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Résumé – Dans cette contribution, nous nous intéressons aux liens entre l’équation en mathématiques et l’équation chimique. Nous explorons ces liens du point de vue du savoir savant (Chevallard, 1985), historiquement et épistémologiquement, et du savoir à enseigner (ibidem).  
Mots-clés : équation, interdisciplinarité, mathématiques, chimie
Abstract – In this contribution, we focus on the potential links between the equation in mathematics and the chemical equation. We explore these links first in the scholarly knowledge (Chevallard, 1985), historically and epistemologically, and then in the knowledge to be taught (ibidem).
Keywords: equation, interdisciplinarity, mathematics, chemistry

Introduction
En mathématiques, l’équation est intimement liée à la résolution de problèmes (Polya, 1965) et ce, dans tous les domaines des mathématiques. Dans le curriculum belge, elle est introduite dès le début de l’enseignement secondaire et son étude se poursuit tout au long du curriculum.
[bookmark: p108]Au cours de chimie, les élèves sont également confrontés à un objet appelé équation mais il s’agit ici d’une équation chimique qui modélise une transformation chimique et qui, bien qu’ayant certaines similitudes avec l’objet en mathématiques, s’en distingue par de nombreux aspects. Cependant, l’équation chimique telle que proposée par Lavoisier vise aussi à agir comme un outil de résolution de problèmes, plus particulièrement de détermination de masses inconnues : : « En effet, comme je l'ai déjà indiqué au commencement de cet article, je puis considérer les matières mises à fermenter et le résultat obtenu après la fermentation comme une équation algébrique ; et, en supposant successivement chacun des éléments de cette équation inconnus, j'en puis tirer une valeur et rectifier ainsi l'expérience par le calcul, et le calcul par l'expérience » (Lavoisier, 1789, p. 108). 
Dans les deux cas, l’équation est donc utilisée pour modéliser un phénomène et comme outil de résolution de problèmes ; mais d’où vient cette dénomination commune ? Quels liens ces deux objets ont-ils entretenus au fil de l’histoire ? Comment sont traitées ces similitudes et différences dans l’enseignement secondaire, en mathématiques et en chimie ? Dans quelle mesure les élèves peuvent-ils investir, en chimie, leurs connaissances sur l’équation en mathématiques ? Dans une perspective interdisciplinaire, quelles stratégies didactiques pourraient permettre aux élèves d’établir des liens pertinents entre équation mathématique et équation chimique ? C’est à toutes ces questions que nous tentons d’apporter des éléments de réponse dans le travail en cours. 
Dans cet article, en suivant les étapes de la transposition didactique (Chevallard, 1985), nous explorerons tout d’abord le savoir savant : d’une part au travers de quelques éléments historiques et, d’autre part, en proposant une formalisation de la pondération des équations chimiques. Ensuite, nous nous intéresserons au savoir à enseigner par l’analyse de trois manuels de chimie utilisés en Belgique francophone. 
Contexte historique
Construction du savoir équation en mathématiques
Dans sa thèse consacrée à la constitution de l'écriture symbolique mathématique, Serfati (1997) décrit l’évolution historique de l'écriture en mathématiques qui de purement rhétorique, c'est-à-dire inscrite dans la langue commune, où tout se dit et se calcule en mots [a progressivement convergé vers] une écriture symbolique où le texte est presque réduit à une concaténation de signes (lettres, chiffres, ou signes figurés) (Serfati, 1997, p. 5).
C’est Diophante d'Alexandrie (IIe-IIIe siècle après J.-C.), savant grec considéré comme le père de l'arithmétique, qui fut le premier à utiliser les représentations symboliques. Selon Serfati (1998), les représentations de Diophante forment un système pré-symbolique (Tableau 1). Plus tard, Bhaskara (1114-1185), mathématicien indien, introduisit lui aussi un langage symbolique pour représenter l'inconnue et les puissances. Les représentations de Diophante et de Bhaskara n'ont pas le statut d'équation, l'égalité n'y étant pas présente. 
C’est dans le monde arabe que les premières équations et leurs méthodes de résolutions sont écrites rhétoriquement, dès le 9e siècle après J.-C. Le savant perse Al Khawarizmi (780-850) y utilise des termes de la langue naturelle (l’arabe ici) car son travail vise à résoudre des problèmes de la vie quotidienne de ses concitoyens (tableau 1). 
Les premiers pas de l'écriture des équations en langue symbolique sont apparus avec Viète (1540-1603). Il amorce le troisième changement dans l'écriture des équations, passant de la langue naturelle d'Al Khawarizmi à la langue symbolique de l’algèbre de Descartes. Le langage de Viète est un mélange de la langue naturelle et de la langue symbolique. L'écriture complète d'une équation en langue symbolique est attribuée à Descartes (1596-1650). Le symbole actuel de l'égalité (deux tirets parallèles « = ») est attribué à Recorde (1557) (Serfati, 1998). 
Le Tableau 1 illustre les différentes écritures de la même équation  au fil du temps. Les exemples de la première ligne représentent l'expression .
	Type de représentation
	[bookmark: _Hlk178230454]Exemple

