

UNIVERZITA
KARLOVA

Avec le soutien de
la

LIÈGE université
Urban & Environmental
Engineering

31st INTERNATIONAL CONFERENCE

PRAGUE GEOTECHNICAL DAYS 2025

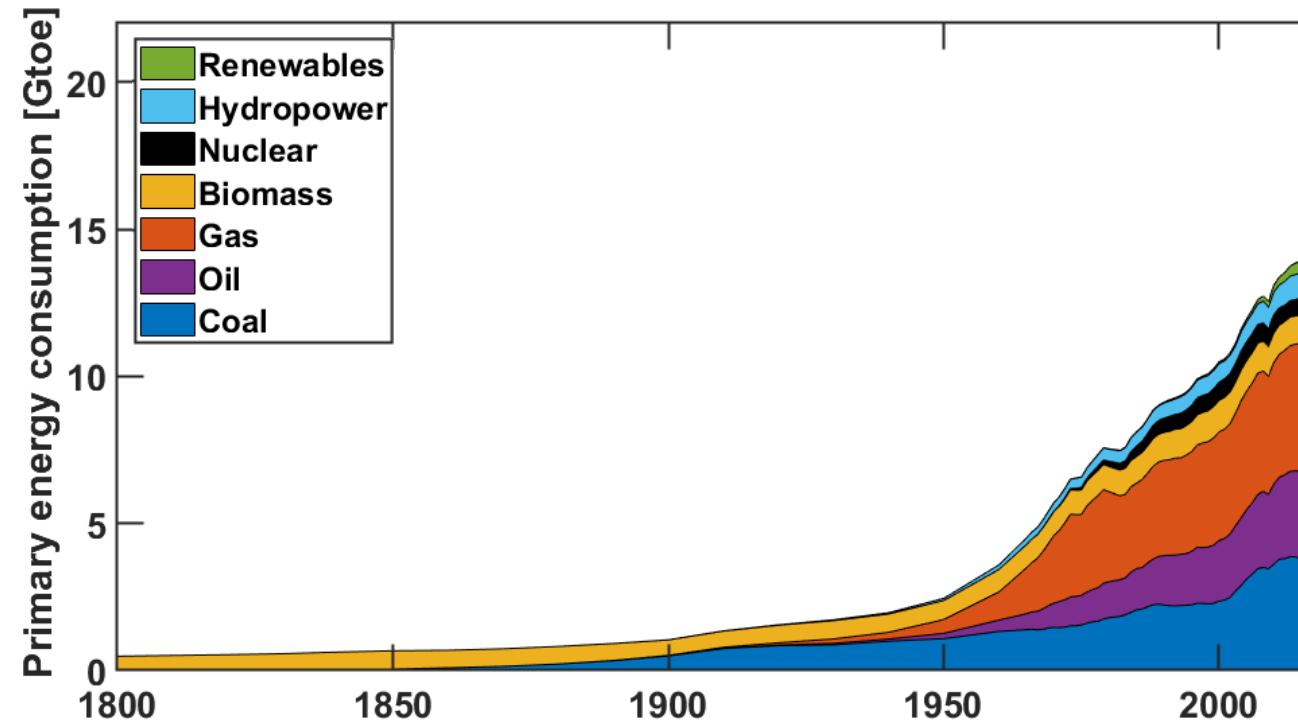
ROCK MECHANICS IN ENGINEERING PRACTICE

Using numerical modelling for the design of Nuclear Waste Geological disposal

Frédéric COLLIN, Benoit PARDOEN, Gilles
CORMAN, Hangbiao SONG

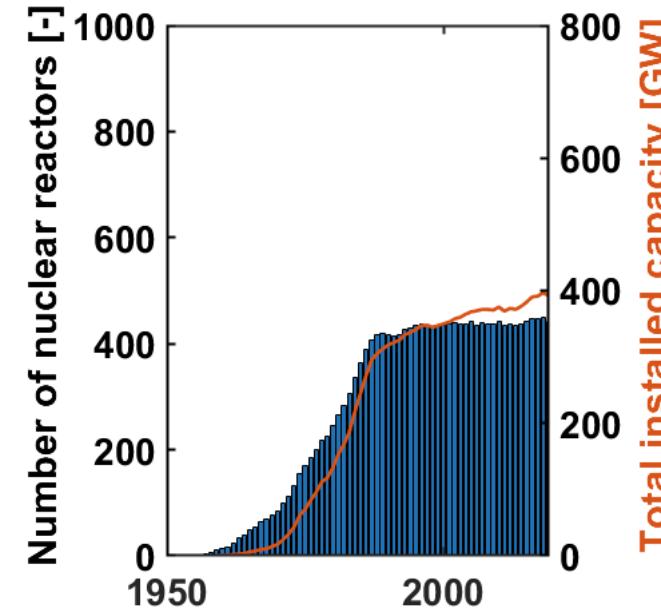
26-05-2025

A story of energy

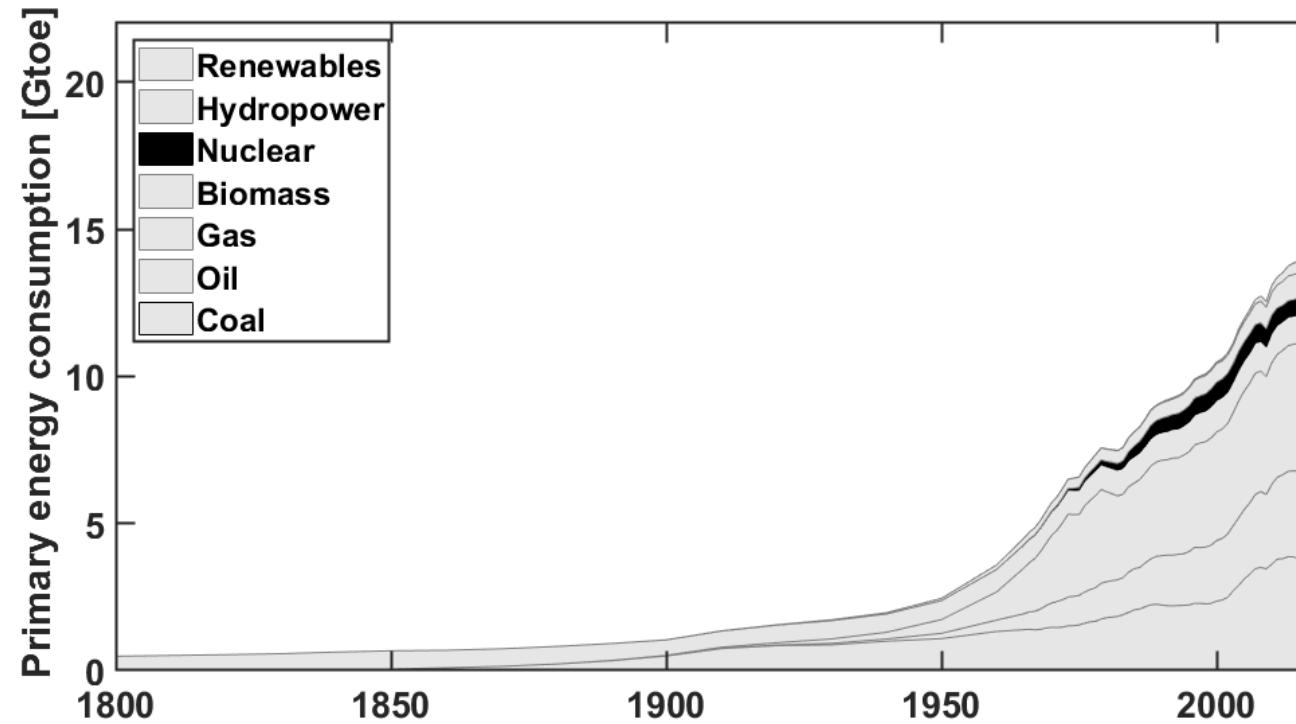


Data from [BP, 2022] &
[Smil, 2016].

A story of energy

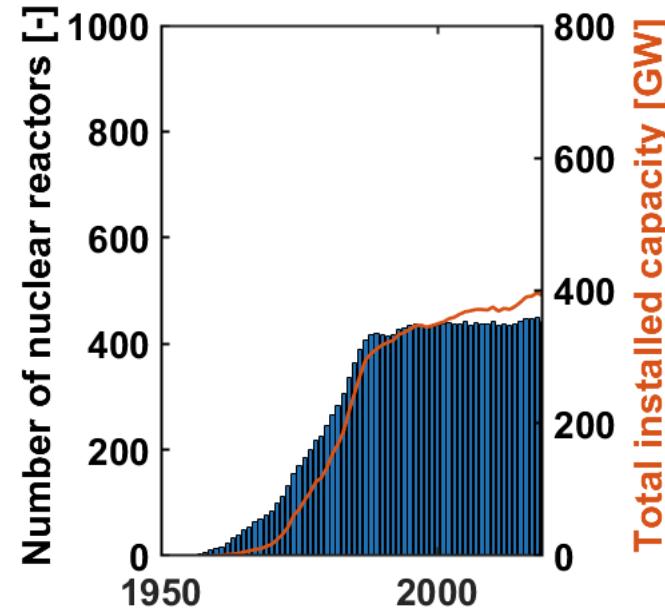


Data from [BP, 2022] & [Smil, 2016].

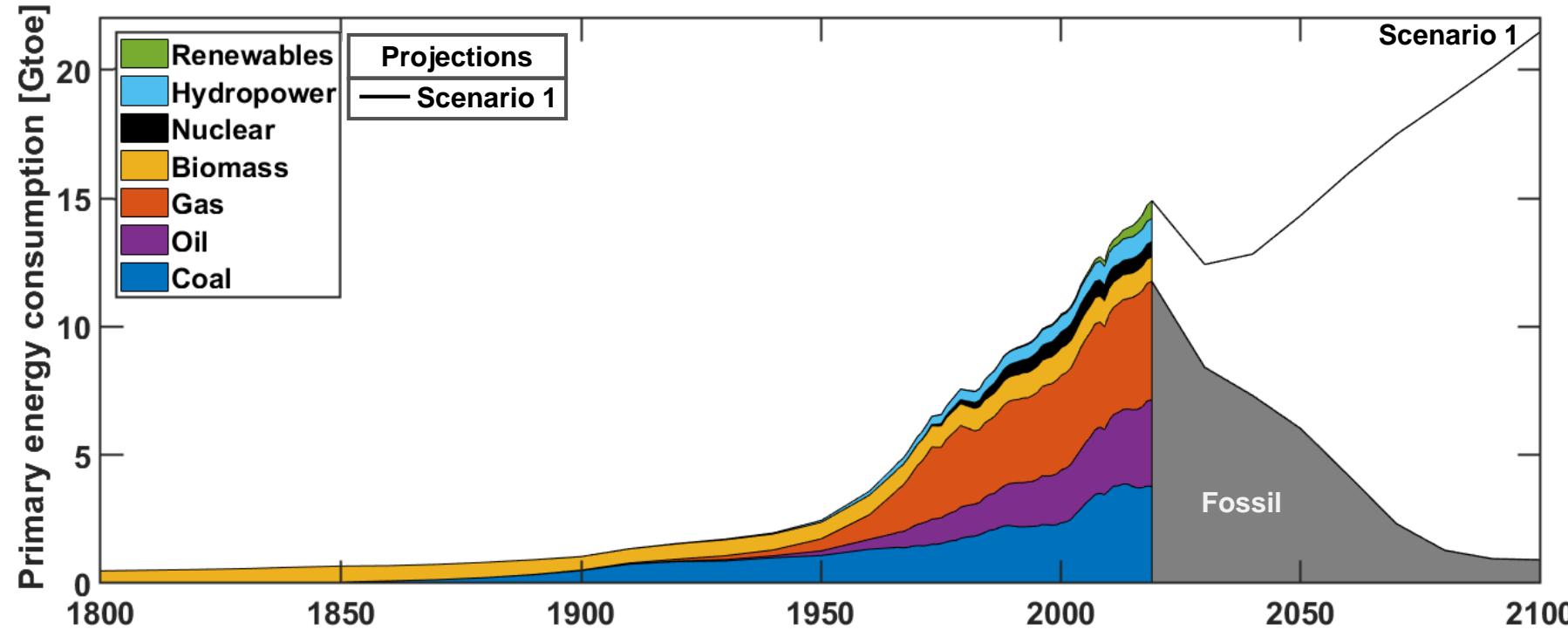


Data from [IAEA, 2021].

A story of energy

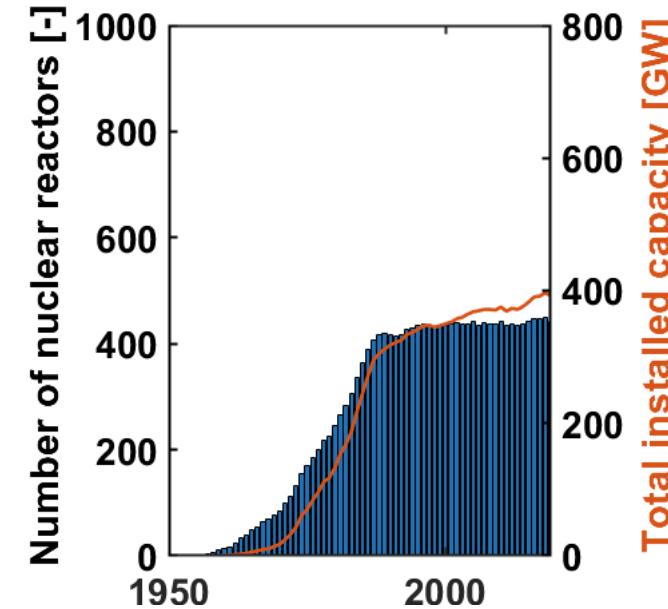
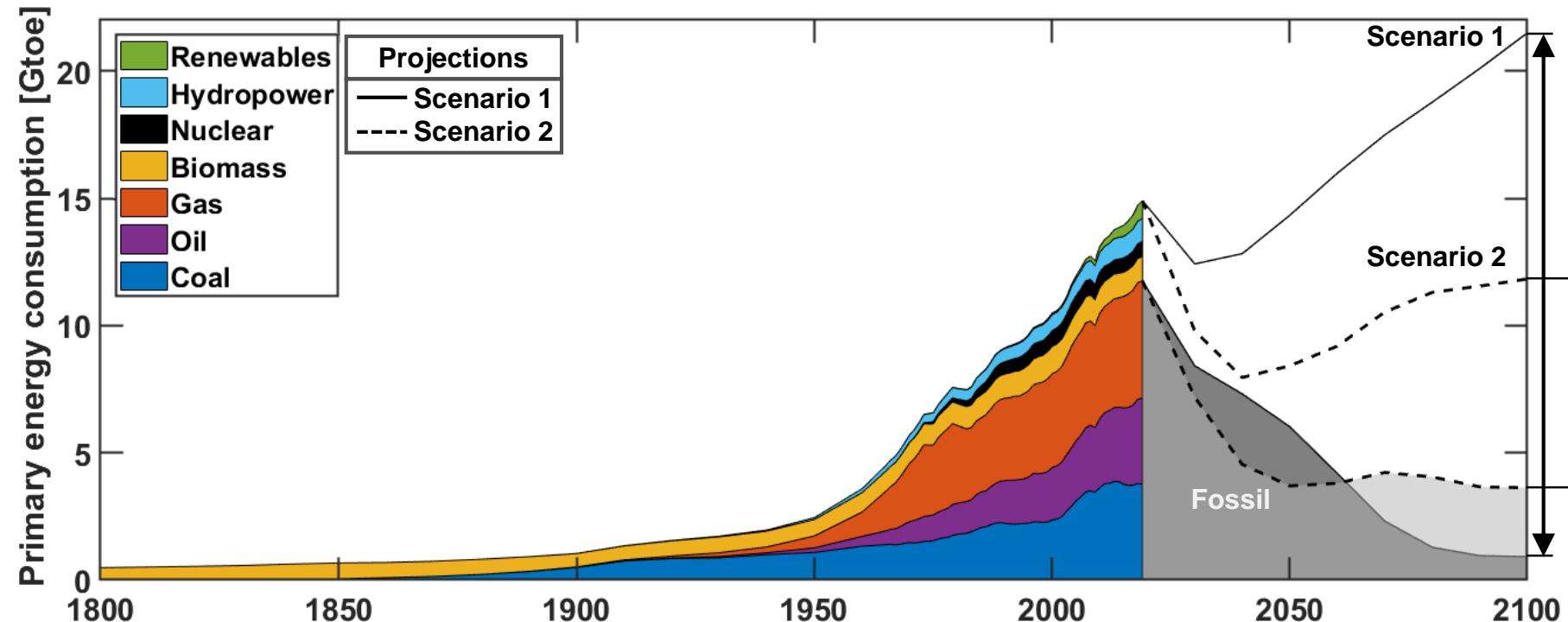


Data from [IAEA, 2021].

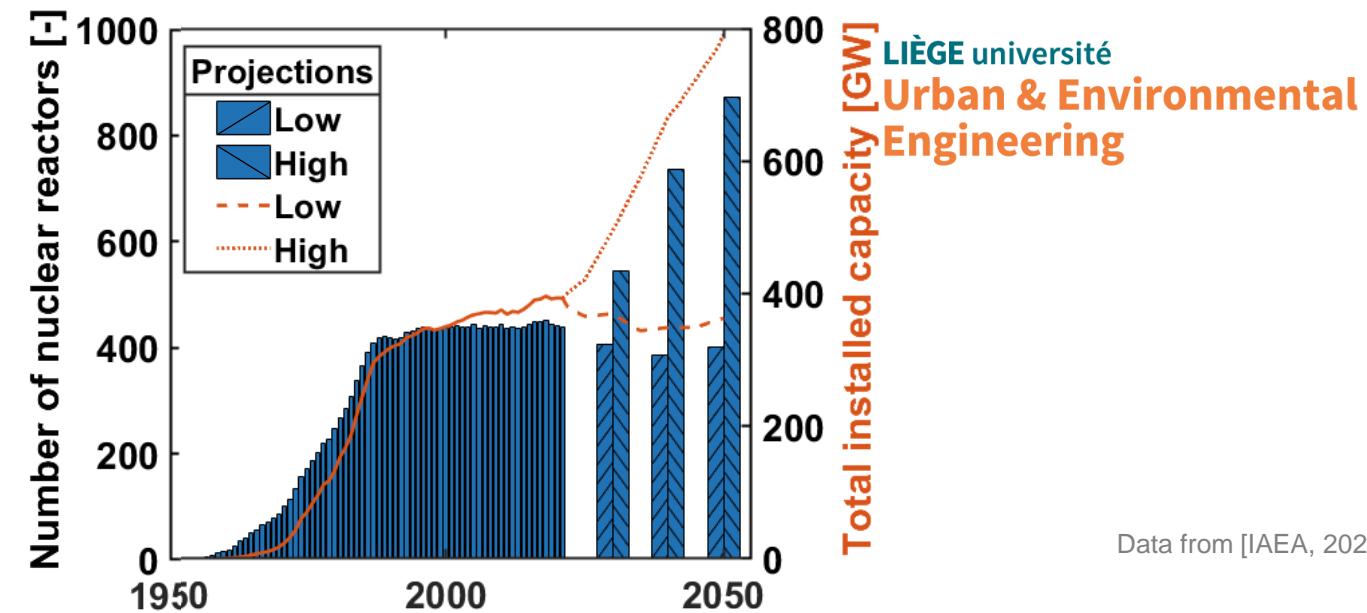


Data from [BP, 2022] & [Smil, 2016].

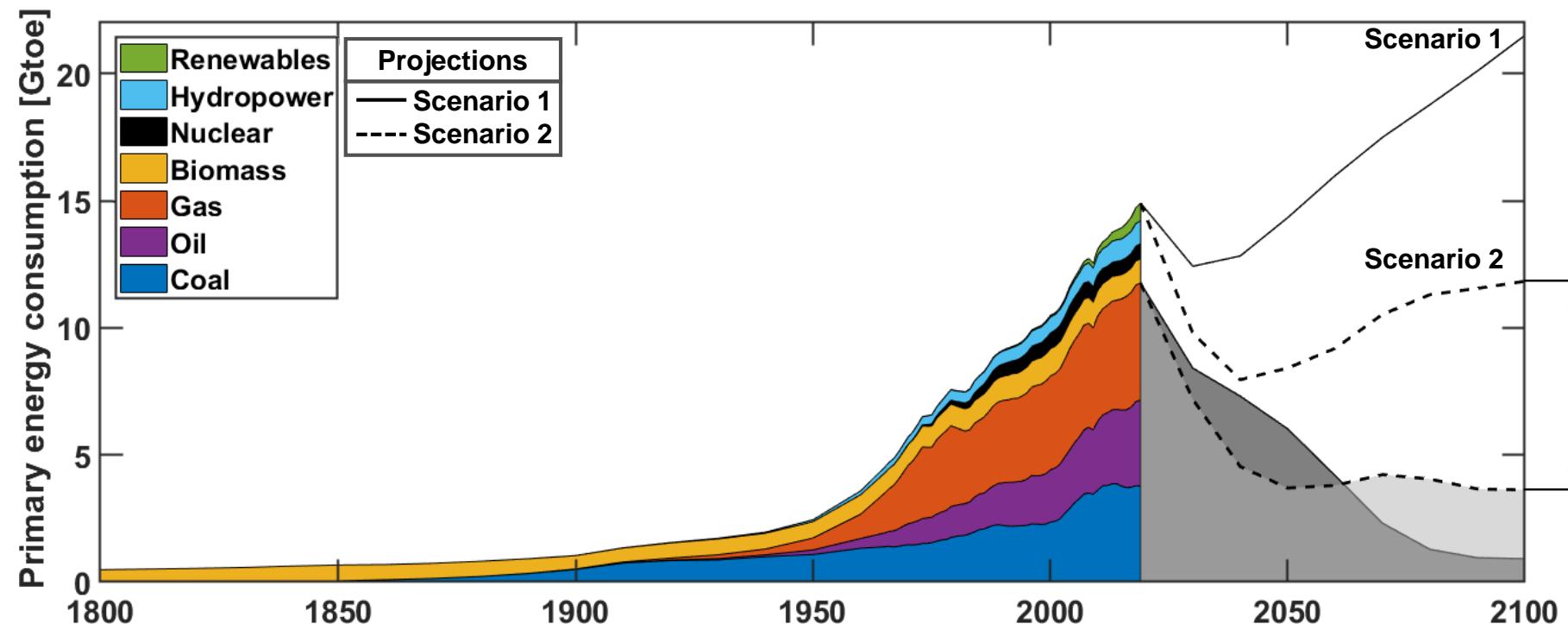
A story of energy



A story of energy

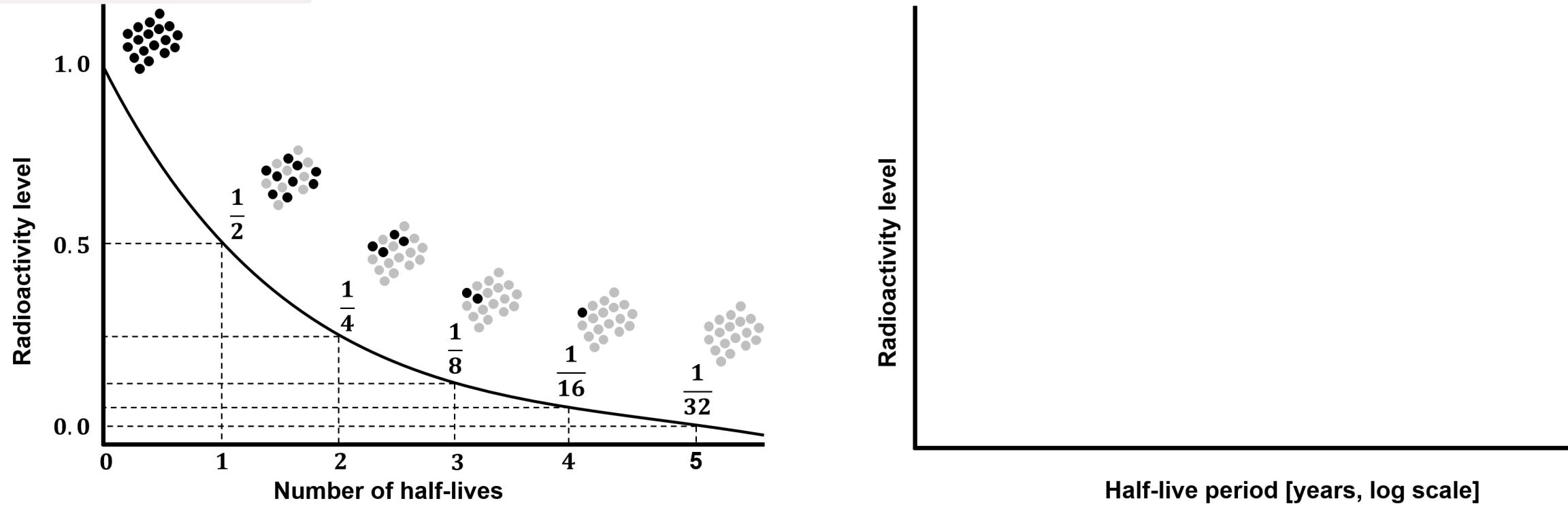


Data from [IAEA, 2021].



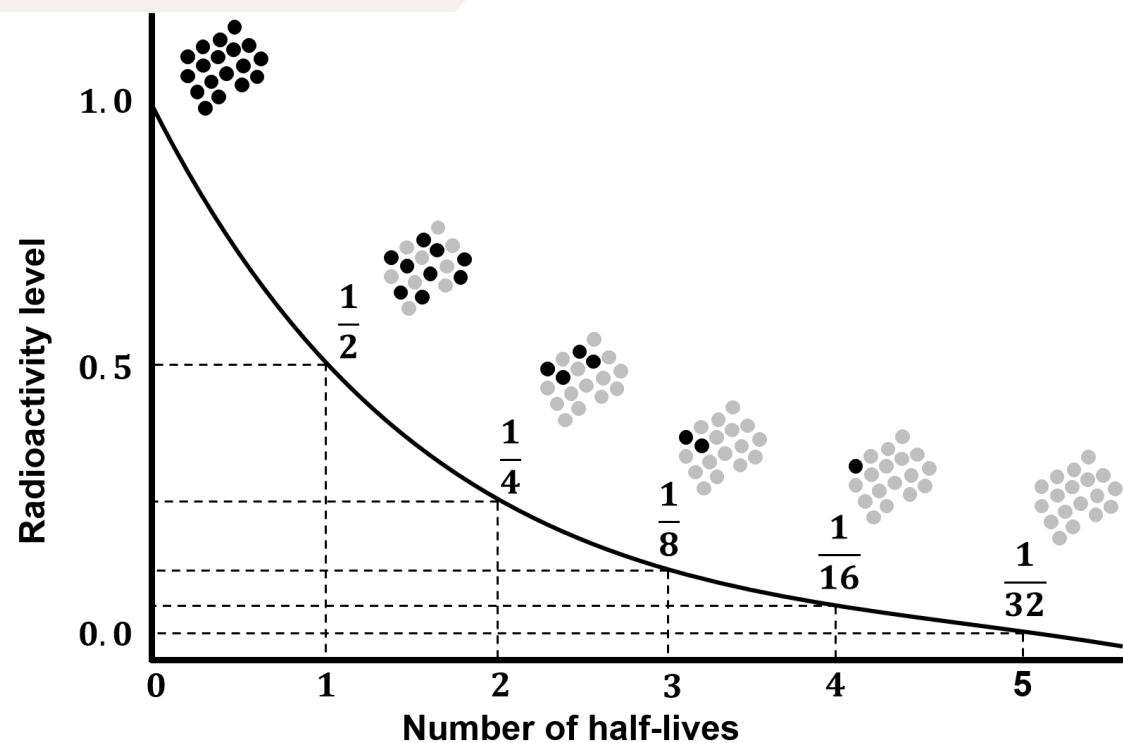
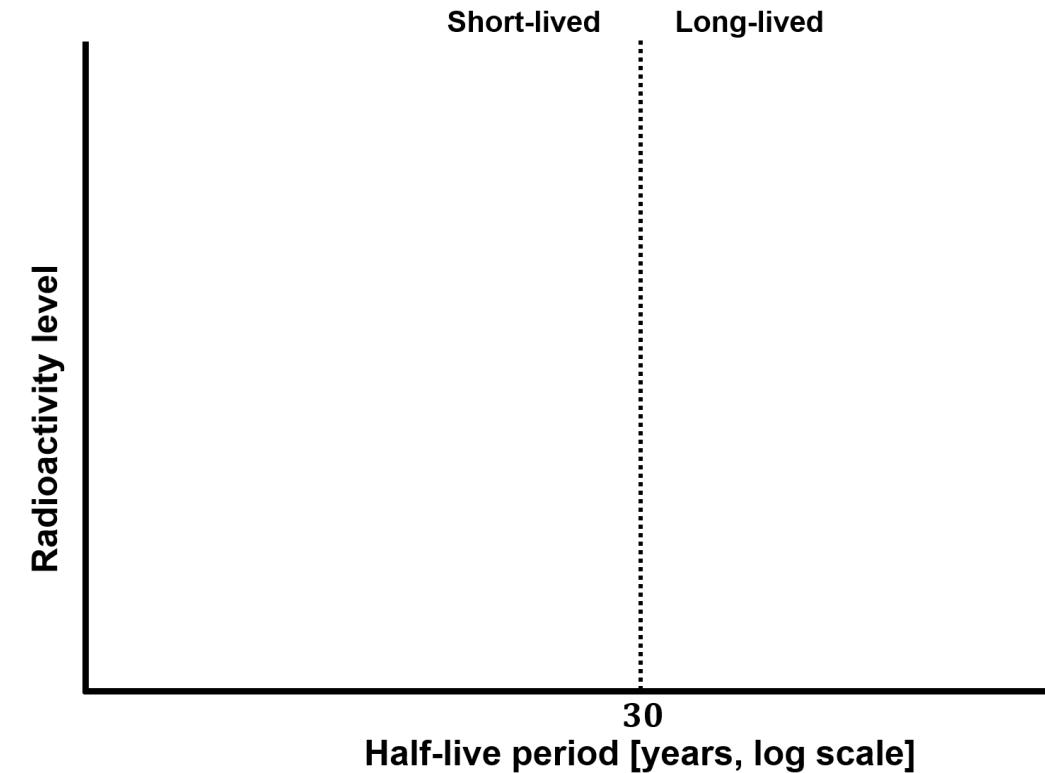
Data from [BP, 2022] & [Smil, 2016].

