharing between paths. Other-

wise, apply a domain-dependant tie-breaking rule, e.g.,
select the one with the lowest egress ID.

Hot-potato routing occurs when the egress node is selected
using the 6th criterion, i.e. to select the route with the lowest
IGP distance to the egress point. If for a certain prefix, this
criterion was used to select the egress point, a change in theset
of IGP link metrics can change the egress node for this prefix.
Indeed, if the IGP cost toward an egress node that was not
chosen becomes smaller than the cost toward the egress node
that was chosen, a traffic shift will occur in the network. In
this case, the intradomain traffic matrix changes for involved
egress nodes.

Our method of generating the intradomain traffic matrix
allows us to plan the traffic shifts that would occur from the
change of the IGP link metrics. Indeed, we first generate the
(invariant) interdomain traffic matrix which is not influenced
by hot-potato routing. When we map the interdomain traffic

6Here, by BGP parameters, we mean the local preference, the ASpath, the
MED, the origin (IGP/EGP/INCOMPLETE) and the next-hop address.
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matrix to the intradomain traffic matrix, we take into account
the whole BGP decision process (via C-BGP), including hot-
potato routing. If we give C-BGP a new set of link metrics,
we will use a new egress point and the resulting intradomain
traffic matrix will be updated accordingly. Figure 2 describes
this process. We have generated three different intradomain
traffic matrices, one considering the actual link metrics, one
with inverse capacity link metrics (InvCap) and one with
unitary metrics (HopCount). We have noticed that quite huge
differences exist between these traffic matrices. Indeed the
outgoing traffic of some nodes can differ up to three times
if we consider another matrix.

Fig. 2. Intradomain Traffic Matrix generation for various sets of IGP metrics

We have also generated traffic matrices considering the
link weights computed byIGP-WO. Note that theIGP-WO
algorithm provides a good set of metrics considering that the
intradomain traffic matrix is invariant, which is not the case. It
is thus important to compute the resulting Traffic Matrix for
each set of weights computed byIGP-WO. For each of the
113 Traffic Matrices we have runIGP-WO and generated a
new Resulting Traffic Matrix. Note that the Hot Potato effects
in IGP-WO are considered in more detail in [12].

Let us note that this kind of simulation is only possible
with a toolbox like TOTEM which embeds all mentioned
traffic engineering algorithms, methods and simulators. Itis
absolutely not possible to obtain these traffic matrices with
other techniques that measure the actual traffic matrix like
the ones using Label Switched Path counters or less precise
Traffic Matrix inference techniques, or even with the new
functionality of latest Netflow version. With such techniques, it
is only possible to obtain the actual intradomain traffic matrix
(or at least an estimation of it),but it is not possible to simulate
the effect of changing the link metrics on this intradomain
traffic matrix.

To demonstrate the usefulness of using traffic matrices
taking into account hot potato effects, let us compute how
they differ. We define the distance between two traffic matrices

(D1(s, t) and D2(s, t)) as

∑
(s,t)

|D1(s,t)−D2(s,t)|
∑

(s,t)

D1(s,t)+D2(s,t)

2

. Using this

distance (which is a kind of percentage of variation), the
distance between the Actual traffic matrix and the HopCount
or InvCap traffic matrices is between 0.1 % and 65.6%. The
mean distance is 9.2% between the Actual and the HopCount
traffic matrices and 29% between the Actual and the InvCap
TMs. The mean percentage of origin-destination pairs for
which corresponding traffic is different is respectively 7.4%
and 14.9%.

VI. T RAFFIC AND NETWORK STATE ANALYSIS

A. How to compare different algorithms?

The comparison of different algorithms is not easy and
requires some special care. Indeed, all the algorithms do not
have the same objectives when optimising routes. Some try
to minimise the load of the most loaded link, some try to
minimise the length of the paths, while some try to balance
the load over the whole network, or to minimise a combination
of these objectives, etc. Thus, one algorithm can be the best
regarding one criterion, and bad regarding other criteria7. To be
as objective as possible in our comparison, we look at several
criteria. When looking at the results, we think it is important
to have in mind a good description of each algorithm, what it
is supposed to optimise, and in which case it is supposed to
be used.

