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Equilibrium properties of many-body systems with a large number of degrees of freedom are generally
expected to be described by statistical mechanics. Such expectations are closely tied to the observation of
thermalization, as manifested through equipartition in time-dependent observables, which takes place both
in quantum and classical systems but may look very different in comparison. By studying the dynamics of
individual lattice site populations in ultracold bosonic gases, we show that the process of relaxation toward
equilibrium in a quantum system can be orders of magnitude faster than in its classical counterpart.
Classical chaos quantifiers reveal that this is due to a wave packet in a quantum system being able to escape
regions of inefficient classical transport by a mechanism akin to tunneling. Since the presented
phenomenon takes place in a broad parameter range and persists in weakly disordered systems, we
expect that it occurs in a variety of many-body systems and is amenable to direct experimental verification
in state-of-the-art quantum simulation platforms.
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Relaxation to equilibrium has proven to be a key tool for
studying the thermalization and localization properties of
quantum many-body systems [1–7]. State-of-the-art quan-
tum simulation platforms using, e.g., ultracold atoms [8] or
Rydberg lattices [7], allow for the preparation of a non-
equilibrium initial state (either directly or via a parameter
quench) as well as for the detection of the distribution of
particles, spins, or excitations within the system’s configu-
ration space after a given evolution time. An equidistribu-
tion found after a sufficiently long time is indicative of
eigenstate thermalization [9], whereas its absence can often
be associated with many-body localization [10] or, in
specific cases, many-body scars [11].
Such relaxation studies have the additional asset that

they permit comparisons with the corresponding classical
dynamics of the many-body system under consideration,
provided the latter exhibits a well-defined and meaningful
classical counterpart. This is, in particular, the case for
Bose-Hubbard (BH) systems, which describe ultracold
atoms trapped in optical lattices. Their classical analog,
often associated with a mean-field approximation, are
Gross-Pitaevskii (GP) lattices. Studying such classical
analogs provides complementary (and often intuitive)
insight into the dynamical transport mechanisms that are
at work during evolution, and can be conducted more easily
for large system sizes than the corresponding quantum

calculations. Good agreement between classical and quan-
tum dynamics is generally expected for BH systems with
relatively weak interaction and/or large site populations,
even though localization effects induced by quantummany-
body interference can nevertheless give rise to subtle but
robust obstacles toward perfect thermalization in the
quantum system as opposed to its classical counterpart
[12,13].
As we shall show here, a quantum effect of opposite

nature and greater impact is to be encountered in the
complementary parameter regime of BH systems, charac-
terized by small on-site populations and a relatively strong
interaction as compared to intersite hopping. The weakness
of the latter inhibits classical transport in the framework of
a GP lattice such that thermalization is attained only at very
long timescales [14–17]. For the corresponding quantum
system, however, we show here that there are efficient and
robust shortcut mechanisms akin to collective many-body
tunneling, which bridge phase-space regions of slow trans-
port and thus give rise to a drastic reduction of thermal-
ization timescales as compared to what would be expected
from a classical point of view. Since such a slowdown in
classical diffusion is a property shared by several many-
body systems in the weakly coupled regime, we expect this
phenomenon to be more general than for BH systems alone.
Specifically, we numerically investigate thermalization

in the evolution of Glauber coherent states in BH rings
and their classical counterparts. We simulate quantum
dynamics by means of a multiconfiguration variational*Contact author: gmlando@ibs.re.kr
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generalized coherent state approach [18,19], while the
classical computations are performed using the truncated
Wigner approximation [20,21]. The efficiency of such
methods allows us to reach system sizes large enough to
observe relaxation toward thermal equilibrium in the time
domain. Our results show that while quantum and classical
systems behave similarly in the weakly interacting regime,
where the on-site interactions are small when compared to
hopping, classical equipartition is severely slowed down
when compared to its quantum analog in the complemen-
tary strongly interacting case, as showcased in Fig. 1. Since
equipartition of populations is a reliable indicator of
thermalization in this latter regime, this Letter describes
the first numerical observation of what can be referred to as
the quantum enhancement of thermalization (QET).

