SUPPLEMENTARY FILE

This version of the article has been accepted for publication, after peer review but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at:

https://doi.org/10.1007/s11069-025-07590-9.

Use of this Accepted Version is subject to the publisher's Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

To cite this article: Ramiaramanana, F. N., Munyi, Jm.M, Archambeau, P., Teller, J. (2025). A comparative assessment of flood mapping methods for urban risk management in data-poor environments. Nat Hazards (2025). https://doi.org/10.1007/s11069-025-07590-9.

PART 1. DETAILS OF THE DATA USED

1. Technical specifications

- The spatial resolutions indicated refer to the nominal pixel sizes of each dataset.
 Minor variations may occur due to projection transformations and data
 processing. For instance, Sentinel-1 data typically have pixel dimensions of
 approximately 10.06 × 10.44 meters, while the Copernicus Digital Elevation
 Model (DEM) presents values close to 30.00 × 30.01 meters.
- The flood event that occurred between 18 and 29 January 2022 in Antananarivo was selected for its exceptional scale. This was triggered by extreme precipitation linked to an intertropical convergence zone and the passage of a cyclone (Rakotoarimanana and Rakotovao 2022). The satellite imagery used corresponds to data available for this period. For the FastFlood Simulation (FFS) model, 24 January 2022 was chosen specifically because of a peak rainfall intensity of 31 mm/h recorded at 7:00 a.m. (Anosizato station). Although rainfall measurements for that day are limited and spatially isolated, the intensity was considered representative of a significant rainfall episode, justifying its use in simulating a critical flood scenario.

2. Parameter-specific notes

Table S1. Dataset-specific notes

Parameter	Source and description
Digital Elevation Model (DEM)	A Copernicus DEM at 30 m resolution, with a vertical accuracy of < 4 m at the 90% confidence level (Fahrland et al. 2022)
Surface Roughness	Derived from Copernicus WorldCover; Manning values assigned using FastFlood's land cover lookup table (Van den Bout 2024)
Infiltration Rates	Based on SoilGrids (ISRIC); downloaded via FastFlood for a depth of 5–15 cm depth, assigned via a lookup table by soil type (Van den Bout 2024)

PART 2. TECHNICAL SPECIFICATIONS OF THE FLOOD MAPPING APPROACHES

1. Summary of technical details of flood mapping methods

Table S2. Overview of methods and processing characteristics

Component	Pleiades imagery	Sentinel-1	FFS	MCA
		imagery		
Data type /	Very high-	Synthetic	Simplified	GIS-based
model	resolution satellite	Aperture Radar	hydrological	composite index
	imagery (optical)	(SAR)—IW	simulation model	model using
		mode, VV/VH		geographic and
		polarizations		climatic indicators
Data	Commercial	Free and open	Open access	Open access
accessibility		access	'	
Spatial	2 m × 2 m	10 m × 10 m	30 × 30 m (DEM	Variable
resolution			resolution)	
Input data	Pleiades	Sentinel-1	DEM, rainfall,	DEM, land use,
	(28/01/2022)	(27/01/2022)	roughness, infiltration	NDVI, lithology,
				precipitation,
				slope, TWI, SPI,
				distance to rivers

Processing / - OBIA approach - Preprocessing: - DEM correction via - Normalization Analysis - Mean shift radiometric Fast Sweeping and quantile segmentation (8- calibration, meighbor) speckle filtering, - Steady-state flow - Equal weighting - Zonal stats terrain simulation - Composite flood (mean, std. dev.) correction - Manning-based susceptibility index
segmentation (8- calibration, Method (FSM) classification neighbor) speckle filtering, - Steady-state flow - Equal weighting - Zonal stats terrain simulation - Composite flood
neighbor) speckle filtering, - Steady-state flow - Equal weighting - Zonal stats terrain simulation - Composite flood
- Zonal stats terrain simulation - Composite flood
The state of the s
(man std day) correction Manning based succentibility index
(mean, std. dev.) correction - Manning-based susceptibility index
- SVM (Denis 2019; water depth
classification McVittie 2019a) calculation
(LibSVM via OTB) - Conversion of - Compensation
(Ramdani 2023; backscatter scheme based on
Recanatesi et al. values to dB slope and distance to
2025) $\sigma_0^{dB} = 10 *$ outlet
- 1,400 training $log_{10}(\sigma_0)$ (Laur $$
samples et al. 2002) solver
- Manual post Manual - Calibration with four
classification using thresholding parameter sets (*)
building vectors (Selmi 2021) - Sensitivity analysis
Output Flood extent Flood extent Modeled flood-prone Flood susceptibility
format Vector > Raster (2 Raster (10 m) areas with depth map with five risk
m) classification levels
Raster (30 m) Raster (30 m)
Software QGIS, Orfeo SNAP (ESA) FastFlood App QGIS
Toolbox (OTB) (online); QGIS for
post processing

