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Management of radioactive waste DY

Radioactivity level
Radioactivity level

Number of half-lives Half-live period [years, log scale] [IAEA, 2009].

04/07/2025 =17



Management of radioactive waste DY

Short-lived _ Long-lived

Radioactivity level
Radioactivity level

30
Number of half-lives Half-live period [years, log scale] [IAEA, 2009].

04/07/2025 =1 8



¢ LIEGE université
Urban & Environmental

Management of radioactive waste Engineering

o'::'.
0%
1.0 %°
©
S
2
:‘E 0 . 5 ___________ B ..'.
i 1
g |
o |
S |l 0N
© |
o !
0.0 f-------- - ; R ] R R

(=]
o
~F
w
s

Number of half-lives

Short-lived ] Long-lived

Intermediate level

Low level

Radioactivity level

Very low level

Exempt

30
Half-live period [years, log scale] [IAEA, 2009].

04/07/2025 =19



¢ LIEGE université
Urban & Environmental

“ Management of radioactive waste Engineering
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Deep geological repository

Underground structures

= network of galleries

Intermediate
(long-lived)
&
high activity
wastes

- -

- —
Installations de surface o~

<= _zone 2
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/ Deep geological \

disposal

Repository in deep
geological media with
good confining properties

(Low permeability

\ K<10-12m/s) /
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1 000 000 yr.
100 000 yr.
10 000 yr.
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= Deep geological repository

... ¢

-| Surface layers {

(iii)
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Host rock (e.g. clay)
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Backil o/ >
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HLW package i W 9¢ drift
Tunnel lining

Host rock
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(
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= Deep geological repository

... ¢

{ Surface layers i

Host rock (e.g. clay)
Heat production

Radionuclide
advection

Bulk gas

diffusion

Corrosion

Radiation

Dry-out
(Re)saturation zone

Damaged

Years

Events

Perturbations
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Excavation
Open drift
Waste emplacement

Backfilling — Sealing — Repository closure

>

Consolidation, self-sealing, creep

i

solidation, saturated conditions

M Ao, Ag damage

Dilation
Drainage

Swelling Gas frac.

T-consolidation
T-plasticity

Thermal exp.
u/

T Heating Cooling

Reaction Mineral dissolution | k /

diff. kinetics

Pore clogging | k ™

EBS-clay interactions: alkaline plume, corrosion gas release

Reducing conditions

Radionuclides release

Cementation

u/
2-¢ flow
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Callovo-Oxfordian claystone (COXx)

Sedimentary clay rock (France).

Borehole core samples
(Andra, 2005)

(Armand et al., 2014)

Main shaft Aucxiliary shaft

Test of
drifts
support

- Underground research laboratory Gh Expeclj'lr??tental -

Feasibility of a safe repository

France (Meuse / Haute-Marne, Bure)

L =
cell tests

B 2004-2012
2012-2015 50m
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Repository phases

E Excavation
Ventilation
Repository
Sealing

E Corrosion,

heat generation
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Radioactive
waste cells

Swelling clay plug
Concrete plug

Type C wastes (Andra, 2005) 04/07/2025 =] 18
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Heat transfer Water and gas flow
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E Excavation
Ventilation
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Excavated damaged zone - EDZ L

Construction e A ] Maintenance
: , by 1] 1) B 2 P 2
Mechanical fracturing |t il %’I/ Water transfer
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Coupled processes unloading fractures 1, Modification of the
. . obligue to bedding
HM property modifications water transfer
Fracturing & permeability increase
! (several orders of magnitude)
Safety function alteration Opalinus clay in Switzerland

(Bossart et al., 2002)
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Excavated damaged zone - EDZ
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Mechanical fracturing
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Fracturation observation

Anisotropies: - stress : 0, > 0, ~ 0,

- material : HM cross-anisotropy.

~ Main shaft Auxiliary shaft
oy

Experimental
Peantt

HLW
cell tests

pr—
Test of construction
B 2004-2012 methods
[ 2012-2015 S0m
Issues: Prediction of the fracturing.

Effect of anisotropies ?

