Compressor tandem blade: investigation into actuation strategies

(ETC2025-300)

16th European Turbomachinery Conference Leibniz University Hannover, 28 March 2025

M. Brach¹, A. Rocca², <u>K. Hillewaert</u>^{1,2}
Université de Liège¹, Cenaero²
koen.hillewaert@uliege.be

Outline

Introduction LPC Outlet Guide Vane Tandem Outlet Guide Vane Increasing α_1 range for OGV

Proof of concept study
Variable Front Blade Tandem OGV
Computational setup
Trailing edge pivot
Comparison of pivot points

Concluding remarks

Acknowledgments

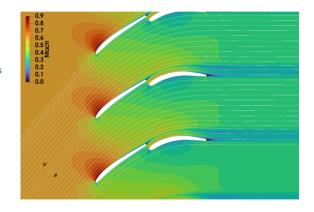
Introduction LPC Outlet Guide Vane

Swan neck transition LPC to HPC

- LPC: low rotation speed, high Q, high R
- HPC: high rotation speed, low Q, low R

Flow preconditioned by LPC OGV $lpha_2=0^\circ$

- ullet high turning $\Delta lpha \sim 50^\circ$
- ullet high incidence swing $\Delta i \sim 30^\circ$
- highly 3D end walls

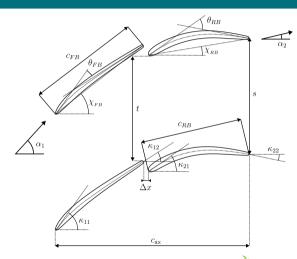


Tandem can obtain high turning $\Delta \alpha$ by

- distributing turning over 2 successive blades
- restarting the boundary layer
- align flow with high turning aft blade
- suction in overlap region increases loading on blades

Tandem can obtain high turning $\Delta \alpha$ by

- distributing turning over 2 successive blades
- restarting the boundary layer
- align flow with high turning aft blade
- suction in overlap region increases loading on blades


Tandem as OGV studied in project Wings

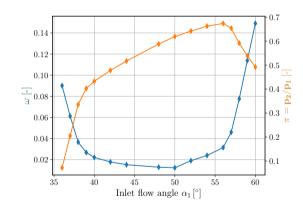
- Safran Aero Boosters, Cenaero and VKI
- Cenaero: parametric optimisation
- starting from "split" single blade
- lacktriangle optimized for ω and π

$$\omega = rac{oldsymbol{p}_1^\circ - \widehat{oldsymbol{p}_2^\circ}}{oldsymbol{p}_1^\circ - oldsymbol{p}_1}$$

$$\pi = \frac{p_2}{p_1}$$

• $M_1 = 0.6$, $\alpha_1 = 50^{\circ}$, $Re_{cax} = 550k$, AVDR = 1

Tandem can obtain high turning $\Delta \alpha$ by


- distributing turning over 2 successive blades
- restarting the boundary layer
- align flow with high turning aft blade
- suction in overlap region increases loading on blades

Tandem as OGV studied in project Wings

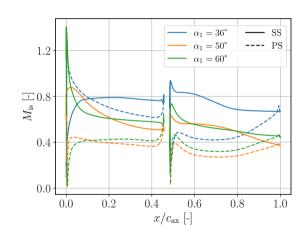
- Safran Aero Boosters, Cenaero and VKI
- Cenaero: parametric optimisation
- starting from "split" single blade
- ullet optimized for ω and π

$$\omega = rac{p_1^\circ - \widehat{p_2^\circ}}{p_1^\circ - p_1} \qquad \qquad \pi = rac{p_2}{p_1}$$

• $M_1 = 0.6$. $\alpha_1 = 50^{\circ}$. $Re_{cax} = 550k$. AVDR = 1

Tandem can obtain high turning $\Delta \alpha$ by

- distributing turning over 2 successive blades
- restarting the boundary layer
- align flow with high turning aft blade
- suction in overlap region increases loading on blades


Tandem as OGV studied in project Wings

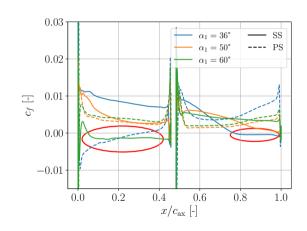
- Safran Aero Boosters, Cenaero and VKI
- Cenaero: parametric optimisation
- starting from "split" single blade
- ullet optimized for ω and π

$$\omega = rac{oldsymbol{
ho}_1^\circ - \widehat{oldsymbol{
ho}_2^\circ}}{oldsymbol{
ho}_1^\circ - oldsymbol{
ho}_1}$$

$$\pi = \frac{p_2}{p_1}$$

•
$$M_1 = 0.6$$
, $\alpha_1 = 50^{\circ}$, $Re_{cax} = 550k$, $AVDR = 1$

Tandem can obtain high turning $\Delta \alpha$ by


- distributing turning over 2 successive blades
- restarting the boundary layer
- align flow with high turning aft blade
- suction in overlap region increases loading on blades