(*) Simulations used in FFS:

- Sim 1: DEM, rainfall, homogeneous Manning (0.06), infiltration
- Sim 2: DEM, rainfall, homogeneous Manning (0.06)
- Sim 3: DEM, rainfall, heterogeneous Manning
- Sim 4: DEM, rainfall, heterogeneous Manning, infiltration

2. Indicators used in the flood susceptibility analysis (MCA)

Table S3. Indicators and processing methods

Indicator	Role	Processing method			
Altitude (m) Slope (%)	Influences water accumulation in low areas, which are generally more prone to flooding Affects water flow: areas with a low slope retain more water, increasing flood risk	- Extracted from the DEM			
TWI	Measures a region's ability to accumulate water based on slope and drainage area (Hojati and Mokarram, 2016; Nibigira, 2019)	Calculated from the DEM using the following formulas: $TWI = \ln(\frac{A_S}{\tan \beta}) \text{ (Beven and Kirkby } 1979)$			
SPI	Estimates the river's susceptibility to erosion and characterizes the intensity of surface runoff (Bizzi and Lerner 2015; Khosravi et al. 2019; Nibigira 2019)	SPI = A_s * tan β (Moore et al. 1991) A_s is the specific drainage area (m ² /m using multidirectional flow direction algorithms (MFD), and β is the local slope angle.			
Annual precipitation (mm/year)	Determines the amount of rainfall, directly influencing flood risk	Calculated from monthly averages from 2010 to 2021			
Land use (*)	Influences infiltration and runoff: impermeable surfaces increase flood risks	Classified from Landsat images using supervised classification			
NDVI (*)	Reflects the density of vegetation, influencing water infiltration and absorption	Calculated from Landsat images: NDVI $= \frac{NIR - Red}{NIR + Red}$ NIR and Red are spectral bands			
Distance from rivers (m)	Helps estimate the vulnerability of areas based on their proximity to rivers	Calculated from hydrographic networks using Euclidean distance analysis, classified into 50 m intervals			
Lithology	Influences water infiltration, permeability, and retention capacity (ARTELIA 2020)	Classified based on properties (porosity and permeability) (Andriamamonjisoa and Hubert-Ferrari 2019)			

(*) The NDVI and land use indicators used in the MCA were derived from a cloud-free Landsat 8 image acquired on 29/08/2022. Although Sentinel-2 offers higher spatial resolution, Landsat 8 was selected to ensure resolution consistency with other spatial layers (30 m), such as the DEM, altitude, slope, TWI, and SPI. Furthermore, Landsat data were used solely to derive ancillary indicators; they were not used for direct flood detection.

PART 3. CLASSIFICATION ERRORS IN PLEIADES IMAGERY

This figure illustrates some common misclassifications encountered during the processing of the Pleiades imagery.

a. Independent zones (isolated buildings)

b. Misclassified areas Fig. S1. Typical classification issues requiring correction