	Représentation pré-symbolique
	Diophante :      Δyγζ    λθ (Radford, 1991)ψ

Bhaskara : yv 3 y 10 r (Patte, 2006)

	Langue naturelle spécialisée[footnoteRef:6] [6:  La langue naturelle spécialisée peut être définie comme « l’usage d’une langue naturelle pour rendre compte techniquement de connaissances spécialisées » (Lerat, 1994, p. 21).] 

	Al Khawarizmi : Trois carrées et dix racines sont égaux à trente-neuf dirhams

	Langue symbolique
	Viète : 3 in A quad + 10 in A æquatur 39
Descartes :  



Tableau 1 : Evolution de l’écriture des équations au fil du temps
On observe donc, au fil des époques et des lieux, la construction et l’usage d’une succession de langages pour représenter l’équation mathématique, celle-ci n’atteignant sa forme actuelle qu’au XIVe siècle. 
Intéressons-nous maintenant à l’évolution de la représentation d’une transformation chimique sous forme d’équation. 
Évolution historique de l’équation chimique
Les premières représentations des transformations chimiques remontent aux alchimistes, qui les ont dépeintes librement en superposant et juxtaposant des images d'éléments chimiques, appelées icônes alchimiques (Edeline, 2009). Au XVIIe siècle, une nouvelle forme de représentation apparaît en lien avec l'affinité chimique. Les réactions sont représentées par un schéma qui explique le déplacement des éléments. À cette époque, la flèche symbolise le déplacement des éléments en fonction de leur ordre d'affinité. Ces diverses représentations forment des schémas réactionnels constitués de symboles non-standardisés.    
Au XVIIIe siècle, Lavoisier (1743-1794) fait la découverte importante que la masse ne change pas avant et après l’opération que constitue une réaction chimique. Cette conservation de la masse implique donc, selon Lavoisier, une égalité ou équation : 
Rien ne se crée, ni dans les opérations de l’art, ni dans celles de la nature, et l’on peut poser en principe que dans toute opération, il y a une égale quantité de matière avant et après l’opération, que la qualité et la quantité des principes est la même, et qu’il n’y a que des changements, des modifications. C’est sur ce principe qu’est fondé tout l’art de faire des expériences en chimie. On est obligé de supposer dans toutes une véritable égalité ou équation entre les principes du corps qu’on examine et ceux qu’on en retire par l’analyse. (Lavoisier, 1789, p. 141)
Une nouvelle manière de représenter les réactions et les transformations apparaît alors :  l'équation chimique écrite en langue naturelle spécialisée avec les symboles « + » et « = ». La première équation chimique nominative (c’est à dire, la fermentation du raisin en alcool et gaz carbonique) est écrite dans le Traité élémentaire de chimie (Lavoisier, 1789), en langue naturelle spécialisée et en langue symbolique mathématique :  
moût de raisin = acide chlorydrique + alkool
En empruntant le terme équation et les symboles « + » et « = » aux mathématiques, Lavoisier tente d'introduire la rigueur du calcul mathématique dans la résolution de problèmes en chimie.
L'écriture symbolique de l'équation chimique apparaît au XIXe siècle. Après les tentatives de Dalton, Berzelius propose en 1813 de représenter les réactions chimiques en une langue symbolique simple. Les éléments chimiques sont représentés par des lettres (en général, la première ou les deux premières lettres du mot latin de ces éléments). Berzelius recourt à de nombreux symboles et écritures mathématiques dans les équations chimiques. Ainsi, le chiffre, en haut à droite d’un élément, indique le volume d'un composé de premier ordre (comme CuO²). Cette utilisation de l'exposant, typique des mathématiques, sera abandonnée pour un positionnement en indice au cours du XIXe siècle. Le signe « + » est également utilisé par Berzelius dans le cas des composés de deuxième ordre, vus comme des combinaisons de deux corps (un électronégatif et un électropositif), en vertu de la théorie de la dualité électrostatique (Berzelius, 1813). Selon Dehon (2018), les parenthèses, utilisées pour circonscrire les corps composés de deuxième ordre, sont des emprunts au système symbolique mathématique renforçant l'aspect algébrique de la formule chimique. Le signe « = », initié par Lavoisier (1789), continue à être utilisé par Berzelius. C’est à l'époque du développement de la chimie organique, au cours du XIXe siècle, que le signe « = » sera graduellement remplacé par une flèche (→) symbolisant la réaction.