Galery // to o,

o

-

7

OH

Permeability evolution & relation to fractures ?
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(Armand et al., 2014)

—== Shear fractures
------- Mixed fractures

2.75m
1.27m

— <05m

e it — 124m
3.70m

=T _ -

47m 14m <05m 14m 45m
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Excavation / Fracturation modelling = &

Constitutive models for COx

- Mechanical law - 1st gradient model

Pc,f
. . . $c.0
Isotropic elasto-plastic internal friction model
Co
Non-associated plasticity, Van Eeckelen yield surface : SN
Cf
3cC >
F=ll,-m| I+ =0 [o
tan ¢,
Softening Hardening
zone zone

¢ hardening / c softening

AP
(Cf _Co)geq

C=Cy+ v —» Strain localisation
B, + Eeq
- Hydraulic law
. . Kuvij Kew [ 9P,
Fluid mass flow (advection, Darcy) : i =—0, B o P g,
w j

Water retention and permeability curves (Mualem - Van Genuchten’s model)
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Excavation / Fracturation modelling

- Numerical model

) . Oy.0 pPw0
HM modelling in 2D I I ! éh—
plane strain state A 7
. A T T ® Drained boundary
Gallery radius = 2.3 m === gl === [mpervious boundary
JE, ' <«— Constant total stress
— T+ P Constrained displacement
= T Ox,0
= T Constrained normal derivative
R Y | PO = of the radial displacement
il
IB=
v

50 [m]
- Gallery in COx // gy, _
— - Excavation
Effect of stress anisotropy |
Anisotropic stress state 20 —o0X
Pyo = 4.5 [MPa] 15 - SYN

Oy0 = 0y =1.3 0,=15.6 [MPaq]
Oy0 = 0, = 12 [MPa]
0,0 = 0y = 12 [MPa]

Pressure [MPa]
w o

012 3 456 738 910
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Incompressible solid grains, b=1

Total deviatoric strain

Plasticity
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1008 days fractures
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End of
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- For an isotropic mechanical behaviour, the appearance and shape of the strain localisation are
mainly due to mechanical effects linked to the anisotropic stress state.
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= Excavation / Fracturation modelling -

- Gallery air ventilation : 20 -
_— - 10 No ventilation
Water phases equilibrium at gallery wall (Kelvin's law) = , | RH:109%—/I/' 0, = Pacr [MPa]
RH=_P _ exp —p.M, 2 5% 10 15 20| —ox
P RT p, 210 1 oy
8 50 - —Thw
& sy ————— Ventilation
-30 - Nl L =.
Compressibility of the solid grains: b=0.6 p,, = -30.7 [MPa]
0 - Time [days]
No ventilation Ventilation
100 days 1000 days 100 days 1000 days T l

05 = O-i; +b Srw P é‘ij

Total -> suction 1
deviatoric >0
strain _ _
-> Elastic unloading
0—339%84 - Inhibition of localisation
- Restrain ¢
Plasticity

Plastic

Y
Elastic

v

lo
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- Convergence:

Important during the excavation
Anisotropic convergence

Influence of the ventilation

Experimental results (GED - Andra’s URL)
No strain localisation

140 - — 140 -
— E .
é 120 120 - —Numerical,
E‘ 100 é 100 RH=100%, no ventilation
E)D 30 - %ﬂ 30 - --Numerical,
o = RH=80%, ventilation
g 60 7 S 00
S — ---Experimental, GED
—= 40 g 40 - _
é) 20 | Q 20 7,::",'.'./_.' ------------------------------- —Numerical, no strain localisation
2 5 2 RH=80%, ventilation
0 ‘ ‘ ‘ T 0 l l l |
0 200 400 600 800 0 200 400 600 800

Time [days] Time [days] 04/07/2025 =[1 29
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Conclusions and outlooks

v Reproduction of EDZ with shear bands.

v Shape and extent of EDZ governed by anisotropic stress state.

- Next steps ...

X Mechanical rock behaviour.

-> Material anisotropy, gallery // o, .
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Excavation / Fracturation modelling
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- Linear elasticity :
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E BV v Gy b,,b,

- Plasticity :

Cohesion anisotropy with fabric tensor
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- Stress state

Major stress in the axial direction Oy 0 = Oy = 12.40 MPa
Gallery // to oy 0,0 =0, =12.70 MPa
0,0=0y=13x0,=16.12MPa

- Shear banding

- Convergence
Total deviatoric strain

70

—————— Experimental
{ —— Numerical
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12
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- Shape modification due to o
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= Geometry of the problem Engineering

MAVL drift cross section 04/07/2025 =1 34
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= Geometry of the problem Engineering

Support structure

—_—

classic stuffing — 15cm

compressible stuffing — 20cm [~ 85cm

= Arch segments — 50cm

MAVL MVI.