5

PART 4. RESULTS OF THE FFS MODEL

1. Summary of simulated flood depths across the four scenarios

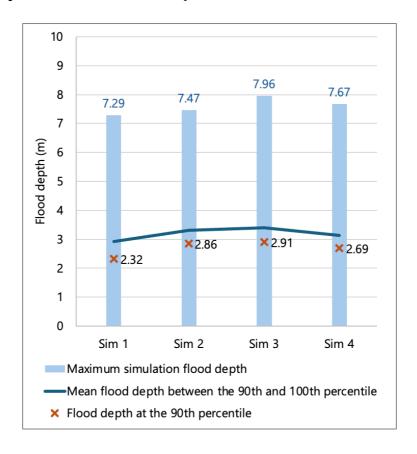
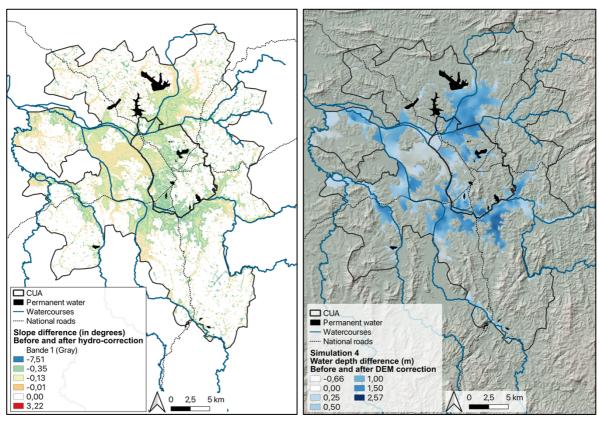



Fig. S2. Changes in simulated flood depths between simulations—10 cm threshol

2. Spatial differences in slope and simulated water depth

The maps in this section illustrate the differences between the raw and hydrologically corrected DEMs.

a. Slope difference

b. Water depth difference

Fig. S3. Raw and corrected DEM

3. Distribution of simulated water depth by slope class

Table S4. Pixel count distribution across slope and depth classes—comparison between raw and corrected DEM

	Pixel count											
	Depth class (m)											
			Raw	DEM					Correct	ed DEM		
Slope												
class	0–0.5	0.5–1	1–2	2–3	3–4	> 4	0–0.5	0.5–1	1–2	2–3	3–4	> 4
(°)												
	114,698	103,436	60,403	2,113	131	23	79,970	41,305	123,781	49,531	324	29
0–2	(40.85%)	(36.84%)	(21.51%)	(0.75%)	(0.05%)	(0.01%)	(27.11%)	(14%)	(41.97%)	(16.79%)	(0.11%)	(0.01%)
2–5	152,142	9,398	5,978	954	250	29	142,870	6,707	7,423	1,601	186	42
2-3	(90.16%)	(5.57%)	(3.54%)	(0.57%)	(0.15%)	(0.02%)	(89.95%)	(4.22%)	(4.67%)	(1.01%)	(0.12%)	(0.03%)
5–10	181,703	2,717	1,857	377	102	43	178,831	2,515	2,243	533	85	31
3-10	(97.27%)	(1.45%)	(0.99%)	(0.2%)	(0.05%)	(0.02%)	(97.07%)	(1.37%)	(1.22%)	(0.29%)	(0.05%)	(0.02%)
10–15	114,039	377	278	62	28	13	113,096	335	309	74	20	12
10-13	(99.34%)	(0.33%)	(0.24%)	(0.05%)	(0.02%)	(0.01%)	(99.34%)	(0.29%)	(0.27%)	(0.07%)	(0.02%)	(0.01%)
15–20	56,244	67	53	11	6	3	55,816	46	51	14	4	2
13-20	(99.75%)	(0.12%)	(0.09%)	(0.02%)	(0.01%)	(0.01%)	(99.79%)	(0.08%)	(0.09%)	(0.03%)	(0.01%)	(0%)
- 20	36,748	8	9	8	2	0	36,506	7	6	5	0	0
> 20	(99.93%)	(0.02%)	(0.02%)	(0.02%)	(0.01%)	(0%)	(99.95%)	(0.02%)	(0.02%)	(0.01%)	(0%)	(0%)

Note: Red pixels in visual maps indicate areas with high concentrations of flooded pixels; blue indicates low concentrations.

PART 5. CRITERIA VALUE RANGES BY SUSCEPTIBILITY CLASS

This table presents the classification thresholds used to categorize each criterion in the flood susceptibility analysis. The classes range from very low (1) to very high (5) susceptibility.