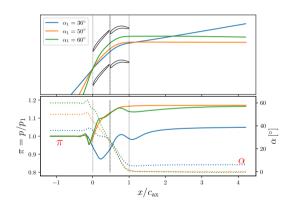
Tandem as OGV studied in project Wings

- Safran Aero Boosters, Cenaero and VKI
- Cenaero: parametric optimisation
- starting from "split" single blade
- ullet optimized for ω and π

$$\omega = \frac{p_1^{\circ} - \widehat{p_2^{\circ}}}{p_1^{\circ} - p_1} \qquad \qquad \pi = \frac{p_2}{p_1}$$

• $M_1 = 0.6$. $\alpha_1 = 50^{\circ}$. $Re_{cax} = 550k$. AVDR = 1

Tandem can obtain high turning $\Delta \alpha$ by

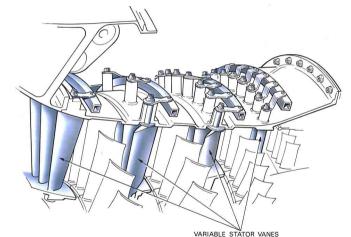

- distributing turning over 2 successive blades
- restarting the boundary layer
- align flow with high turning aft blade
- suction in overlap region increases loading on blades

Tandem as OGV studied in project Wings

- Safran Aero Boosters, Cenaero and VKI
- Cenaero: parametric optimisation
- starting from "split" single blade
- ullet optimized for ω and π

$$\omega = rac{p_1^\circ - \widehat{p_2^\circ}}{p_1^\circ - p_1} \qquad \qquad \pi = rac{p_2}{p_1}$$

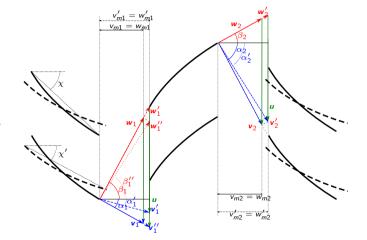
• $M_1 = 0.6$, $\alpha_1 = 50^{\circ}$, $Re_{cax} = 550k$, AVDR = 1



Introduction Increasing α_1 range for OGV - variable OGV ?

Single blade actuation

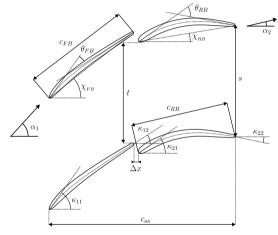
ullet changes both metal angles κ_1 and κ_2



Introduction Increasing α_1 range for OGV - variable OGV ?

Single blade actuation

- changes both metal angles κ_1 and κ_2
- ullet beneficial for intermediate stator o VSV

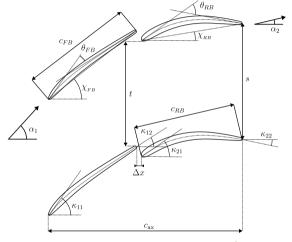

Introduction Increasing α_1 range for OGV - variable OGV ?

Single blade actuation

- changes both metal angles κ_1 and κ_2
- ullet beneficial for intermediate stator o VSV
- ullet detrimental for OGV/since $lpha_2$ should be constant

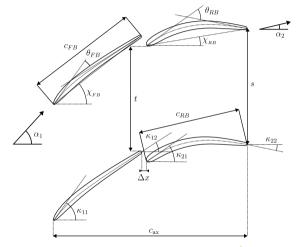
Tandem: independent actuation possible

- front blade χ_{FB} : incidence swing α_1
- aft blade χ_{AB} : adaptation of α_2



Objective:

- increase α_1 range, keep $\alpha_2 = 0^\circ$ by changing χ_{FB}
- keep airfoils of original tandem
- conditions $M_1 = 0.6$, $Re_{cax} = 550k$, AVDR = 1



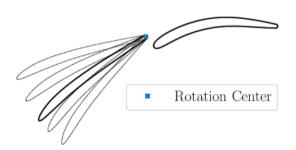
Objective:

- increase α_1 range, keep $\alpha_2 = 0^\circ$ by changing χ_{FB}
- keep airfoils of original tandem
- conditions $M_1 = 0.6$, $Re_{cax} = 550k$, AVDR = 1