We start by explicitly writing the quantum and classical
Hamiltonians describing the systems used throughout this
Letter. BH rings with L sites will be modeled by

Ĥ ¼ U
2

XL
j¼1

n̂jðn̂j − 1Þ − J
XL
j¼1

ðâ†j âjþ1 þ H:c:Þ; ð1Þ

where periodic boundary conditions are assumed and
n̂j ¼ â†j âj, with â†j (âj) representing bosonic creation
(annihilation) operators. The first term above represents
on-site interactions, with strength U, while the second term
models hopping between sites, with strength J. The
classical analog of (1) is the GP Hamiltonian

H ¼ U
2

XL
j¼1

njðnj − 1Þ − J
XL
j¼1

ðpjpjþ1 þ qjqjþ1Þ; ð2Þ

where pj and qj are the position and momentum quad-
ratures associated to the jth degree of freedom and
njðpj; qjÞ ¼ ðp2

j þ q2j − 1Þ=2 is its dequantized number
operator. The Hamiltonian in (2) can be obtained from (1)
as a mean-field approximation [22]. The many-body wave
function is then approximated by a classical field known as
the order parameter, ψ ¼ ðqþ ipÞ= ffiffiffi

2
p

, whose dynamics
are described by a discrete nonlinear Schrödinger equation.
This equation is identical to Hamilton’s equations obtained
from (2).
Despite the one-to-one mapping from (1) to (2), the

former describes a quantum system that, unlike the latter,
presents several types of phenomena that are absent in
classical physics. These genuinely quantum phenomena
can be classified into two main categories depending on
whether or not they can still be associated with classical
trajectories in the conventional semiclassical framework. In
BH systems such an association would be possible for
weak localization in Fock space [13], for scars [23,24], or
for many-body revivals [25], which all arise due to
constructive or destructive many-body interference caused
by the superposition principle, but are perfectly amen-
able to quantitative semiclassical reproduction [26–29].
Phenomena related to barrier or dynamical tunneling [30],
on the other hand, possibly enhanced by chaos and/or
resonances [31–36], can be considered to be intrinsically
“nonclassical” as no real classical trajectory can describe
the associated transition processes in phase space [37], and
one would have to generalize the semiclassical framework
to the complex domain in order to properly incorporate
them via complex (e.g., instanton-type) orbits [38–42].
The role that such phenomena play in the statistical

mechanics of quantum many-body systems is still largely
unknown, and in the following we will show that they are
responsible for endowing quantum evolution with a much
faster approach toward thermalization than purely classical

FIG. 1. Manifestation of quantum enhancement of thermal-
ization in a Bose-Hubbard ring. (a) A Glauber coherent state with
random mean site populations (as indicated by the radii of the
filled purple circles) is evolved in the regime of strong inter-
actions, eventually reaching equipartition. (b) Time evolution of
individual site populations for L ¼ 10 lattice sites and total lattice
population N ¼ 10, calculated quantum mechanically (blue
tones) and classically (red tones). They both relax to the thermal
value N=L (black dashed line) but on very different timescales.
This is most clearly shown in (c) by the time evolution of the
corresponding variances with respect to this thermal value,
Eq. (5). Panels (d) and (e) show variances for a larger and a
smaller system, which also display faster thermalization of
quantum populations when compared to their classical counter-
parts. All calculations are performed for J=U ¼ 0.25, which
corresponds to a regime in which classical dynamics is strongly
chaotic (see Fig. 2).
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evolution. Before moving on, however, it is important to
stress that the concept of equipartition, which is employed
here to serve as an experimentally accessible indicator for
thermalization, does not necessarily imply the presence of
the latter under all circumstances, since depending on the
choice of the underlying one-body basis (which can be
dictated by experimental constraints) equipartition can be
observed in the presence of nearly or even fully integrable
dynamics [43,44]. For this reason, numerical studies on
thermalization have been increasingly focusing on comput-
ing Lyapunov spectra or the Kolmogorov-Sinai entropy
instead of expectation values [17,45], since these are
invariant and coordinate-independent quantities that cannot
trigger “false positives” [46]. If picking an observable is
unavoidable, a pertinent strategy for choosing it is to focus
on functions of the action variables for the nearest inte-
grable limit, simply because right at that limit such actions
will be conserved and equipartition cannot take place
[47,48]. Thus, if equipartition of such functions persists
while approaching integrability and matches statistical
mechanics predictions [49], it will be necessarily linked
to thermalization.
In the context of Hamiltonian (2), two integrable limits

can be identified: the harmonic limit, with J=U → ∞; and
the limit of decoupled sites, where J=U → 0. Because of
the near exact quantum-classical correspondence, classical
expectation values lie close to their quantum analogs in the
neighborhood of the harmonic limit [50]. For nearly
decoupled sites, however, quantum expectation values will
only match their classical counterparts up to Ehrenfest time
[51]. Since the actions in this case are the harmonic
oscillator ones, namely ðp2