Management of radioactive waste



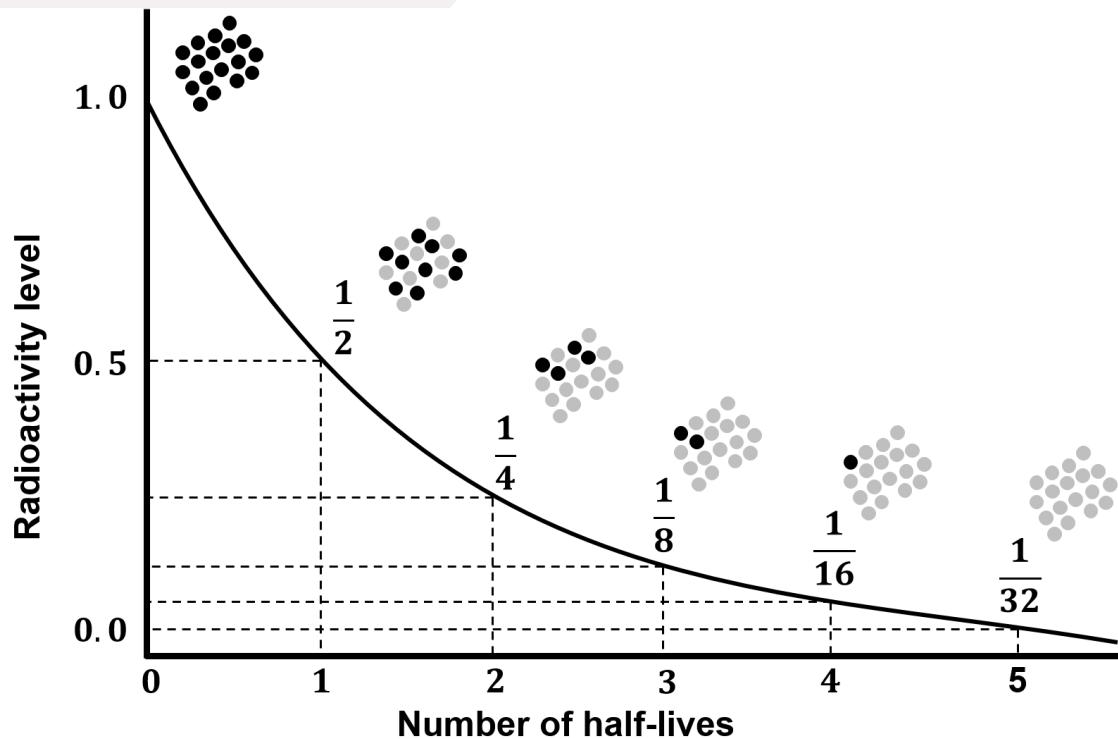
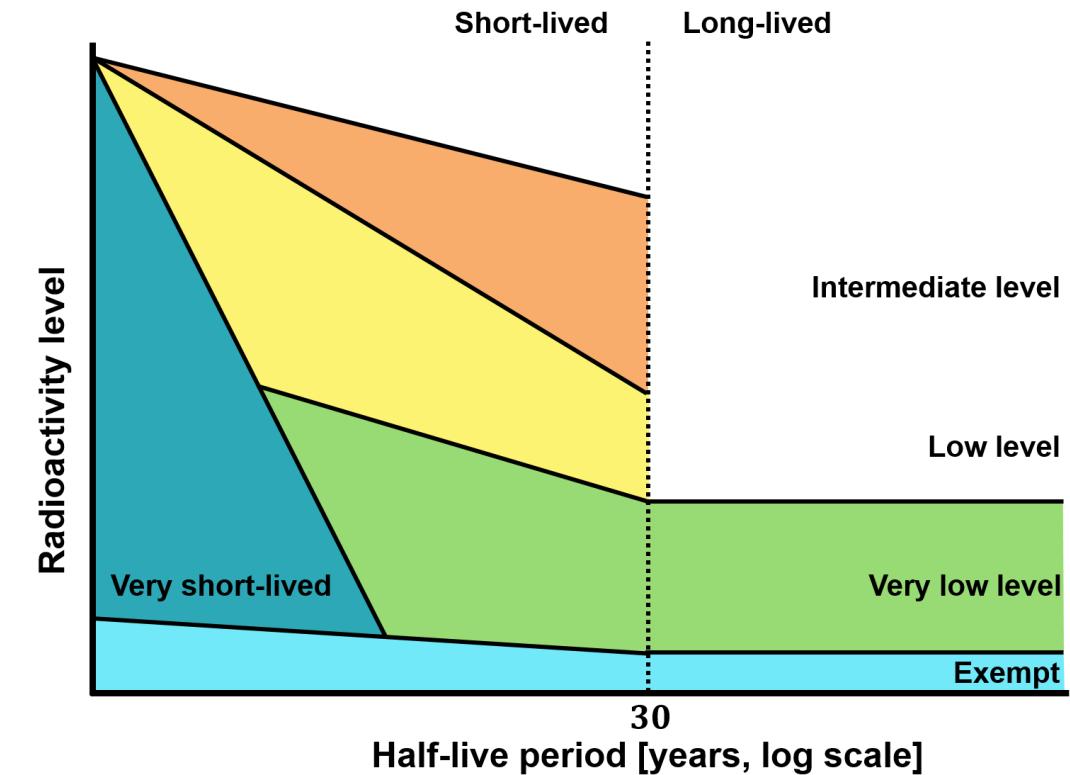
[IAEA, 2009]

Management of radioactive waste



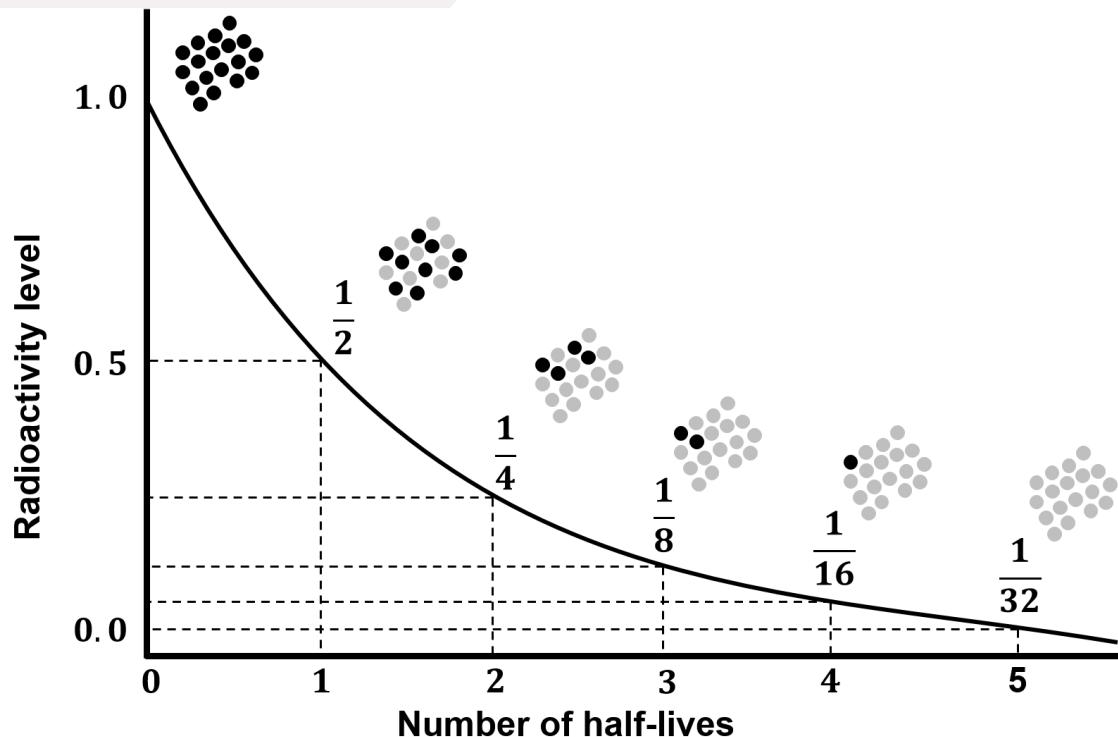
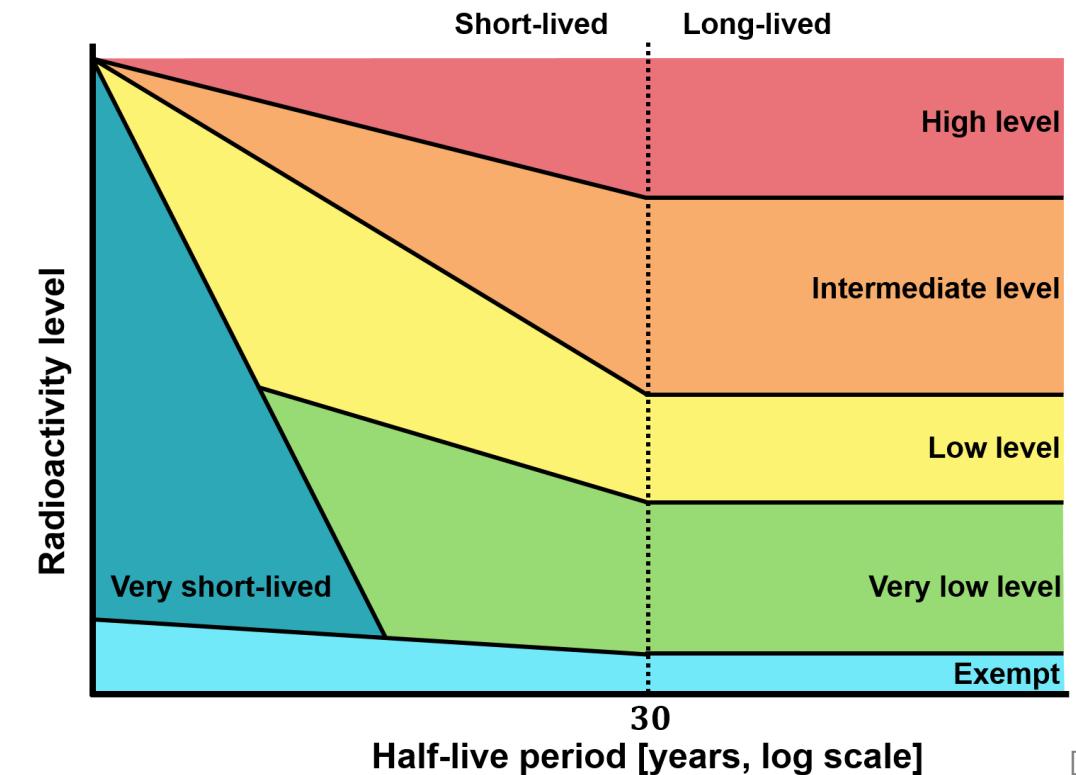
[IAEA, 2009]

Management of radioactive waste



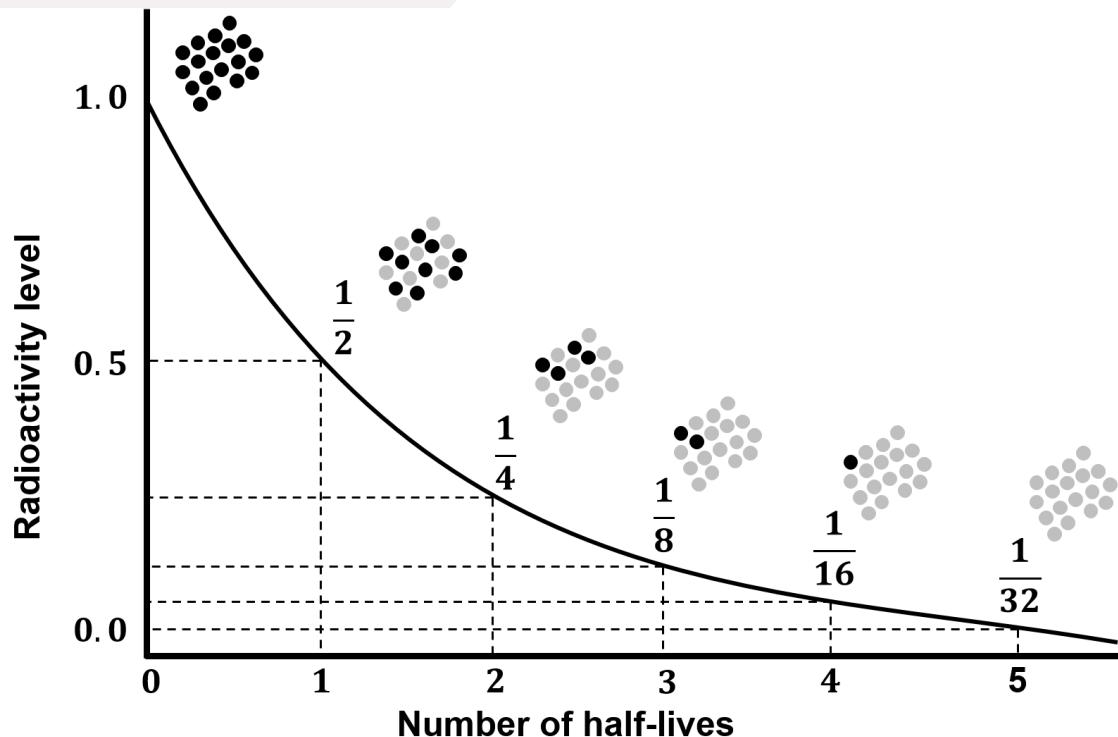
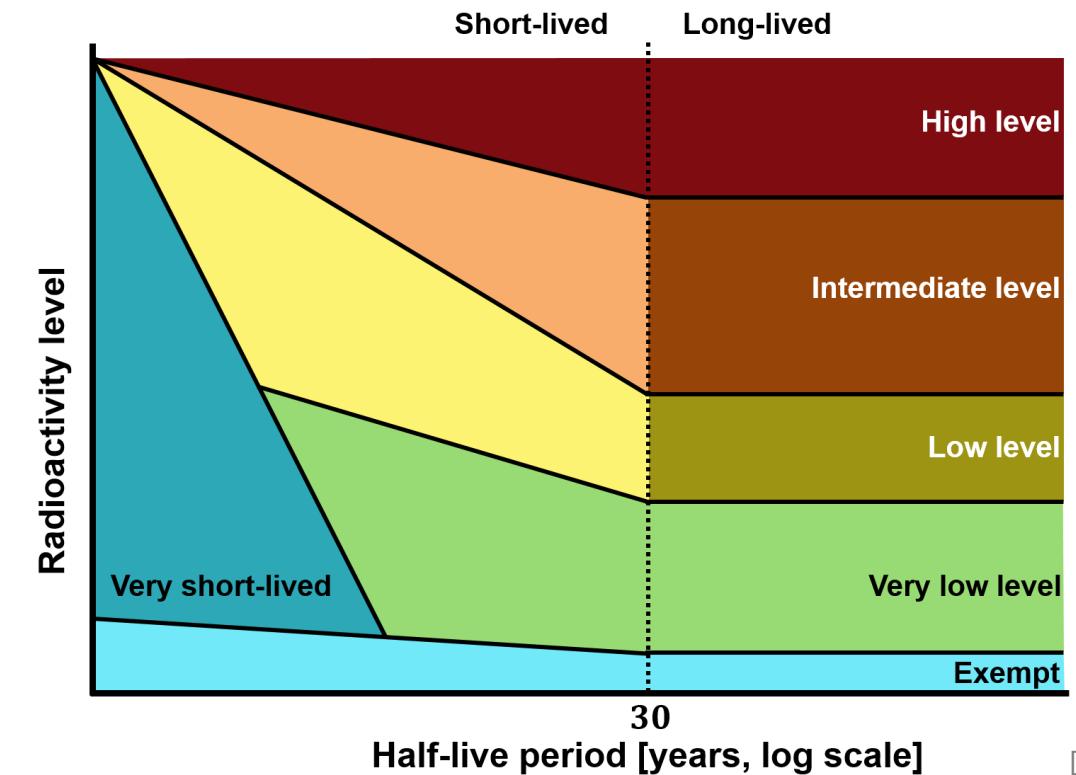
[IAEA, 2009]

Management of radioactive waste



[IAEA, 2009]

Management of radioactive waste



[IAEA, 2009]

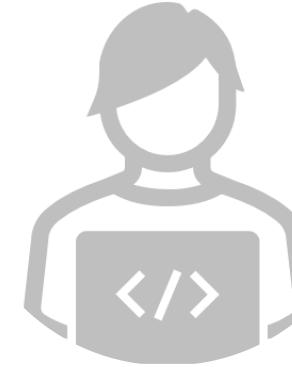
Table of Contents

Context

Nuclear electricity

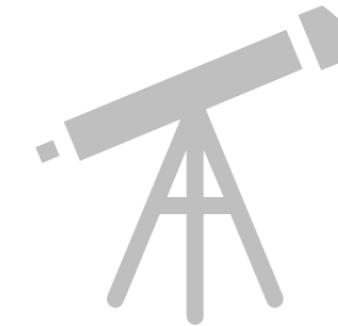
Geological repository

Underground structure



Numerical Approach

Second gradient model



Application

Underground nuclear waste disposal

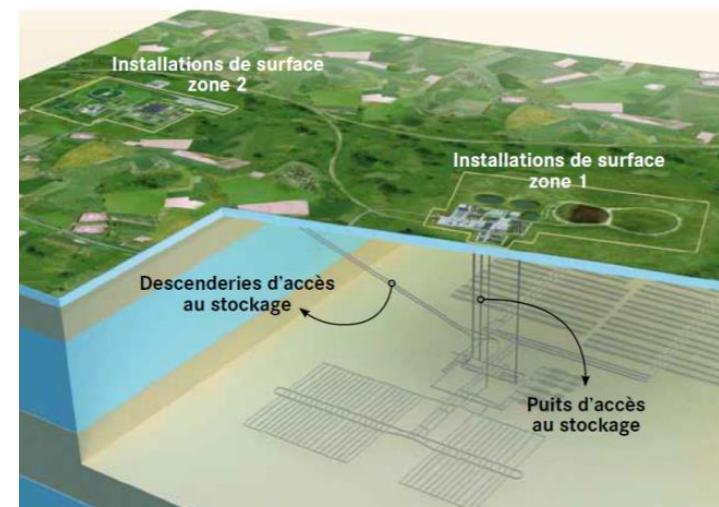
Deep geological repository

Intermediate
(long-lived)
&
high activity
wastes

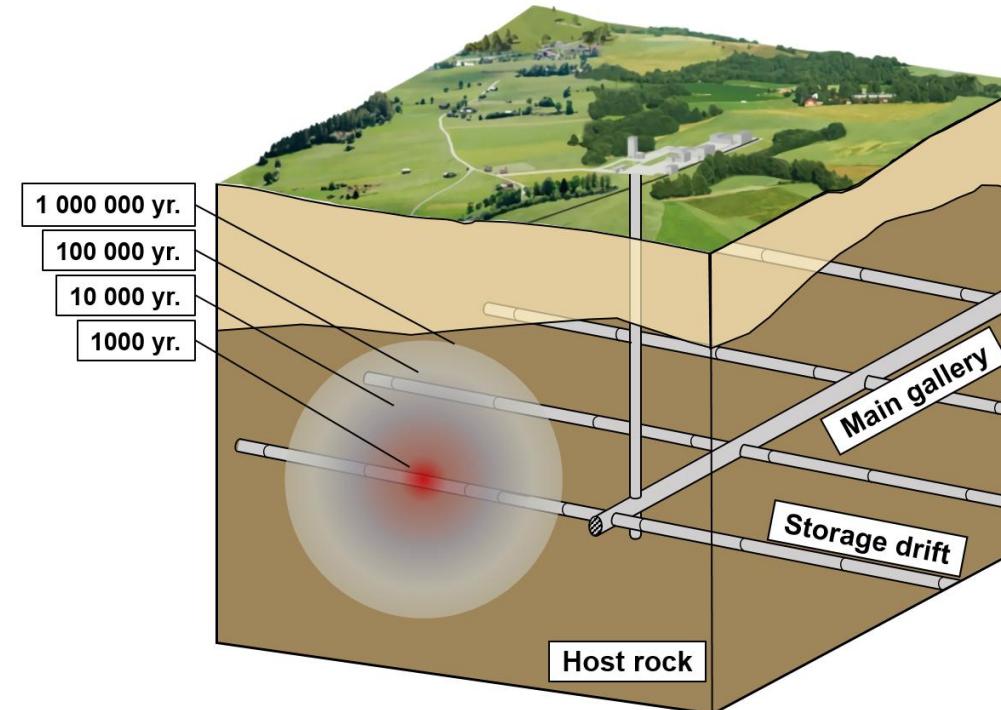
Deep geological disposal

Repository in deep
geological media with
good confining properties
(Low permeability
 $K < 10^{-12} \text{ m/s}$)

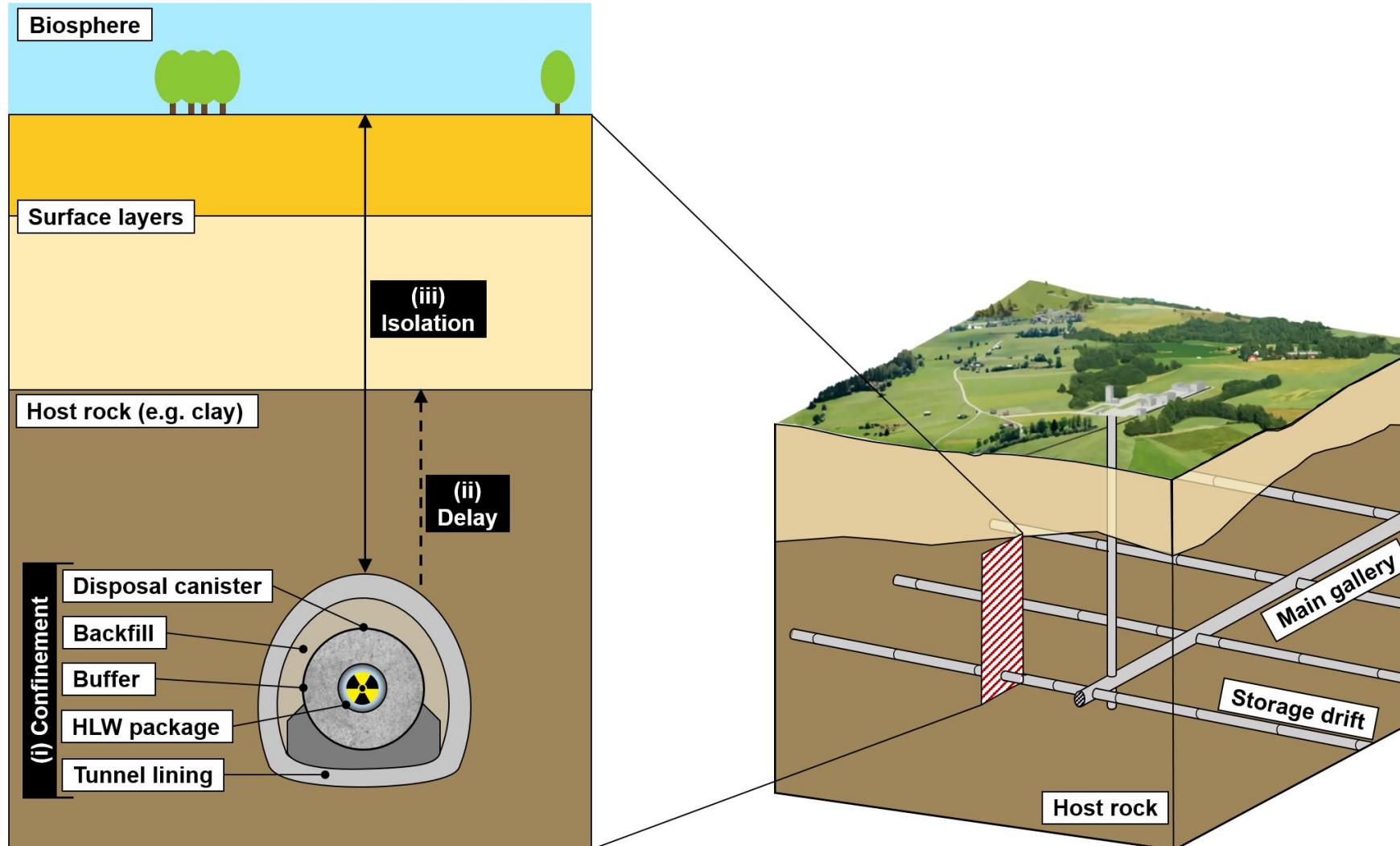
Underground structures
= network of galleries