Approach: sweep front blade stagger χ_{FB} for range of α_1

- 1. align leading edge κ_{11} with α_1
- 2. χ_{FB} which minimises loss ω
- 3. χ_{FB} which maximises pressure rise p_2/p_1

Objective:


- increase α_1 range, keep $\alpha_2 = 0^\circ$ by changing χ_{EB}
- keep airfoils of original tandem
- conditions $M_1 = 0.6$, $Re_{cax} = 550k$, AVDR = 1

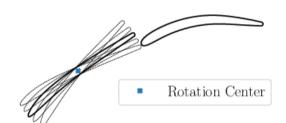
Approach: sweep front blade stagger χ_{FB} for range of α_1

- 1. align leading edge κ_{11} with α_1
- 2. χ_{FB} which minimises loss ω
- 3. χ_{FB} which maximises pressure rise p_2/p_1

Pivot point

ullet trailing edge o keep interblade space

Objective:


- increase α_1 range, keep $\alpha_2 = 0^\circ$ by changing χ_{FB}
- keep airfoils of original tandem
- conditions $M_1 = 0.6$, $Re_{cax} = 550k$, AVDR = 1

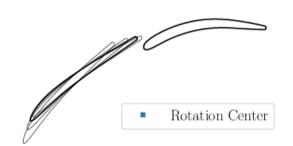
Approach: sweep front blade stagger χ_{FB} for range of α_1

- 1. align leading edge κ_{11} with α_1
- 2. χ_{FB} which minimises loss ω
- 3. χ_{FB} which maximises pressure rise p_2/p_1

Pivot point

- ullet trailing edge o keep interblade space
- lacktriangledown mid chord ightarrow practical configuration for pivot

Objective:


- increase α_1 range, keep $\alpha_2 = 0^\circ$ by changing χ_{FB}
- keep airfoils of original tandem
- conditions $M_1 = 0.6$, $Re_{cax} = 550k$, AVDR = 1

Approach: sweep front blade stagger χ_{FB} for range of α_1

- 1. align leading edge κ_{11} with α_1
- 2. χ_{FB} which minimises loss ω
- 3. χ_{FB} which maximises pressure rise p_2/p_1

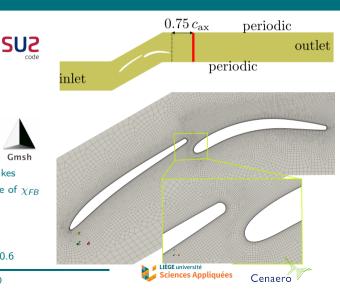
Pivot point

- lacktriangledown trailing edge ightarrow keep interblade space
- mid chord → practical configuration for pivot
- lacktriangle tangent ightarrow keep alignment of camber lines

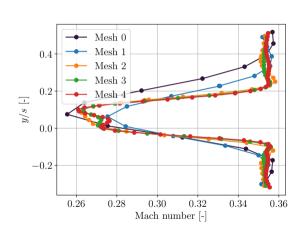
Proof of concept study Computational setup

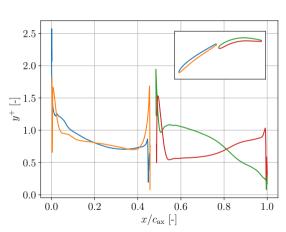
Solver

- 2D RANS with AVDR = 1
- second order accurate, Roe solver
- SST turbulence model resolved up to wall
- BC inlet: p_1° , T_1° and α_1 , outlet adjusted p_2


Mesh

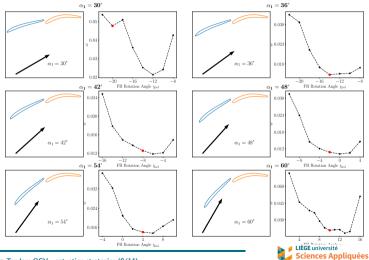
- unstructured in main domain
- extrusion layer near the mesh
- local refinements near LE. TE and in the wakes
- automated generation using python for range of χ_{ER}

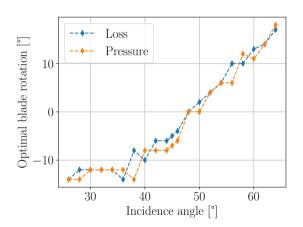

Gmsh


Parametric sweep: embedded loops in python

- sweep over α_1
- for each α_1 sweep over χ_{FB} obtain ω and π
- for each α_1 , χ_{FB} , iterate on p_2 to fix $M_1 = 0.6$