j þ q2jÞ=2 ¼ nj þ 1=2, single-
site populations form the set of “good” observables in the
strongly interacting regime, freezing as J=U → 0 (but not
as J=U → ∞, in which case the actions are the normal
modes of the lattice). For this reason they will be used to
characterize thermalization in the numerical simulations
that follow.
For an optimal quantum-classical comparison of ther-

malization we choose initial states given by multimode
Glauber coherent states,

jn1;…; nLi ¼
YL
j¼1

exp

�
−
n2j
2
þ ffiffiffiffiffi

nj
p

â†j

�
j0i; ð3Þ

where j0i is the vacuum state. The coherent state above is
the closest quantum analog to a classical phase-space point
and is an excellent approximation of Bose-Einstein con-
densates prepared on single-particle modes with site
populations n1;…; nL [52], which are often used as initial
states in quench experiments [53]. As is well-known, the
dimension of the Hilbert space for the BH model grows
quickly with both the number of lattice sites L and the mean
population of the system, N ¼ P

j nj, rendering many-site

calculations with large N very challenging in Fock space.
We thus use a variational approach, based on a multilayer
extension of the multiconfiguration ansatz in terms of a
linear combination of time-dependent generalized coherent
states with fixed particle number, introduced in [18].
Here, a summation over a range of particle numbers S
of the generalized coherent states, defined as jS; ξðtÞi ¼
ð1= ffiffiffiffiffi

S!
p ÞðPL

i¼1 ξiðtÞâ†i ÞSj0i, is performed in addition to the
summation over the ansatz multiplicity, as explained in
detail in [54].
Classical results are obtained via a Monte Carlo evalu-

ation of the expression

hn̂jiðtÞ ≈
Z
R2L

dp dqW0ðp; qÞnj½Φðp; q; tÞ�; ð4Þ

which is the truncated Wigner approximation for the site
populations [21]. Here, W0 is the Wigner function of the
initial state (3), given by a Gaussian in 2L-dimensional
phase space, andΦðp; q; tÞ denotes the Hamiltonian flow of
(2) starting from the initial phase-space point ðp; qÞ, which
is sampled according to W0. Sampling over several mean-
field trajectories of different energies (we used 105–106

trajectories in our simulations) washes out any behavior
associated with atypical solutions, e.g., breathers [59–61],
whose number is much smaller than that of the generic
“thermalizing” trajectories in the regimes considered here.
Figure 1 demonstrates QET in the regime of strong

interactions, with J=U ¼ 0.25. We consider here a coherent
state (3) where the populations n1;…; nL are chosen as
random numbers drawn from a uniform distribution, such
that their sum yields the total mean population N ¼ 10 in
Figs. 1(a)–1(d) and N ¼ 11 in Fig. 1(e). As can be seen in
Fig. 1(b), quantum and classical time evolutions eventually
yield equipartition in the site populations, but on very
different timescales: while the quantum calculations reach
and stabilize at the thermal average of N=L particles per
site at about t ∼ 100=U, their classical analogs will require
times at least one order of magnitude longer in order to
reach equilibrium. To facilitate comparisons, we express
the deviation from thermal equilibrium more quantitatively
through the variance

Var½hn̂jiðtÞ� ¼
1

L − 1

XL
j¼1

ðhn̂jiðtÞ − n̄jÞ2 ð5Þ

of the site populations with respect to their equilibrium
values, namely n̄j ¼ N=L for a perfectly homogeneous
lattice. As is seen in Figs. 1(c)–1(e), QET is most clearly
rendered in terms of this variance. It prevails for large
system sizes [Fig. 1(d)] while it becomes less pronounced
for smaller lattices with increased average site populations
[Fig. 1(e)] where the system is more semiclassical due to
the larger N=L ratio.
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How is QET affected by the degree of chaos, which
impacts the efficiency of chaotic transport paths toward
thermalization in the classical many-body system? To
quantitatively address this question, we show in
Fig. 2(a) the Kolmogorov-Sinai entropy [60], κKS, for a
L ¼ 11 site system with average unit filling, N=L ¼ 1, as a
function of J=U. Such entropy is obtained from the sum of
positive exponents in the Lyapunov spectrum, computed
via the prescription of [61]. We choose for this purpose an
initial phase-space point with random on-site populations
[62], giving rise to energy densities for which the resulting
classical trajectory explores a large domain in phase
space (E=N ≈ −0.029 for J=U ¼ 0.1, E=N ≈ 0.128 for
J=U ¼ 0.01). Unsurprisingly, κKS vanishes in the harmonic
and decoupled integrable limits, while it exhibits a plateau
of maximal chaos for 0.1 < J=U < 1.0, in agreement with
a previous study on spectral properties of the BH model
[63]. QET shown in Fig. 1 is thus occurring at highly
developed chaos, far away from any near-integrable limit.
On the strongly interacting side of the plateau, the