Table S5. Threshold values by flood susceptibility class

Susceptibility class	Very low	Very low Low		High	Very high	
ranges and ratings	1	2	3	4	5	
Altitude (m)	1,309–1,644	1,278–1,309	1,261–1,278	1,250–1,261	1,243–1,250	
Slope (%)	> 20.87	11.2–20.8	5.2–11.2	0.15–5.25	0–0.15	
TWI	2.67-5.43	5.43-6.09	6.09–6.87	6.87–8.39	8.39–11.53	
SPI	10.14–76.90	5.46–10.14	2.56–5.46	0.57–2.56	0–0.57	
Rainfall (mm/year)	1,064–1,076	1,076–1,098	1,098–1,114	1,114–1,136	1,136–1,177	
Landuse Forestry		Savannah	Agriculture, bare soil	Urban areas	Water bodies	
NDVI	0.15-0.54	0.12-0.15	0.10-0.12	0.08-0.10	-0.20–0.08	
Distance from river (m)	> 200	150–200	100–150	50–100	0–50	
Lithology	Moderate porosity and high permeability	Moderate porosity and permeability	Low to moderate porosity and permeability	Very low porosity and permeability	Very high porosity and low permeability	
Flood susceptibility	Flood 1.11–2.11 2.11–2.55		2.55–2.99	2.99–3.44	3.44–4.78	

PART 6. VALIDATION

1. Validation—Pleiades and Sentinel-1 (Pixels and %)

Table S6. Confusion matrices and accuracy metrics (Pleiades and Sentinel-1)

		Field data (focus groups)			
		F	NF		
	F	112,083	259,865	30.13%	
Pleiades	Г	(0.94%)	(2.19%)	30.1370	
(2 m × 2 m)	NF	629,381	10,872,445	94.53%	
_	INC	(5.30%)	(91.38%)	34.33%	

		15,12%	97.67%	92.51%
	Е	96	954	9.14%
Sentinel-1 -	ı	(0.02%)	(0.20%)	J. 14 /0
	NIE	29,504	442,330	93.75%
(10 m × 10 m)	NF	(6.24%)	(93.54%)	95.75%
		0.32%	99.78%	93.56%

F: Flooded; NF: Non-Flooded

2. Validation—FFS (Pixels and %)

Table S7. Confusion matrices and accuracy metrics (FFS)

		Field d	lata (focus g	roups)	
		F	NF		
	F	2,612	3,875	40.27%	
FFS-Sim 1 _ Threshold: 10 cm	Г	(4.92%)	(7.30%)	40.27%	
	NIE	685	45,916	00.530/	
(30 m × 30 m)	NF	(1.29%)	(86.49%)	98.53%	
		79.22%	92.22%	91.41%	
	-	2,619	3,797	40.030/	
FFS-Sim 2	F	(4.93%)	(7.15%)	40.82%	
Threshold: 10 cm	NIE	678	45,994	00 550/	
(30 m × 30 m)	NF	(1.28%)	(86.64%)	98.55%	
		79.44%	92.37%	91.57%	
	F	2,549	3,737	40.55%	
FFS-Sim 3	F	(4.80%)	(7.04%)		
Threshold: 10 cm	NIE	748	46,054	00.400/	
(30 m × 30 m)	NF	(1.41%)	(86.75%)	98.409	
		77.31%	92.49%	91.55%	
	F	2,622	3,629	41.000	
FFS-Sim 4	г	(4.94%)	(6.84%)	41.95%	
Threshold: 10 cm	NF	675	46,162	00 560/	
$(30 \text{ m} \times 30 \text{ m})$	INF	(1.27%)	(86.95%)	98.56%	
		79.53%	92.71%	91.89%	
FFC Cime 4		2,426	3,627	40.000/	
FFS-Sim 1	F	(4.57%)	(6.83%)	40.08%	
Threshold: 25 cm —	NIE	871	46,164	00.150/	
$(30 \text{ m} \times 30 \text{ m})$	NF	(1.64%)	(86.96%)	98.15%	

		73.58%	92.72%	91.53%
	F	2,427	3,635	40.04%
FFS-Sim 2	ı	(4.57%)	(6.85%)	40.0470
Threshold: 25 cm	NF	870	46,156	98.15%
(30 m × 30 m) _	INI	(1.64%)	(86.94%)	90.1370
		73.61%	92.70%	91.51%
	F	2,400	3,577	40.15%
FFS-Sim 3 —	г	(4.52%)	(6.74%)	40.15%
	NF	897	46,214	98.10%
Threshold: 25 cm	INF	(1.69%)	(87.05%)	90.1070
		72.79%	92.82%	91.57%
	F	2,464	3,473	41.50%
FFS-Sim 4	ı	(4.64%)	(6.54%)	41.3070
Threshold: 25 cm	NF	833	46,318	98.23%
(30 m × 30 m)	INI	(1.57%)	(87.25%)	JU.ZJ /0
		74.73%	93.02%	91.89%