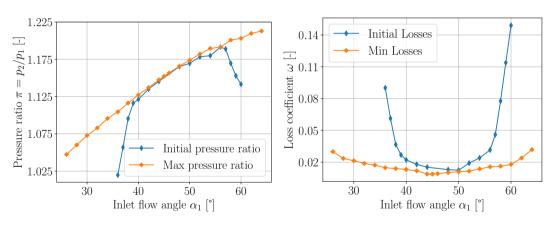
Proof of concept study Computational setup - resolution




Proof of concept study

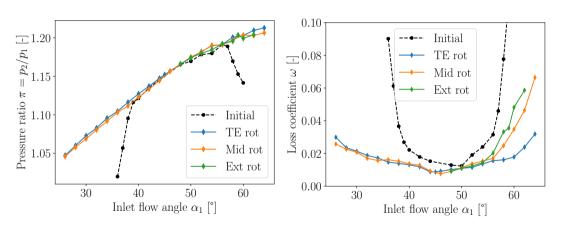
Trailing edge pivot - aligned leading edge $\kappa_{11}=\alpha_1$

Proof of concept study Trailing edge pivot - best χ



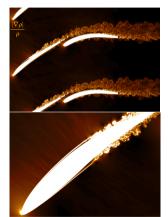
Optimal front blade stagger (very nearly) same for loss and pressure rise

Proof of concept study Trailing edge pivot - performance



About 20° increase in range obtained

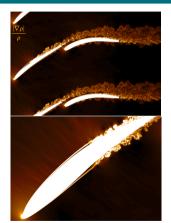
Proof of concept study Comparison of pivot points


trailing edge pivot best performance without limitations on angle

Conclusions

- preliminary study
- large increase of range can be obtained
- leading edge alignment not always optimal
- trailing edge pivot currently best strategy, but probably not very practical

DG/ILES nominal conditions, fixed FB Dr. Andrea Rocca, ArgoDG (Cenaero) ERCOFTAC Milton Van Dyke competition



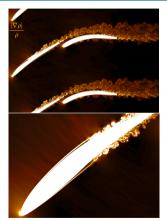
Conclusions

- preliminary study
- large increase of range can be obtained
- leading edge alignment not always optimal
- trailing edge pivot currently best strategy, but probably not very practical

Perspectives - academic studies

- investigate impact turbulence models and AVDR
- optimize blade geometry and pivot point conjointly

DG/ILES nominal conditions, fixed FB Dr. Andrea Rocca, ArgoDG (Cenaero) ERCOFTAC Milton Van Dyke competition



Conclusions

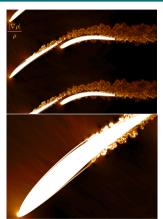
- preliminary study
- large increase of range can be obtained
- leading edge alignment not always optimal
- trailing edge pivot currently best strategy, but probably not very practical

Perspectives - academic studies

- investigate impact turbulence models and AVDR
- optimize blade geometry and pivot point conjointly
- establish impact on chocking mass flow rate
- validate with LES
- include end walls
- test in wind tunnel?

DG/ILES nominal conditions, fixed FB Dr. Andrea Rocca, ArgoDG (Cenaero) ERCOFTAC Milton Van Dyke competition

Conclusions


- preliminary study
- large increase of range can be obtained
- leading edge alignment not always optimal
- trailing edge pivot currently best strategy, but probably not very practical

Perspectives - academic studies

- investigate impact turbulence models and AVDR
- optimize blade geometry and pivot point conjointly
- establish impact on chocking mass flow rate
- validate with LES
- include end walls
- test in wind tunnel?

Perspectives - industrialisation

- optimize shape and pivot for real tandem OGV
- investigate scheduling strategy/parameters

DG/ILES nominal conditions, fixed FB Dr. Andrea Rocca, ArgoDG (Cenaero) ERCOFTAC Milton Van Dyke competition

Acknowledgments

- The tandem geometry used for this study was optimized by Cenaero during the Walloon regional project Wings, in a collaborative effort between Safran Aero Boosters, VKI and Cenaero and then made available to ULiège;
- The present research benefited from computational resources made available on Lucia, the Tier-1 supercomputer
 of the Walloon Region, infrastructure funded by the Walloon Region under the grant agreement n°1910247;
- The tandem blade is currently under further study by ULiège master students T. Dupont, D.A. Dobarro and V. Aslançi, whose efforts are gratefully acknowledged;
- Cenaero, VKI and Safran Aero Boosters are acknowledged for their support and contribution to the evaluation of master students.