transition from well-developed chaos to near-integrability
is, as is seen in Figs. 2(b)–2(d), manifested in the Lyapunov
spectrum by a significant drop in its maximal exponent as

well as by a transition from a near-linear to an exponential
decrease of the remaining positive exponents with their
index, i [17]. The development of near-zero exponents
indicates that reducing the coupling strength gives birth to
multiple near-conserved quantities. Correspondingly, as
shown in Figs. 2(e)–2(g), chaotic transport in the classical
phase space drastically slows down in this regime, even-
tually giving rise to thermalization timescales that are, for
J=U ¼ 0.01, beyond numerical verification. In the corre-
sponding quantum system, however, this proximity to
integrability affects thermalization to a much lesser extent.
Quantum transport in the regime of strong interactions can
thus take place along channels that are inaccessible for the
corresponding classical system, similarly to tunneling
taking place in a truly near-integrable system whose
classical phase space is dominantly constituted by invariant
Kolmogorov-Arnold-Moser tori. Note that these quantum
channels are already effective at J=U ∼ 0.1 where the
classical system is maximally chaotic, whereas they do
not play any role in the weak interaction regime, which
features nearly perfect agreement between the classical and
quantum thermalization speeds [54]. We note that such
regimes of approximate harmonicity or nearly decoupled
sites exist in a plethora of models that display the same
characteristics in their Lyapunov spectra as seen in Fig. 2,
such as Josephson junction arrays [17], in which QET
should also take place.
Despite being of genuine quantum nature, the phenome-

non of thermalization enhancement that we encounter here
cannot be attributed to the occurrence of resonances in the
many-body spectrum caused by accidental near-degener-
acies of energy levels. To demonstrate this, we show in
Fig. 3 the time evolution of the mean site populations and
their corresponding variance in the presence of weak
disorder. The latter is generated by randomly chosen
on-site energies drawn from the uniform intervals
½−0.05U; 0.05U� (left column) and ½−0.25U; 0.25U� (right
column of Fig. 3). Considering, for L ¼ 7 and J=U ¼ 0.25,
an initial coherent state with the staggered populations
j0; 2; 0; 2; 0; 2; 0i (which in a disorder-free context can give
rise to various resonances and near-degeneracies due to its
high symmetry), we clearly see that the presence of these
weak random energies inhibits equilibration on a long
timescale, even when quantitatively accounting for the fact
that the mean thermal site occupancies are no longer
uniform for such a specific disorder realization [54].
This slowing down of thermalization is attributed to the
disordered system possessing a large number of localized
(nonthermal) eigenstates that violate the eigenstate thermal-
ization hypothesis [64,65]. Dynamical localization in Fock
space then hinders the exploration of the system’s entire
chaotic domain through destructive interference [66,67].
Rather intriguingly, however, no significant effect of the

presence of weak disorder can be found at short and
intermediate timescales, t≲ 10=U, when QET sets in.

FIG. 2. (a) Degree of chaos of the GP lattice as quantified by the
Kolmogorov-Sinai entropy, κKS, calculated as a function of
decreasing J=U for a randomly chosen initial phase-space point
with N ¼ L ¼ 11. The colored markers represent regions of
maximal (light red, J=U ¼ 0.1), medium (red, J=U ¼ 0.05), and
minimal (dark red, J=U ¼ 0.01) chaos, with their corresponding
Lyapunov spectra shown in panels (b), (c), and (d) as a function
of a counting index, i. Panels (e), (f), and (g) show, for the above
J=U values, the variances with respect to thermal averages for the
quantum BH and the classical GP systems with L ¼ 7 sites
calculated starting from Glauber coherent states with random
initial populations adding up toN ¼ 6. Note that QET takes place
in all (e), (f), and (g) panels, becoming more striking when J=U is
decreased.
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We infer from this finding that the enhancement of
thermalization is a rather robust phenomenon that does
not rely on the fine-tuning of system parameters. In spectral
terms, while QET cannot be attributed to degeneracies of
individual energy levels, we conjecture that it arises from
an approximate resonance between groups of energy
levels, namely those that are associated with the occupancy
distribution of the initial coherent state and its counterparts
obtained through permutations of the occupancies among
the lattice sites. Robustness with respect to system param-
eter variations is then granted by the multitude of individual
site distribution states belonging to these groups, in
combination with the fact that the effective coupling
between these states can be relatively large, owing to the
absence of true tunneling barriers [34,35] (as is indeed
supported by numerical findings [54]). Hence, even if in the
presence of disorder only a few of these states effectively
feature an approximate near-degeneracy with components
of the initial coherent state, these remaining “escape
channels” will be sufficient for the quantum system to
bridge across slowly diffusive phase-space regions [68].
We expect QET to occur in a variety of physically

relevant quantum many-body systems in weakly coupled
regimes, ranging from complex molecules and spin chains