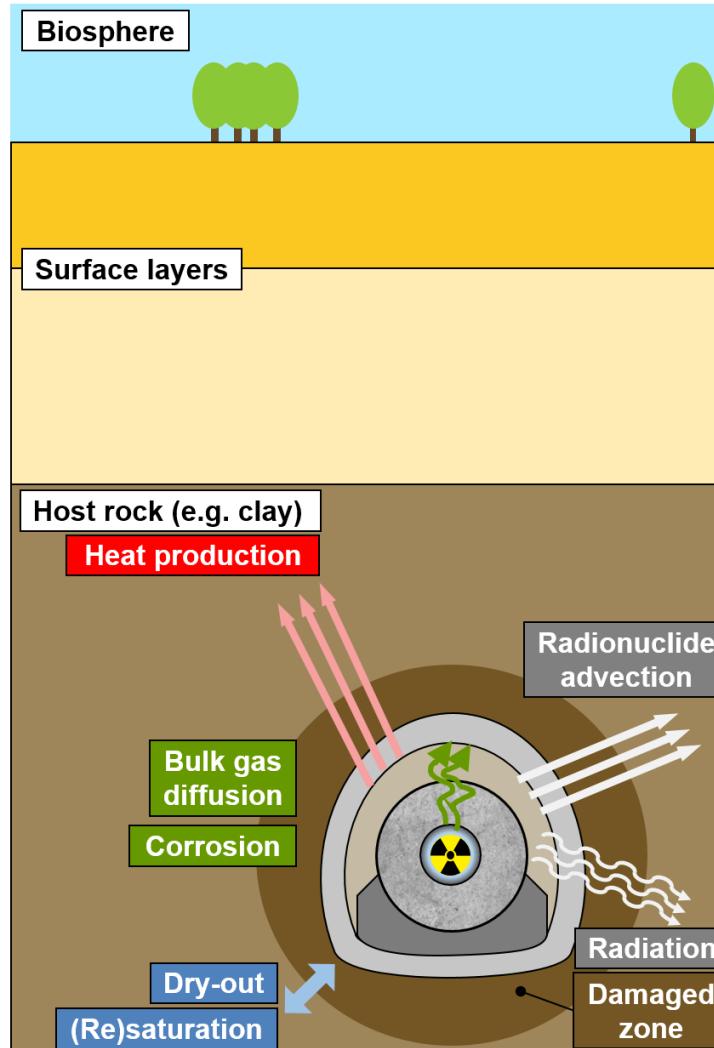
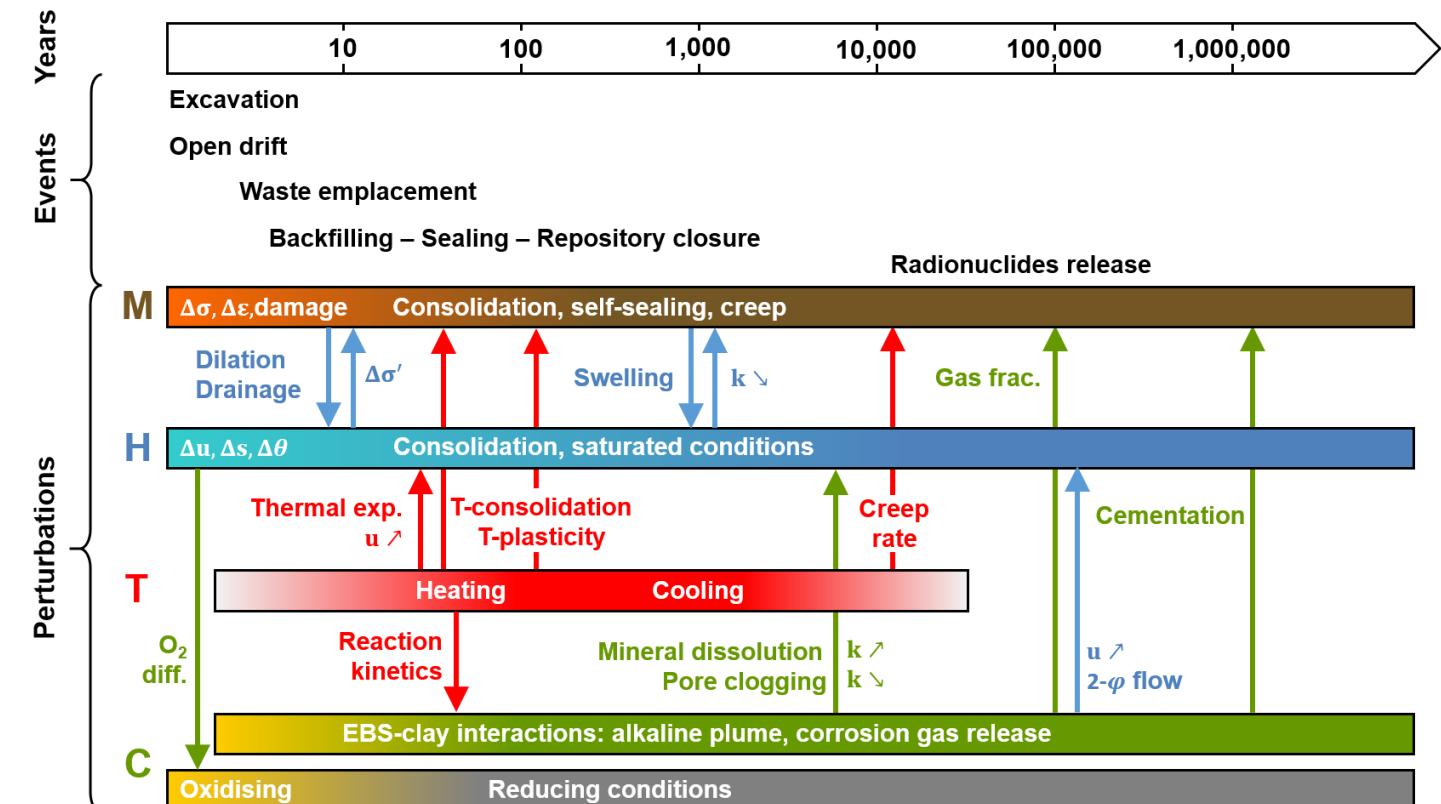
Deep geological repository



Deep geological repository



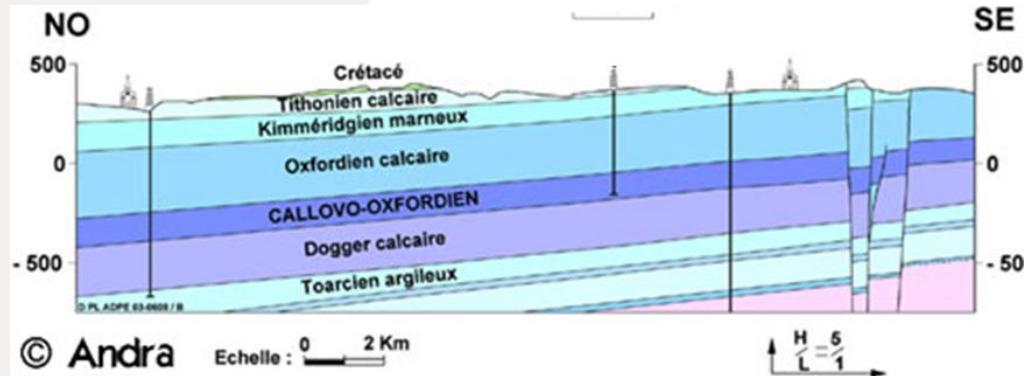
Deep geological repository



Long term management of radioactive wastes

Callovo-Oxfordian claystone (COx)

Sedimentary clay rock (France).

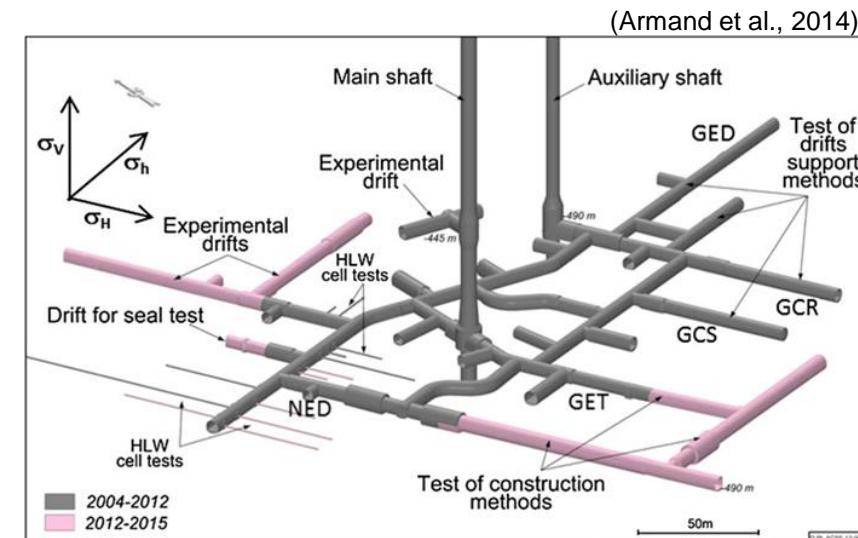


Borehole core samples
(Andra, 2005)

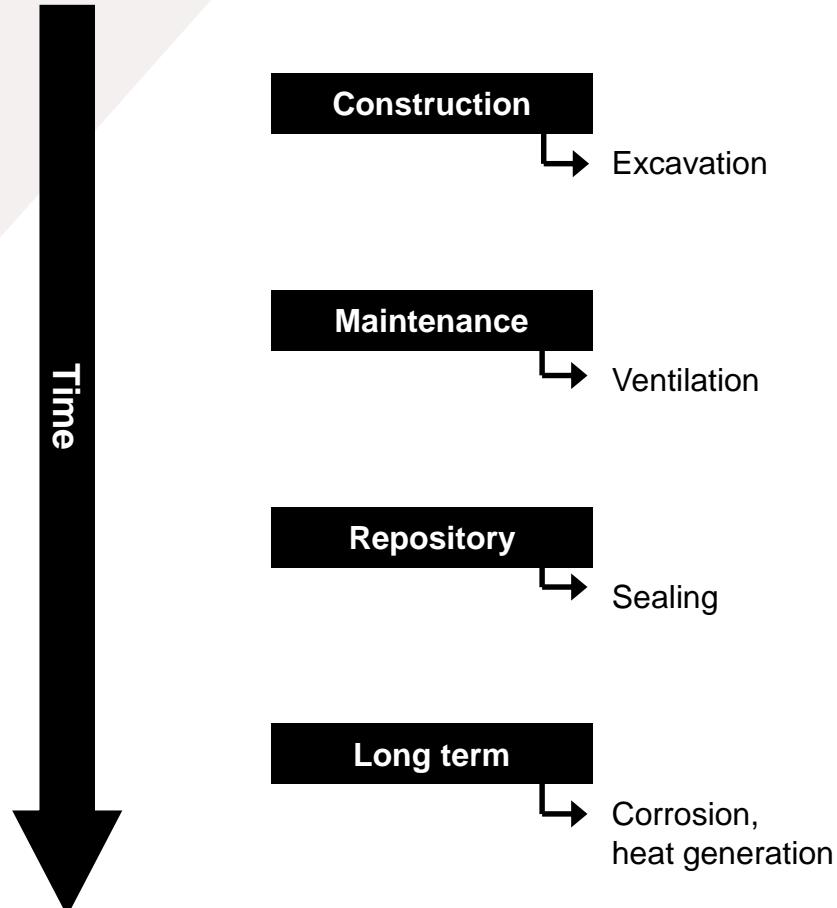
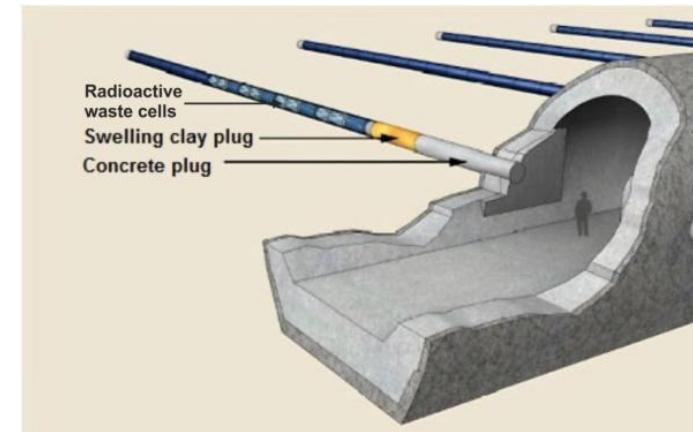
- Underground research laboratory

Feasibility of a safe repository

France (Meuse / Haute-Marne, Bure)

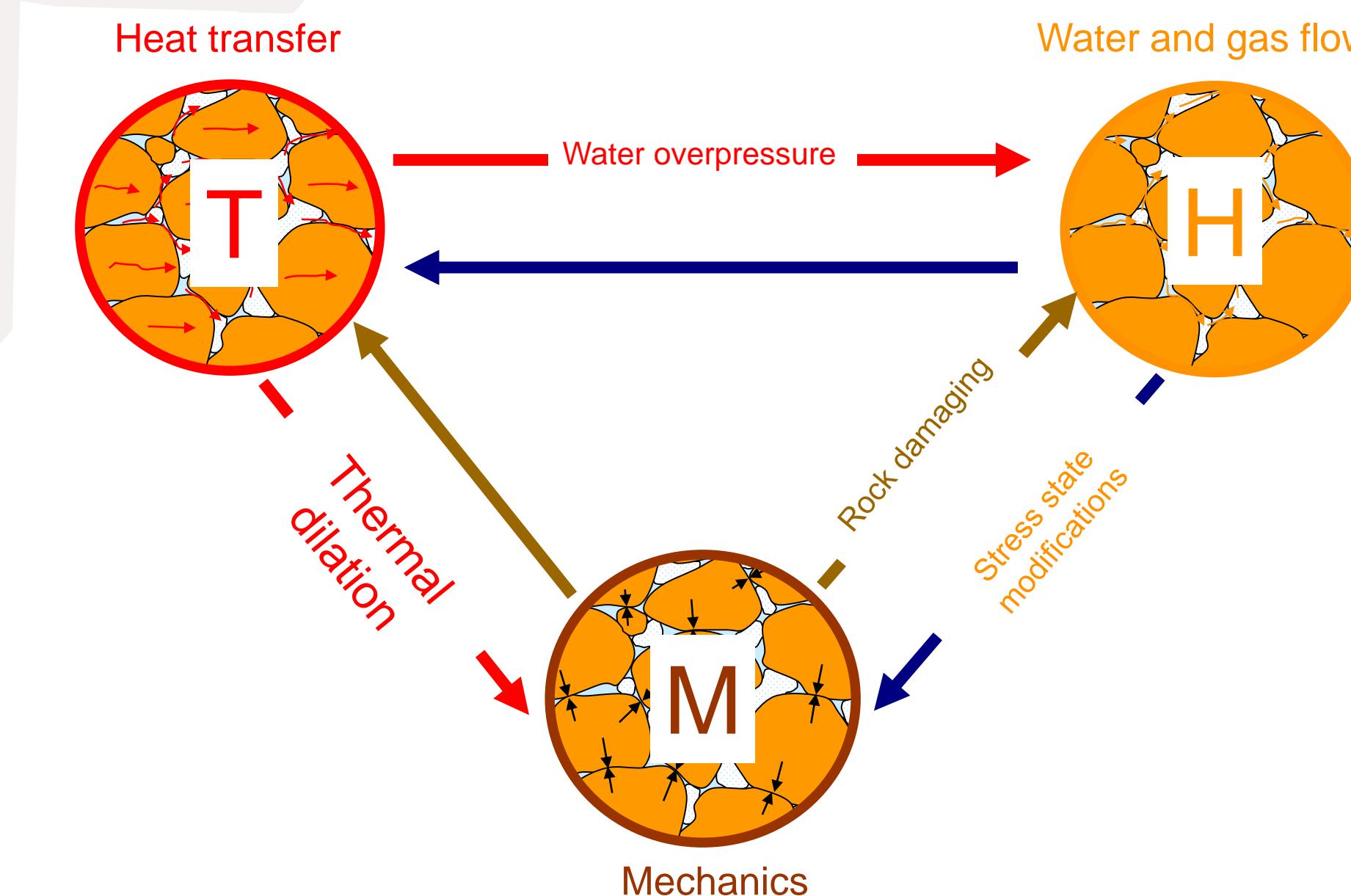


Repository phases

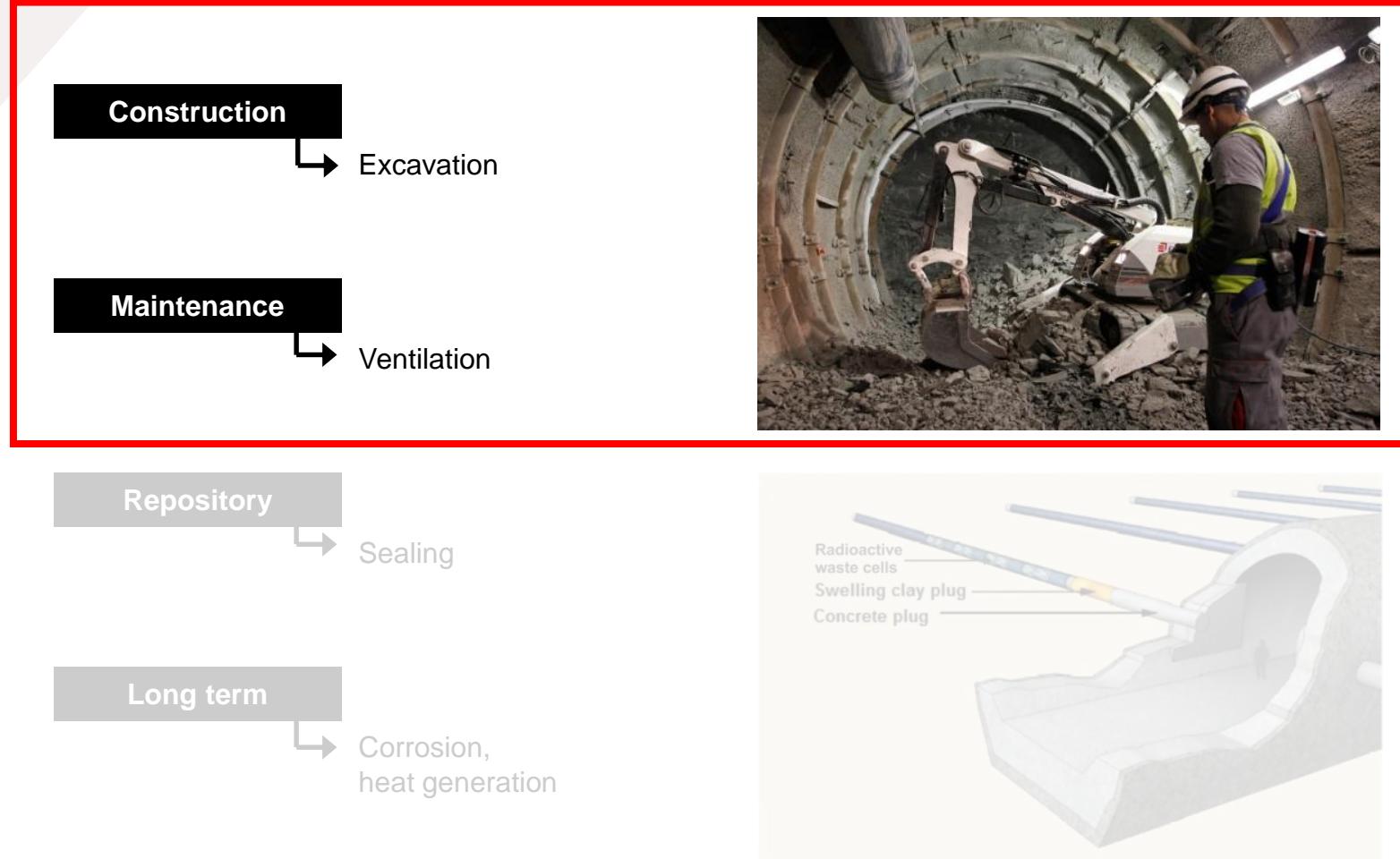


Type C wastes (Andra, 2005)

THM COUPLINGS

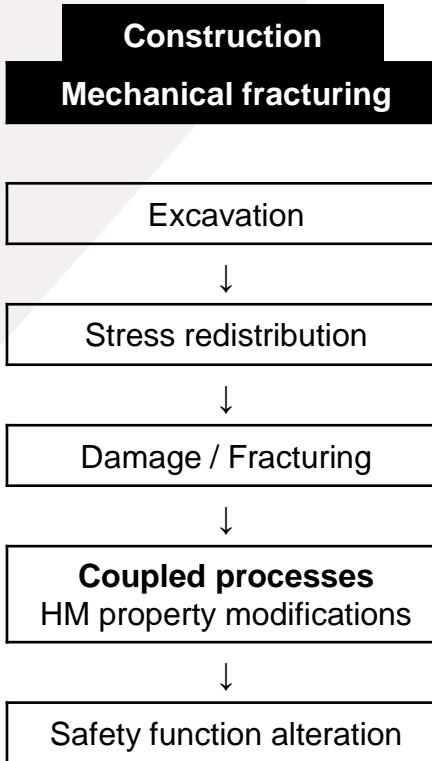
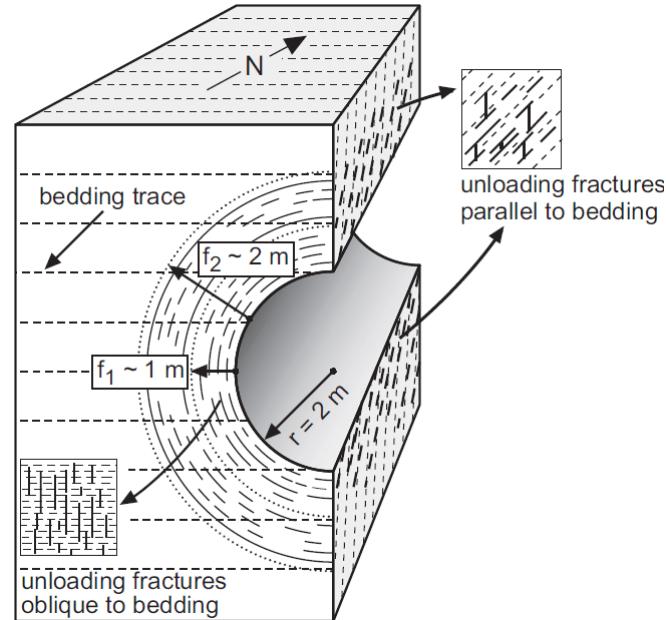


Repository phases



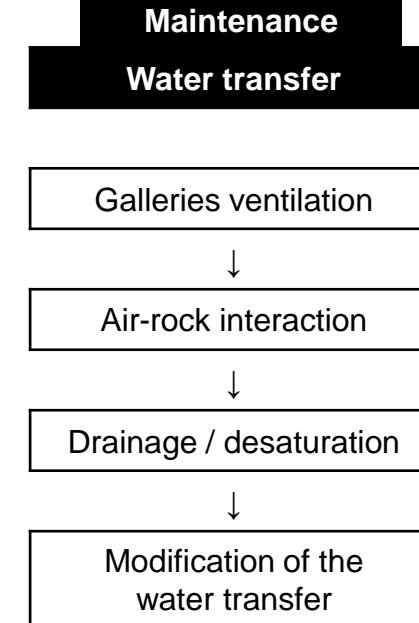
Type C wastes (Andra, 2005)

Excavated damaged zone - EDZ

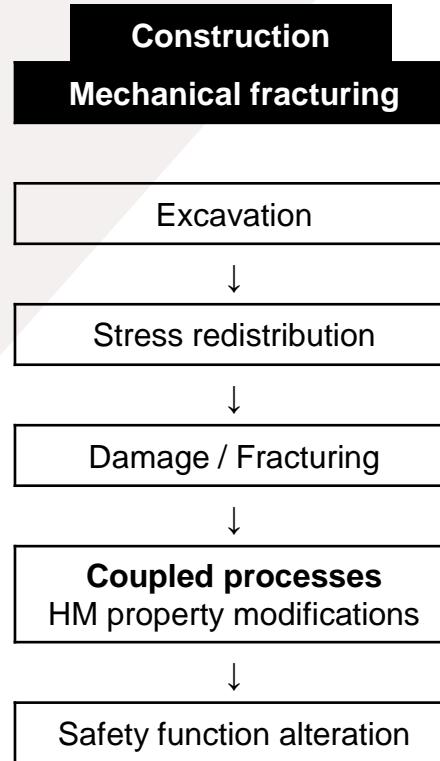
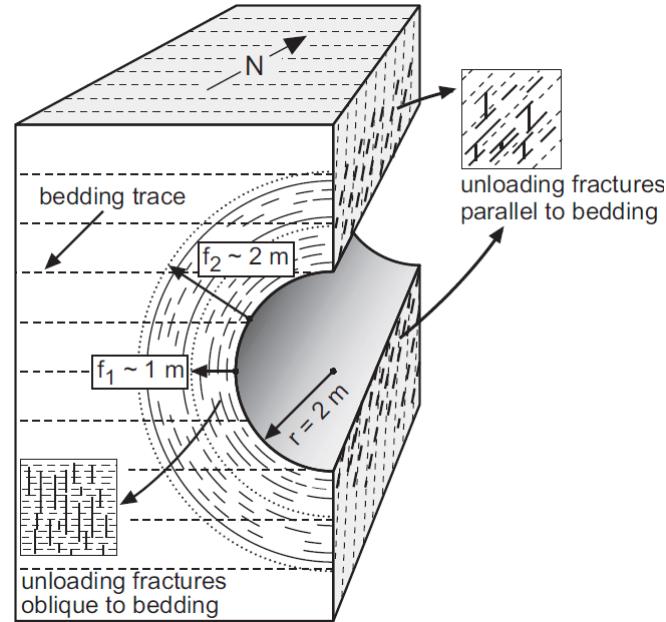


Fracturing & permeability increase
(several orders of magnitude)

Opalinus clay in Switzerland
(Bossart et al., 2002)



Excavated damaged zone - EDZ



Fracturing & permeability increase
(several orders of magnitude)

Opalinus clay in Switzerland
(Bossart et al., 2002)

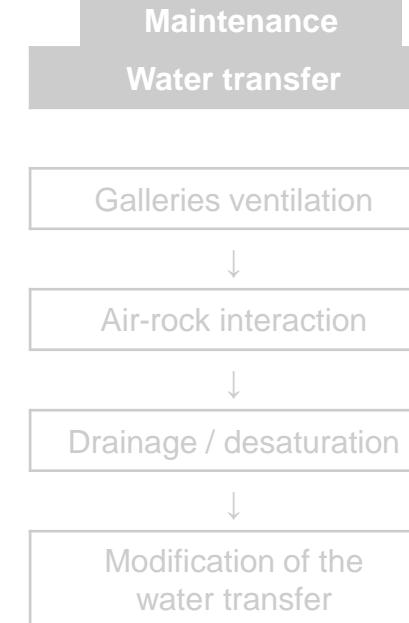


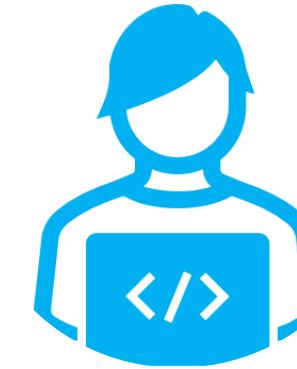
Table of Contents

Context

Nuclear electricity

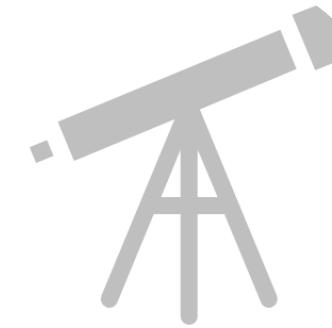
Geological repository

Underground structure



Numerical Approach

Second gradient model

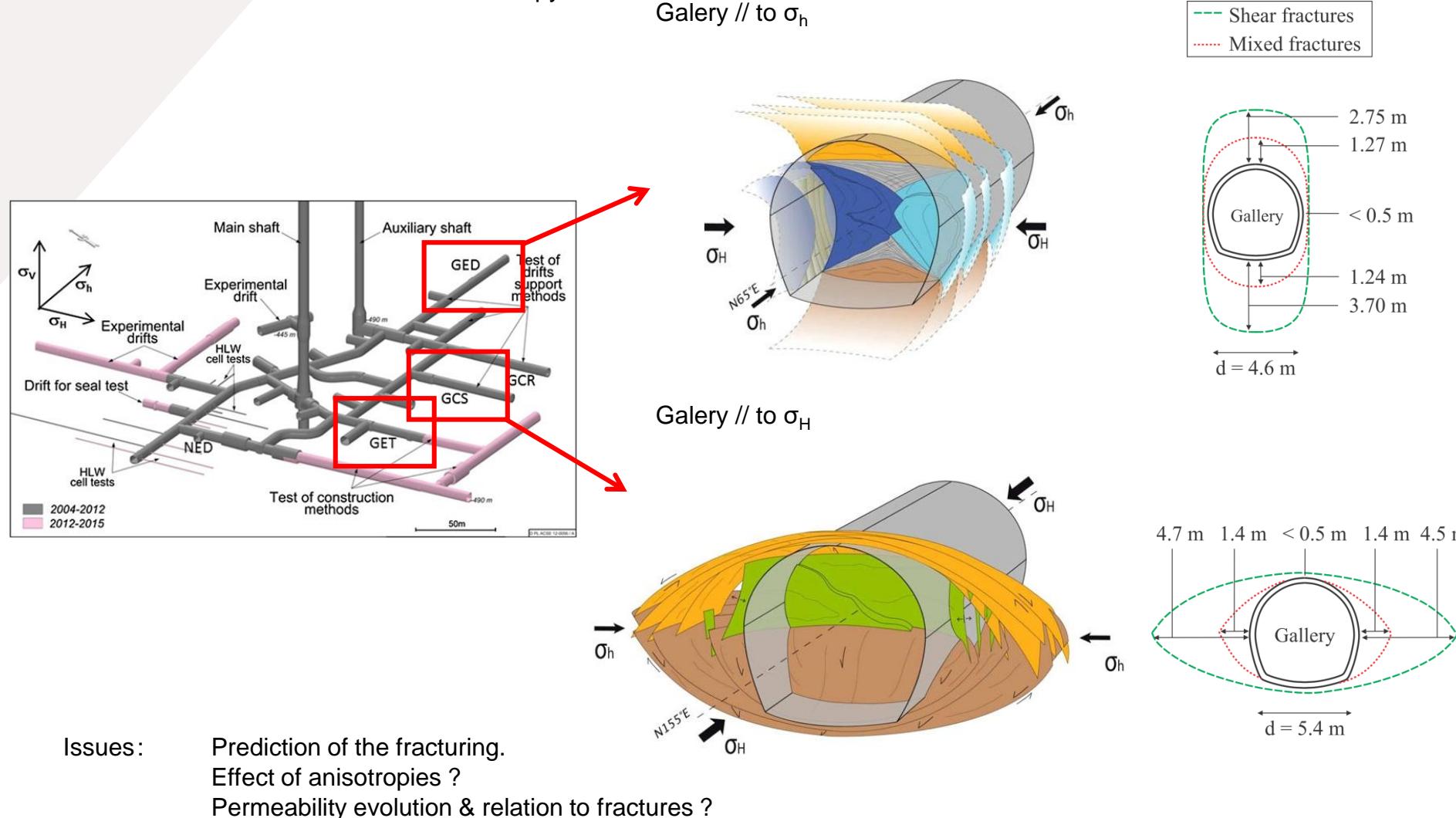


Application

Underground nuclear waste disposal

Fracturation observation

Anisotropies: - stress : $\sigma_H > \sigma_h \sim \sigma_v$
- material : HM cross-anisotropy.