Après le repositionnement de l'exposant en indice et la suppression des parenthèses dans les formules chimiques, le remplacement du signe « = » par la flèche vient confirmer la volonté des chimistes d'éloigner l'écriture de l'équation chimique de l'écriture des équations mathématiques (Dehon, 2018).
On observe donc, comme pour l’équation mathématique, que l’évolution de l’équation chimique est marquée par une succession de langages, culminant par la construction d’une langue symbolique chimique contenant des emprunts à la langue symbolique mathématique. 
Conclusion
Nous retiendrons de cette analyse que l’égalité dans l’équation chimique présente une signification épistémologique claire : celle de la conservation de la masse. Par la suite, le symbole « = » a été remplacé par la flèche « → » pour marquer l’idée de transformation, et masquer volontairement le caractère mathématique de l’équation chimique, comme le défendent Barlet et Plouin : La flèche signifie simplement qu’il y a transformation des réactifs vers les produits. Il n’y a pas, dans la transformation, égalité mais conservation des masses, des atomes et des charges électriques, pas obligatoirement des volumes et des molécules. (Barlet & Plouin, 1994, p. 46). 
Suite à ces constats, on peut légitimement poser qu’il existe un intérêt didactique à discuter, avec les élèves, de l’import de symboles mathématiques (+, =, coefficient, exposant) pour modéliser une réaction chimique ; et, singulièrement, de l’abandon de l’égalité. Nous faisons l’hypothèse que ces aspects sont peu traités dans l’enseignement actuel en chimie alors qu’ils pourraient contribuer à rendre visible le processus de modélisation qui a mené à l’écriture actuelle du modèle des réactions chimiques sous forme d’équation. Dans la section IV, nous proposerons quelques éléments relatifs à cette hypothèse et issus de l’analyse des manuels de chimie utilisés en Belgique francophone. 
Peut-on donner une interprétation mathématique valide aux différents symboles utilisés dans les équations chimiques et empruntés aux mathématiques ? C’est à cette question que répond la section suivante.
Formalisation mathÉmatique deS Équations chimiques
En mathématiques formelles, une équation est un couple (F,x) où F est une formule exprimée dans un langage avec égalité et x une variable libre de F (l'inconnue). Résoudre une telle équation dans un ensemble E (le domaine d'interprétation), consiste à trouver le sous-ensemble des  tels que F soit satisfaite. Ce sous-ensemble est appelé sous-ensemble de solutions et dépend du domaine d'interprétation E de la formule. Par exemple  est une équation dont l'ensemble des solutions est  si  L'équation  (différente de la précédente) a pour ensemble de solution  si  Autrement dit, une équation est un objet purement syntaxique par nature alors que sa résolution présuppose un contexte sémantique.
Informellement, une équation est donc une formule mathématique où le symbole « = » apparait explicitement et où une inconnue est spécifiée. Le plus souvent, le langage mathématique utilisé contient celui de l'arithmétique et permet donc d'avoir recours aux symboles « + , -, x... »
En chimie, une équation bilan ou équation chimique modélise la transformation de réactifs en produits, en respectant des ratios réactionnels donnés par les coefficients stœchiométriques. Par exemple, on a l'équation chimique suivante :