[69,70] to quantum computing and simulation [7,71]. In
particular, the thermalization behavior shown in Fig. 2 can
be probed in state-of-the-art experimental setups using
ultracold bosonic atoms in optical lattices [3,4,6]. Here, the
controlled use of environmental effects [72,73] can allow
one to destroy many-body quantum coherence and effec-
tively induce classicality (i.e., mean-field dynamics) in the
experiment, thus opening possibilities for probing QET
through a direct comparison of classical and quantum
equipartition speeds.
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I. VARIATIONAL MULTI-CONFIGURATION ANSATZ

For the quantum dynamics of the largest systems that we considered, we have used a variational multi-configuration
approach to solve the time-dependent Schrödinger equation, based on generalized coherent states (GCS), also known
as SU(M) coherent states. A widely employed form of these GCS, as presented in [1, 2] is given by

|S, ξ⟩ = 1√
S!

(
L∑

i=1

ξiâ
†
i

)S

|0⟩, (S.1)

where S represents the fixed particle number and ξ = {ξ1, ξ2, · · · , ξL} is a set of complex parameters satisfying the

normalization condition
∑L

i=1 |ξi|2 = 1. As in the main text, the symbol |0⟩ denotes the multi-mode vacuum state.

We note that for the choice ξi = 1/
√
L, the GCS is the ground state of the free boson model (the Bose-Hubbard

model with U = 0) [3].
In [4], an ansatz in terms of a linear combination of GCS with time-dependent amplitudes Ak(t), given by

|Ψ(t)⟩ =
M∑
k=1

Ak(t)|S, ξk(t)⟩, (S.2)

was successfully applied to the time-dependent dynamics of the Bose-Hubbard model for fixed particle numbers.
The differential equations for the coefficients {Ak, ξk} were derived using the time-dependent variational principle.
The accuracy of the ansatz depends on the multiplicity M . Specifically, M = 1 leads to the discrete nonlinear
Schrödinger equations for the complex parameters, which leads to the mean-field description of the Bose-Hubbard
model. Increasing M beyond 1 allows the result to go beyond the mean-field level and to gradually converge to the
exact solution due to the (over-)completeness of the GCS [5].

With the form of the basis function expansion Eq. (S.2), it is straightforward to calculate expectation values of

operators. Given an operator Ô, we have

⟨Ô⟩ =
M∑
k,j

A∗
kAj⟨S, ξk(t)|Ô|S, ξj(t)⟩ = sum(ρ ◦O, all) (S.3)

where ρkj = A∗
kAj , and the matrix O has the entries

Okj = ⟨S, ξk(t)|Ô|S, ξj(t)⟩. (S.4)

The symbol ◦ denotes the Hadamard-product (element-wise multiplication of matrices) and “sum(...,all)” denotes
the summation over all the entries. To make progress, operator ordering is a key concept. In our framework, we
consistently apply normal ordering to our operators, ensuring that all creation operators are positioned to the left of
the annihilation operators. This systematic arrangement is achieved through the application of the standard bosonic



2

commutation relationship. If Ô is a normal-ordered operator such as â†f â
†
gâ

†
h · · · âlâmân · · · , the matrix entries are

computed as

Okj = S(S − 1) · · · (S − i)ξ∗kfξkgξ
∗
kh · · · ξjlξjmξjn · · · ⟨S − i, ξk|S − i, ξj⟩, (S.5)

where i is the number of creation (annihilation) operators, and we have used the property âm|S, ξj⟩ =
√
Sξjm|S−1, ξj⟩

of the GCS. For small values of M , the numerical evaluation of Eq. (S.3) can be performed without too much
computational effort.

Eq. (S.2) is an ansatz, tailored for systems with a definite number of particles. However, the initial multi-mode
Glauber coherent state given in Eq. (3) of the main text, exhibits fluctuations in the particle number. To address this
issue, we refer to the relationship between GCS and Glauber coherent states [1]

|α⟩ =
∞∑

N=0

√
P (S)|S, ξ0⟩, (S.6)

where P (S) follows a Poisson distribution

P (S) = e−N N
S

S!
, (S.7)

with a mean equal to the average particle number of the multi-mode Glauber coherent state, given by N =
∑L

i=1 nj .
The characteristic parameters are thus related to the average site populations via

ξ0 =
1√
N

{
√
n1,

√
n2, · · · ,

√
nL}. (S.8)

Eq. (S.6) and Eq. (S.7) indicate that it is only necessary to consider a small range of particle numbers [S1, S2] within
the significant region of the Poisson distribution, ensuring that the overlap of the initial state for the numerics and

Eq. (S.6), given by
∑S2

S=S1
P (S), is very close to 1.