Excavation / Fracturation modelling

Constitutive models for COx

- Mechanical law - 1st gradient model

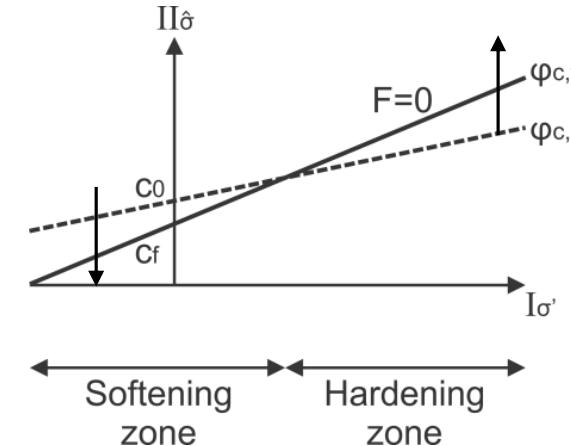
Isotropic elasto-plastic internal friction model

Non-associated plasticity, Van Eeckelen yield surface :

$$F \equiv II_{\hat{\sigma}} - m \left(I_{\sigma'} + \frac{3c}{\tan \varphi_c} \right) = 0$$

φ hardening / c softening

$$c = c_0 + \frac{(c_f - c_0) \hat{\varepsilon}_{eq}^p}{B_c + \hat{\varepsilon}_{eq}^p} \quad \rightarrow \text{Strain localisation}$$



- Hydraulic law

Fluid mass flow (advection, Darcy) :

$$f_{w,i} = -\rho_w \frac{k_{w,ij} k_{r,w}}{\mu_w} \left(\frac{\partial p_w}{\partial x_j} + \rho_w g_j \right)$$

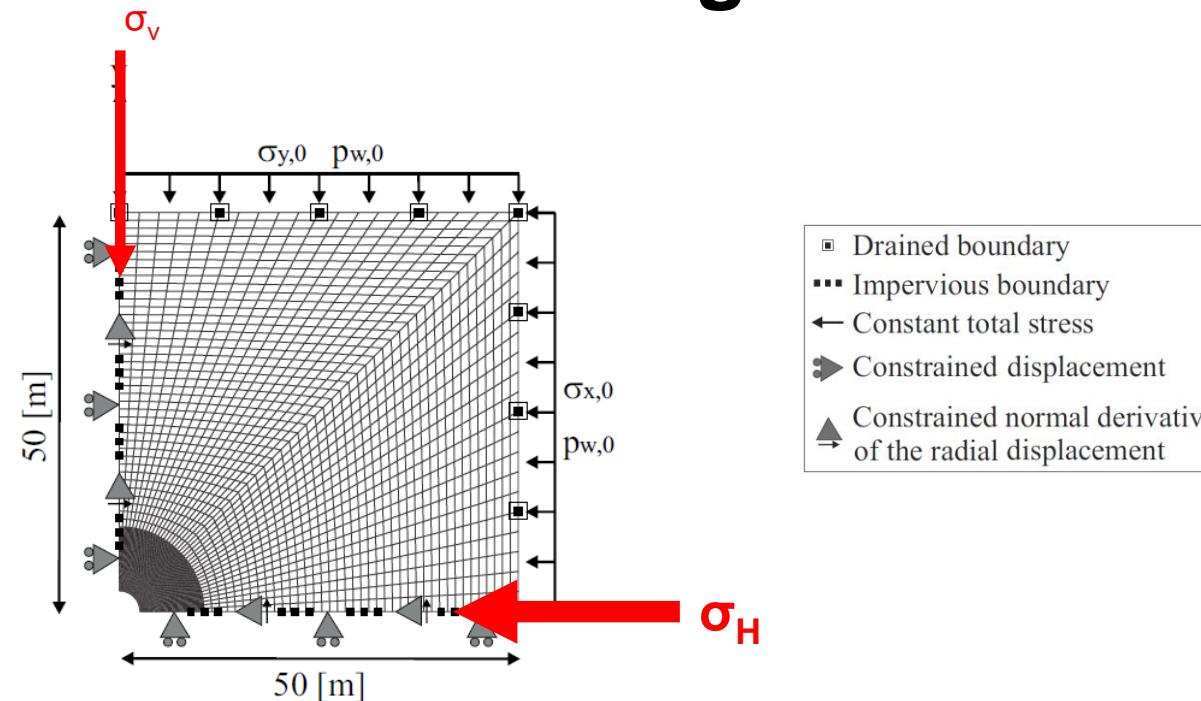
Water retention and permeability curves (Mualem - Van Genuchten's model)

Excavation / Fracturation modelling

- Numerical model

HM modelling in 2D
plane strain state

Gallery radius = 2.3 m



- Gallery in COx // σ_h

Effect of stress anisotropy

Anisotropic stress state

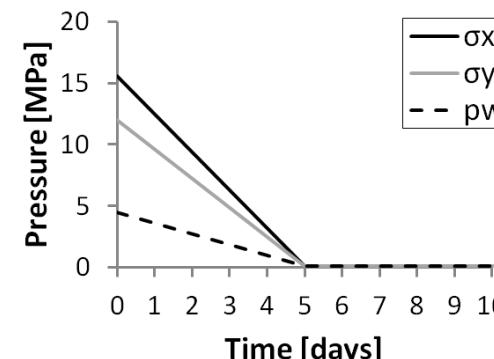
$$p_{w,0} = 4.5 \text{ [MPa]}$$

$$\sigma_{x,0} = \sigma_H = 1.3 \sigma_v = 15.6 \text{ [MPa]}$$

$$\sigma_{y,0} = \sigma_v = 12 \text{ [MPa]}$$

$$\sigma_{z,0} = \sigma_h = 12 \text{ [MPa]}$$

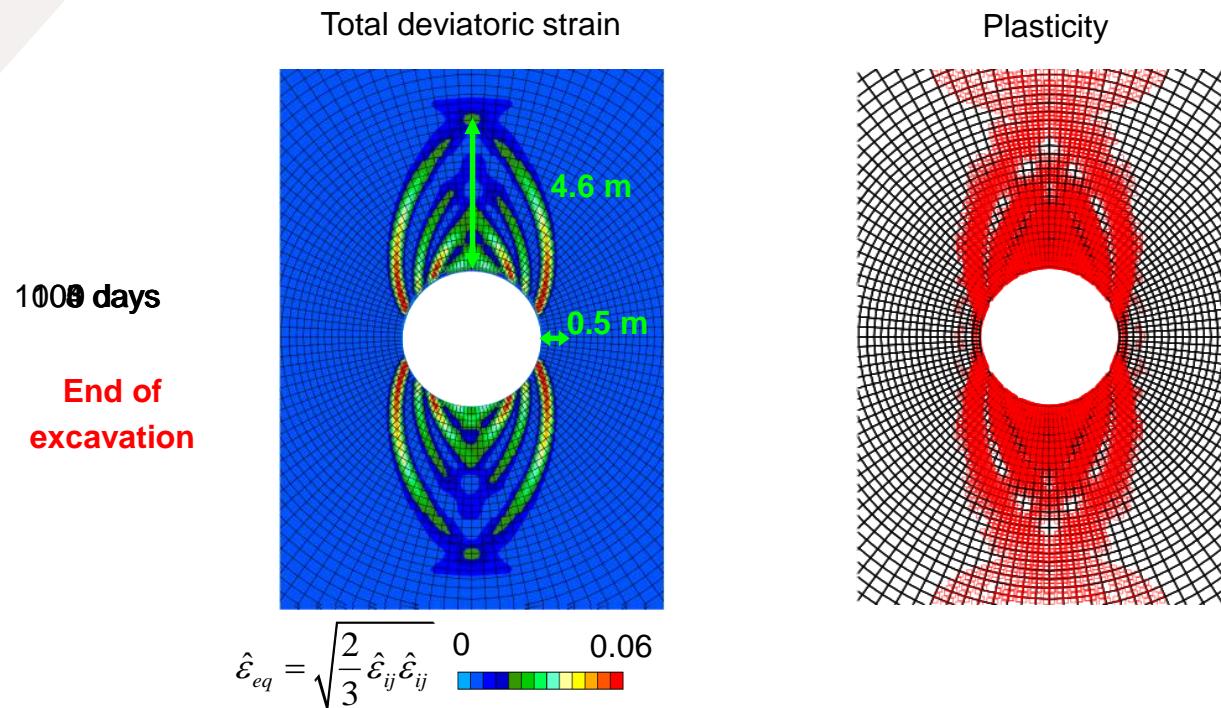
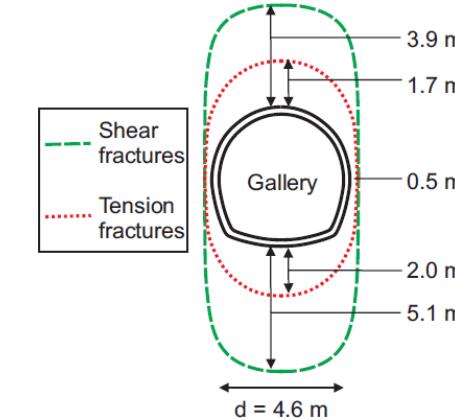
- Excavation



Excavation / Fracturation modelling

- Localisation zone

Incompressible solid grains, $b=1$



→ For an isotropic mechanical behaviour, the appearance and shape of the strain localisation are mainly due to mechanical effects linked to the anisotropic stress state.

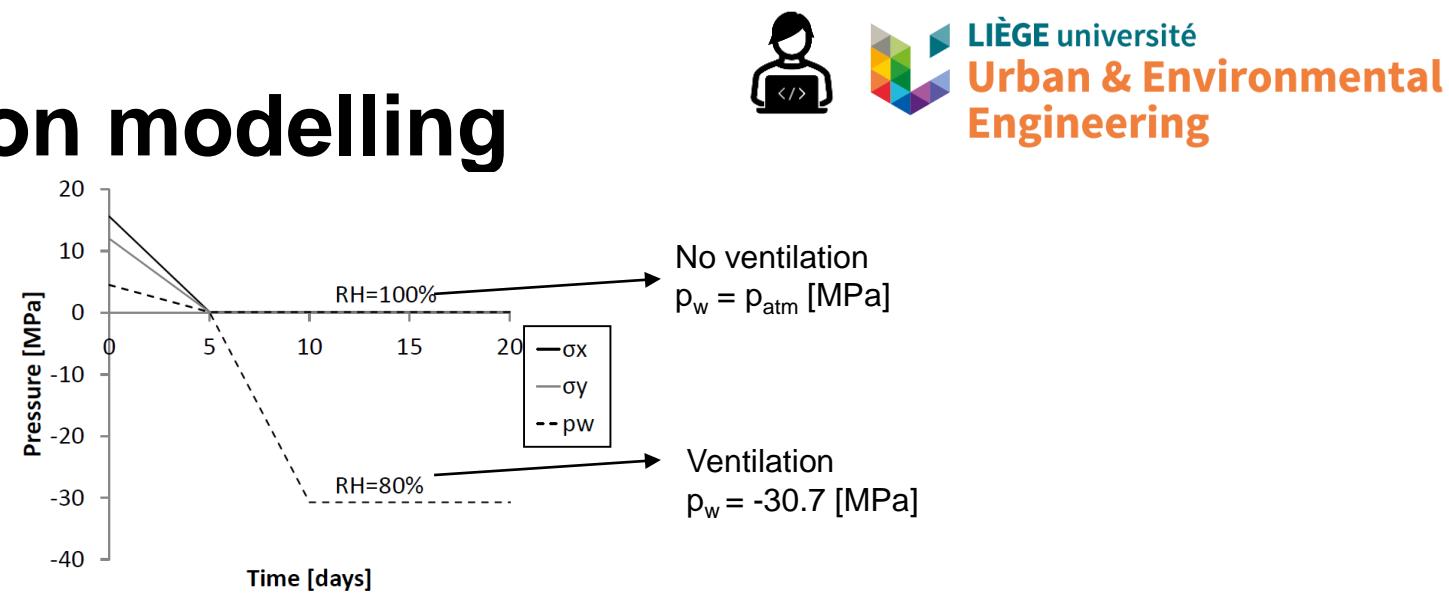
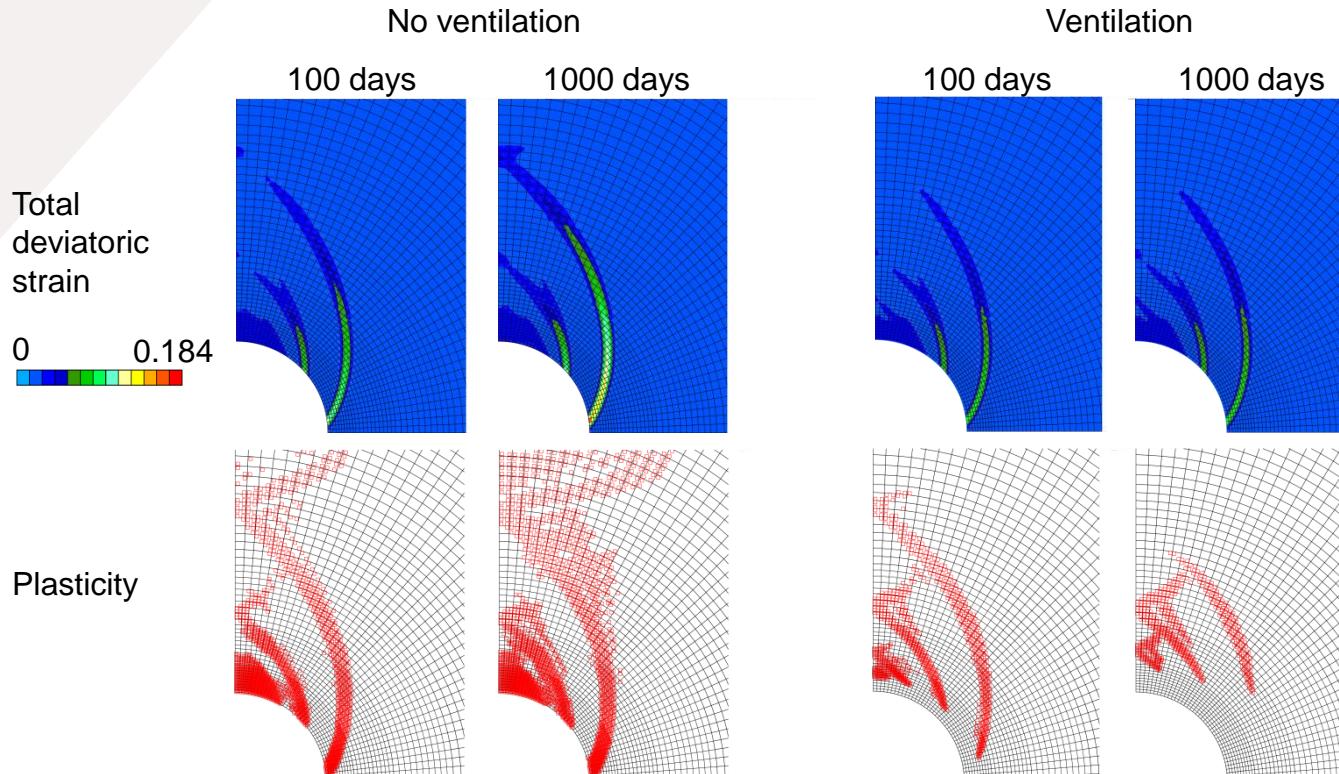
Excavation / Fracturation modelling

- Gallery air ventilation :

Water phases equilibrium at gallery wall (Kelvin's law)

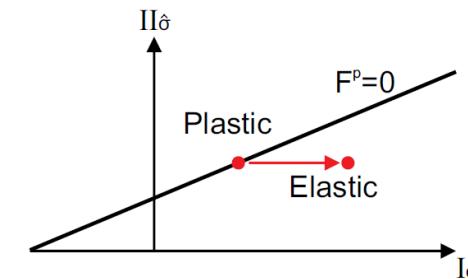
$$RH = \frac{p_v}{p_{v,0}} = \exp\left(\frac{-p_c M_v}{RT \rho_w}\right)$$

Compressibility of the solid grains: $b=0.6$



$$\sigma_{ij} = \sigma'_{ij} + b S_{r,w} p_w \delta_{ij}$$

- suction \uparrow
- σ' \uparrow
- Elastic unloading
- Inhibition of localisation
- Restrain ε



Excavation / Fracturation modelling

- Convergence:

Important during the excavation

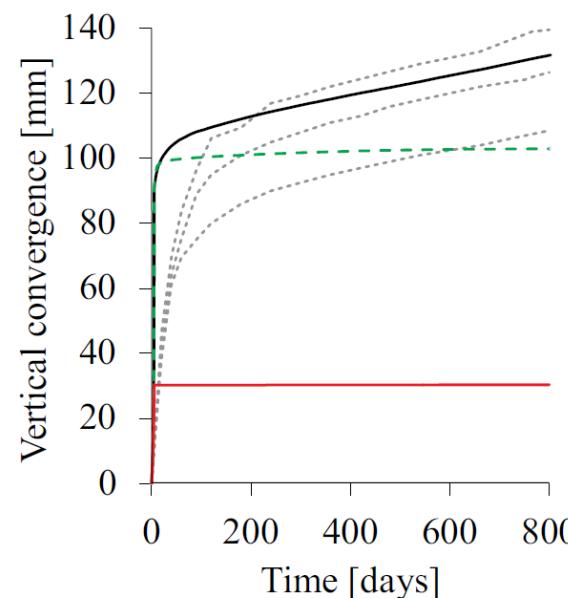
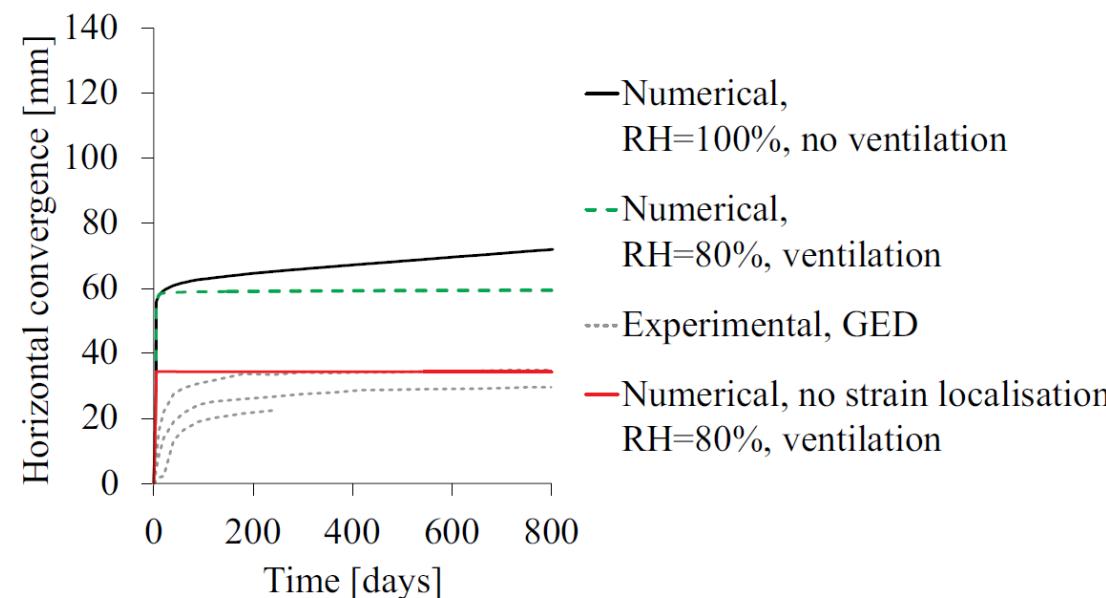
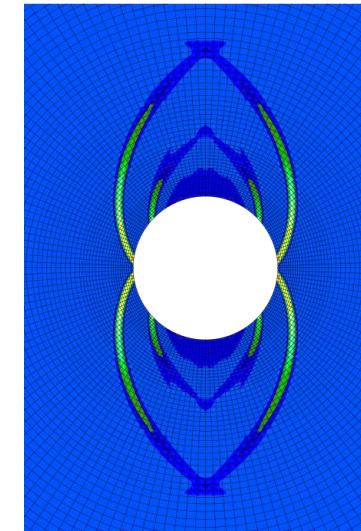
Anisotropic convergence

Influence of the ventilation

Experimental results (GED - Andra's URL)

No strain localisation

Calcul
She
She



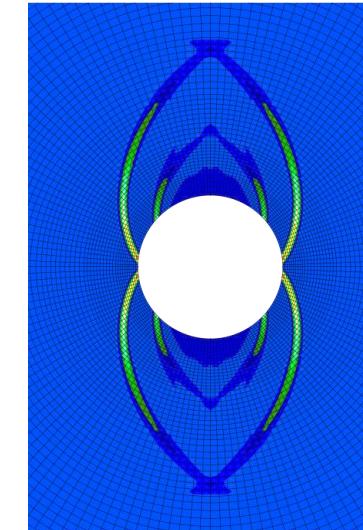
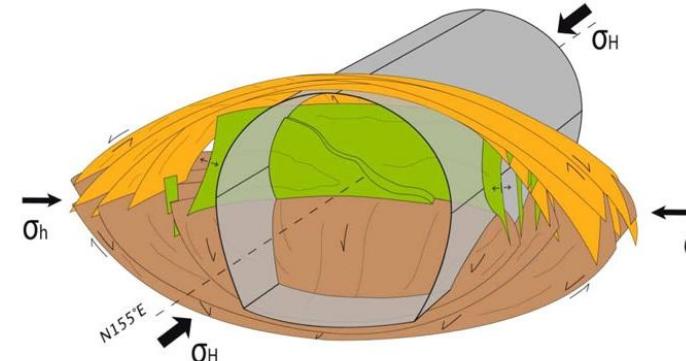
Excavation / Fracturation modelling

Conclusions and outlooks

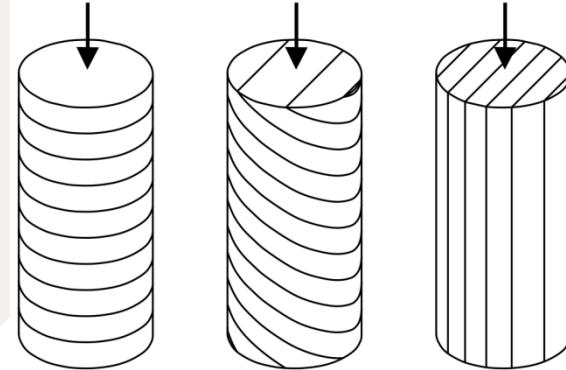
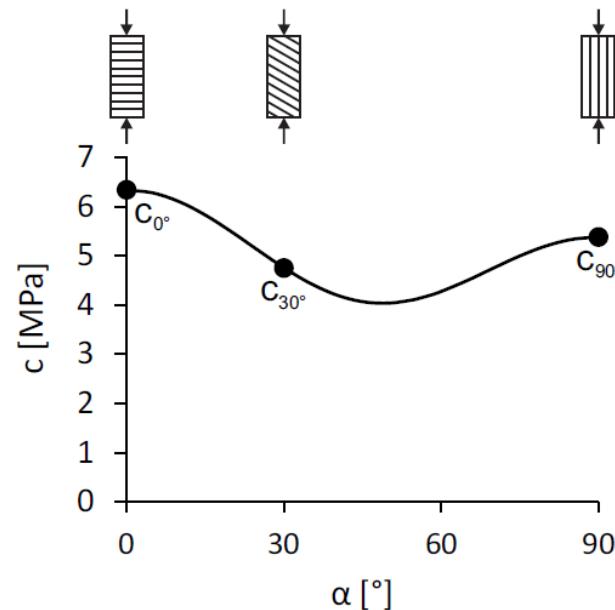
- ✓ Reproduction of EDZ with shear bands.
- ✓ Shape and extent of EDZ **governed by anisotropic stress state**.

- Next steps ...

X Mechanical rock behaviour.
→ Material anisotropy, gallery // σ_H .