F: Flooded; NF: Non-Flooded

3. Validation—MCA (Pixels and %)

Table S8. Confusion matrices and accuracy metrics (MCA)

		Field data (focus groups)			
		F	NF		
	F	2,247	2,783	44.67%	
МСА —	Г	(4.23%)	(5.24%)		
_	NIT	1,050	47,008	97.82%	
(30 m × 30 m)	NF	(1.98%)	(88.55%)		
		68.15%	94.41%	92.78%	

F: Flooded; NF: Non-Flooded

4. Visual validation maps

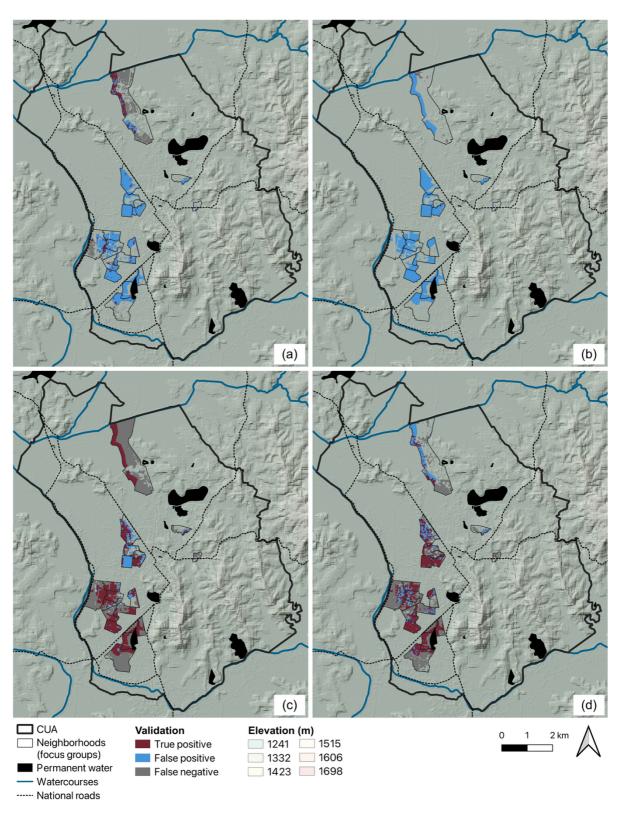


Fig. S4. Validation—CUA scale: a. Field data vs. Pleiades; b. Field data vs. Sentinel-1; c. Field data vs. FFS-Sim 4 (10 cm—corrected DEM); d. Field data vs. MCA

