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• Introduction to non-linear multi-scale 

simulations

– FE multi-scale simulations

• Problems to be solved at two scales

• Requires Newton-Raphson iterations at 

both scales 

– Use of surrogate models

• Train a meso-scale surrogate model 

(off-line)

– Requires extensive data

– Obtained from RVE simulations

• Use the trained surrogate model during 

analyses (on-line)

– Surrogate acts as a homogenised 

constitutive law

– Expected speed-up of several 

orders
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• Use of RNN

– Good accuracy/performance for RNN 

• When designed for computational mechanics

• Trained with adequate synthetic data base

– Limitations: No extrapolation capabilities

• Requires extensive synthetic data base

• Generalizing for arbitrary micro-structure/phase response

     requires unreachable data bases

• Validity range is limited

AI-accelerated multi-scale analysis of composites

*Z. Liu, C. Wu, M. Koishi, A deep material network for multiscale topology learning and accelerated nonlinear 
modeling of heterogeneous materials, Comput. Methods Appl. Mech. Engrg. 345 (2019) 1138–1168

• Can we limit the size of the data base?

– Introduce Physics in neural networks

• Predicting energy potentials  (Yvonnet, 

Masi, Stefanou, …)

• Introducing material laws (Maia, van der 

Meer, …

• …

– Alternative solution: build a network of 

physical blocks

• Deep Material Network (Liu, …)* 
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Interaction-Based Deep Material Network

• Micro-scale interactions

– Subdivision in sub-domains 𝛺𝑖

– Stress-strain averaging

– Introduction of fluctuations

𝑣𝑖 =
𝑉𝑖

𝑉M
 

𝛆M = ෍
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Interaction-Based Deep Material Network

• Interactions

– Introduction of fluctuations

– Assume constitutive model in each sub-domain

– Hill-Mandel Condition

– Weak form is the interface equation 

𝛆𝑖 ≃ 𝛆M +
1

𝑉𝑖
෍
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𝛔𝑖 = 𝛔𝑝 𝛆𝑖(𝒖′𝑗); 𝒁𝑖 ,  for 𝑖 = 0, . . . , 𝑁p − 1
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ΩB

ΩA

𝑁𝐴

Interaction-Based Deep Material Network

• Interactions

– Weak form

– With 

• One-level two-phase interaction

– Strain tensors

– In linear elasticity the weak form becomes 

𝛔𝑖 = 𝛔𝑝 𝛆𝑖(𝒖′𝑗); 𝒁𝑖 ,  for 𝑖 = 0, . . . , 𝑁p − 1
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𝛆A = 𝛆M +
1

𝑣A

𝑠AB
𝑉M

𝒖′ ⊗𝑠 𝑵A  and 𝛆B = 𝛆M −
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𝑠AB
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ℂM = 𝑣AℂA + 1.0 − 𝑣A ℂB + ℂA − ℂB ⋅ 𝑵A ⊗𝑠 𝒦−1 𝑣A, 𝑵A ⋅ ℱ 𝑣A, 𝑵A

Topology parameters to be defined 𝒢2 = {𝑣A, 𝑵A}
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Interaction-Based Deep Material Network

• Simple network of material nodes with interactions to Replace volume element

• Elasticity tensor

• From material tensor evaluation

• Requires 

• Recursively 

• Micro-structure topological parameters
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Parameter Reformulating Interaction-Based Deep Material Network

• Reformulation of parameters 𝒢2 = {𝑣A, 𝑵A} at node N𝑙
𝑘

– Normal 𝑵A N𝑙
𝑘  from angles 𝜃1 N𝑙

𝑘  and 𝜃2 N𝑙
𝑘

– Volume fraction 𝑣A N𝑙
𝑘

1) “Yellow” Node at level 𝑙 = 0:

   𝑣I N0
0 = 𝑣I and 𝑣0 N0

0 = 1 − 𝑣I known

         

2) Recursively for “Yellow” Node at level 0 < 𝑙 < 𝐿

3) Basic “Green” Node at level 𝐿 − 1:
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Stochastic Interaction-Based Deep Material Network