1) Centralised algorithms:These algorithms have to run on
a centralised server which has access to the whole topology
and to all traffic data. It is not possible to deploy them in a
decentralised on-line way.

a) Multicommodity network flow (MCNF):We have used
an arc-node Linear Program (LP) formulation of the routing
problem ([14]). One commodity is assigned to each (source,
destination) node pair. The value of this commodity is the
traffic that flows from the source node to the destination
node. Each link of the network is assigned a capacity. The
algorithm finds a routing strategy so that the objective function
is minimal, while respecting the capacity constraints. As ob-
jective function, we have chosen the maximum link utilisation.
The algorithm finds the optimal value for this (and only
this) objective function. This is useful to obtain an optimal
value for one criterion, which can be used to determine the
quality of other solutions. We have used GLPK (GNU Linear
Programming Kit) to solve the MCNF problem.

b) IGP-WO: The objective function IGP-WO seeks to
minimise is equal to the sum over all links of a convex
piecewise linear function increasing with the link load, which
assigns a very high value to highly loaded links8. The idea
is that it is cheap to route a flow over a link with a low
utilisation. But when the utilisation increases, it becomes more
expensive because the buffering delay increases as well but
also because the network becomes more sensitive to bursts.
Due to the very high penalty for highly loaded links, this
objective function will tend to minimise their load. A general
advantage to working with a sum rather than a maximum is
that even if there is a bottleneck link for which it is impossible
to avoid a high load, the objective function still cares about
minimising the load of other links of the network.

2) Decentralised algorithms:The algorithms in this section
have in common that they are designed to be deployed in
a decentralised on-line scheme. To use these algorithms in
a centralised scheme, we proceeded as follows. For MPLS
algorithms, we compute for each (source, destination) node
pair a path and establish this path as an LSP. These paths
are computed in sequence, taking already established paths

7In [13], we compare different objective functions considering a set of TE
metrics.

8This objective function is defined in [4].
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into account. But we do not change the path of an already
computed LSP even if this could lead to a better global
optimisation. This implies that the LSPs’ establishment order
can have an influence on the quality of the solution found. In
this section, we suppose that we use MPLS to establish all the
computed paths, but any tunnel-based technology is possible.

a) (C)SPFActualmetrics:This algorithm has been ex-
plained in section IV-A. It computes the shortest path (under
capacity constraints) between two points based on the metrics
currently used in the network.

b) (C)SPFHopCount:This algorithm is a (C)SPF algo-
rithm for which the metric is 1 for each link and thus tries
to find minimum hop paths. The optimisation idea behind this
scheme is that if the paths are short, the mean load and the
mean propagation delay should be low as well.

c) (C)SPFInvCap:This algorithm is a (C)SPF algorithm
for which the metrics are the inverse of the capacity of the
links. This scheme encourages flows to be routed over high
capacity links, leading to a low mean link utilisation.

d) CSPFInvFreeBw:This algorithm is a CSPF algorithm
for which the metrics are the inverse of theresidualcapacity
of the links. Thus, when a new LSP is established, the metric
is updated for each link used by this LSP. This scheme is a
kind of CSPFInvCapalgorithm, but which takes into account
already established LSPs. We notice that for this algorithmthe
paths depend on the LSPs’ establishment order.

e) DAMOTE: This algorithm has been explained in sec-
tion IV-C. In this study we have used as cost function a
combination of two components. The first component is a
shortest path component. The second one, called theload
balancing component, is the standard deviation of the link
utilisations (try to have the same utilisation on all the links
of the network). We can set a parameter (α) that specifies the
importance of the first component over the second in the score
function. α = 0 is equivalent to a pure load-balancing score
function (no shortest path component). Asα increases, the
shortest path contribution gets more and more important. We
have usedα = 2 in this study.

B. Results based on a representative snapshot of the current
traffic load

In this section, we use the toolbox to compare the different
routing algorithms presented in the preceding section. Section
VI-B1 presents the notations used in this section. Sections
VI-B2 and VI-B3 analyse and compare respectively IP and
MPLS solutions. These sections try and determine the best
algorithm for the current traffic and the current network. For
this purpose these analyses are based on a representative
snapshot of the real traffic of the current network. These allow
us to compare many different algorithms concerning different
criteria such as ”Maximal Utilisation”, ”Mean Utilitation”,
”Standard Deviation” and ”10th Percentile”.