MAVL

MAVL drift cross section 04/07/2025 =1 35
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Bedding planes orientation

MAVL drift cross section 04/07/2025 =[] 36



“ Modelling stages

Step 1 — Excavation (1 day)

= |nitial step

» Drilling: - deconfinement of the rock mass
- drained wall
- constant gas pressure

1 . .
— Support layers —1-
Q 0.8} B
-~
©
-
~ i
= 0.6
:
o 0.4}
-
5
@ 0.2¢F
D
)

oL .

0 5)

Time |[hours]

.ﬁ‘

¢ LIEGE université
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Rate of excavation: 18m/day

COx

OR = O'O
Pw = Pw,0
Pg = Pg,0
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Modelling stages
Step 1 — Excavation (1 day)

= |nitial step
» Drilling

= Activation of the supports: - stuffing layers

- arch segments

o o o
N o oo
I I I

Deconfinment rate [-]

Support layers —1-

D

Time |[hours]

Y

LIEGE université
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COx

Orp = O-O
Pw = Pw,0
Pg = Pg,0
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“ Modelling stages
Step 1 — Ventilation (35 days —100 years)

Initial step
Drilling
Activation of the supports

Ventilation: conditions regulated at the support wall

-

o

Water pressure [MPa]

-e-100%RH
= T0%RH

Time [days]

Y

LIEGE université
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Engineering

O-R — 0
pw = —49.1MPa
Pg = DPg,0

COx

O-R — O-O
pw — pW,O
Pg = Pg,0
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= Modelling stages Engineering
Step 2 — Pore pressure equilibrium (100 years = ...)

= |nitial step COx

» Drilling

= Activation of the supports

= Ventilation

= Gallery in operation:
- impervious support wall
- constant gas pressure

O-R — O-O
Pw = Pw,0
Pg = DPg,0

04/07/2025 =[] 40
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“ Modelling stages Engineering
Step 2 — Gas injection (100 years — 10° years)
= |nitial step COx
» Drilling

= Activation of the supports
= Ventilation
= Gallery in operation
» Gas release:
- iImpervious support wall
- Imposed H2 pressure at support edge

8

—--H> pr0ﬁ1e|' R
7_
O-R — O-O
6 -
pw _ pW,O
51 .
pg o pg,O

o
T

N}
T

Gas pressure [MPa]

p—
T

0 a1l e el
10? 10* 106

Time [years] 04/07/2025 =1 41
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""" Reference simulations
— Updated model

Convergence of the rock mass
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Effective stresses [Pa] (Concrete)

. ﬁ‘ &, ¥ LIEGE université

Stresses in the arch segments Concrete

""" Reference simulations Lﬁiﬁ\;\\
— Updated model \
b
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= End of the story ?

... ¢

{ Surface layers i

Host rock (e.g. clay)
Heat production

Radionuclide
advection

Bulk gas

diffusion

Corrosion

Radiation

Dry-out 1
(Re)saturation zone

Damaged

Years

Events

Perturbations

® . @ LIEGE université
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Engineering

10 100 1,000 10,000 100,000

Excavation
Open drift
Waste emplacement

Backfilling — Sealing — Repository closure
Radionuclides release

>

Consolidation, self-sealing, creep

i

solidation, saturated conditions

M Ao, Ag damage

Dilation
Drainage

Swelling Gas frac.

T-consolidation
T-plasticity

Thermal exp. Cementation

u/

T Heating Cooling

Reaction
diff. kinetics

Mineral dissolution | k 7/ u’
Pore clogging | k ™ 2-¢ flow

EBS-clay interactions: alkaline plume, corrosion gas release

Reducing conditions

[Sillen, 2012].
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Thank you for your attention.
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Numerical Approach

e Classical FE formulation: mesh dependency

e Different regularization methods

Gradient plasticity

Non-local approach

Microstructure continuum
Cosserat mode/
Second gradient mode/

Mainly for monophasic materials !
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In second gradient model, the continuum is enriched with microstructure effects. The kinematics

include therefore the classical one but also microkinematics (See Germain 1973, Toupin 1962,
Mindlin 1964).