PART 7. IMPACT ASSESSMENT

1. Flooded areas categorized by land use

Table S9. Flooded areas by land use and detection method

	CUA					Peripheral communes				
	(ha and %)					(ha and %)				
		Continal	FFS	FFS		C. at al	FFS	FFS		
	Pleiades	Sentinel-	Sim 4	Sim 4	MCA	Sentinel -1	Sim 4	Sim 4	MCA	
		1	10 cm	25 cm		-1	10 cm	25 cm		
Flooded							20,144.	18,622.	12,143.	
	1,448.5	253.4	3,845.3	3,580.1	3,291.6	3,890.5	7	2	3	
areas	(17.04%)	(2.98%)	(45.23%)	(42.11%)	(38.72%)	(6.11%)	(31.63%)	(29.24%)	(19.07%)	
Forestry	3.6	0.3	31.4	23.8	6.7	2.04	130.7	97.9	17.9	
Forestry	(0.66%)	(0.06%)	(5.79%)	(4.38%)	(1.23%)	(0.07%)	(4.45%)	(3.33%)	(0.61%)	
Extractive										
and	81,9	36.7	222.6	214.2	173.6	247.2	1,362.7	1,303.5	1,027.7	
constructio	(25.65%)	(11.51%)	(69.71%)	(67.07%)	(54.38%)	(7.22%)	(39.77%)	(38.04%)	(29.99%)	
n sites										
Wetlands	261.3	11.4	750.4	725	438.7	398.5	1,369.2	1,327	987.9	
vvetianus	(24,67%)	(1.08%)	(70.85%)	(68.46%)	(41.42%)	(18.32%)	(62.93%)	(60.99%)	(45.40%)	
Savannah	0.2	0.002	16 1	12.4	ГО	20.1	604.8	400 F	122.7	
and natural	0,2	0.002	16.1	12.4	5.8	28.1		408.5	122.7	
vegetation	(0.13%)	(0.00%)	(8.37%)	(6.43%)	(2.99%)	(0.14%)	(3.08%)	(2.08%)	(0.62%)	
Dara sail	0.2	0	14.1	9.3	4.9	0.50	120.4	105.81	75.43	
Bare soil	(0.43%)	(0.00%)	(33.91%)	(22.46%)	(11.85%)	(0.06%)	(13.43%)	(11.80%)	(8.41%)	
Residential	25.6	0.06	656.1	548.1	944.9	0.11	502.5	413.9	998.6	
areas	(0.78%)	(0.00%)	(19.87%)	(16.60%)	(28.62%)	(0.00%)	(7.24%)	(5.96%)	(14.39%)	
Industrial,										
commercial,	15.5	0	299.8	239.8	464.7	2.01	178.1	148.1	317.2	
and military	(1.88%)	(0.00%)	(36.39%)	(29.11%)	(56.41%)	(0.21%)	(18.57%)	(15.45%)	(33.08%)	
areas										
							15,876.	14,817.		
Agriculture	1,060.2	204.9	1,854.8	1,807.5	1,252.3	3,211.9	1	3	8,595.9	
-	(47.76%)	(9.23%)		(81.42%)		(12.03%)	(59.45%)	(55.49%)		

2. Distribution of flooded residential buildings in CUA by land use type

Table S10. Distribution of flooded residential buildings—number and % (*)

			FFS	FFS	
	Sentinel-1	Pleiades	Sim 4	Sim 4	MCA
			10 cm	25 cm	
Forestry	1	8	70	53	36
	(0.00%)	(0.00%)	(0.03%)	(0.02%)	(0.01%)
Extractive and	30	177	706	648	564
construction sites	(0.00%)	(0.07%)	(0.27%)	(0.25%)	(0.22%)
Wetlands	4	513	5,284	4,981	3,548
	(0.00%)	(0.20%)	(2.02%)	(1.90%)	(1.35%)
Savannah and	0	1	9	8	13
natural vegetation	(0.00%)	(0.00%)	(0.00%)	(0.00%)	(0.00%)
Bare soil	0	0	6	2	4
	(0.00%)	(0.00%)	(0.00%)	(0.00%)	(0.00%)
Residential areas	8	1,239	58,663	50,988	83,361
	(0.00%)	(0.47%)	(22.39%)	(19.46%)	(31.81%)
Industrial,	0	189	5,747	4777	8,373
commercial, and	(0.00%)	(0.07%)	(2.19%)	(1.82%)	(3.20%)
military areas	(0.0070)				
Agriculture	31	399	2,070	1,863	1,148
	(0.01%)	(0.15%)	(0.79%)	(0.71%)	(0.44%)

^(*) The percentages have been calculated based on the total number of buildings in the CUA