Excavation / Fracturation modelling



- Linear elasticity :

Cross-anisotropic (5 param.) + Biot's coefficients

$$E_{//}, E_{\perp}, \nu_{////}, \nu_{//\perp}, G_{//\perp}$$

$$b_{//}, b_{\perp}$$

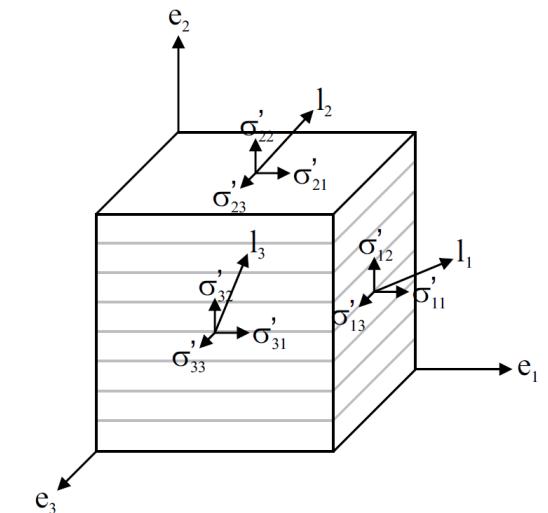
- Plasticity :

Cohesion anisotropy with fabric tensor

$$c_0 = a_{ij} l_i l_j \quad l_i = \sqrt{\frac{\sigma_{i1}^2 + \sigma_{i2}^2 + \sigma_{i3}^2}{\sigma_{ij} \sigma_{ij}}}$$

Cross-anisotropy

$$c_0 = \bar{c} \left(1 + A_{////} (1 - 3l_2^2) + b_1 A_{////}^2 (1 - 3l_2^2)^2 + \dots \right)$$



Excavation / Fracturation modelling

- Stress state

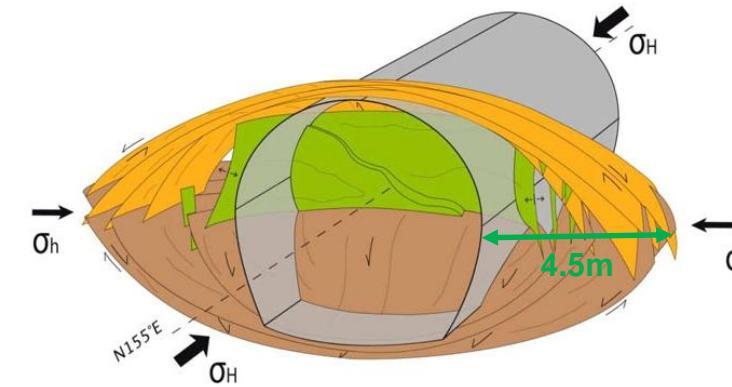
Major stress in the axial direction

Gallery // to σ_H

$$\sigma_{x,0} = \sigma_h = 12.40 \text{ MPa}$$

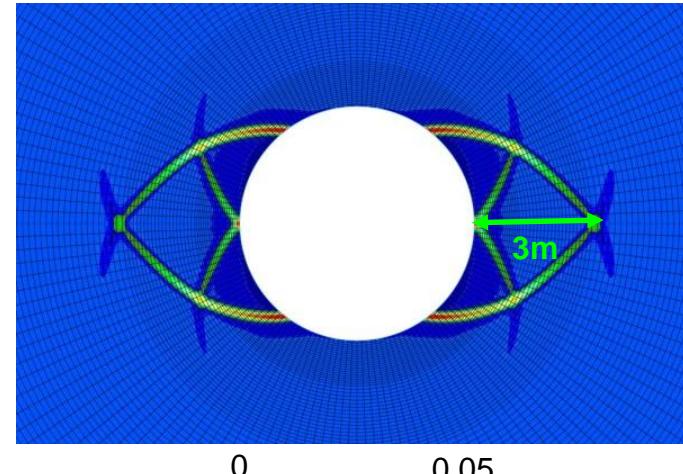
$$\sigma_{y,0} = \sigma_v = 12.70 \text{ MPa}$$

$$\sigma_{z,0} = \sigma_H = 1.3 \times \sigma_h = 16.12 \text{ MPa}$$



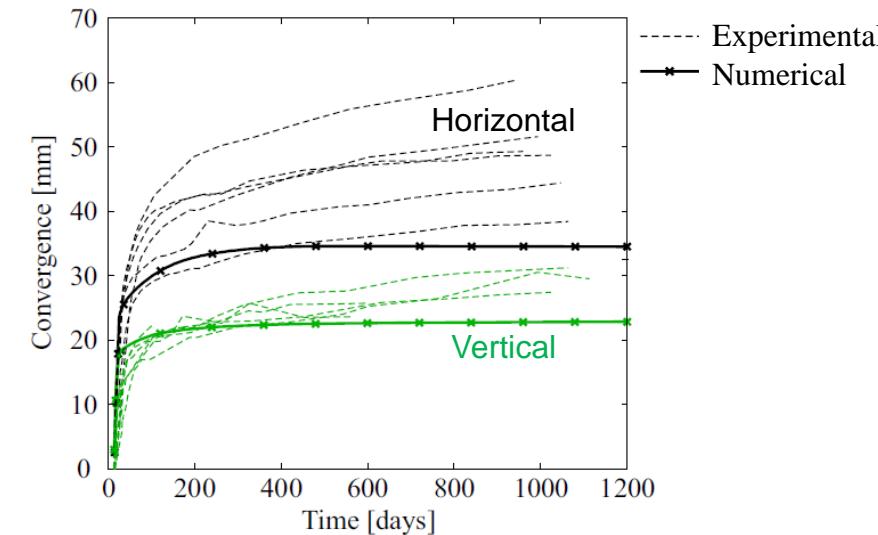
- Shear banding

Total deviatoric strain



→ Shape modification due to σ_H

- Convergence



→ Long-term deformation

→ Creep deformation

Table of Contents

Context

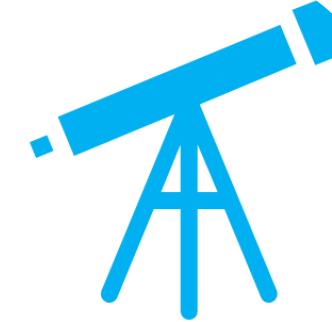
Nuclear electricity

Geological repository

Underground structure

Numerical Approach

Second gradient model



Application

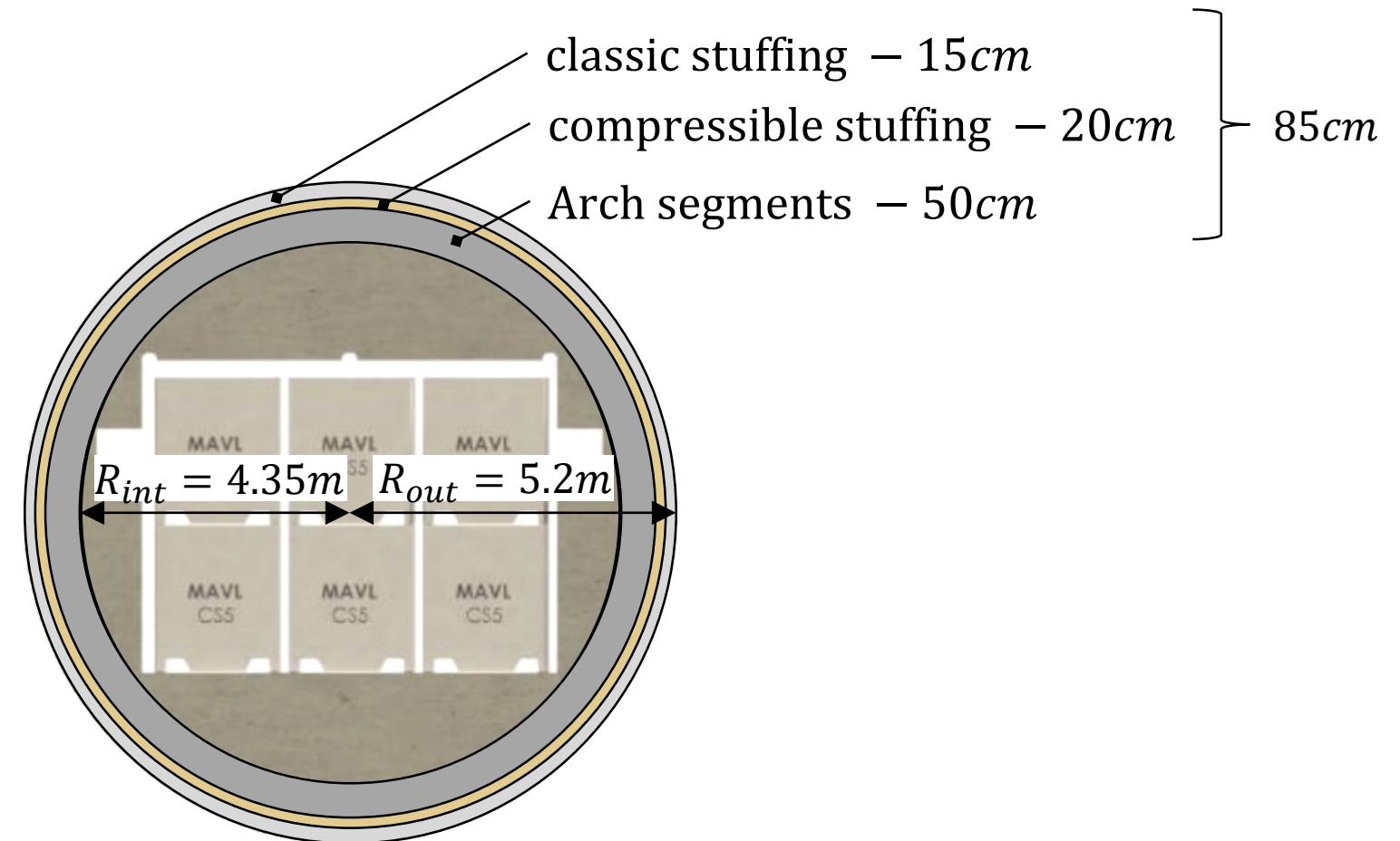
Underground nuclear waste disposal

Geometry of the problem

MAVL drift cross section

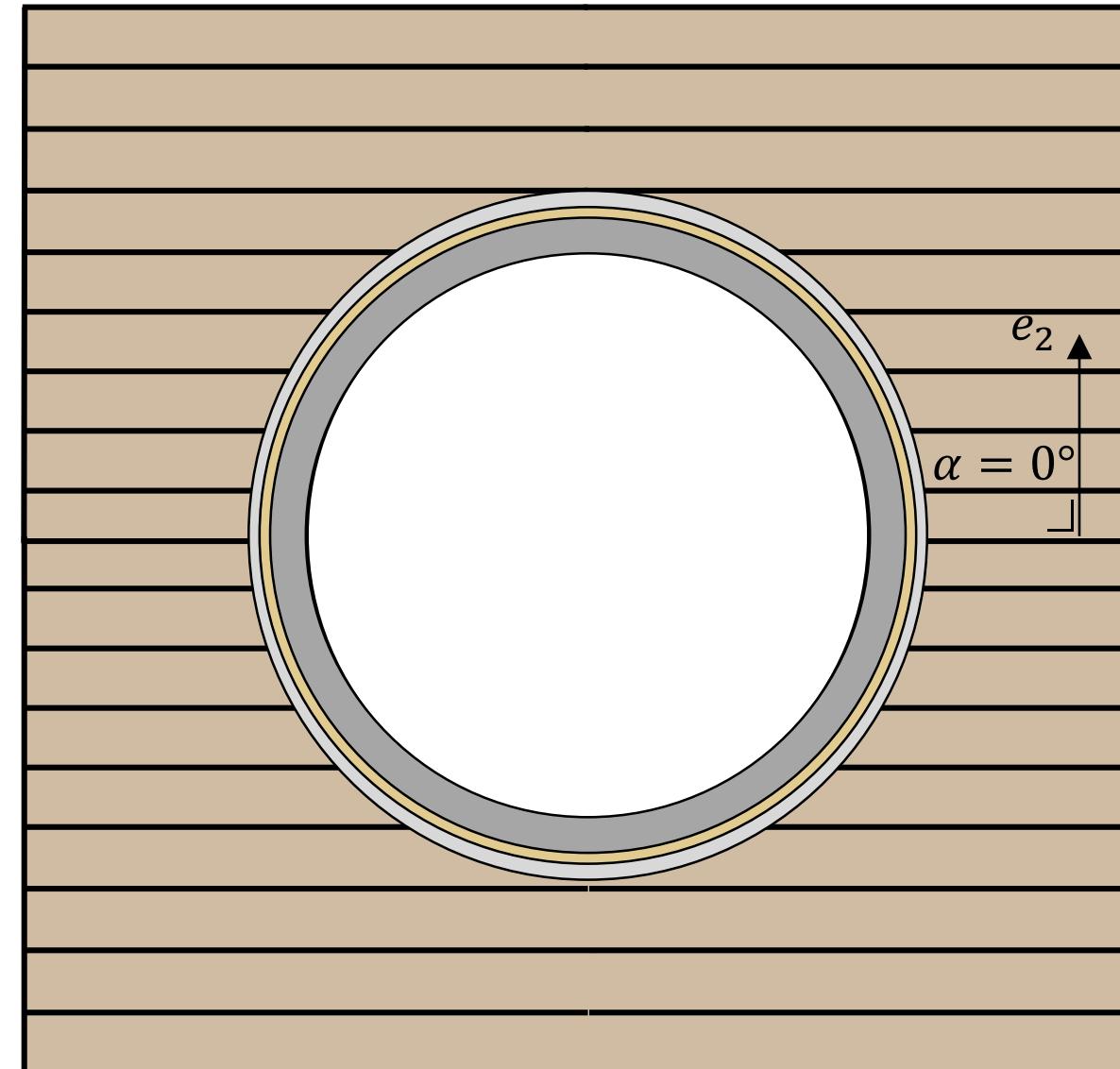
Geometry of the problem

Support structure



Geometry of the problem

Bedding planes orientation

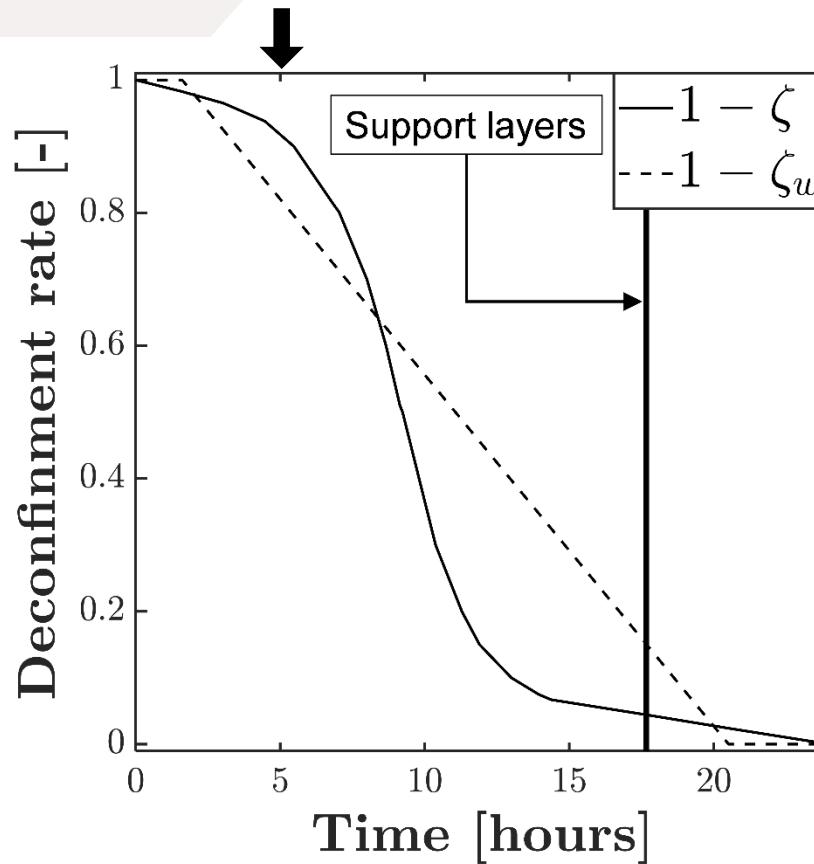
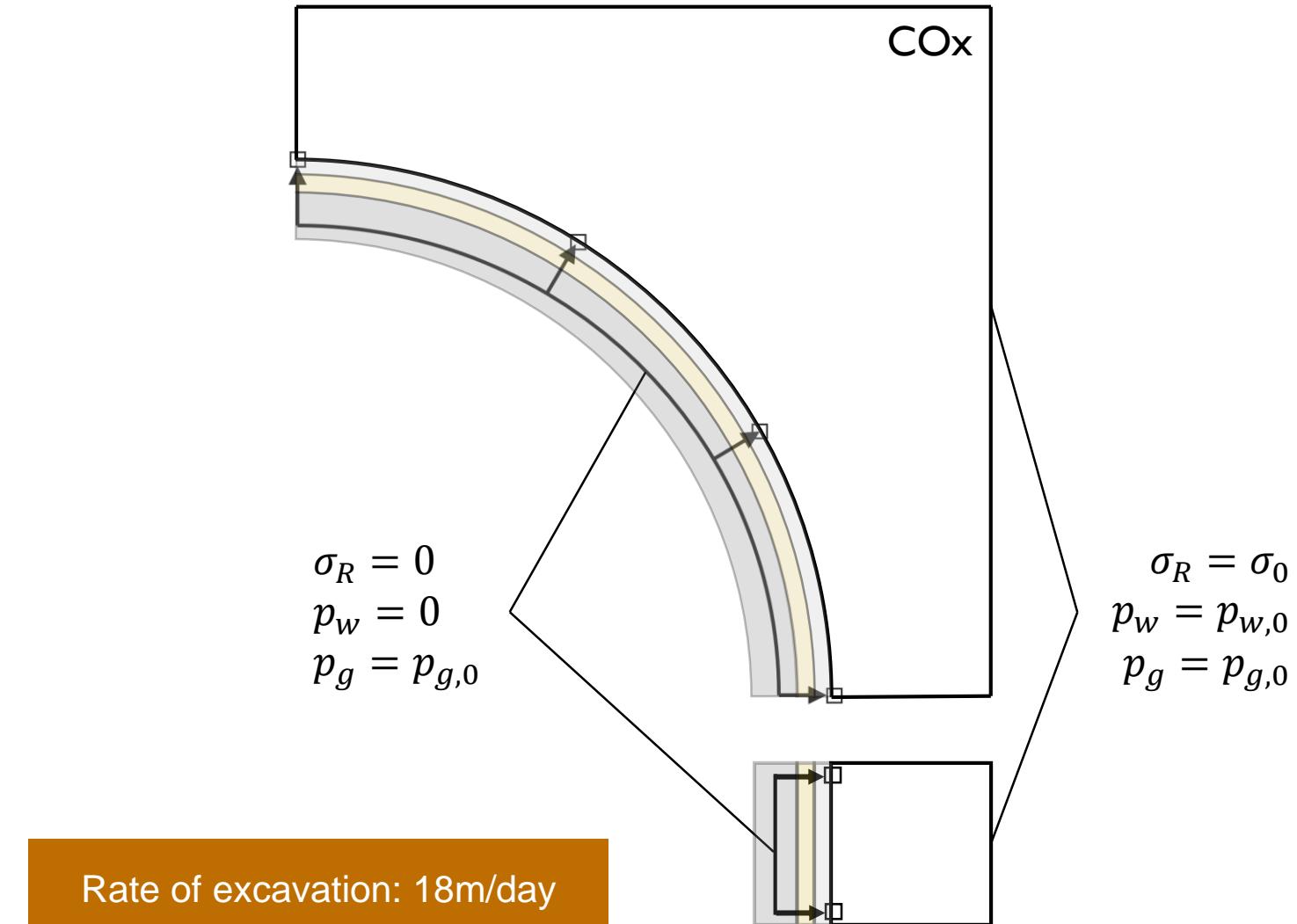


MAVL drift cross section

Modelling stages

Step 1 – Excavation (1 day)

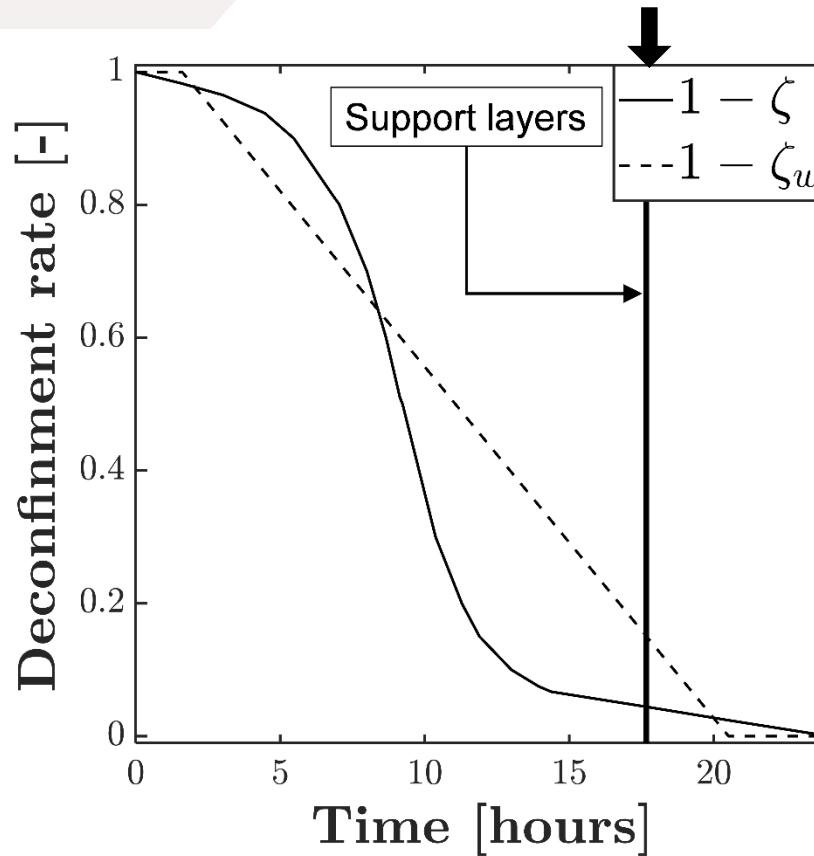
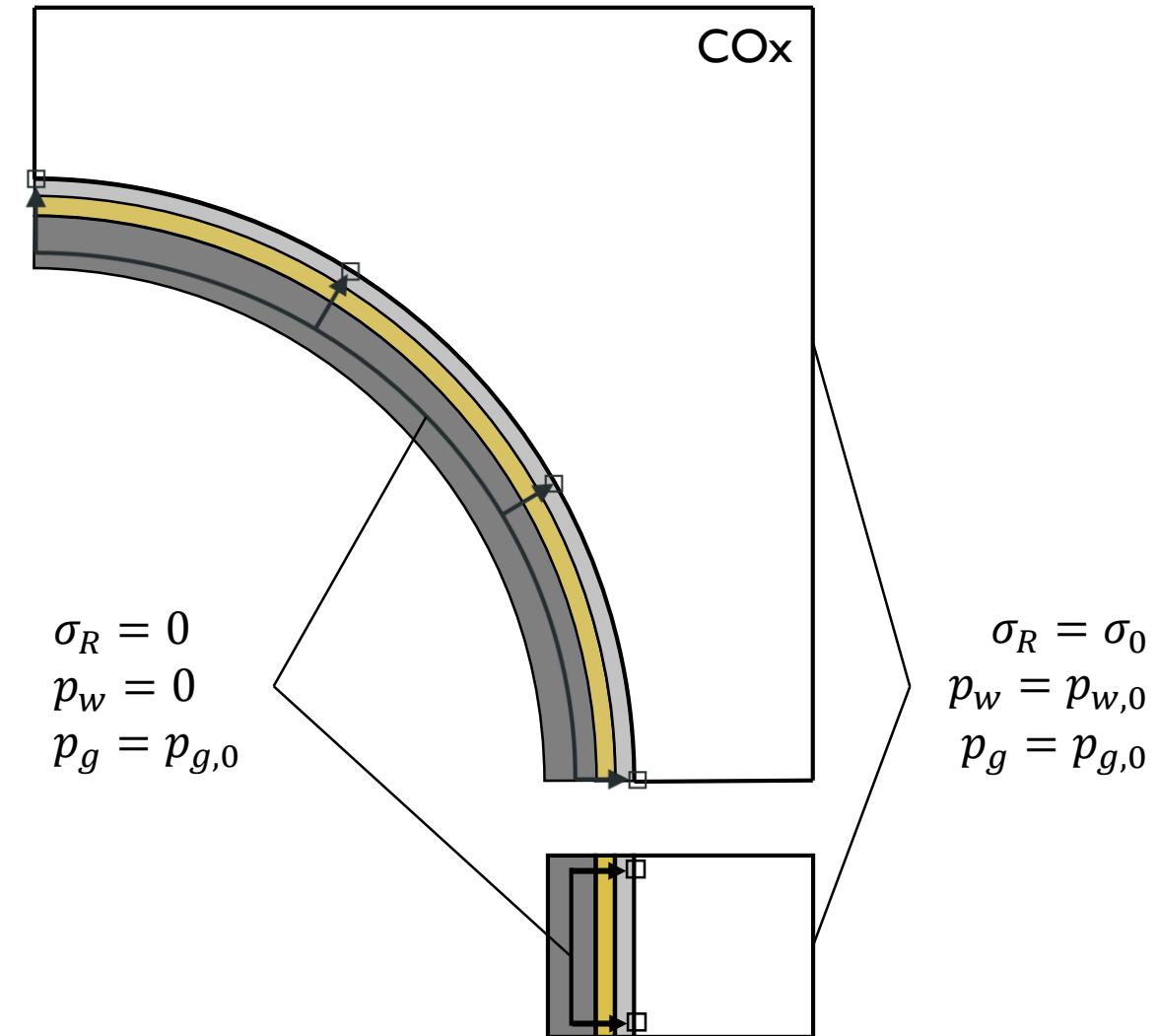
- Initial step
- Drilling: - deconfinement of the rock mass
 - drained wall
 - constant gas pressure



Modelling stages

Step 1 – Excavation (1 day)