Let us define first the classical kinematics:

e 1, 1s the (macro) displacement field
e [} 1s the macro displacement gradient which means:

)lm

F:

)

Y

e D;; 1s the macro strain:
_ 1
Dy = 4(Fy + Fy)
e R;; 1s the macro rotation:

Ry =4(F; — )
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Enrichment of the kinematics :

The continuum is enriched with microstructure effects: Macro-kinematics + micro-kinematics

Macro Q:
au,;
Fij =a—xj —_ Dij +Rij
Micro Q™:
au,;m
m
fij — axj = dij + Tijm

04/07/2025 =[] 48
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Numerical Approach

In second gradient model, the continuum is enriched with microstructure effects. The kinematics

include therefore the classical one but also microkinematics (See Germain 1973, Toupin 1962,
Mindlin 1964).

Let us define the micro-kinematics:

e f;; 1s the microkinematic gradient.
e d; 1s the microstrain:

dij = %(fu + /i)
e 7, 1s the microrotation:
ry =i = )

® Jyy 1S thc (micro) second gradient:

h i

’"‘.I'

ijk = Bxp
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Numerical Approach

Second gradient model formulation: weak form

e The internal virtual work (Germain, 1973)

W = / w'dv = /(J,-_jD; +1,;(f; — F;) + tiphiy) dv
Ja Ja | |

e The external virtual work (simplified)

= / Gu; dv + / (tu; + T;f;)ds
JQ Joo

e The virtual work equations can be extended to large strain
problems
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Numerical Approach

Second gradient model formulation: strong form

[ 0oy [y 4+ G =0
axj
3
42 jk
=0
axk TU

\

p

(JU — Tjj)nj — f_,:'

itk = T

- - - '
Three constitutive equations needed ! 04/07/2025 =[] 51
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Numerical Approach

Local Second gradient model formulation:

o Addition of a kinematical constraint (Chambon et al., 1998; Matsushima et al., 2002)

ﬁf — Fw

this implies: Ou;

ﬁ; — @_x}

the virtual work equation reads

% ézu* * * *
/ (JUD::; + ik ax-@;c ) dv = / Gu; dv + / (pu; + PDu;)ds
JQ J Yk JQ JoQ
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Numerical Approach

Local Second gradient model formulation: strong form

2
00/ 0 Lijk

ij1;

G, =0
|
axj @xjaxk |
Dk Dy Dn, Dn;
mn Dy — —n; — ———np +— il — — 1
kI L Dx; ' Dx; k+Dx;X3fkf g kax”k

Xiﬂcnjnk — R',

&

. :pi

¢ LIEGE université
Urban & Environmental
Engineering
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Numerical Approach

Local Second gradient model formulation: weak form

oy Jd@

( o YAk
Local guantities

Introduction of Lagrange multiplier field :

o -
ja”@imuk i 40— j ——v dQ =W’
OX; OX,

Q J
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Numerical Approach

Local Second gradient model formulation: weak form

Local Second gradient Finite element

q A "
O Vij A A - ¢
A \ -1 0 1
)"ij —0
-1

(a) (b)
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Numerical Approach

Example n°1: Biaxial test (again) VOLLLLLLLLLL Ly
Lo

/

Smooth and rigid boundary

Bottom-left defect
Strain rate : 0.18% / hour \

No lateral confinement

Globally drained (upper and lower drainage)
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Numerical Approach

Example n°1: Biaxial test (again)
First gradient law

Linear elasticity © E, et v,

o 3 3C
Drucker Prager criterion : F = > I, +m{ 1 — m =0
_ 2sing — 0
m_3—sin¢ C=Got(y?)

Associated softening plasticity (decrease of cohesion) :

2
p
f()/p)z(l—(l—a)y—pj si0<yP <7/£
VR

—a’siyP > yP
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Numerical Approach

Example n°1: Biaxial test (again)

e Second gradient law ! Linear relationship deduced from Mindlin

[ Y] D0 0 0 0 D D ] t_:;i.;'lll
Lo 0o 2 2 g -D § § Df|&%
Sz v % ? U _g U U % t:._lr-lf
S| O 0 0 D 0 -2 _D by
oy | | O =& L0 D O 0 0 ‘-:;-:;:{I D =20 kN
Yoo L0 0o £ 0 D Ly t-‘;g.‘;‘)
Y220 022 0 o 0 0 0. t—‘_;jng_,'_,
L | | ova |
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Numerical Approach (%

Example n°1: Biaxial test (again)

Bifurcation directions (Regularization : Second gradient)

..........