La question du statut des symboles « + » et «   »se pose immédiatement. A priori, une molécule correspond formellement à un graphe pondéré et étiqueté (les arêtes permettant de rendre compte de la structure chimique). Or l'addition de deux graphes, qui serait naïvement leur union disjointe, ne correspond pas à ce qu'il se passe au sein de l'équation chimique. Un autre problème est le symbole «  » qui est ambigu. Il a en effet une signification différente du symbole « = » car il marque une évolution temporelle liée au monde physique. 
Pour comprendre les choses, il faut voir que le « contenu » d'une équation chimique est double :
1. une partie structurelle. En effet, dans l'exemple ci-avant, des molécules comme  ou ONH n'auraient aucun sens physique. Seules certaines combinaisons de lettres sont autorisées si l'on tient compte des contraintes empiriques et syntaxiques (pour l’ordre dans lequel les lettres sont écrites).  
2. une partie combinatoire. Dit simplement, il faut le même nombre de lettres de chaque côté de l'équation pour vérifier la loi de conservation de la masse énoncée par Lavoisier.
Il est à noter que dans de nombreux exercices, seule la partie combinatoire est testée, l'énoncé étant formulé à partir d'une équation à trous  que l'élève est prié de compléter. Dès lors, on peut se demander si, a minima, la partie combinatoire pourrait être considérée comme une véritable équation mathématique.
Considérons la molécule . On serait tenté de dire que cette molécule est simplement l'ensemble  (autrement dit, on ne garde que les sommets du graphe). Une molécule correspondrait donc à un ensemble et le signe « + » correspondrait quant à lui à la somme ensembliste, donc à l'union disjointe. Cependant, cette formalisation pose problème. En effet, dans la théorie des ensembles traditionnelle, seuls les éléments distincts présents au sein de l'ensemble sont comptabilisés. Autrement dit on a l'égalité  et l'aspect combinatoire est évacué. On pourrait bien sûr contourner ce problème en utilisant des unions disjointes dans tous les sens et en posant  Néanmoins, comme l'union disjointe ensembliste est définie à partir d'un produit cartésien, un tel empilement deviendrait rapidement lourd syntaxiquement. Une autre possibilité, sans doute plus naturelle, est d'utiliser la notion de multi-ensemble. Un multi-ensemble est simplement un ensemble classique muni d'une fonction de comptage permettant d'attribuer un nombre naturel (correspondant au nombre d'occurrences) à chaque élément de l'ensemble.
Définition 1. Un multi-ensemble est un couple  où E est un ensemble et une fonction.
Exemple : Le multi-ensemble c) où  et  correspond à ce que l’on voudrait noter , c’est à dire le fragment combinatoire de la molécule 
On peut maintenant très naturellement définir l'addition de deux multi-ensembles.
Définition 2. Soient  et  deux multi-ensembles. La somme  est le multi-ensemble  tel que
1. 
2.  si 
3.  si 
4.  si 
On peut aussi définir la multiplication d'un multi-ensemble par un naturel.
Définition 3. Soit  un multi-ensemble et  un naturel. Alors  n’est rien d’autre que le multi-ensemble 
Si l’on revient à présent à l’exemple initial

