The influence of beam kinematic assumptions in a beam contact benchmark

A. Bosten^{1,2}, V. Denoël³, A. Cosimo⁴, J. Linn² and O. Brüls¹

¹Department of Aerospace and Mechanical Engineering, University of Liège

²Fraunhofer Institute for Industrial Mathematics, Kaiserslautern

³Department of Urban and Environmental Engineering, University of Liège

⁴Siemens Industry Software, Liège

Context and applications

ULiège & ITWM Kaiserslautern

Open PhD position!

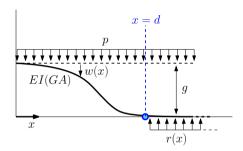
Motivation for a beam contact benchmark

Line contact model between geometrically exact beams (mortar approach)

- Is the observed distributed contact force reasonable?
- What is the influence of the beam kinematic assumption? (with or without shear deformation)
- Benchmarking with other methods? (point-to-point contact model, penalty formulation)
- Representative test problem with an analytical solution?

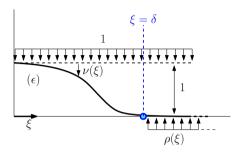
A. Bosten, A. Cosimo, J. Linn and O. Brüls, A mortar formulation for frictionless line-to-line beam contact, *Multibody System Dynamics*, 54:31-52 (2021)

Proposed test problem



- 2D cantilever beam with infinite length
- Small displacements ⇒ linear beam model
- Euler-Bernoulli vs Timoshenko model
- g: initial gap w.r.t. rigid support
- p: uniformly applied lineic force
- Cross-section deformations are neglected in the contact kinematics

Adimensionalization



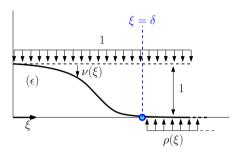
Characteristic lengths and angle:

$$u_1^* = g, \ u_2^* = \left(\frac{gEI}{p}\right)^{1/4}, \ \theta^* = \frac{u_1^*}{u_2^*}$$

Change of variables

$$\xi = \frac{x}{u_2^*}, \ \nu = \frac{w}{u_1^*}, \ \vartheta = \frac{\theta}{\theta^*}, \ \delta = \frac{d}{u_2^*}, \ \rho = \frac{r}{p}, \ \epsilon^2 = \frac{EI/Gr}{u_2^{*2}}$$

Adimensionalization



Characteristic lengths and angle:

$$u_1^* = g, \ u_2^* = \left(\frac{gEI}{p}\right)^{1/4}, \ \theta^* = \frac{u_1^*}{u_2^*}$$

Change of variables:

$$\xi = \frac{x}{u_2^*}, \ \nu = \frac{w}{u_1^*}, \ \vartheta = \frac{\theta}{\theta^*}, \ \delta = \frac{d}{u_2^*}, \ \rho = \frac{r}{p}, \ \epsilon^2 = \frac{EI/GA}{u_2^{*2}}$$

Equilibrium and kinematic equations

Euler-Bernoulli and Timoshenko models

$$\theta'''(x) - \frac{p - r(x)}{EI} = 0$$

$$\theta'''(\xi) + \rho(\xi) - 1 = 0$$

$$\frac{EI}{GA}\theta''(x) - \theta(x) + w'(x) = 0$$

$$\epsilon^2 \vartheta''(\xi) - \vartheta(\xi) + \nu'(\xi) = 0$$

- In the free region, the reaction is zero: r(x) = 0 or $\rho(\xi) = 0$
- In the contact region, the displacement is imposed: w(x) = g or $v(\xi) = 1$, w'(x) = 0 or $v'(\xi) = 0$
- At the transition point x=d or $\xi=\delta$, these equations do not necessarily hold

Equilibrium and kinematic equations

Euler-Bernoulli and Timoshenko models

$$\theta'''(x) - \frac{p - r(x)}{EI} = 0$$

$$\theta'''(\xi) + \rho(\xi) - 1 = 0$$

$$\frac{EI}{GA}\theta''(x) - \theta(x) + w'(x) = 0$$

$$\epsilon^2 \vartheta''(\xi) - \vartheta(\xi) + \nu'(\xi) = 0$$

- In the free region, the reaction is zero: r(x) = 0 or $\rho(\xi) = 0$
- In the contact region, the displacement is imposed: w(x) = g or $v(\xi) = 1$, w'(x) = 0 or $v'(\xi) = 0$
- ullet At the transition point x=d or $\xi=\delta$, these equations do not necessarily hold

Boundary conditions

Clamp:

$$w(0)=0, \quad \theta(0)=0$$

Free end:

$$\theta(x) \to 0$$
 as $x \to +\infty$

Transition point:

$$w(d) = g$$
, $w'(d) = 0$, $\theta(d) = \theta_d$

Free boundary problem:

- the governing equations are solved analytically on each subdomain that are defined by the limits of the contact region
- Continuity equations are used to localize this transition point

Euler-Bernoulli solution

The dimensionless free length is

$$\delta = 72^{1/4}$$

The dimensionless shear force is

$$\mathcal{T}(\xi) = \begin{cases} \xi - \delta \left(\frac{1}{2} + \frac{12}{\delta^4} \right) & \text{if } \xi < \delta \\ 0 & \text{if } \xi > \delta \end{cases}$$