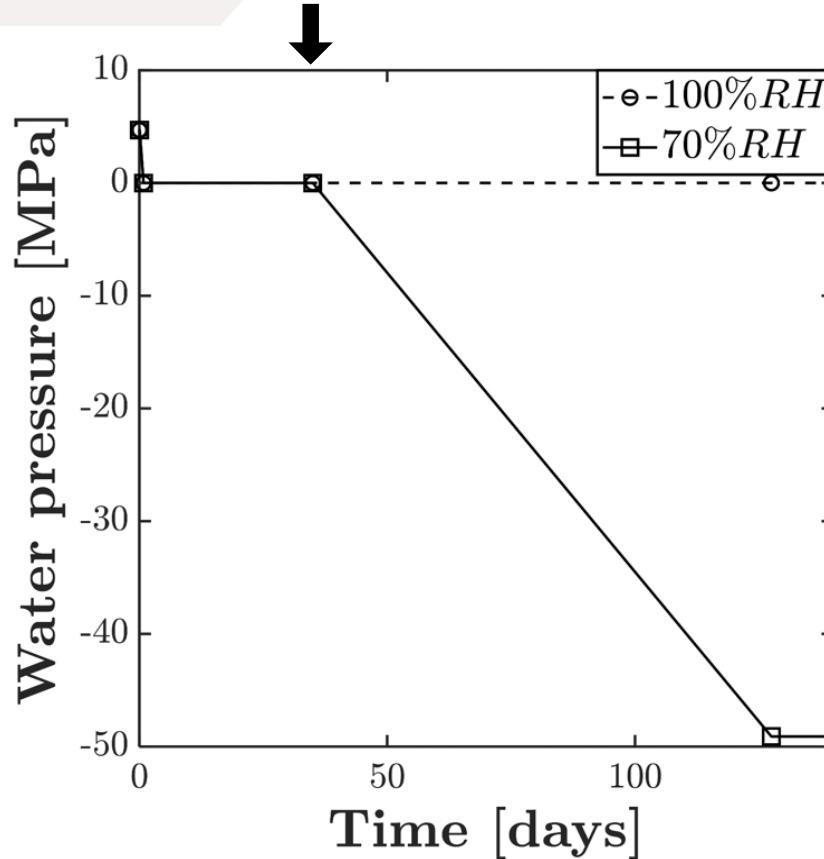
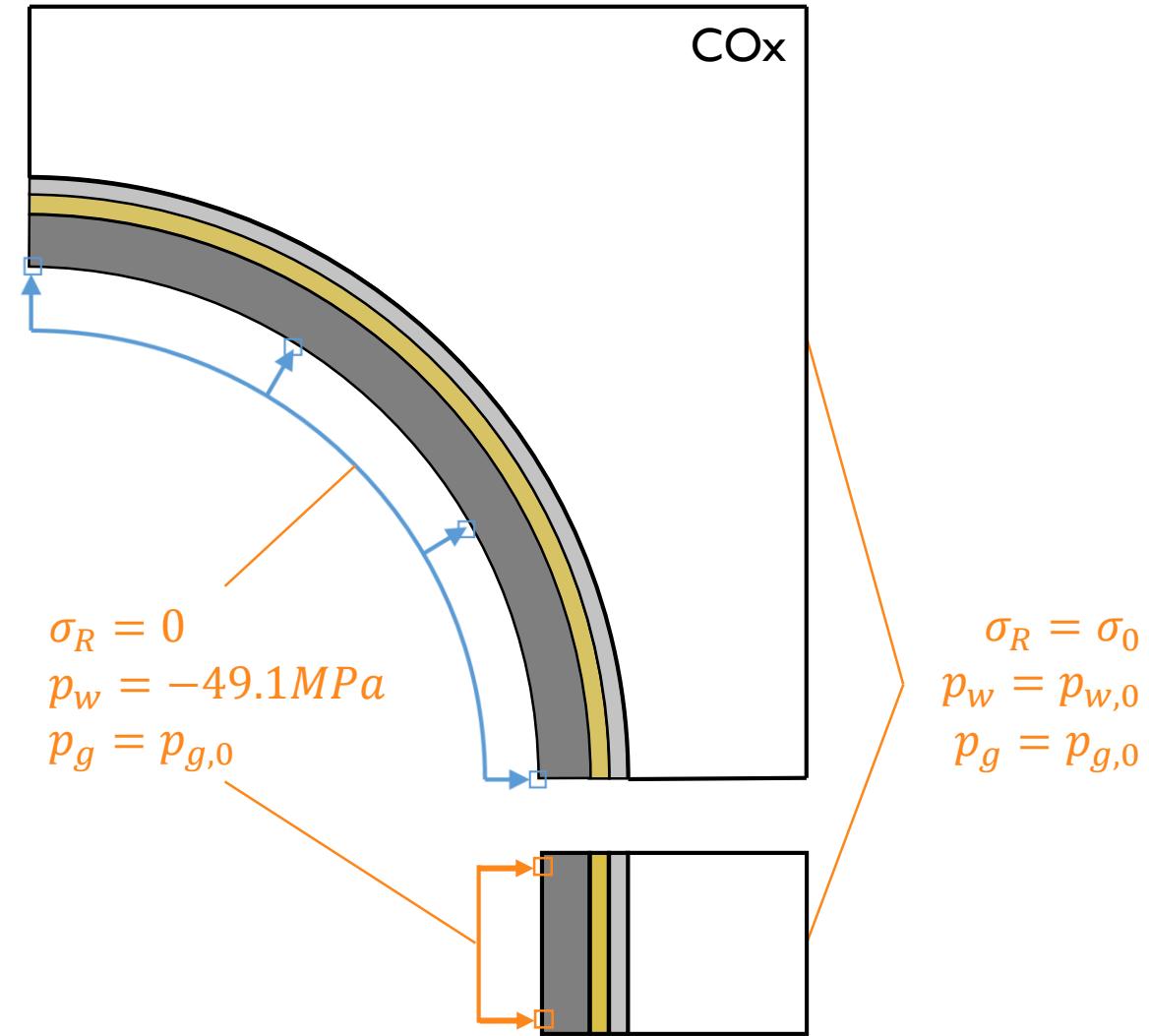
- Initial step
- Drilling
- Activation of the supports: - stuffing layers
- arch segments



Modelling stages

Step 1 – Ventilation (35 days → 100 years)

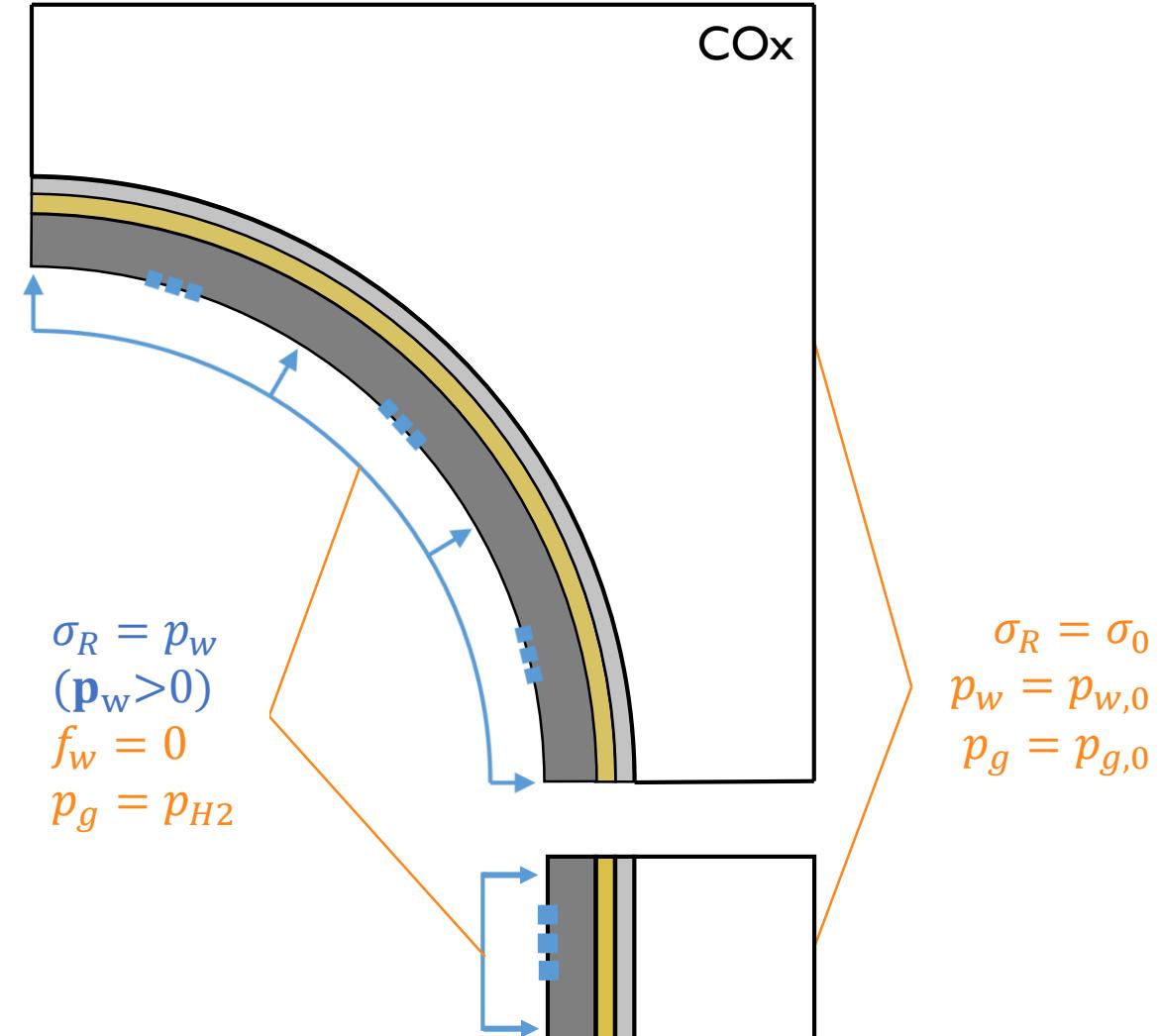
- Initial step
- Drilling
- Activation of the supports
- Ventilation: conditions regulated at the support wall



Modelling stages

Step 2 – Pore pressure equilibrium (100 years → ...)

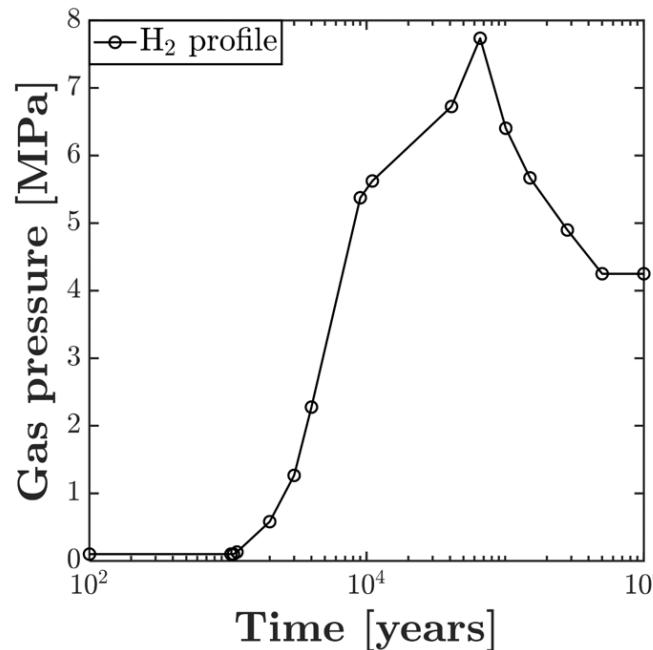
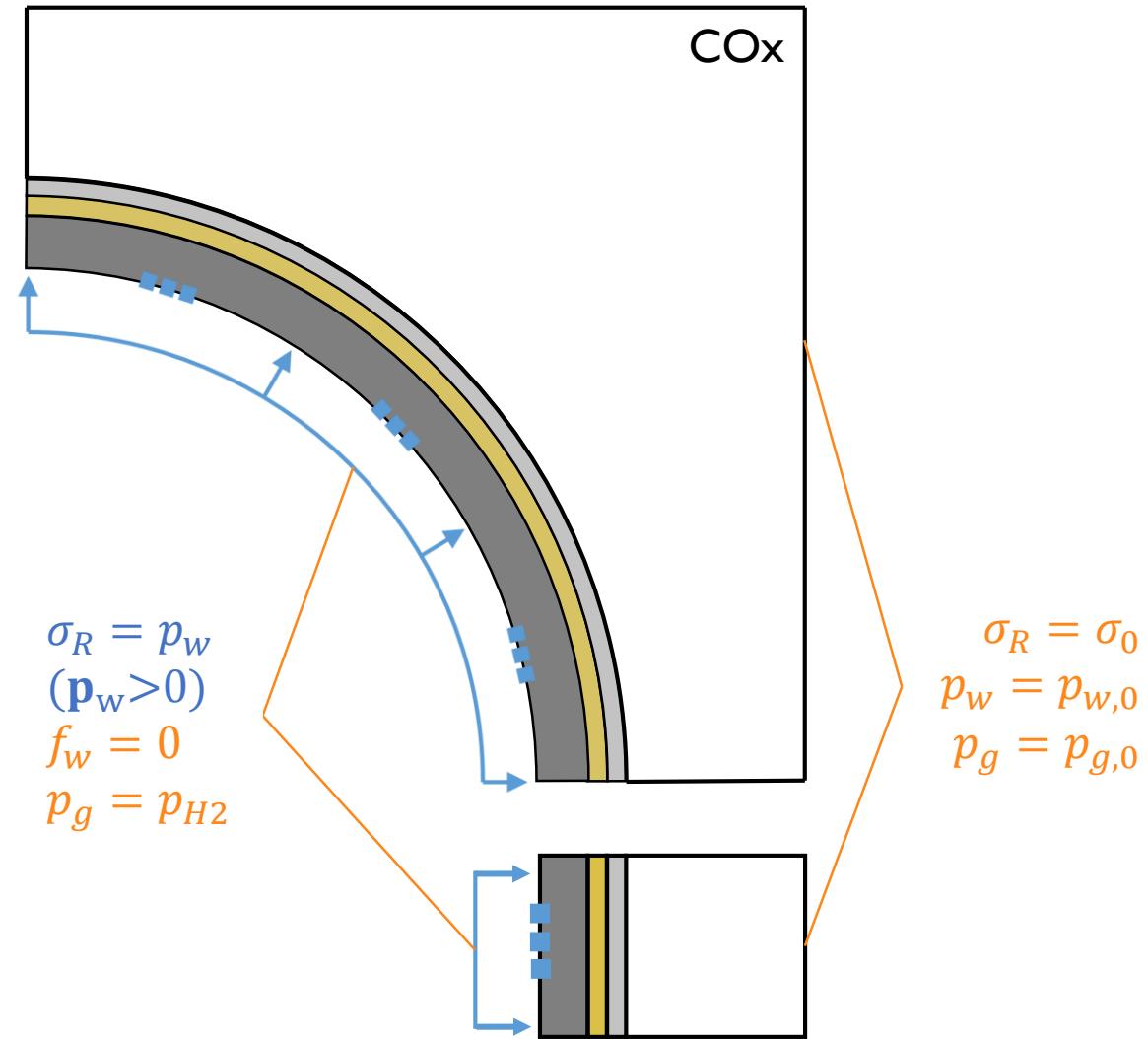
- Initial step
- Drilling
- Activation of the supports
- Ventilation
- Gallery in operation:
 - impervious support wall
 - constant gas pressure



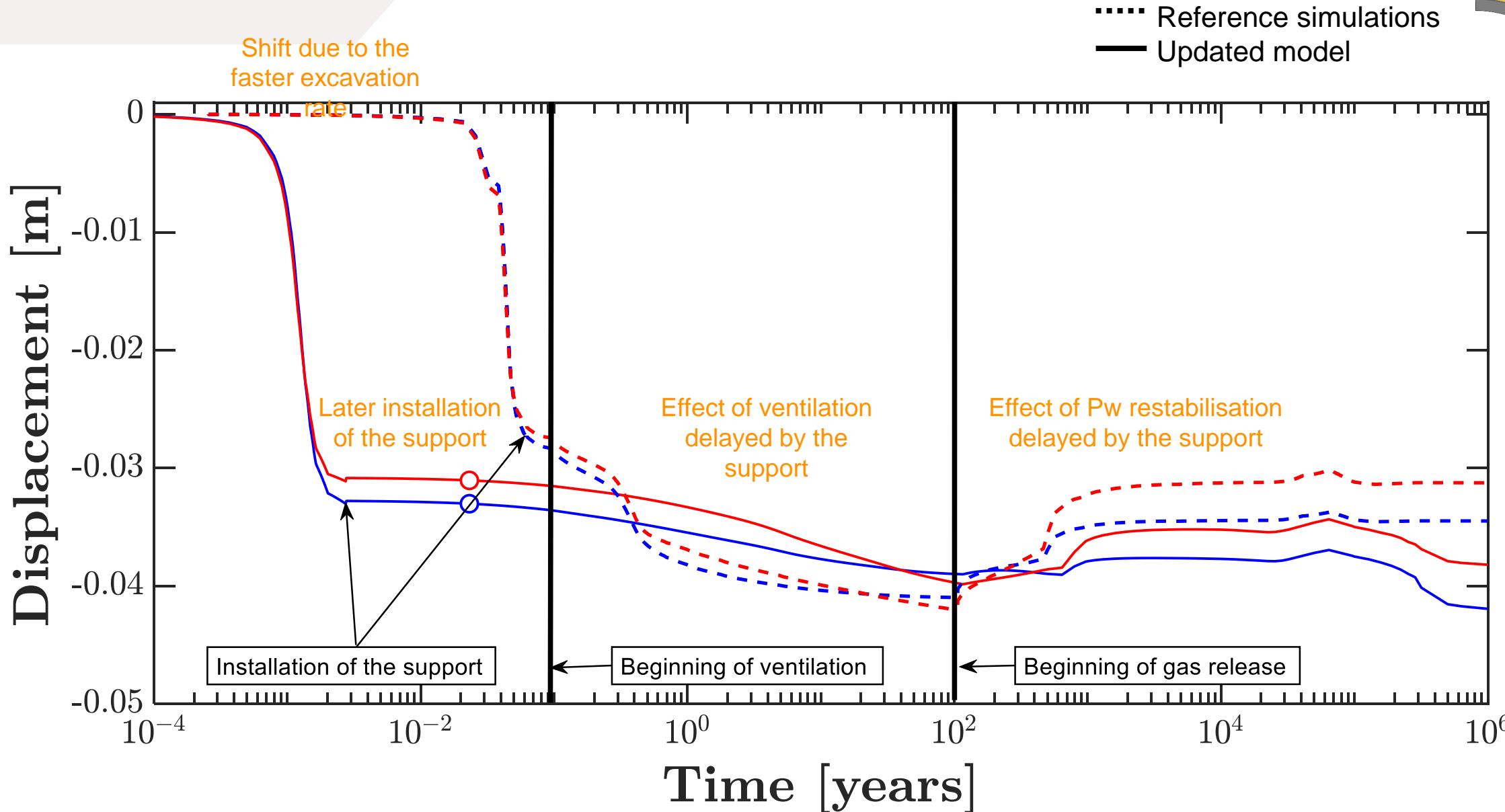
Modelling stages

Step 2 – Gas injection (100 years → 10^6 years)

- Initial step
- Drilling
- Activation of the supports
- Ventilation
- Gallery in operation
- Gas release:
 - impervious support wall
 - imposed H₂ pressure at support edge

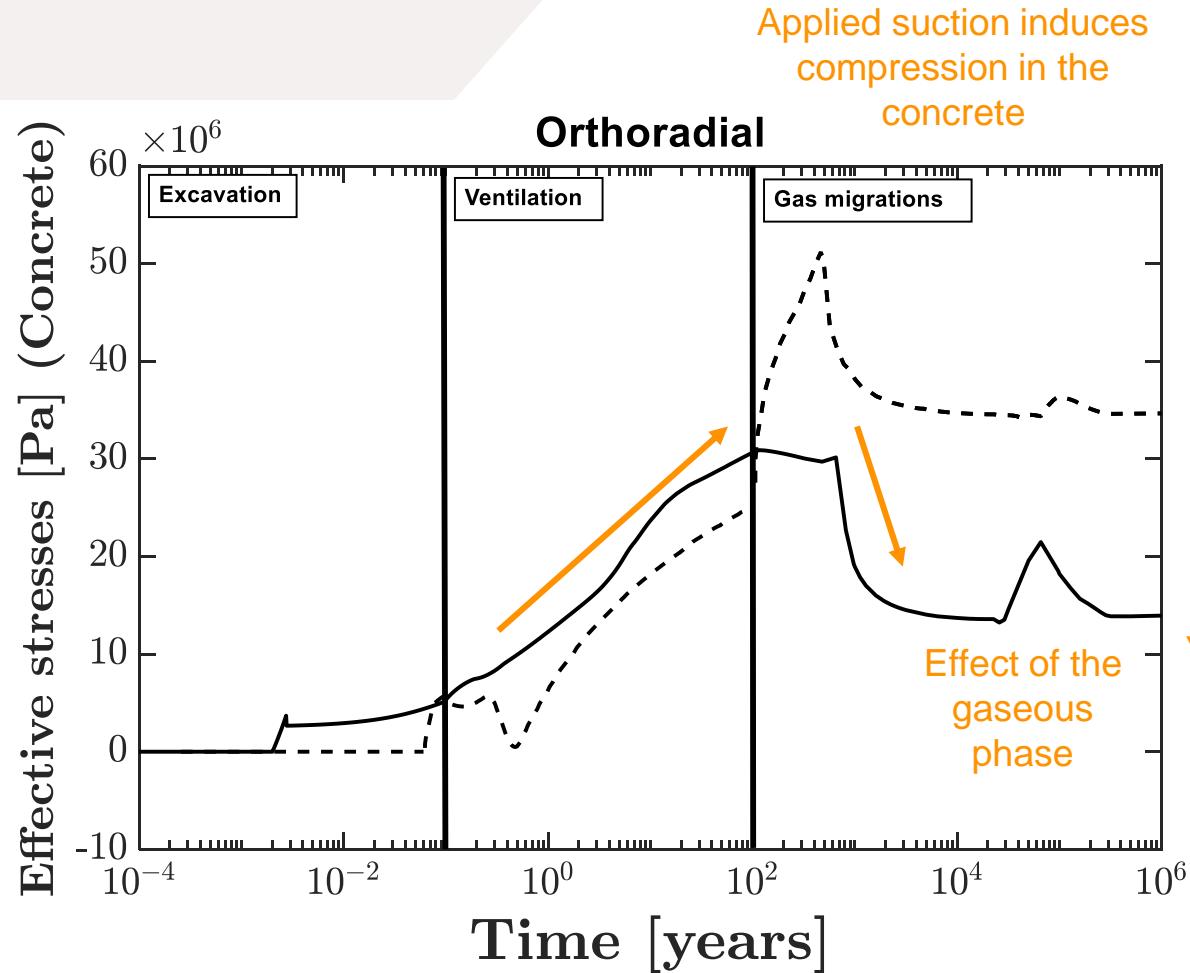
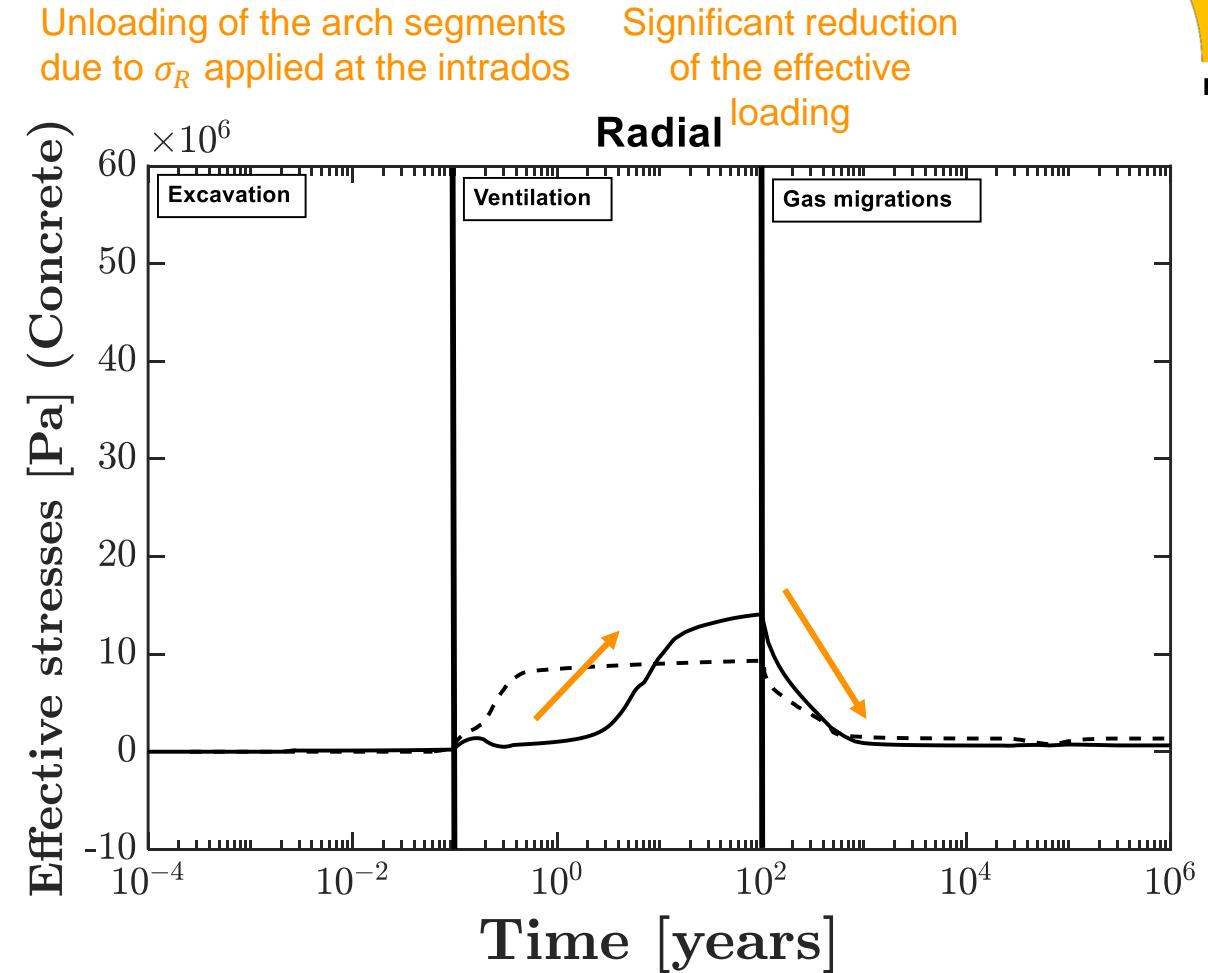


Convergence of the rock mass

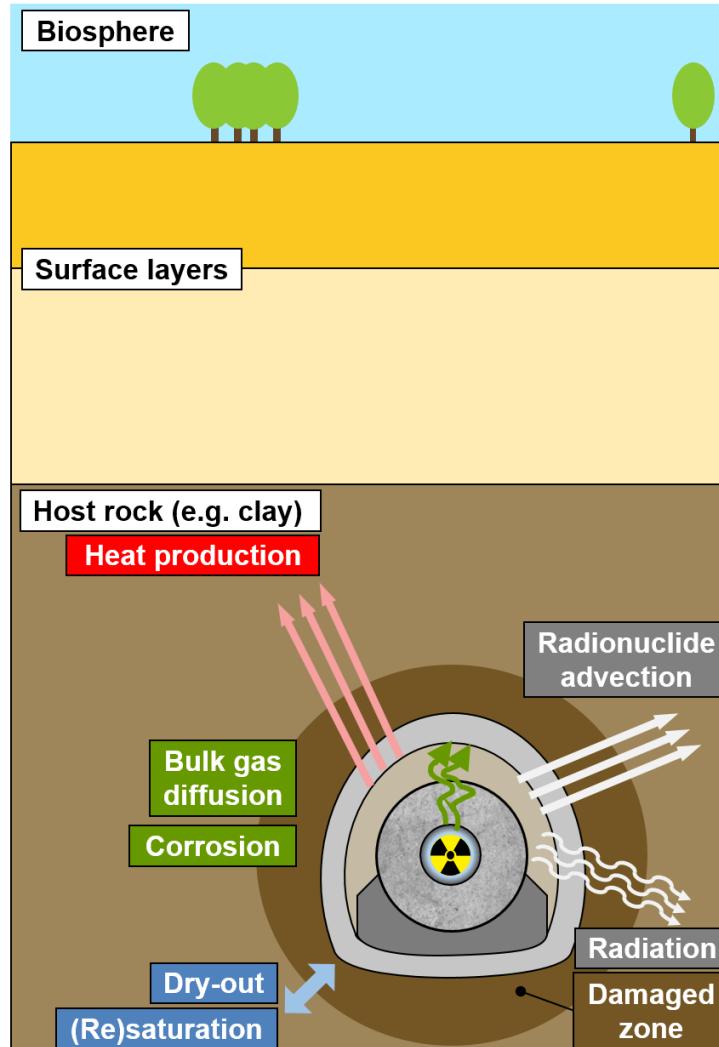
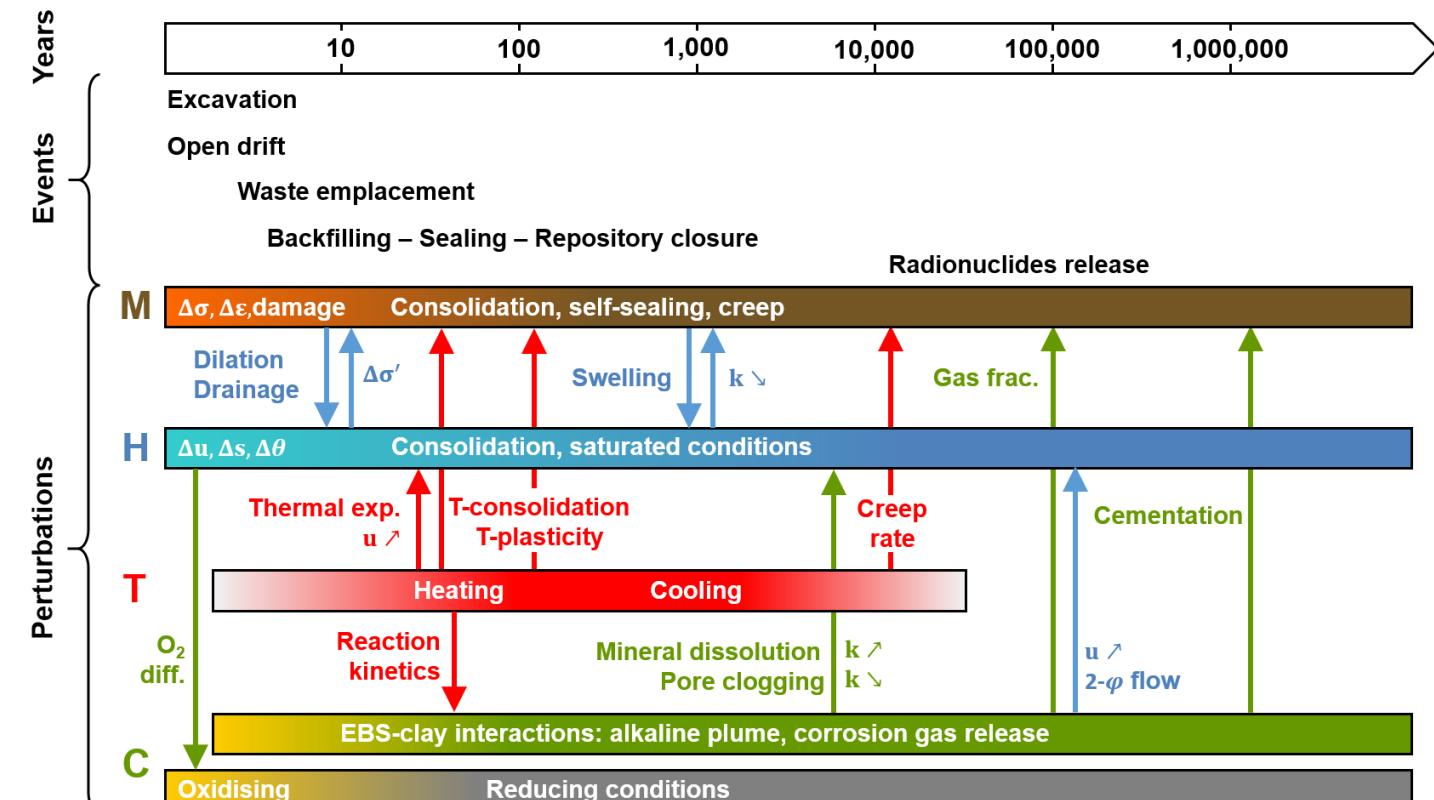