on se rend compte que l’aspect combinatoire d’un tel bilan chimique peut être formulé comme une égalité entre multi-ensembles. Cette égalité est donc en particulier une égalité fonctionnelle, entre les diverses fonctions de comptage. On pourrait la réécrire

où  sont respectivement les fonctions de comptage associées aux multi-ensembles représentant les molécules  Évidemment on ne peut pas a priori parler d’équation car il n’y a pas d’inconnues. L’équation associée, telle qu’elle serait proposée à un élève est

où l’inconnue est le quadruplet  Comme il s’agit d’une égalité fonctionnelle, il suffit d’évaluer cette égalité en quatre points pour obtenir un système de quatre équations à quatre inconnues. Malheureusement nous n'avons que trois points disponibles :  Effectuons ces trois évaluations pour voir quel phénomène est à l'œuvre. En évaluant en  on obtient , en évaluant en  on obtient , en évaluant en on obtient 
En résolvant « naïvement » ce système sous-déterminé, on tire directement une infinité de solutions de la forme . On voit des fractions apparaitre correspondant à des rapports de proportionnalité. En prenant pour  le ppcm de tous les dénominateurs (dans notre exemple, on prendra ), on obtient la plus petite solution naturelle non-nulle possible, ce qui correspond à l’usage dans l’enseignement de la chimie au secondaire.
On voit ici que la formalisation mathématique de la pondération des équations chimiques fournit une stratégie de résolution de ce problème, qui, de plus, ramène en chimie le concept d’équation mathématique comme outil de résolution de problème. Plus théoriquement, nous venons de décrire une technologie au sens de (Chevallard, 1999) légitimant la technique dite « algébrique » de pondération des équations chimiques. Cette technique de pondération des équations chimique est-elle repérée dans les manuels scolaires de chimie en Fédération Wallonie-Bruxelles ? La section suivante s’intéresse notamment à cette question.
Analyse des manuels de chimie
Nous avons consulté les trois seuls manuels de chimie utilisés dans l’enseignement secondaire belge, en 3e année (grade 9, sciences générales ou sciences de base) : (Buschen, Degosserie, Rondelet, Schweininger, & Van Sul, 2018), (Bordet, Castin, Pirson, & Snauwaert, 2021) et (Matthys, Feys, & Suys, 2011). C’est à ce niveau que sont abordées, en Fédération Wallonie-Bruxelles, les équations chimiques. 
La méthodologie que nous avons élaborée se base sur l’analyse du contenu des manuels et elle vise quatre objectifs : décrire la manière dont la représentation symbolique de l’équation chimique est exposée, mettre en évidence si un lien explicite existe entre l’équation chimique et la conservation de la masse, rechercher si les manuels présentent la démarche algébrique de pondération des équations chimiques et décrire les méthodes de pondération proposées.  Dans les trois manuels, nous nous sommes focalisés sur la section « cours » du chapitre « réaction chimique ». Le cours s’étend sur quatre ou cinq pages qui définissent la réaction chimique, son passage à une équation chimique et la pondération d’une équation chimique. 
De nos analyses, nous retenons les éléments suivants :
· Tous les manuels explicitent de manière plus ou moins semblable les différents composants de l’équation chimique. Ainsi, il est précisé que l’équation est divisée en deux « membres » qui sont séparés par « une flèche ». Dans le « premier membre », les réactifs sont séparés par un « + » qui signifie « réagissent avec » et de même pour les produits dans le « deuxième membre ». Finalement, la flèche « → » qui sépare les deux membres « indique le sens de déroulement de la réaction ».
· Tous les manuels utilisent la flèche pour séparer les réactifs des produits. 
· Buschet et al. (2018) mentionnent explicitement que, contrairement aux équations en mathématiques, l’équation chimique utilise le signe « → » au lieu du signe « = ». 