As a result, our comprehensive ansatz for the dynamics initiated as a multi-mode Glauber coherent state is given by

|Ψ(t)⟩ =
S2∑

S=S1

√
P (S)

N∑
k=1

A
(S)
k (t)|S, ξ(S)

k (t)⟩, (S.9)

which has a multi-layer structure [6]. In each layer, labeled by a fixed particle number S, the dynamics starting from
|S, ξ0⟩ is simulated by using the ansatz in Eq. (S.2). Due to the U(1) symmetry of the Bose-Hubbard model, the
dynamics in each layer is independent of that in any other layer and thus the different layers can be solved for in
parallel.

In the following, we investigate the convergence of the multi-configuration method for the case of an average of
eleven particles distributed over eleven sites in the case of the clean Hamiltonian given in Eq. (1). For a fixed particle
number, given by a mean average population of eleven, i.e. N = L = 11, the dimension of the Hilbert space (Fock

space) is given by
(
L+N−1

N

)
= 352716. Even larger spaces emerge for higher particle numbers of, e.g., N = 20, leading

to a Hilbert space dimension of
(
30
20

)
, which amounts to more than 30 million. For the multi-mode Glauber state

initial condition, one would have to consider the direct sum of those variable particle number Hilbert spaces, which
makes Fock-space calculations impracticable for long-time evolution in the present case.

For random initial conditions (the values depicted in Fig. S1 at the initial points in time) and in the case of hopping
strength of J = 0.25 U , a convergence study is shown in Fig. S1. For the figure, we chose to depict results for the
odd sites and our multi-configuration variational approach shows that, even though there are tiny fluctuations in
the convergence behavior of the individual site populations, the overall behavior and, in particular, an observable
of interest (the sum of deviations from the thermal value), are well converged. Most importantly, the number of
time-dependent basis function, needed for convergence, is on the order of 102 and thus several orders of magnitude
less than in the case of time-independent Fock states.

II. MEAN SITE POPULATIONS IN THE PRESENCE OF DISORDER

In this section, we perturbatively evaluate how the thermal averages of the individual site populations behave in the
presence of weak onsite disorder. We restrict this analysis to the strongly interacting regime where hopping between



3

10
-2

10
-1

10
0

10
1

10
2

10
3

Ut

0

0.2

0.4

0.6

0.8

1

1.2

M=180

M=220

M=260

M=300

M=340

(a)

10
-2

10
-1

10
0

10
1

10
2

10
3

Ut

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4 M=180

M=220

M=260

M=300

M=340

(b)

10
-2

10
-1

10
0

10
1

10
2

10
3

Ut

0.8

0.9

1

1.1

1.2

1.3

1.4

M=180

M=220

M=260

M=300

M=340

(c)

10
-2

10
-1

10
0

10
1

10
2

10
3

Ut

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

M=180

M=220

M=260

M=300

M=340

(d)

10
-2

10
-1

10
0

10
1

10
2

10
3

Ut

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

M=180

M=220

M=260

M=300

M=340

(e)

10
-2

10
-1

10
0

10
1

10
2

10
3

Ut

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

M=180

M=220

M=260

M=300

M=340

(f)

10
-2

10
-1

10
0

10
1

10
2

10
3

Ut

0

1

2

3

4

5

6

M=180

M=220

M=260

M=300

M=340

(g)

FIG. S1. The population dynamics on odd sites: (a) i = 1, (b) i = 3, (c) i = 5, (d) i = 7, (e) i = 9 and (f) i = 11. For each
site, different basis sizes M ranging from 180 to 340 are employed to verify the stability of the results. (g): The dynamics of

the sum of the deviations from the equilibrium value, D(t) =
∑L

i=1 |⟨n̂i⟩(t) − 1|. The number of sites is 11, the same as the
average particle number. The hopping strength was set to be J = 0.25U .

adjacent sites of the lattice is relatively weak. Each lattice site can thus be considered to represent an individual
thermodynamic system that is weakly coupled to an effective heat and particle reservoir constituted by the other
sites, the latter being characterized by a global temperature T = 1/β and a global chemical potential µ.