...........

4 ' ' ' ' } ‘ b @nrd

-
|

. (s
A—-._- > -
| R - -
peoyr-—= -
s <
“‘"‘.’- -
0 O ')
s St s .-
2 A )
o - - -
» . - »

4 ] ) $ M

X () )

1 ’ v

’ A A LR ]

+ gt

¥ *

i O

|

L,

)

Before After
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Numerical Approach

Example n°1: Biaxial test (again)

Plastic loading point (Regularization : Second gradient)

.....................

..........
. 4 R L L L LY : { I S I E—
......................

Before After
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Numerical Approach

Example n°1: Biaxial test (again)

Velocity field (Regularization : Second gradient)

.........

||||||

"""""

,,,,,,,,
| 4 4 T e~ . i * o e S g T S SIS SEEE

Before After
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Numerical Approach

Example n°1: Biaxial test (again)

3000 -
B
2500 ~
Homogeneous
— » 4 Non linearity
é 2000 W Bifurcation criterion
c
2
E
o 1500
™
Q
5
< 1000 4
500 ~
0 T T T T 1
0 0.05 0.1 0.15 0.2 0.25

Vertical displacement [cm]
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Numerical Approach

Example n°1: Biaxial test (again)

(Regularization : Second gradient)

Non uniqueness of the solution
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Example n°1: Biaxial test (again)

3.0 -
(Regularization : Second gradient)
25 -
E 201 — Parfait
o — Mode 1
% . — Mode 2
o ' Mode 4
o — Mode 5
G Mode 6
1.0 -
05 _ %
00 T T T T T T T 1
0.0 05 1.0 1.5 2.0 25 3.0 35 4.0

Déplacement vertical [mm]

Non unigueness of the solution 04/07/2025 =1 64
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Numerical Approach

Example n°1: Biaxial test (again)

700 ‘ | . | . : : : - |
H
L taws
m; mm
= . II" -]
= =
homogeneous i :
600 - - - Nk i ez
———— 1 active band r ] m:t
] Tl ;
= \ —=—— 2 active bands i i ik i ] 1
A . 1 o = s
= a. ——e—— 1 deactivated band il i b 1 =
[4)] = A : - s T - i
g -1 Tt p - . fm il _-‘I
K =
B 500 1 i - r—Ju. ul
£ Tt -
5 . o H
a T il B r 5 = k!
o | i i EE
In T =|1" =
400 B e o
'\L"| : -l‘-=|_
: _I_-\L
300 ' | s 1 '
0.01 0.02 0.03 0.04

axial shortening [m]

Non unigueness of the solution
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Numerical Approach

Local Second gradient HM model formulation: weak form

v Second gradient effects are assumed only for solid phase

v' For the mixture, there are stresses which obey the Terzaghi
postulate and double stresses which are only the one of the
solid phase

v" Boundary conditions for the mixture are enriched
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Numerical Approach

Local Second gradient HM model formulation: weak form

I Gijai+2ijk a dQ=W_
OX; OX; OX,

Q

*

_[I\ZI p*—miéidQ:jQ p*dQ+Jﬁ p'dl’

OX,
Darcy’s law m =-p, X (@ +0,9:)
oo
Storage law M=p, P b+ p. Q2
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Numerical Approach

Local Second gradient HM model formulation:

Isoparametric Finite Element :

&

— 1/\‘1
o o ] O
COup O— 0
Vi ] 15 2 B> &
iy [
o O ! ! 0
(a) (b)

8 nodes for macro-displacement and pressure field
4 nodes for microkinetic gradient field
1 node for Lagrange multipliers field

4, # LIEGE université

%
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Numerical Approach

Example n°1: Biaxial test (last time) VOLLILLLLLLd Ll
s oo o s |

/

Smooth and rigid boundary

Bottom-left defect
Strain rate : 0.18% / hour \

No lateral confinement

Globally drained (upper and lower drainage)
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Numerical Approach

e Equivalent strain after 0.2 % of axial strain (x = 102 m?2)

(20 x 10) (30 x 15) (40 x 20)
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Numerical Approach

e Plastic loading point after 0.2 % of axial strain (x = 102 m?2)

(20 x 10) (30 x 15) (40 x 20)
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Numerical Approach

Coupled modelling — Comparison Coarse mesh - Refined mesh

Coupled second gradient FE formulation

Deviatoric strains
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