1) Notations:To compare all these methods, we analyse the
link loads and in particular the maximal link utilisation (i.e.
the utilisation of the most utilised link). This value givessome
information about the network bottleneck. We also analyse the

mean utilisation, the 10th percentile9 and the standard devia-
tion which reflects the load balance. Results are presented in
table I for one typical Traffic Matrix. The maximal utilisation
given by the multicommodity network flow (MCNF) algorithm
gives the lower bound value we can achieve. This is only
valid for the Max Utilisation value because theMCNF only
optimises this criterion. ForCSPFHopCount, CSPFInvFreeBw
and DAMOTE, decr means a decreasing bandwidth request
size establishment order. TheTM column specifies which
Traffic Matrix has been used for the simulation.A stands for
the actual traffic matrix,HC for the HopCount traffic matrix,
IC for the InvCap traffic matrix (refer to fig. 2) andR for the
“resulting” traffic matrix (obtained with the metrics optimised
by IGP-WO). *ECMP means that in this case the results were
identical with or without ECMP.

We have to analyse these results with care. Indeed, the
current IGP weights configuration (SPFActualmetricsline in
the table) combines different objectives like favouring high
capacity links while respecting some delay constraints. Inthese
simulations, our only goal is to minimise the link utilisations
and to balance the traffic in the whole network.

2) IP Solutions: We have tested IP SPF algorithms with
ECMP or not.SPFActualmetricsand SPFInvCapalgorithms
lead to the same results with or without ECMP. On this
topology and traffic matrixSPFHopCountis the only IP
algorithm that has different results when ECMP is enabled or
not. Let us note that if the routing scheme resulting from a SPF
algorithm does not lead to overloaded links, the corresponding
CSPF LSP path computation algorithm would lead to the same
result (if we do not take into account Hot Potato effects). Itis
not the case if SPF leads to overloaded links because in this
case CSPF will avoid these overloaded links.

One interesting result is thatSPFInvCapdoes not provide
the optimal value of mean utilisation, while it is supposed to
do so (see [13] for details). In fact, this result is true only
if the traffic matrix is invariant. In our case, as we take into
account the effects of hot-potato routing, this is not true any
more as the traffic matrix has changed.

In this networkSPFInvCapand IGP-WOare the best pure
IP solutions. These are almost equivalent and improve the
network load balance.

3) MPLS Solutions:For all the MPLS algorithms, we use
the actual intradomain traffic matrix. Indeed, as MPLS does
not change the link metrics, there is no Hot-Potato effect in
this case. So,CSPFInvCapdoes provide the optimal value
of Mean Util, while it was not the case forSPFInvCap. But
we can still see that the mean utilisation value ofSPFInvCap
is not far from the lowest one. This bad hot-potato effect is
quite limited in our simulation but could be more important
in other networks. In fact, it depends on the part of the total
traffic whose next-hop is chosen via hot-potato routing in the
BGP decision process.

Traffic engineering on the particular network we have stud-
ied reaches quite rapidly its limits. Due to the high financial
cost of the links reaching some nodes, these nodes are con-
nected to the network by two low capacity links (155 Mbps),

9The Nth percentile gives the utilisation of the link such that N% of the
links of the network are more loaded than this link.
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Algorithm Max Mean Std 10th TM
Util Util Dev Perc

MCNF 47.5% - - - A

IP Algorithms
SPFActualmetrics *ECMP 85.9% 6.9% 12.1% 20.0% A

SPFHopCount ECMP 84.7% 8.8% 15.4% 26.0% HC
SPFHopCount¬ECMP 103.8% 9.2% 18.0% 20.4% HC

SPFInvCap *ECMP 52.1% 7.2% 9.7% 20.0% IC
IGP-WO Resulting TM 52.4% 7.0% 9.8% 20.4% R

MPLS Algorithms
CSPFActualmetrics 85.9% 6.9% 12.1% 20.0% A

CSPFHopCountdecr 98.5% 9.2% 17.9% 20.4% A
CSPFInvCap 52.4% 6.8% 9.8% 20.0% A

CSPFInvFreeBwdecr 47.9% 6.8% 9.6% 20.0% A
DAMOTEα=2 decr 47.5% 10.5% 8.1% 23.2% A