In the framework of the grand-canonical ensemble, we can describe the thermodynamic system associated with site
l through the statistical operator

ρ̂l =
1

Yl
e−β[Ĥl−µn̂l] (S.10)

where n̂l is the population operator on site l and Ĥl represents its local energy

Ĥl =
U

2
n̂l(n̂l − 1) + ϵln̂l (S.11)

with U the (site-independent) onsite interaction and ϵl the (site-dependent) onsite disorder potential. The partition
function of this grand-canonical ensemble is then given by

Yl =

∞∑
n=0

e−β[n(n−1)U/2+ϵln−µn] . (S.12)
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and allows one to derive the mean values of the population and of the energy on site l according to

n̄l =
1

β

∂

∂µ
lnYl , (S.13)

Ēl = Nµ− ∂

∂β
lnYl . (S.14)

In the absence of disorder, Eqs. (S.13) and (S.14) can be solved, through numerical root searching, to determine
the parameters β and µ as a function of the total population and the total energy of the system. The latter quantities
are well known as they can be straightforwardly inferred from the initial state of the system, using the fact that the
total energy and the total population of the system are coonstants of motion (and identifying the mean value of the
system’s total energy approximately with

∑
l Ēl for weak hopping). Considering a coherent state that is centered in

phase space about the bosonic field amplitudes ψl, we obtain

n̄l = n̄ =
1

L

L∑
l=1

|ψl|2 , (S.15)

Ēl = Ē =
1

L

L∑
l=1

(
U

2
|ψl|4 − J(ψ∗

l ψl−1 + ψ∗
l−1ψl)

)
, (S.16)

where we account here also for the hopping contribution (identifying ψ0 ≡ ψL).
Let us now consider the presence of nonvanishing but perturbatively small onsite energies ϵl. Without loss of

generality, we assume

L∑
l=1

ϵl = 0 , (S.17)

given the fact that global energy shifts, affecting all sites identically, do not have an impact on the mean populations
(and can, within Eqs. (S.13) and (S.14), be simply absorbed by a shift of µ). The presence of this disorder gives rise
to a perturbative shift of the system’s total energy, thus entailing similarly perturbative shifts in µ and β, but cannot
affect the total population. However, the thermal average n̄l of the local site populations is no longer uniform. Using
the constraint (S.17), we can obtain it by Taylor expanding the expression (S.13) to linear order in ϵl at fixed values
for µ and β. This yields

n̄l = n̄− ϵl
∂n̄

∂µ

∣∣∣∣
β

+O(ϵ2l ) (S.18)

where we obtain from Eq. (S.12)

∂n̄

∂µ

∣∣∣∣
β

= β
(
n2 − n̄2

)
(S.19)

with n2 = Tr[ρ̂n̂2l ] evaluated for ϵl = 0. Inserting this expression into Eq. (S.18) confirms the general statistical
intuition that for positive temperatures, β > 0, sites with lower onsite energies should have higher mean populations
than sites with higher energies.

III. POPULATION DYNAMICS IN THE REGIME OF WEAK INTERACTIONS

As described in the main text, Bose-Hubbard systems are special in the sense that onsite populations in the limit
of fully decoupled sites are precisely the quantized actions for the corresponding classical Gross-Pitaevskii lattice.
Population dynamics measured at small J/U fractions are, therefore, experimental realizations of perturbation theory
in action-angle coordinates.

For a perfectly harmonic lattice, however, the populations are not related to the classical action variables, which
in this regime are given by the lattice’s normal modes. Nevertheless, since the regime of strong interactions is
simultaneously an integrable and a classical limit of the Gross-Pitaevskii lattice, one has to recover quantum-classical
equivalence as J/U → ∞ for any observable, including onsite populations. Thus, although these form a “bad” set
of observables in the strongly interacting regime in what touches the characterization of thermalization, they are as



5

FIG. S2. Onsite population dynamics computed classically and quantum mechanically for an initial staggered state
|0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0⟩ as a function of increasing J/U , i.e. moving from the strong to the weak interaction regime, with
U=1.

FIG. S3. Variances with respect to thermal value obtained from the data in Fig. S2.
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good a set as any in order to verify that our quantum and classical methods are correct and closely match as J/U is
increased.

