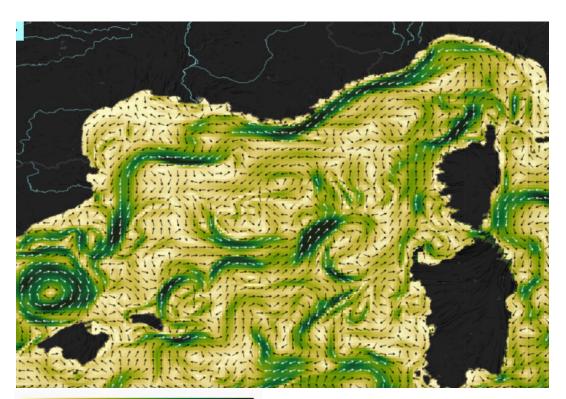

Drifters Do it Yourself (D2iY), an integrated project to learn oceanography by building and deploying surface drifters.

Aida Alvera-Azcárate, Alexander Barth, Abel Dechenne, Cédric Delforge, Sylvie Gobert, Loïc Laur, and Cécile Pujol

Master in Oceanography at the University of Liège

1st year: interdisciplinary frame to cover a large array of basic oceanography topics Physical, chemical, biological, geological oceanography, law of the sea, marine resources...

A 2-week research stay at STARESO (Corsica)
Hands-on experiences, fieldwork
Practical application of theoretical concepts


Students' background: biology, geology, environmental sciences, but also career changes ("love for the ocean")

Drifters Do it Yourself (D2iY)

Main objectives:

- Ultimate objective: measure ocean currents in the Bay of Calvi with self-made drifting buoys
- Integrate oceanographic knowledge acquired during the year
- Develop a project from A to Z so students can feel the project as their own
- Promote group work

Why ocean currents?

0.4 m/s

Ocean has the largest heat capacity in the climate system

Control the rate of climate change

Ocean currents transport:

heat nutrients oxygen pollutants...

Building the surface drifters: the platform

We looked for suitable designs Prototype developed by 2nd year students Buoyancy tests in Liege Aquarium

Concepts: depth of measurement, buoyancy

Software development

Programming in **julia**We provided the code to students:

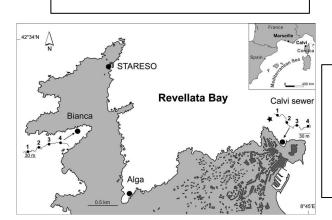
- https://tinyurl.com/drifter-rpi
- Data logger, communication via SMS, post processing

Concepts: programming, data acquisition, optimizing data vs. ressources for a given scientific question

Raspberry Pi GPS antenna SIM card Battery

Students assignment

Aims to cover the whole scientific process: from the question and field measurements to the analysis and scientific conclusions


Raise of a scientific question related to surface dynamics

Data collection and treatment

Drifter's assemblage and deployment in the **Bay of Calvi**

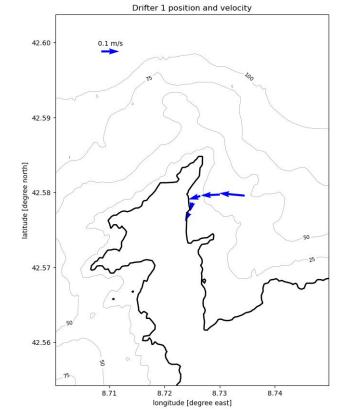
Analysis and conclusions on the raised question

Deployment of drifters

Assembly of all drifters at STARESO

Design of measurement strategy: scientific question

Deployment of drifters



Data acquisition, analysis of results, interpretation

Julia notebook provided to students to:

- Extract the position corresponding to the deployment
- Convert position to velocity
- Apply a low-pass filter
- Available at https://tinyurl.com/drifter-rpi
- Use the in cloud computing environment from the Blue Cloud project to avoid installation issues

Coastal Currents from Observations Virtual Lab

Conclusions

- Multidisciplinary project
- Demands wide range of skills from students
- Students feel involved in the project Motivation Evolution of project from year to year

Lack of programming skills in typical oceanography students