TABLE I
COMPARISON OF ALGORITHMS ON THE OPERATIONAL NETWORK WITH A

TYPICAL BUSY PERIODTRAFFIC MATRIX

which really limits the routing possibilities. Indeed it isalways
these bottleneck links that achieve the maximal utilisation.
Moreover, these nodes send a big amount of traffic with respect
to the bandwidth of the links they are connected to. Regarding
traffic coming in and out of these nodes, there is no other
possibility than forwarding it on the low capacity links, leading
to a high utilisation of these links. Thus, traffic engineering
techniques do not have another choice than balancing the
traffic between these links. We can see thatDAMOTE and
CSPFInvFreeBware very good for this point.

As we have already mentioned, the quality of the results
of all the MPLS methods can depend on the order of es-
tablishment of the LSPs. We have evaluated the following
establishment orders:

• Decreasing bandwidth request size order;
• Increasing bandwidth request size order;
• Random bandwidth request size order. We tried more than

100 different random orders and took the mean value for
each parameter (max utilisation, mean utilisation, ...).

For CSPFActualmetrics, CSPFHopCountand CSPFInvCap,
the establishment order does not change the results (if there
is no overloaded links in corresponding SPF algorithm, of
course). Indeed, for these schemes, the computed path depends
only on link metrics which do not depend on the link loads.
Thus computing one path at the beginning of the simulation
or at the end will provide the same results, which is not
the case for algorithms for which the link metrics depend
on the link loads, likeDAMOTE or CSPFInvFreeBw. For
these two algorithms, the LSPs’ establishment order matters.
For the traffic matrix we have used, we have noticed that
the decreasing LSPs’ establishment order is always the best
for the max utilisation criteria, which is quite intuitive.For
CSPFHopCount, the establishment order can also change the
results as corresponding SPF algorithm leads to overloaded
links in our case.

DAMOTE and CSPFInvFreeBWare very good for the
Maximal Utilisation. CSPFInvFreeBWgives also excellent
results concerning other criteria, including the optimal Mean
Utilisation value.

C. Planning for future increasing traffic load

This section provides an extrapolation analysis based on
increasing traffic demands. We had to upgrade the capacity of
some bottleneck links to be able to route the increased traffic.
This is a quite important point as it shows how the TOTEM
toolbox can be used to aid network planning/provisioning
decisions. This section also identifies some shortcomings of
IGP-WO.

Out of the huge amount of netflow data we have obtained,
we have selected 113 peak traffic matrices (one per day during
more than 3 months). To obtain a higher mean load on the
network than with the actual traffic matrix we have scaled all
these traffic matrices by a factor 1, 1.2, 1.4, ..., 2.6. As some
low capacity links were already almost saturated by the actual
traffic matrix, we have upgraded these low capacity links from
155 Mbps to 622 Mbps, as we think every network engineer
would do in this case. Indeed, otherwise these links would be
immediately saturated. Doing this will also remove the fact
that the maximal utilisation was always observed on the same
low capacity link.
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Fig. 3. Maximal link utilisation (worst case scenario over 113 traffic matrices)
for selected algorithms on the slightly updated topology (see VI-C)

Figure 3 presents the maximalMaxUtil over 113 traffic
matrices for selected (best IP and MPLS) algorithms and for
all the scale factors. We have reported on this figureIGP-
WO Invariant TMand IGP-WO Resulting TM. IGP-WO In-
variant TM provides the results as if the TM were invariant
(which is erroneous) whileIGP-WO Resulting TMtakes Hot
Potato effects into account. Figure 3 shows the following
approximate ranking : MCNF < IGP-WO Invariant TM<
(Damote AND CSPFInvFreeBW)< (CSPFInvCap AND
CSPFActualmetrics)< (SPFInvCap AND SPFActualmetrics)
< IGP-WO Resulting TM. The bad position ofIGP-WO Re-
sulting TM is a very important result. Indeed it highlights the
error one can undergo if one does not take Hot Potato effects
into account. Note that this is the worst case scenario over
all 113 traffic matrices. The high value of the point for scale
factor 1.4 is due to a very unfortunate weights setting which
causes very unpleasant traffic shifts due to Hot-Potato Routing.
This is a quite rare event as we have observed such high value
only twice over all our simulations. But this proves that such
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Algorithm Maximal MaxUtil MeanMaxUtil
TM * 1 TM * 2.6 TM * 1 TM * 2.6