3. Spatial visualization of impacted buildings

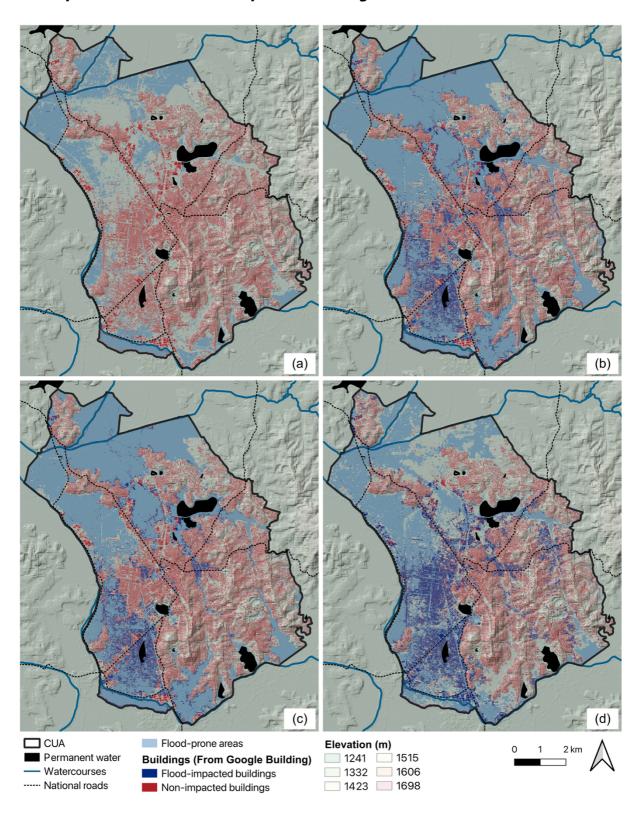


Fig. S5. Spatial distribution of residential buildings impacted and not impacted by flooding: a. Pleiades; b. FFS-Sim 4 (10 cm); c. FFS-Sim 4 (25 cm); d. MCA

References

Andriamamonjisoa SN, Hubert-Ferrari A (2019) Combining geology, geomorphology and geotechnical data for a safer urban extension: application to the Antananarivo capital city (Madagascar). J Afr Earth Sci 151:417–437. https://doi.org/10.1016/j.jafrearsci.2018.12.003

ARTELIA (2020) Mission de maîtrise d'œuvre pour l'extension du schéma directeur d'assainissement d'Antananarivo et modélisation du risque d'inondation au niveau de l'agglomération. Rapport technique. Antananarivo, Madagascar

Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69. https://doi.org/10.1080/02626667909491834

Bizzi S, Lerner DN (2015) The use of stream power as an indicator of channel sensitivity to erosion and deposition processes. River Res Applic 31:16–27. https://doi.org/10.1002/rra.2717

Denis A (2019) Adapted transcription of ESA Echoes in Space-Hazard: Flood mapping with Sentinel-1 tutorial (ESA EO College)

Fahrland E, Paschko H, Jacob P, Kahabka H (2022) Copernicus Digital Elevation Model: product handbook. European Space Agency

Hojati M, Mokarram M (2016) Determination of a topographic wetness index using high resolution digital elevation models. Eur J Geogr 7:41–52

Khosravi K, Shahabi H, Pham BT, et al (2019) A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. J Hydrol 573:311–323. https://doi.org/10.1016/j.jhydrol.2019.03.073 Kopecký M, Čížková Š (2010) Using topographic wetness index in vegetation ecology: does the algorithm matter? Appl Veg Sci 13:450–459. https://doi.org/10.1111/j.1654-109X.2010.01083.x

Laur H, Bally P, Meadows P, et al (2002) Derivation of the backscattering coefficient σ 0 in ESA ERS SAR PRI products. In: Proc. of the Second International Workshop on ERS Applications. p 139

McVittie A (2019) Sentinel-1 flood mapping tutorial. Report

Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol Process 5:3–30. https://doi.org/10.1002/hyp.3360050103

Nibigira L (2019) Etude des risques naturels liés aux interactions entre les mouvements de masse et le réseau hydrographique dans la région des lacs Kivu et Tanganyika.

Université de Liège

Rakotoarimanana ZMH, Rakotovao SR (2022) Analysis of vulnerability and resilience of the population: case of flood in January 2022, in Antananarivo City, Madagascar

Ramdani F (2023) Exploring the Earth with QGIS: a guide to using satellite imagery at its full potential. Springer

Recanatesi F, De Santis A, Gatti L, et al (2025) A comparative analysis of spatial resolution Sentinel-2 and Pleiades imagery for mapping urban tree species. Land 14:106. https://doi.org/10.3390/land14010106

Selmi L (2021) Flood mapping using the Sentinel-1 imagery and the ESA SNAP S1 toolbox. Dati Aperti

Van den Bout B (2024) FastFlood docs. In: FastFlood. https://fastflood.org/site/_site/docs/home/