A point contact force appears due to discontinuity in the shear force

$$f_\delta = \mathcal{T}(\delta^-) - \mathcal{T}(\delta^+) = rac{1}{3}\delta$$

Timoshenko solution

The dimensionless free length is obtained by solving the following equation

$$\delta^6 + 6\epsilon\delta^5 + 30\epsilon^2\delta^4 + 72\epsilon^3\delta^3 + 72(\epsilon^4 - 1)\delta^2 - 144\epsilon(\delta + \epsilon) = 0.$$

The shear force is given by

$$\mathcal{T}(\xi) = \begin{cases} \xi - \delta \left(\frac{1}{2} + \frac{12}{\delta^4} \right) \frac{\delta^2}{\delta^2 + 6\epsilon^2} & \text{if } \xi < \delta \\ \frac{\vartheta_\delta}{\epsilon^2} exp\{(\delta - \xi)/\epsilon\} & \text{if } \xi > \delta \end{cases}$$

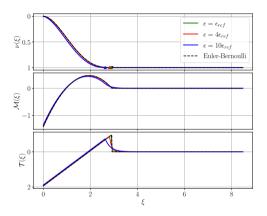
where

$$\vartheta_{\delta} = \delta \epsilon^2 \left(\frac{1}{2} + 6 \frac{\epsilon^2}{\delta^2} - \frac{12}{\delta^4} \right) \frac{\delta^2}{\delta^2 + 6\epsilon^2},$$

such that

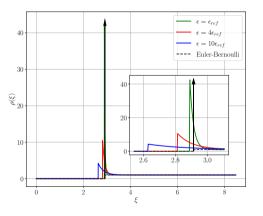
$$\mathcal{T}(\delta^-) = \mathcal{T}(\delta^+)$$

Analytical solutions



Transverse displacement, bending moment, shear force. The markers denote the first contact point: $\epsilon_{ref} = 0.023$.

Analytical solutions



Distributed contact force: $\epsilon_{\it ref} = 0.023$.

Properties of the analytical solution

Timoshenko model (with shear deformation)

- the shear force is continuous
- ullet the distributed contact force is discontinuous & takes large values in a boundary layer of length ϵ

Euler-Bernoulli model (no shear deformation)

- the shear force is discontinuous
- the distributed contact force is discontinuous & has an atom (Dirac delta)

⇒ Adding kinematic restrictions on the deformation pattern increases the level of nonsmoothness

Properties of the analytical solution

Timoshenko model (with shear deformation)

- the shear force is continuous
- ullet the distributed contact force is discontinuous & takes large values in a boundary layer of length ϵ

Euler-Bernoulli model (no shear deformation)

- the shear force is discontinuous
- the distributed contact force is discontinuous & has an atom (Dirac delta)

⇒ Adding kinematic restrictions on the deformation pattern increases the level of nonsmoothness

Properties of the analytical solution

Timoshenko model (with shear deformation)

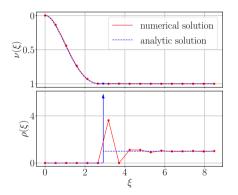
- the shear force is continuous
- ullet the distributed contact force is discontinuous & takes large values in a boundary layer of length ϵ

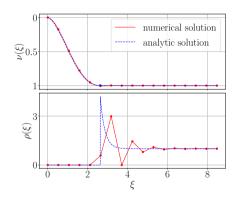
Euler-Bernoulli model (no shear deformation)

- the shear force is discontinuous
- the distributed contact force is discontinuous & has an atom (Dirac delta)

⇒ Adding kinematic restrictions on the deformation pattern increases the level of nonsmoothness

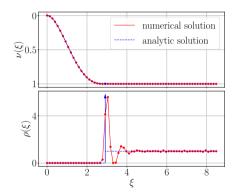
Comparison with a mortar numerical solution

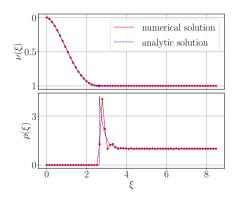




Left: Euler-Bernoulli. Right: Timoshenko with $\epsilon=10\epsilon_{\it ref}$ and $h=0.53>\epsilon$.

Comparison with a mortar numerical solution

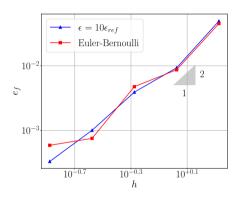




Left: Euler-Bernoulli. Right: Timoshenko with $\epsilon=10\epsilon_{\it ref}$ and $h=0.13<\epsilon$.

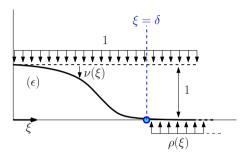
Comparison with a mortar numerical solution

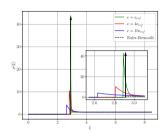




Left: Error on the vertical displacement. Right: Error on the integrated contact force.

Conclusion





A benchmark for beam contact problems has been proposed and an analytical solution has been presented.

The analytical solution reveals the significant influence of the kinematic assumptions of the beam model on the solution at the contact transition.

Compared to the Euler-Bernoulli model, the **Timoshenko model** leads to **smoother solutions** which are easier to capture by numerical schemes.

Thank you for your attention!

The influence of beam kinematic assumptions in a beam contact benchmark

A. Bosten^{1,2}, V. Denoël³, A. Cosimo⁴, J. Linn² and <u>O. Brüls¹</u>

¹Department of Aerospace and Mechanical Engineering, University of Liège

²Fraunhofer Institute for Industrial Mathematics, Kaiserslautern

³Department of Urban and Environmental Engineering, University of Liège

⁴Siemens Industry Software, Liège