Stresses in the arch segments

Reference simulations
 Updated model



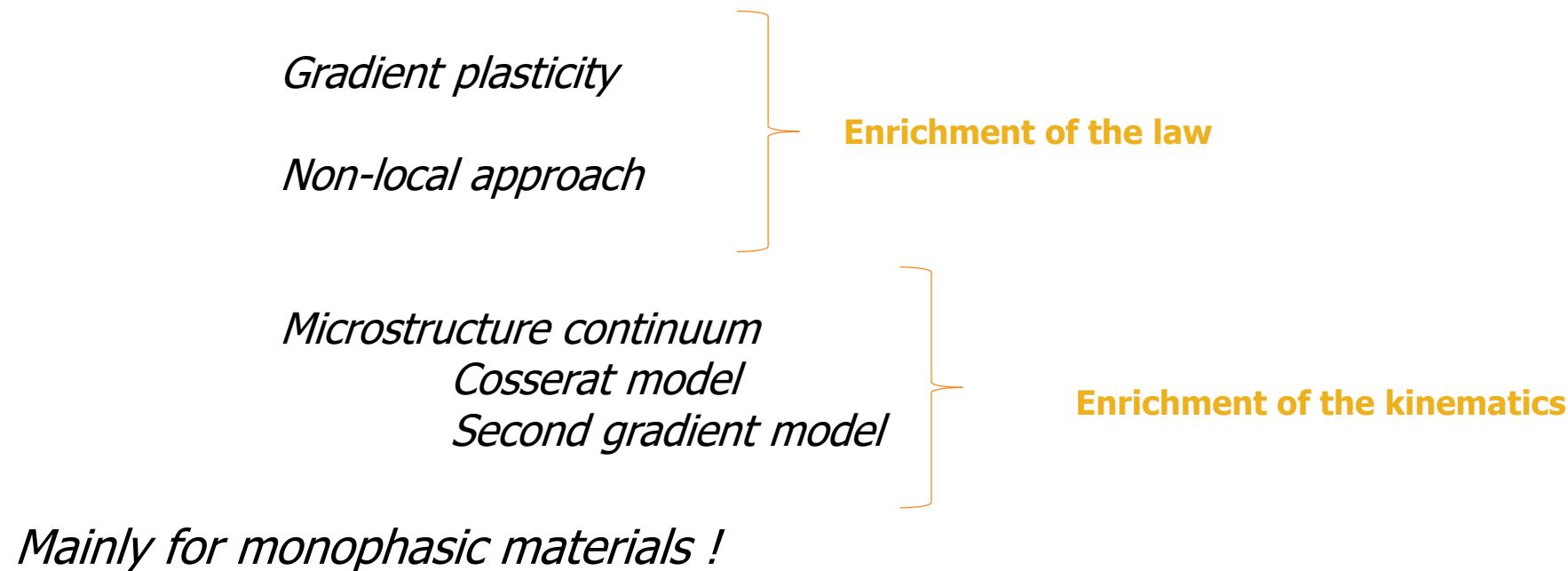
End of the story ?



Thank you for your attention.

Numerical Approach

- Classical FE formulation: mesh dependency
- Different regularization methods



Numerical Approach

In second gradient model, the continuum is enriched with microstructure effects. The kinematics include therefore the classical one but also microkinematics (See Germain 1973, Toupin 1962, Mindlin 1964).

Let us define first the classical kinematics:

- u_i is the (macro) displacement field
- F_{ij} is the macro displacement gradient which means:

$$F_{ij} = \frac{\partial u_i}{\partial x_j}$$

- D_{ij} is the macro strain:

$$D_{ij} = \frac{1}{2}(F_{ij} + F_{ji})$$

- R_{ij} is the macro rotation:

$$R_{ij} = \frac{1}{2}(F_{ij} - F_{ji})$$

Numerical Approach

Enrichment of the kinematics :

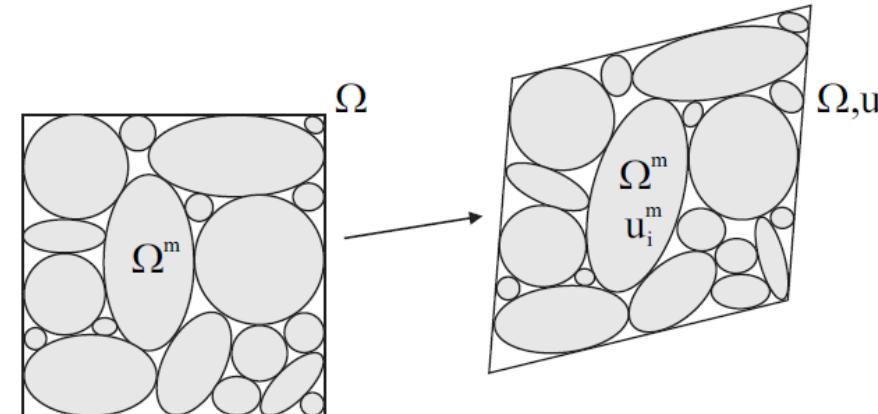
The continuum is enriched with microstructure effects: Macro-kinematics + micro-kinematics

Macro Ω :

$$F_{ij} = \frac{\partial u_i}{\partial x_j} = D_{ij} + R_{ij}$$

Micro Ω^m :

$$f_{ij} = \frac{\partial u_i^m}{\partial x_j} = d_{ij}^m + r_{ij}^m$$



Numerical Approach

In second gradient model, the continuum is enriched with microstructure effects. The kinematics include therefore the classical one but also microkinematics (See Germain 1973, Toupin 1962, Mindlin 1964).

Let us define the micro-kinematics:

- f_{ij} is the microkinematic gradient.
- d_{ij} is the microstrain:

$$d_{ij} = \frac{1}{2}(f_{ij} + f_{ji})$$

- r_{ij} is the microrotation:

$$r_{ij} = \frac{1}{2}(f_{ij} - f_{ji})$$

- h_{ijk} is the (micro) second gradient:

$$h_{ijk} = \frac{\partial f_{ij}}{\partial x_k}$$

Numerical Approach

Second gradient model formulation: weak form

- The internal virtual work (Germain, 1973)

$$W^{*i} = \int_{\Omega} w^* \, dv = \int_{\Omega} (\sigma_{ij} D_{ij}^* + \tau_{ij}(f_{ij}^* - F_{ij}^*) + \chi_{ijk} h_{ijk}^*) \, dv$$

- The external virtual work (simplified)

$$W^{*e} = \int_{\Omega} G_i u_i^* \, dv + \int_{\partial\Omega} (t_i u_i^* + T_{ij} f_{ij}^*) \, ds$$

- The virtual work equations can be extended to large strain problems

Numerical Approach

Second gradient model formulation: strong form

$$\left\{ \begin{array}{l} \frac{\partial(\sigma_{ij} - \tau_{ij})}{\partial x_j} + G_i = 0 \\ \frac{\partial \chi_{ijk}}{\partial x_k} - \tau_{ij} = 0 \end{array} \right.$$

$$\left\{ \begin{array}{l} (\sigma_{ij} - \tau_{ij})n_j = t_i \\ \chi_{ijk}n_k = T_{ij} \end{array} \right.$$

Three constitutive equations needed !

Numerical Approach

Local Second gradient model formulation:

- Addition of a kinematical constraint (Chambon et al., 1998; Matsushima et al., 2002)

$$f_{ij} = F_{ij}$$

this implies:

$$f_{ij} = \frac{\partial u_i}{\partial x_j}$$

the virtual work equation reads

$$\int_{\Omega} \left(\sigma_{ij} D_{ij}^* + \chi_{ijk} \frac{\partial^2 u_i^*}{\partial x_j \partial x_k} \right) dv = \int_{\Omega} G_i u_i^* dv + \int_{\partial\Omega} (p_i u_i^* + P_i D u_i^*) ds$$

Numerical Approach

Local Second gradient model formulation: strong form

$$\frac{\partial \sigma_{ij}}{\partial x_j} - \frac{\partial^2 \chi_{ijk}}{\partial x_j \partial x_k} + G_i = 0$$

$$\boxed{\sigma_{ij} n_j - n_k n_j D \chi_{ijk} - \frac{D \chi_{ijk}}{D x_k} n_j - \frac{D \chi_{ijk}}{D x_j} n_k + \frac{D n_l}{D x_l} \chi_{ijk} n_j n_k - \frac{D n_j}{D x_k} \chi_{ijk}} = p_i$$

$$\chi_{ijk} n_j n_k = P_i$$

Numerical Approach

Local Second gradient model formulation: weak form

$$\int_{\Omega} \left(\sigma_{ij} \frac{\partial u_i^*}{\partial x_j} + \sum_{ijk} \frac{\partial^2 u_i^*}{\partial x_j \partial x_k} \right) d\Omega = W_{ext}^*$$

Local quantities

Introduction of Lagrange multiplier field :

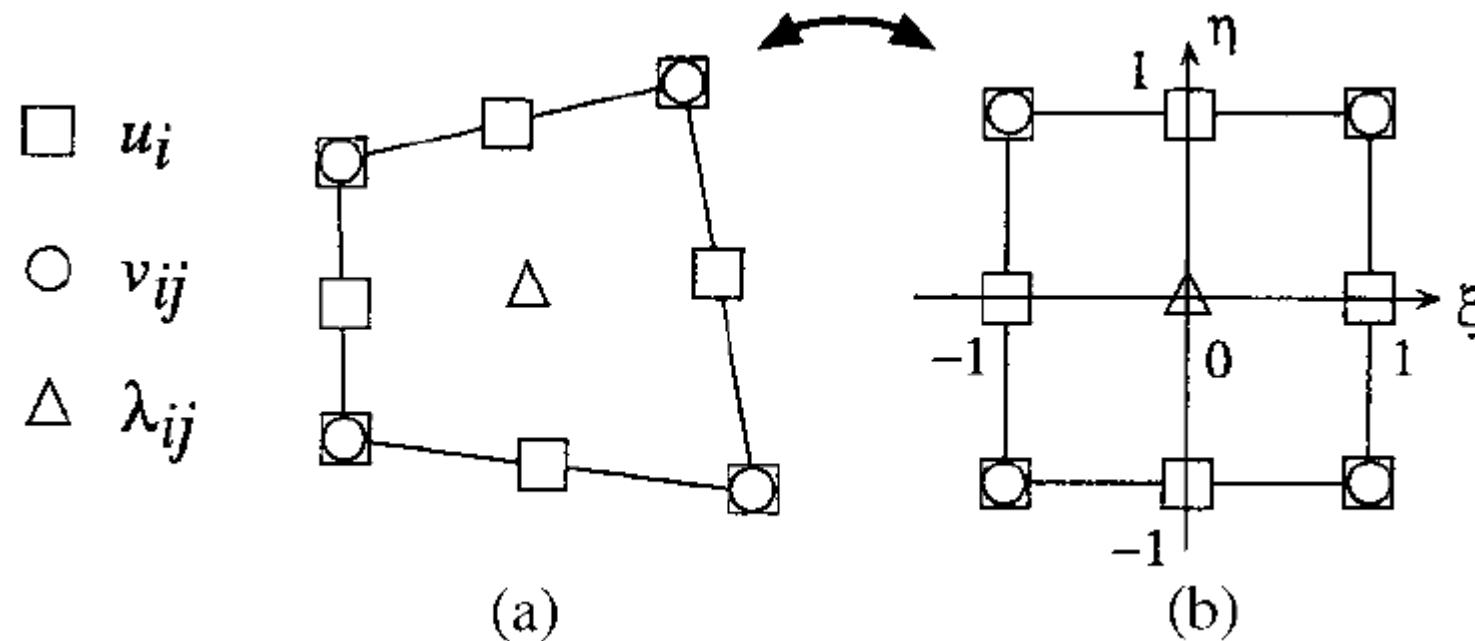
$$\int_{\Omega} \left(\sigma_{ij} \frac{\partial u_i^*}{\partial x_j} + \sum_{ijk} \frac{\partial v_{ij}^*}{\partial x_k} \right) d\Omega - \int_{\Omega} \lambda_{ij} \left(\frac{\partial u_i^*}{\partial x_j} - v_{ij}^* \right) d\Omega = W_{ext}^*$$

$$\int_{\Omega} \lambda_{ij}^* \left(\frac{\partial u_i}{\partial x_j} - v_{ij} \right) d\Omega = 0$$

Numerical Approach

Local Second gradient model formulation: weak form

Local Second gradient Finite element



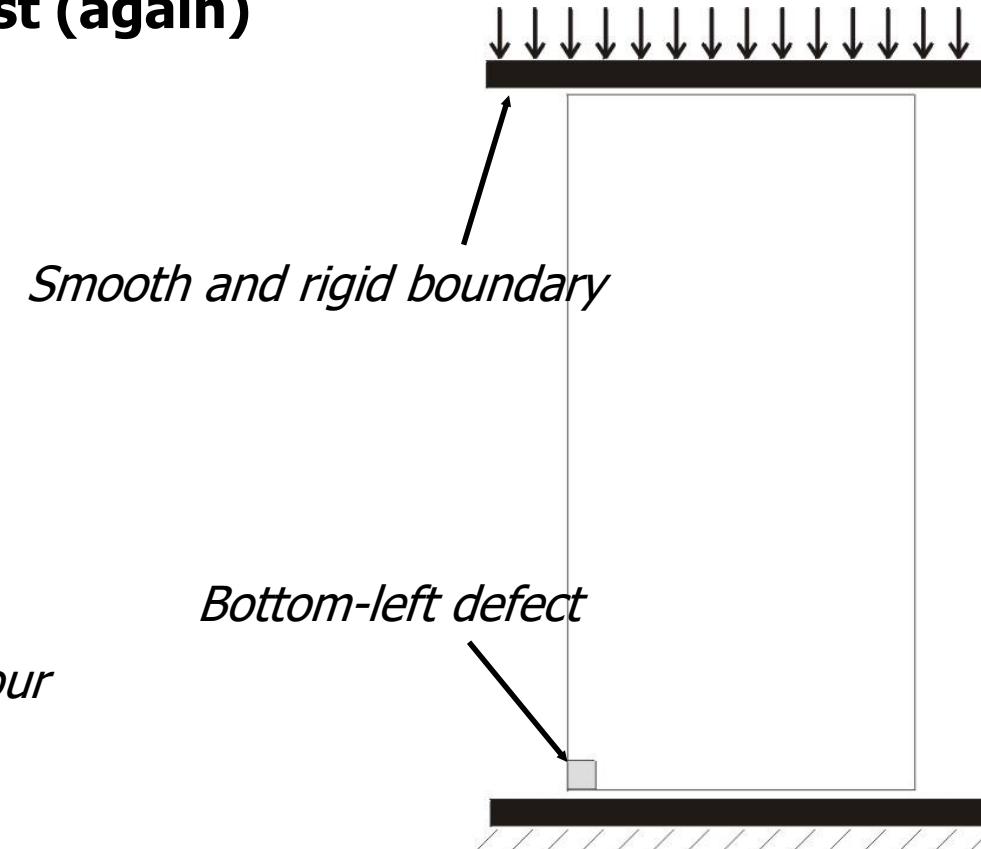
Numerical Approach

Example n°1: Biaxial test (again)

Strain rate : 0.18% / hour

No lateral confinement

Globally drained (upper and lower drainage)



Numerical Approach

Example n°1: Biaxial test (again)

First gradient law

Linear elasticity : E_0 et ν_0

Drucker Prager criterion :
$$F \equiv \sqrt{\frac{3}{2}} II_{\hat{\sigma}} + m \left(I_{\sigma} - \frac{3c}{\tan \phi} \right) = 0$$

$$m = \frac{2 \sin \phi}{3 - \sin \phi} \quad c = c_0 f(\gamma^p)$$

Associated softening plasticity (decrease of cohesion) :

$$f(\gamma^p) = \left(1 - (1 - \alpha) \frac{\gamma^p}{\gamma_R^p} \right)^2 \text{ si } 0 < \gamma^p < \gamma_R^p$$
$$= \alpha^2 \text{ si } \gamma^p \geq \gamma_R^p$$

Numerical Approach

Example n°1: Biaxial test (again)

- *Second gradient law : Linear relationship deduced from Mindlin*

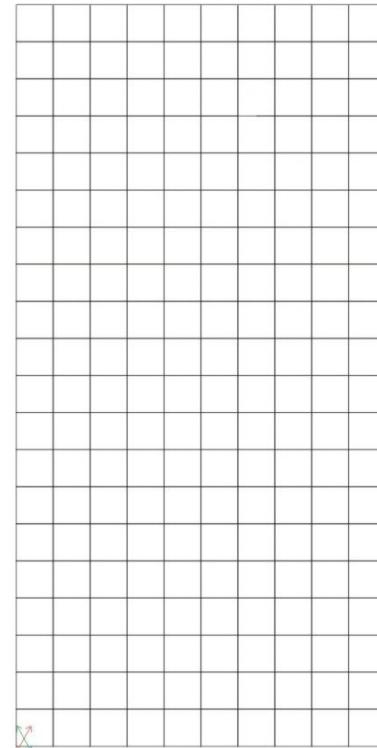
$$\begin{bmatrix} \tilde{\Sigma}_{111} \\ \tilde{\Sigma}_{112} \\ \tilde{\Sigma}_{121} \\ \tilde{\Sigma}_{122} \\ \tilde{\Sigma}_{211} \\ \tilde{\Sigma}_{212} \\ \tilde{\Sigma}_{221} \\ \tilde{\Sigma}_{222} \end{bmatrix} = \begin{bmatrix} D & 0 & 0 & 0 & 0 & \frac{D}{2} & \frac{D}{2} & 0 \\ 0 & \frac{D}{2} & \frac{D}{2} & 0 & -\frac{D}{2} & 0 & 0 & \frac{D}{2} \\ 0 & \frac{D}{2} & \frac{D}{2} & 0 & -\frac{D}{2} & 0 & 0 & \frac{D}{2} \\ 0 & 0 & 0 & D & 0 & -\frac{D}{2} & -\frac{D}{2} & 0 \\ 0 & -\frac{D}{2} & -\frac{D}{2} & 0 & D & 0 & 0 & 0 \\ \frac{D}{2} & 0 & 0 & -\frac{D}{2} & 0 & \frac{D}{2} & \frac{D}{2} & 0 \\ \frac{D}{2} & 0 & 0 & -\frac{D}{2} & 0 & \frac{D}{2} & \frac{D}{2} & 0 \\ 0 & \frac{D}{2} & \frac{D}{2} & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{\partial \dot{v}_{11}}{\partial x_1} \\ \frac{\partial \dot{v}_{11}}{\partial x_2} \\ \frac{\partial \dot{v}_{12}}{\partial x_1} \\ \frac{\partial \dot{v}_{12}}{\partial x_2} \\ \frac{\partial \dot{v}_{21}}{\partial x_1} \\ \frac{\partial \dot{v}_{21}}{\partial x_2} \\ \frac{\partial \dot{v}_{22}}{\partial x_1} \\ \frac{\partial \dot{v}_{22}}{\partial x_2} \end{bmatrix}$$

$D = 20 \text{ kN}$

Numerical Approach

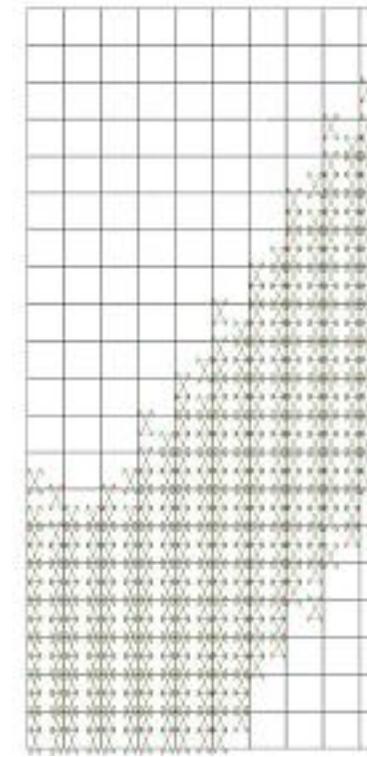
Example n°1: Biaxial test (again)

Bifurcation directions



Before

(Regularization : Second gradient)

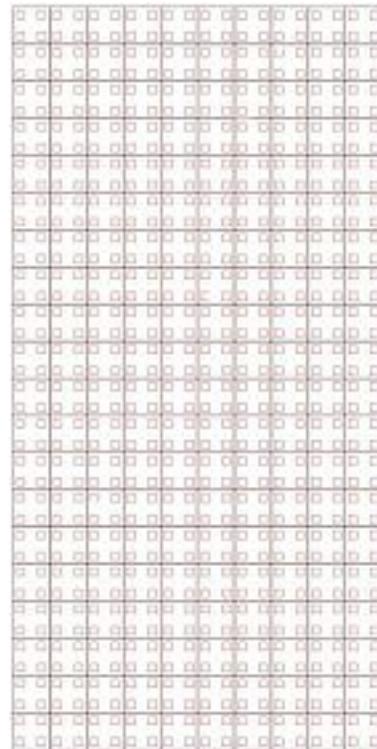


After

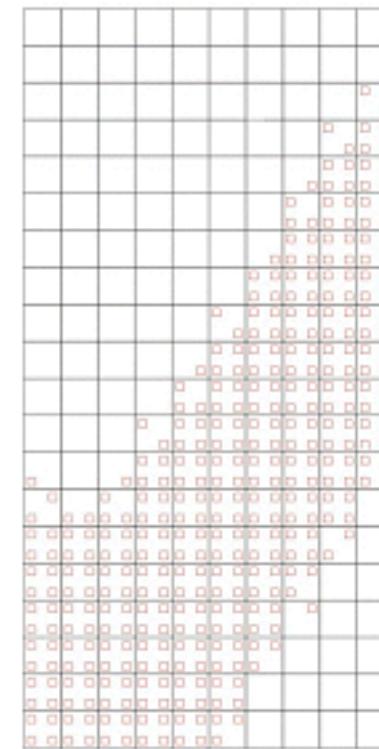
Numerical Approach

Example n°1: Biaxial test (again)

Plastic loading point

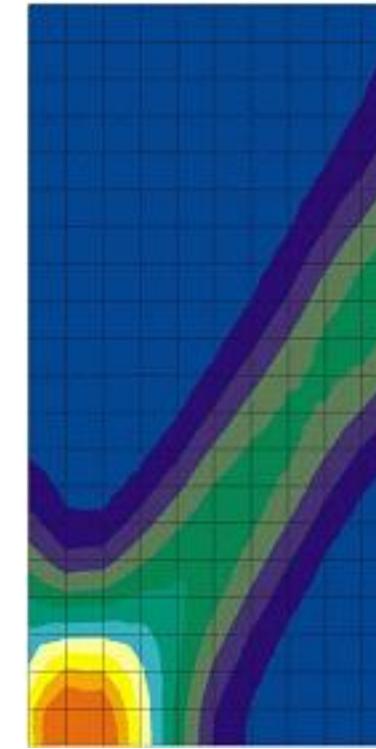


Before



After

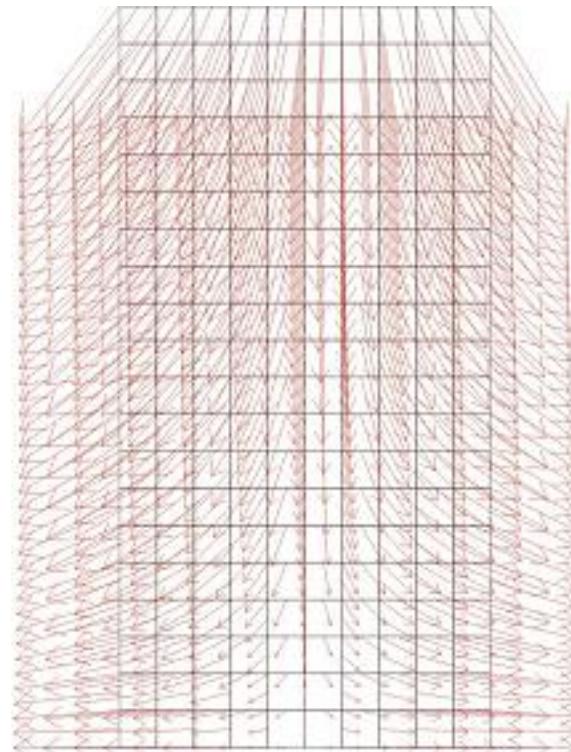
(Regularization : Second gradient)



Numerical Approach

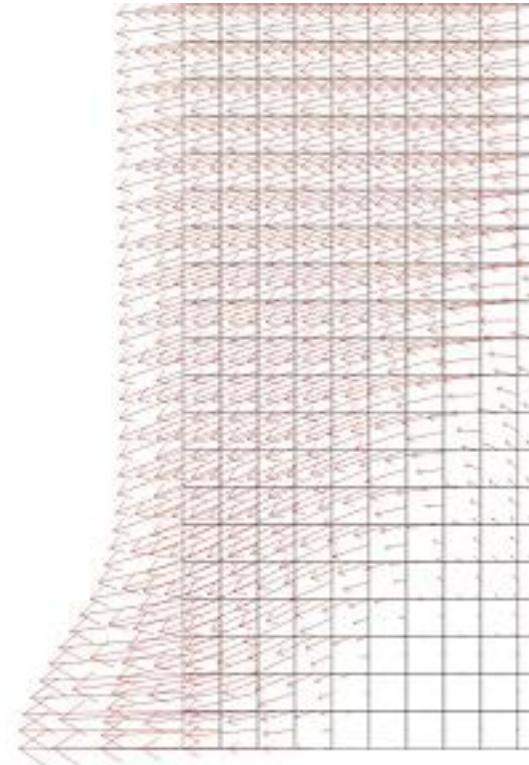
Example n°1: Biaxial test (again)