• SVEs batch training

– New parameters ෨𝒯
_
n = 𝗐𝜃1

N𝑙
𝑘 , 𝗐𝜃2

N𝑙
𝑘  and ෨𝒯

_
v = 𝗐v0 N𝑙

𝑘 , 𝗐vI N𝑙
𝑘  

– Train a generic DMN 

• Random micro-topologies and volume fractions, 

• Random phase properties          

                                

 

– New loss function in which 𝑣I
𝑠 is known for each SVE          

 

                      Identify the generic DMN parameter ෨𝑃
_
n , ෨𝑃

_
v,

                      where ෨𝒯
_
n = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ෨𝑃n  and  ෨𝒯

_
v = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ෨𝑃v

𝐿𝑜𝑠𝑠(෡ℂM , ℂM) =
1

𝑛
෍

𝑠=1

𝑛 ‖෡ℂM(ℂ0
𝑠 , ℂI

𝑠) − ℂM(ℂ0
𝑠 , ℂI

𝑠 , 𝑣I
𝑠; ෨𝒯

_
n , ෨𝒯

_
v)‖

‖෡ℂM(ℂ0
𝑠 , ℂI

𝑠)‖

෠ℂM ℂ0
𝑠 , ℂI

𝑠  
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Stochastic Interaction-Based Deep Material Network

• Perturbate generic DMN 

– ෨𝒯
_
n , ෨𝒯

_
v define a generic deterministic DMN with volume fraction 𝑣I  as input

– We can perturbate the parameters ෨𝒯
_
n , ෨𝒯

_
v  to have a stochastic DMN

– 𝒯
_
n = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑃

_
n  𝑎𝑛𝑑 𝒯

_
v = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑃

_
v

  

𝑃
_
n = 1 + 𝜉 ⨀ ෨𝑃

_
n

𝑃
_
v = 1 + 𝜉 ⨀ ෨𝑃

_
v

𝜉 = 2𝑏 𝜒 − 0.5

𝜒~Beta 𝛼
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Stochastic Interaction-Based Deep Material Network

• Perturbate generic DMN 

• We still need to find a proper way to infer the perturbation

𝑃
_
n = 1 + 𝜉 ⨀ ෨𝑃

_
n 𝑃

_
v = 1 + 𝜉 ⨀𝑃

_
v 𝜉 = 𝜒 − 0.5 𝜒~Beta 2.5

𝜉 = 𝜒 − 0.5 𝜒~Beta 10𝜉 = 1.5 𝜒 − 0.5 𝜒~Beta 5
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Damage in Interaction-Based Deep Material Network

• Elasto-plastic matrix material without damage

• We still need to find a proper way to infer the perturbation

(a) 𝑣I = 0.33;      (b) 𝑣I = 0.36; 

 (c) 𝑣I= 0.45;      (d) 𝑣I = 0.49; 

(e) 𝑣I = 0.53; (f) 𝑣I= 0.55

COMPLAS 2025, 2-5th September 2025 - Barcelona
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Damage in Interaction-Based Deep Material Network

• DMN extrapolates constitutive model        introduction of damage straightforward?

                                         

2 nonlocal damage 

parameters are used in 

Matrix material             

• We still need to find a proper way to infer the perturbation

(a) 𝑣I = 0.33;      (b) 𝑣I = 0.36; 

 (c) 𝑣I= 0.45;      (d) 𝑣I = 0.49; 

(e) 𝑣I = 0.53; (f) 𝑣I= 0.55
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Damage in Interaction-Based Deep Material Network

• DMN extrapolates constitutive model        introduction of damage straightforward?

                                         

2 nonlocal damage 

parameters are used in 

Matrix material             Damage localises in a material node but is spread in the tree

• We still need to find a proper way to infer the perturbation

(a) 𝑣I = 0.33;      (b) 𝑣I = 0.36; 

 (c) 𝑣I= 0.45;      (d) 𝑣I = 0.49; 

(e) 𝑣I = 0.53; (f) 𝑣I= 0.55
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Stochastic Interaction-Based Deep Material Network

• Damage localises in a material node         Nonlocal Damage in Deep Material 

Network.       𝐷𝑖( ෨𝜓𝑖),  where ෨𝜓𝑖 = σ𝑗=1
𝑛 𝑤𝑖𝑗 𝜓𝑗

• We still need to find a proper way to infer the perturbation

COMPLAS 2025, 2-5th September 2025 - Barcelona
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