MCNF 29.8% 77.6% 20.6% 53.5%

IP Algorithms
SPFInvCap ECMP 49.9% 129.8% 32.1% 83.3%

IGP-WO Invariant TM 43.1% 87.4% 31.2% 63.1%
IGP-WO Resulting TM 53.5% 127.1% 31.9% 75.5%

MPLS Algorithms
Damote 38.3% 99.5% 25.1% 65.2%

CSPFInvFreeBw 38.3% 99.5% 26.3% 65.8%
CSPFInvCap 49.9% 100.0% 32.1% 80.5%

TABLE II
MAXIMAL AND MEAN MaxUtil (OVER 113 TRAFFIC MATRICES) ON THE

SLIGHTLY UPDATED TOPOLOGY(SEEVI-C)

a big problem can appear in real networks. If we observe
the mean value ofMaxUtil (instead of the maximal value),
we observe far better result. Indeed, we observe in this case
that the meanMaxUtil of IGP-WO Resulting TMis always
better thanSPFInvCap. We can also note that in our case,
splitting the traffic using ECMP forSPFInvCapalgorithm
slightly decreases theMaxUtil, while it has no influence on
SPFActualmetricsor SPFHopCount(this is not shown on the
figure).

Concerning pure MPLS solutions,Damote and CSPFIn-
vFreeBW are clearly the best. We haveMCNF <
(Damote AND CSPFInvFreeBW)< (CSPFInvCap AND CSP-
FActualmetrics)< CSPFHopCountconcerning the maximal
MaxUtil. CSPFInvFreeBWis better thanDamoteconcerning
the maximalMeanUtil while Damoteis better thanCSPFIn-
vFreeBWconcerning the maximal10thPercentile. Damoteis
better thanCSPFInvFreeBWconcerning the meanMaxUtil
while CSPFInvFreeBWis better thanDamoteconcerning the
meanMeanUtil.

Finally, table II presents the values of the maximal and
meanMaxUtil for the scale factor 1 and 2.6 for all the best IP
and MPLS solutions. We can see that if we do not consider
Hot Potato effects,IGP-WO is a very good solution and is
always better thanSPFInvCap. But if we take those effects
into account we see thatIGP-WO Resulting TMcan be in
some cases worse thanSPFInvCap, even if in most of the
casesIGP-WO Resulting TMis better (the meanMaxUtil
is lower than forSPFInvCap). Table II also shows that all
presented MPLS solutions give very good results concerning
the mean and maximalMaxUtil. Moreover we can see that
these algorithms do not lead to overloaded links unlike their
corresponding SPF algorithms. All the results and figures of
these intensive simulations are available in [15].

D. Conclusion

To conclude this comparison, we can say that MPLS
provides very good solutions concerning maximal utilisation
while keeping very good performance concerning other crite-
ria. If we had to engineer this network, we would use MPLS
with Damoteor CSPFInvFreeBwas routing scheme for the
very good solutions these algorithms provide. If the deploy-
ment of an MPLS solution is not possible, we recommend
SPFInvCapwith ECMP or IGP-WO. If IGP-WO is chosen, it

is very important to verify that it does not result in the worst
case scenario of figure 3 or better, use the technique proposed
in [12]. These recommendations are of course only valid for
this network. The same kind of study could be performed
on another network to decide which algorithm is the best in
another situation.

Concerning Hot-Potato routing (HPR), the important point
to remember is that disregarding HPR can lead to errors which
can be quite high in some cases as it is shown on fig. 3 for
IGP-WO. It is important to be aware of this result.

VII. W ORST CASE LINK FAILURE ANALYSIS

In this section, we analyse the effects of the failure of each
link of the network. For these simulations we consider the real
traffic and the base topology (not the upgraded one).

The worst case link failure is defined as follows.Si is the
state of the network when linki is down (S0 is the state of the
network without failure).µ(Si) is the maximal link utilisation
when the network is in the stateSi. We can say that linki
causes the worst case link failure ifµ(Si) ≥ µ(Sj), ∀j.