· Ces mêmes auteurs justifient ensuite l’utilisation du terme « équation » par le lien avec la conservation de la masse, ce que ne font pas les autres manuels. Dans ces autres manuels, la conservation de la masse est mentionnée plus tôt, lors de la description de la transformation chimique, au niveau macroscopique.
· Enfin, la démarche de pondération des équations chimiques est abordée systématiquement selon une méthode de tâtonnement, marquée par des essais et des erreurs. Cependant, deux types de méthodes émergent en fonction du niveau de savoir convoqué dans le chemistry triplet de Johnstone (1991). Une première démarche de pondération propose un inventaire chiffré sous la forme d’un tableau à double entrée (niveau symbolique de Johnstone). En modifiant les coefficients stœchiométriques, l’élève tente d’établir un nombre identique d’atomes, dans chaque colonne, pour chaque symbole noté dans le tableau. Une deuxième démarche de pondération consiste à dessiner les molécules et atomes impliqués dans l’équation chimique (niveau microscopique de Johnstone) à l’aide d’un modèle moléculaire en boules. L’élève ajoute alors, en les dessinant, les molécules et atomes nécessaires pour obtenir le même nombre d’atomes de chaque type chez les réactifs et les produits. Les coefficients stœchiométriques sont finalement inscrits dans l’équation chimique en comptant les modèles dessinés pour chaque acteur de l’équation. Ainsi, aucun manuel ne propose de formaliser la pondération des équations chimiques au travers d’un système linéaire d’équations mathématiques.
De cette analyse et de notre section III, nous retenons trois techniques de pondération des équations chimiques, deux basées sur le tâtonnement, cohérentes avec une volonté de mettre à distance les liens entre équation chimique et mathématiques, et une troisième, axée sur la construction d’un système d’équations mathématiques. Les deux premières font partie du curriculum actuel dans l’enseignement secondaire en Belgique tandis que nous n’avons pas trouvé trace de la troisième dans les manuels en vigueur actuellement. Cette dernière pourrait constituer une opportunité de travail interdisciplinaire autour de l’équation puisqu’elle s’appuie sur une situation ancrée en chimie, modélisée au sein de la discipline « chimie » par une équation chimique (étape que nous identifions à l’étape 1 du cycle de modélisation de Blum et Leiss (2007), voir Figure 1), dont la pondération peut, à son tour, être modélisée par un système d’équations mathématiques (étape 3 du cycle de modélisation de Blum et Leiss (2007)), outil de modélisation présent dans le curriculum mathématique. Nous pensons également que cette technique est une option didactique intéressante puisqu'elle permet a priori de diminuer l'incertitude des élèves en leur garantissant l'existence d'une solution au problème, calculable en peu d'opérations.
[image: Cycle de modélisation]
[bookmark: _Ref190248143]Figure 1 : Cycle de modélisation de Blum et Leiss (2007), cité dans (Kuzniak, 2024)

Conclusion et perspectives
À la suite de ces différentes analyses, le travail devrait se poursuivre par une observation du savoir enseigné (Chevallard, 1985) dans les classes. Ces différentes observations devraient nous permettre de compléter les constats issus des analyses épistémologiques et des manuels concernant les liens entre équation mathématique et équation chimique dans l’enseignement actuel en Belgique francophone.
Cette étude devrait également nous permettre de formuler des propositions susceptibles d’enrichir l’apprentissage dans les deux disciplines. En particulier, nous visons la formation des enseignants de chimie, que nous espérons rendre plus conscients du lent processus de modélisation qui a conduit à la construction de l’équation chimique et de ses liens avec les mathématiques. La recherche vise également la proposition d’une séquence didactique interdisciplinaire, potentiellement en lien avec notre section III, qui mettrait en jeu les différents aspects relevés au cours du travail relativement aux liens entre équation mathématique et équation chimique. 
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