Velocity field



Before

(Regularization : Second gradient)

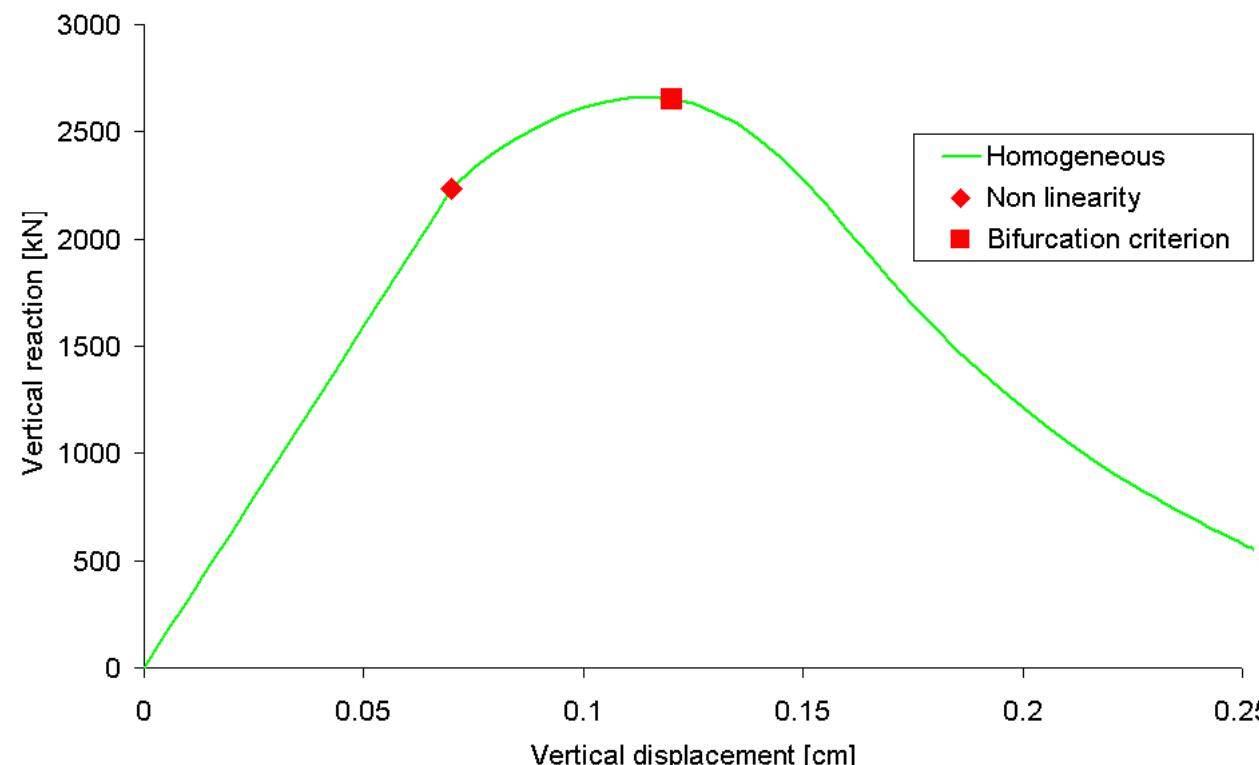


After

Numerical Approach

Example n°1: Biaxial test (again)

Initiation of localization (Directional research – Chambon et al., 2001)

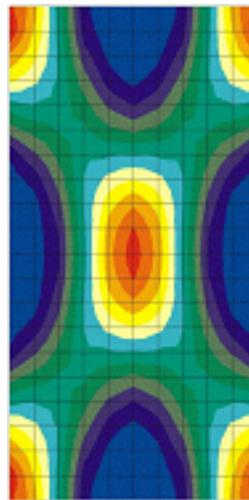
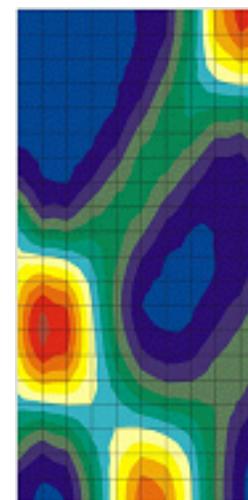
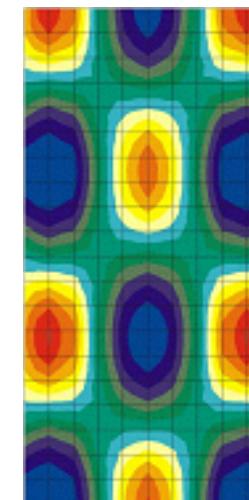
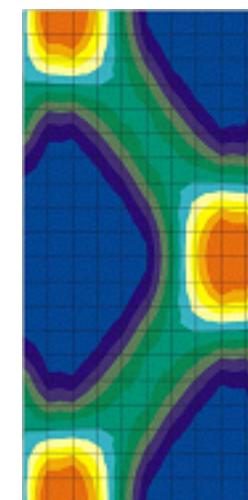
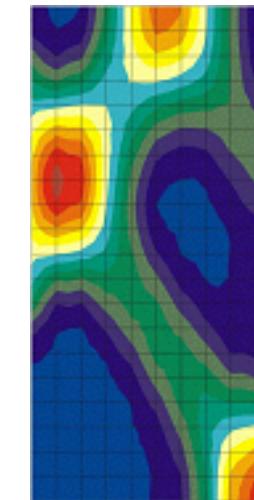


Numerical Approach

Example n°1: Biaxial test (again)

Initiation of localization (Directional research)

(Regularization : Second gradient)

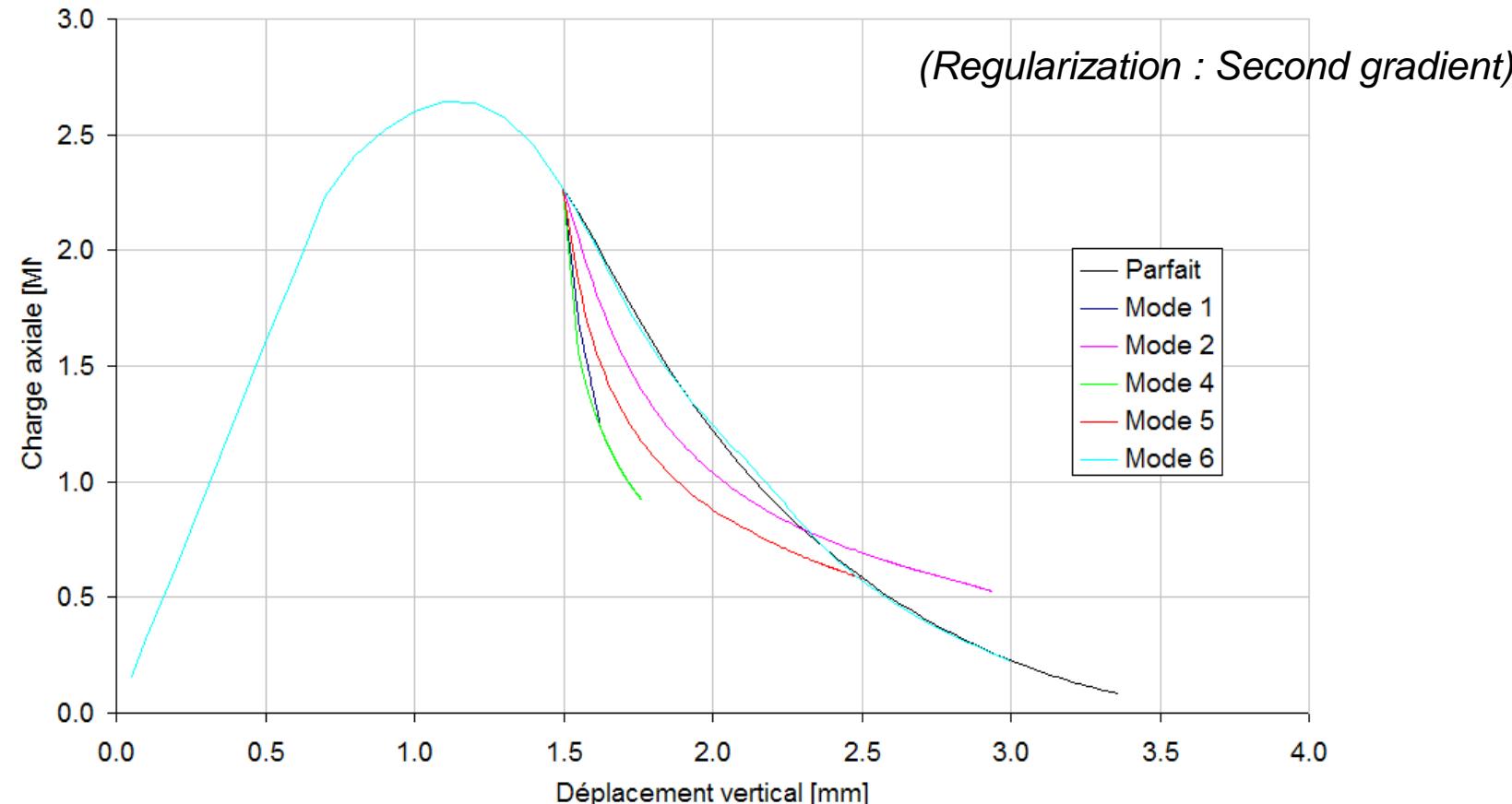


Non uniqueness of the solution

Numerical Approach

Example n°1: Biaxial test (again)

Initiation of localization (Directional research)

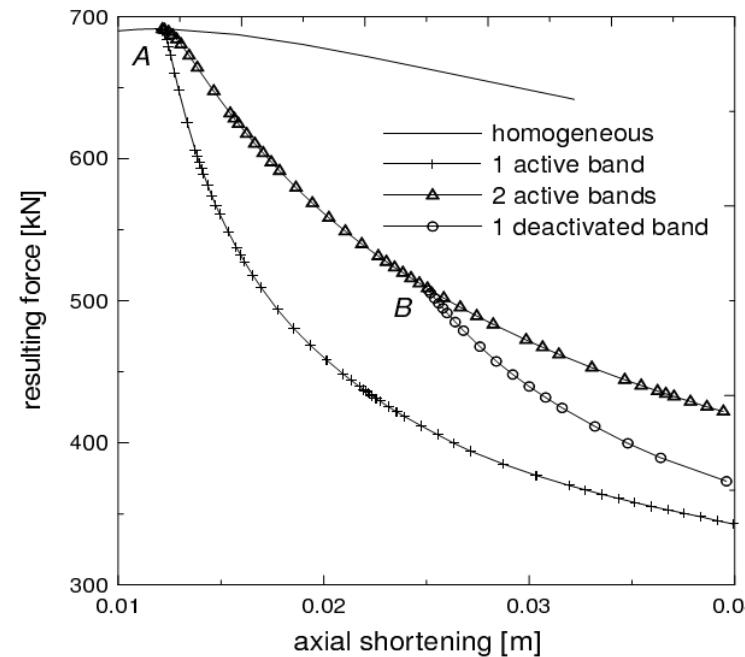
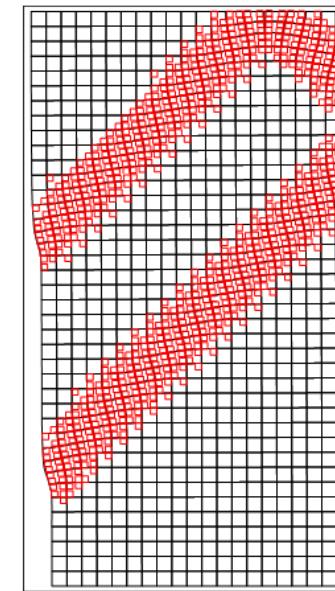
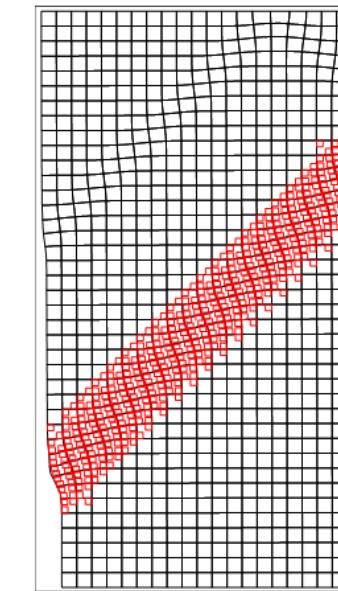


Non uniqueness of the solution

Numerical Approach

Example n°1: Biaxial test (again)

Localization mode switching (Bésuelle et al., 2006)



Non uniqueness of the solution

Numerical Approach

Local Second gradient HM model formulation: weak form

- ✓ Second gradient effects are assumed only for solid phase
- ✓ For the mixture, there are stresses which obey the Terzaghi postulate and double stresses which are only the one of the solid phase
- ✓ Boundary conditions for the mixture are enriched

Numerical Approach

Local Second gradient HM model formulation: weak form

$$\int_{\Omega} \left(\sigma_{ij} \frac{\partial u_i^*}{\partial x_j} + \sum_{ijk} \frac{\partial^2 u_i^*}{\partial x_j \partial x_k} \right) d\Omega = W_{ext}^*$$

$$\int_{\Omega} \dot{M} p^* - m_i \frac{\partial p^*}{\partial x_i} d\Omega = \int_{\Omega} Q p^* d\Omega + \int_{\Gamma} \bar{q} p^* d\Gamma$$

Darcy's law

$$m_i = -\rho_w \frac{\kappa}{\mu} \left(\frac{\partial p}{\partial x_i} + \rho_w g_i \right)$$

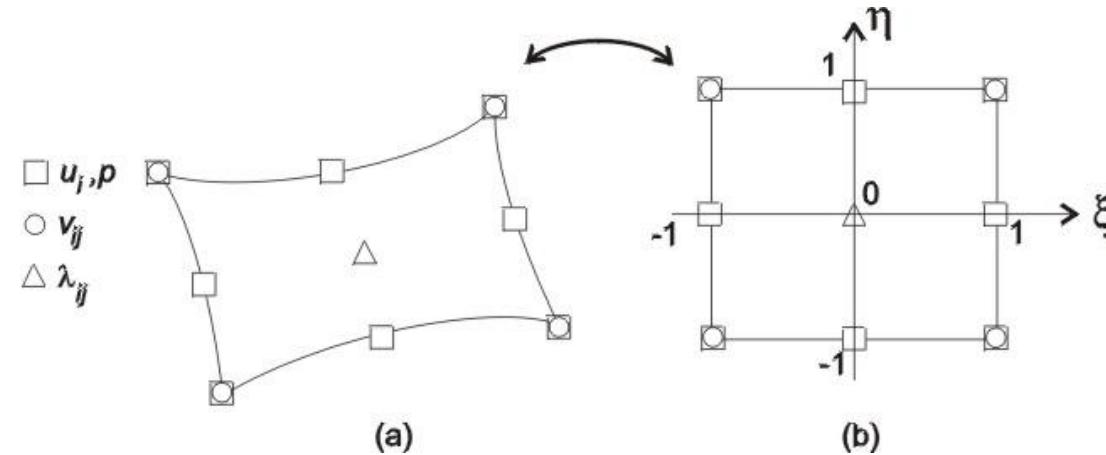
Storage law

$$\dot{M} = \rho_w \frac{\dot{p}}{k^w} \phi + \rho_w \frac{\dot{\Omega}}{\Omega}$$

Numerical Approach

Local Second gradient HM model formulation:

Isoparametric Finite Element :



8 nodes for macro-displacement and pressure field
4 nodes for microkinetic gradient field
1 node for Lagrange multipliers field

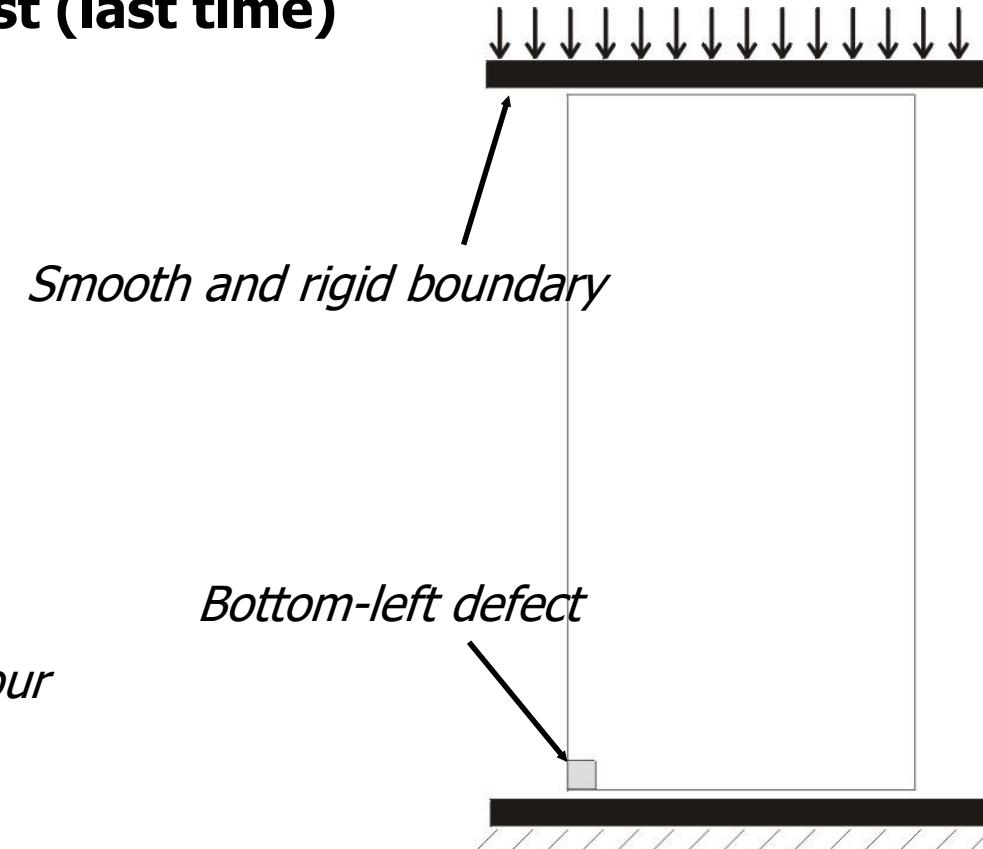
Numerical Approach

Example n°1: Biaxial test (last time)

Strain rate : 0.18% / hour

No lateral confinement

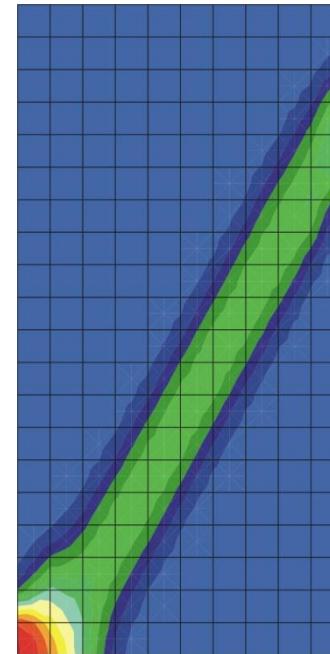
Globally drained (upper and lower drainage)



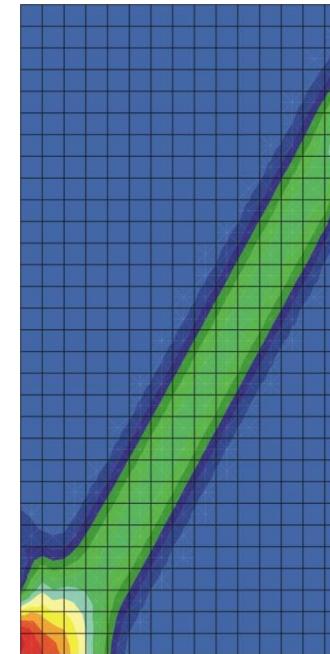
Numerical Approach

- *Equivalent strain after 0.2 % of axial strain ($\kappa = 10^{12} \text{ m}^2$)*

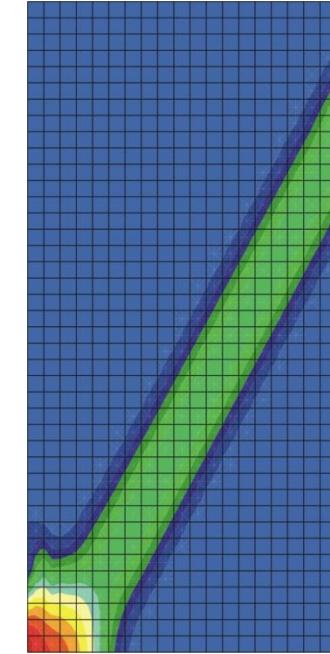
(20 x 10)



(30 x 15)



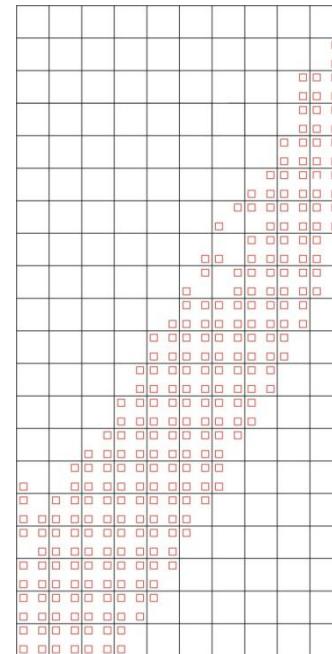
(40 x 20)



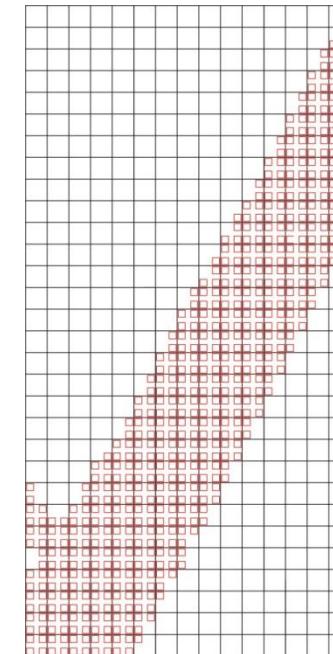
Numerical Approach

- *Plastic loading point after 0.2 % of axial strain ($\kappa = 10^{12} \text{ m}^2$)*

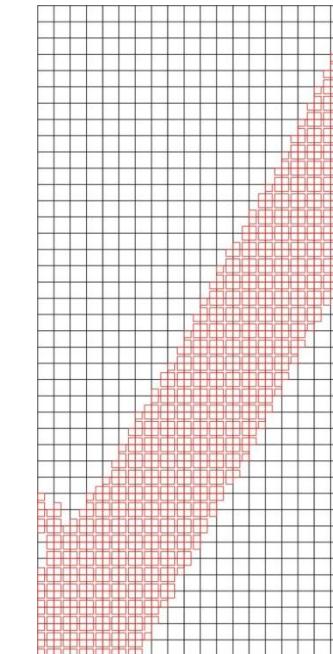
(20×10)



(30×15)



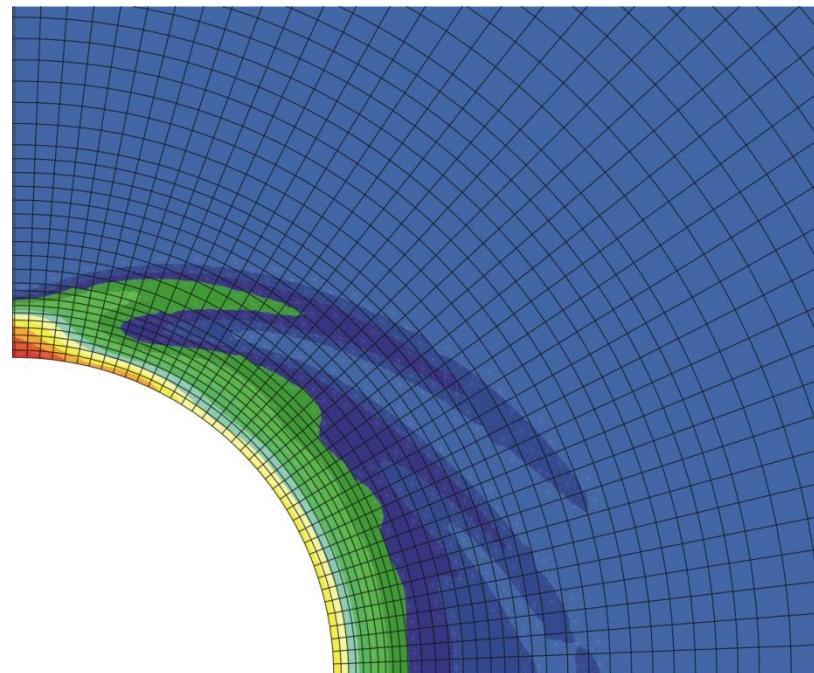
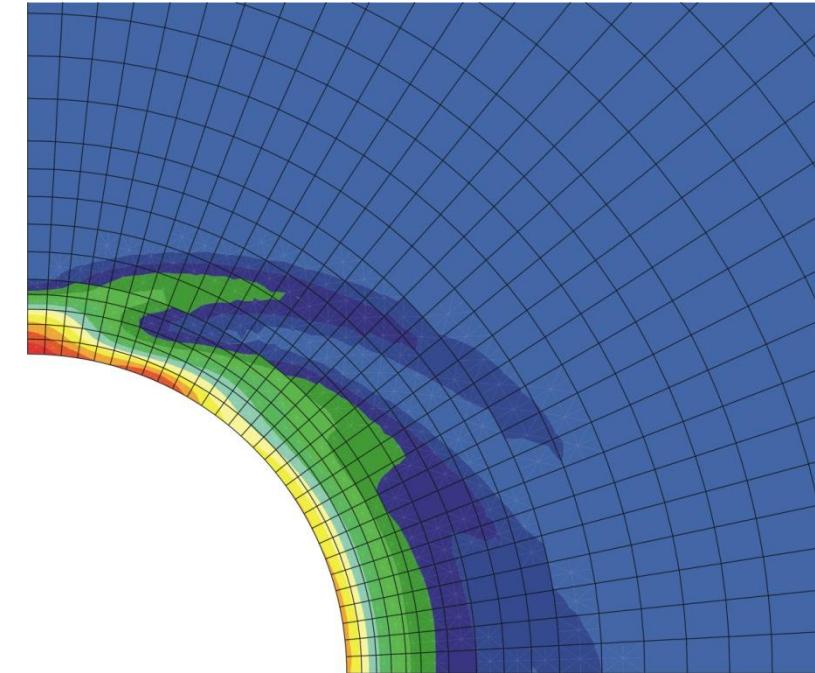
(40×20)



Numerical Approach

Coupled modelling – Comparison Coarse mesh - Refined mesh

Coupled second gradient FE formulation



Deviatoric strains

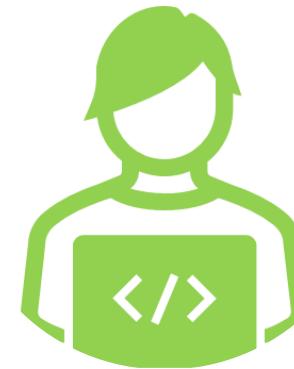
Table of Contents

Context

Rupture accross the scale

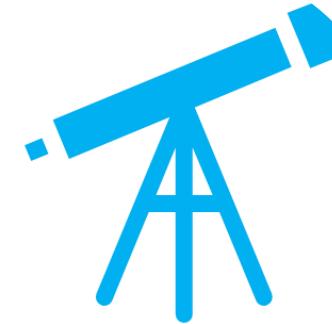
Theoretical Approach

Localized mode of deformation



Numerical Approach

Second gradient model



Application

Underground nuclear waste disposal