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Flow topology around a 6-row vertical agrivoltaic power plant
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Agrivoltaics, the combination of agricultural production and photovoltaic 0.25 Py
energy generation on the same land, is emerging as a promising strategy to — 0:20
address both climate change mitigation and sustainable land use [1,2]. = 015 :
Among its various configurations, vertical inter-row agrivoltaic systems are 0.10 —
gaining popularity for their capacity to preserve productive farmland while 0.05 E
supporting energy goals [3]. These systems consist of alternating rows of ‘g
crops and yertically mognted PV panels, often spaced by several meters N Flow profile average - 3 Eﬂ
adequate light penetration and access for machinery. ~ (b) - — [ =6 E :
Understanding the flow E 4 -8 = <
* Air movement strongly influences microclimatic variables and % E—10 E 2

turbulence transport of specific and latent heat [4,5]. 3 2 L 12 S
* Moreover, the flow topology determines aerodynamic forces acting on 5 o | _.c !

the panels, which directly impact structural design. E | o &
* The windbreak effect created by vertical PV rows can also reduce wind 1 Kinornatic prossure [mi/e™ - 0

stress on crops and protect them from mechanical damage [1]. e e e e e s e e e e e e s e e
This study focuses on the airflow patterns around a 6-row vertical 0.25 - X4 = 9.20 ?H = .32 “EH =70 -x’.’:lH =130 “‘.}H = 2R
agrivoltaic demonstrator with a wind facing the panels, with the aim of 0.20 - \ i | E
gaining insight into the aerodynamic behavior of the system. This 015 - ;' E i 5
configuration allows us to use 2D simulations. The ultimate goal is to 010 i i i i
better understand how such infrastructure interacts with its environment, vos | ‘ j i E
particularly the crop layer, and to contribute to the design of more (d) (e) f (f) E (8) i
efficient, resilient, and sustainable agrivoltaic systems. ﬂ'm_'4 A A S A 4 5 0 2 4 6 -4 = 0 32 a4 s " : BT S S S S A
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Figure 3: Caracterisation of the Venturi effect under the first panel. (a) Field of the velocity magnitude in the normalized coordinates ; Grey rectangle: bottom of the first
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plant (see Figure 1) when the panels face the flow. The system features maximum velocity location.

vertical bifacial panels spaced 10 meters apart, with a clearance height of
approximately 0.8 meters and a total panel height of just over 2 meters. Take home message

The Stay was. cono!uct MRS el .software e L A * CFD analysis of the flow flied in a growing crop conditions in an 6 rows Agri-PV power plant.
simulate the wind with a (Reynolds Averaged Navier-Stokes) RANS model . :
. * |mportant flux separation caused by the panels: use of an appropriate turbulence closure model k — w SST
completed by source and sink terms to represent the plant canopy. The . : . . ] :
: . * A pronounced Venturi-type contraction develops under the first PV row; its magnitude controls near-ground wind speed, pressure
turbulence was modelled by the k — w SST model for its capacity to well :
and turbulence and can affect the growing of the crops.

il CERNCESSRCINC Vs SRR ol O RP AR e SN ETEcHIE Sepie * Future work: 3D implementation, use of Large Eddy Simulation to resolve the turbulence, validation.
(Menter & Esch, 2001).

Results
< N
. Outlet (zero gradient) . The simulations reveal a pronounced inertial contraction under the first panel row, forming a
m : “Venturi effect” that channels airflow and increases velocity near the ground (Figure 3-5).
: 5H n Bare soil conditions exhibit the strongest contraction, with high horizontal wind speeds near the
: : surface. As vegetation develops, the aerodynamic resistance increases, reducing the wind speed
: Inlet (ABL) / : and shifting the location qf maximum Contra(.:tic?n upstream. The flowering and ripening stages
" P 1 0 show the greatest dampening effect due to their higher canopy density.
: T : Across all configurations, the contraction depend mainly on crop stage. These results highlight the
:< 5H L Hp 15H ; iImportance of accounting for vegetation in the design and optimization of agrivoltaic layouts.
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Figure 1 : Schematic diagram of the simulation domain and position of the solar panels. The red line indicates the position of 061 0.8 -
the inlet. The blue lines indicate the outlet. P is the pitch distance (10 m). H, is the panel height (2.087 m). H, is the — —_
clearance height (0.817 m). lis the row width (15cm). E 0.4 1:'1_[;? 0.6 - -
A non-cartesian structured grid was generated using the blockMesh utility in OpenFOAM. The 0.4 -
number of cells (80 000) was chosen after a grid convergence study. 0.2 - 0 -
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Figure 2 : Schematic diagram of venturi effect under the first panel and its relation streamline in case of RANS ' Bare Tiller  ElongationFlower Ripening ' Bare Tallage Elongation Flower Ripening
with the inlet profile. Black rectangle: first panel; Black dashed line: Highest
model) can be computed by

particule trajectory passing under this first panel. d: Distance of the vena . . . eg s
. ] . ) ) ) . . . Figure 4: Influence of the crop stage on the contraction downstream the first panel. The results are averaged for 10 différent

; : . H, Integratin the trajector
contracta with the first panel; H.: contraction height; Hy,: inlet height & & J y inlet velocity (1 to 20 m/s). Top left: contraction ratio; Top right: normalised distance between the first panel and the

participating to the venturi flow. equation. maximum contraction profile; Bottom left: Ratio between the mean velocity at the maximum contraction and the inlet
velocity at 2m; Bottom right: Inlet height

Five different crop canopy stages were tested: bare soil, tillering stage, elongation stage, flowering
stage and ripening stage. Plant parameters were based on data from [/, 8] and the canopy
methodology of [9] with 20 different inlet wind velocity (ranging from 1 to 20 m/s measured at 2 Bare soil

meters height).
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g Passage de Deportes 2, B5030 Gembloux Figure 5: Velocity field with a inlet of 5 m/s at 2m for the 5 crop stage: Bare soil, Tillering, Elongation, Flowering and Ripening.
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