In Fig. S2 we display the population dynamics of an initial staggered state (similar to the one in Fig. 3 of the main
text) in a system with N=10 and L=11 as it transitions from strong to the weak interaction regime. As clearly seen
from moving rightward from Fig. S2(a), QET fades as J/U is increased, with quantum and classical onsite populations
equilibrating at roughly the same time stating from Fig. S2(d). As the interaction strength increases in Fig. S2(e)
and, especially, Fig. S2(f), we see that quantum and classical populations fall essentially on top of each other until
equilibration is reached. As expected, the finiteness of an effective Planck constant ℏeff=1/N means that quantum
onsite populations oscillate around the thermal average with higher amplitude than the classical ones. The approach
towards thermal equilibrium can also be tracked in the variances of Fig. S3, with the first panels displaying once
again the standard QET characteristics. Note that in the last two panels of Fig. S3 “equilibrium” means that the
methods have each reached their numerical accuracies, which are around 10−3 and 10−5 for the quantum and classical
computations, respectively. Since these correspond to 0.1% and 0.001% of the equilibrium value it is clear that these
findings, together with the convergence tests of Sec. I, attest for the accuracy of our variational method used to obtain
quantum populations and shows once again that QET is a robust dynamical phenomenon.

IV. EFFECTIVE COUPLING BETWEEN NEAR-RESONANT STATES

10
-2

10
0

10
2

Ut

0

0.05

0.1

0.15

0.2

0.25

J/U=10

10
-2

10
0

10
2

Ut

0

0.05

0.1

0.15

0.2

0.25

J/U=1.0

10
-2

10
0

10
2

Ut

0

0.05

0.1

0.15

0.2

0.25

J/U=0.25

FIG. S4. Absolute value of the transition amplitude, |⟨ϕ|Û(t)|ψ⟩|, between two Glauber coherent states |ψ⟩ = |0, 2, 0, 2, 0, 2, 0⟩
and |ϕ⟩ = |2, 0, 2, 0, 2, 0, 0⟩ with different hopping strengths: (a) J/U = 10.0, (b) J/U = 1.0 and (c) J/U = 0.25.

To support the conjecture proposed in the main text, namely that QET arises from approximate resonances between
the initial state and a variety of other states obtained from it through permutations of the site occupancies, we select
two representative Glauber coherent states |ψ⟩ and |ϕ⟩ and calculate their quantum transition amplitude ⟨ϕ|Û(t)|ψ⟩
with Û(t) = e−iĤt/ℏ. Specifically, in Fig. S4 and Fig. S5, |ψ⟩ and |ϕ⟩ are chosen as |ψ⟩ = |0, 2, 0, 2, 0, 2, 0⟩ and
|ϕ⟩ = |2, 0, 2, 0, 2, 0, 0⟩. These two states have vanishing overlap with each other but share the same energy in the

absence of disorder. In Fig. S4, we compare the dynamics of the transition amplitude |⟨ϕ|Û(t)|ψ⟩| for different
hopping strengths. We find that a larger hopping strength (or equivalently, a weaker interaction strength) enhances
the transition amplitude between the two Glauber coherent states. However, as shown in panels (b) and (c) of Fig.
S4, the transition amplitude remains significant for weaker hopping strengths. In fact, due to the lack of proper
dynamical tunneling barriers between these two states in the weak hopping regime (owing to the fact that the system
is fully chaotic), they can be coupled rather effectively by quantum dynamics through multiple channels mediated by
numerous intermediate states. Such effective coupling will facilitate the exploration of the evolved states over different
phase-space regions and thereby enhance the process of thermalization. Thus, in the regime where quantum and
classical systems thermalize on comparable timescales, equipartition in site populations happens faster and correlates
with an increased magnitude of transition amplitudes. Once QET starts taking place, equipartition slows down and
transition amplitudes also become smaller.

When onsite disorder is included in the weak hopping regime as shown in Fig. S5, exact degeneracy between
the levels associated with |ψ⟩ and |ϕ⟩ is broken, leading to a reduction of the effective coupling. Intriguingly, the
decreasing coupling induced by the disorder becomes apparent only for t ≥ 10/U , which coincides with the onset of
thermalization suppression, as shown in Fig. 3(a) and Fig. 3(b) for different disorder strength.
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FIG. S5. Absolute value of the transition amplitude, |⟨ϕ|Û(t)|ψ⟩|, between two Glauber coherent states |ψ⟩ = |0, 2, 0, 2, 0, 2, 0⟩
and |ϕ⟩ = |2, 0, 2, 0, 2, 0, 0⟩. Panels (a) and (b) use the same parameters as in Fig. 3(a) and Fig. 3(b) of the main text with the
hopping strength J = 0.25U . The blue solid lines show the transition amplitudes for a disorder-free system whereas random
onsite energies, uniformly sampled within [−0.05U, 0.05U ] in (a) and within [−0.25U, 0.25U ] in (b), are considered for the red
dashed lines. In (c) and (d), the hopping strength is reduced to be 0.1U , and the settings of disorder strength follow those used
in (a) and (b), respectively.
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