We proceed as follows. Thanks to TOTEM, we generate an
XML scenario file that:

1) Load the topology;
2) Load the actual traffic matrix;
3) Collect information about links’ load when there is no

failure;
4) Tear down one link;
5) Load the simulated traffic matrix when this link is down.

It is important to observe that we take the hot potato
effect into account (see section V-B);

6) Collect information about links’ load when this link is
down;

7) Set up back the link;
8) Repeat the last three steps for every link;
9) Create a chart with the collected information.

This scenario generation can be done in TOTEM easily by
typing only one command. The toolbox returns a chart. On
this chart, we can see that the maximal utilisation when there
is no failure is 85.94% (for link 29). This value reaches 95.06%
when link 29 or link 30 fails and a value between 85.94% and
95.06% when link 31 or link 37 fails.

In the topology there is a node (referred to below as node
A) that is connected to the rest of the network by two low-
capacity links (links 29 and 30).

It turns out that there is a big amount of traffic towards node
A (relatively to the capacity of the two links) and that the two
links carry only traffic whose destination is nodeA. So when
one of these two links fails, the whole traffic for nodeA must
be carried by the other link and this leads to the worst case
link failure.

Another interesting thing we noticed on the chart is that the
maximal utilisation decreases relatively to the ”No failure”
situation when link 14 or 20 fails. This odd observation can
easily be explained as follows. Thanks to TOTEM, we create
the following XML scenario:

1) Load the topology;
2) List the shortest paths from all sources to nodeA;
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Failure Link 29 Link 30
of link % of paths % of traffic % of paths % of traffic
None 81.82% 90.4% 18.18% 9.6%
Link 14 68.18% 55.4% 31.82% 44.6%
Link 20 54.55% 50.8% 45.45% 49.2%
Link 31 90.91% 97.05% 9.09% 2.95%
Link 37 86.36% 93.04% 13.64% 6.96%

TABLE III
ANALYSIS OF THE SHORTEST PATHS TO NODEA.

3) Tear down link 14;
4) List the shortest paths from all sources to nodeA;
5) Set up back link 14;
6) Repeat the last three steps for links 20, 31 and 37.

Writing such a scenario file with TOTEM is quite easy and
can be done in a few minutes. The results of the execution
of this scenario file are presented at table III. Note that we
give the percentage of paths toA using link 29 or 30 (and not
the absolute number of paths) for proprietary reasons. Table
III also contains information about percentage of traffic using
links 29 and 30 and whose destination is nodeA.

Table III shows that the traffic distribution between links
29 and 30 is bad (more than 90% of traffic uses link 29).
Though the presented results are particular to the traffic matrix
we used, we can say that we will never reach a perfect load
balance of traffic (50% of traffic on each link) whatever the
traffic matrix. Indeed, the paths distribution is also very bad
(more than 80% of paths use link 29). And, with the routing
scheme currently used in the operational network (i.e. IP static
SPF), the paths do not change if the traffic changes.

The low maximal utilisation when link 14 or 20 fails can
thus be explained by the fact that less paths and less traffic to
node A use link 29 and so the utilisation of this link (the
most utilised link in the ”No failure” situation) decreases.
Similarly, when link 31 or 37 fails, the number of paths and
the percentage of traffic to nodeA using link 29 increase and
the utilisation of this link also increases.

VIII. C ONCLUSION

This paper demonstrated the usefulness of the TOTEM
toolbox. It gives an overview of the answers the toolbox can
provide to some important questions a network operator may
have. Using the toolbox, an operator can for example see
whether his network is well-engineered or not, evaluate the
impact of hot-potato routing on the traffic matrix, compare
a wide range of IP and MPLS solutions and choose the
best in this large set, or see whether the network is enough
provisioned to support failures or not.

Another important result of this paper is that we have also
shown how the TOTEM toolbox can simulate the traffic shifts
that occur in the traffic matrix when the IGP link metrics are
updated. These results highlight that updating the link metrics
can have undesirable effects on traffic. This is a good example
of the interaction between IGP and BGP in real networks. Such
interactions can only be simulated with a tool like the TOTEM
toolbox which federates both intradomain and interdomain
traffic engineering techniques and algorithms.
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