

Crop residue management and N₂O emissions: is it worth worrying?

A 12-years experiment on arable cropping system in northern France

Belleville Paul^{1*} (paul.belleville@inrae.fr), Keuper Frida¹, Bornet Frédéric¹, Duval Jérôme¹, Ferchaud Fabien¹, Gréhan Eric¹, Mary Bruno¹, Vitte Guillaume¹, Heinesch Bernard^{1,2}, Dumont Benjamin^{1,3} and Léonard Joël¹

¹BioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, France

²Biosystems Dynamics and Exchanges (BIODYNE), Liège University, Gembloux Agro-Bio Tech, AgroBioChem/TERRA, Belgium

³Crop Science Unit, Liège University, Gembloux Agro-Bio Tech, AgroBioChem/TERRA, Belgium

Introduction

arbon storage in agricultural soils might help to reduce our current excess atmospheric carbon while improving soil quality.

Attempts at increasing soil carbon often involve promoting residue restitution, *i.e.* the return of organic matter to the soil after harvest

Restitution of residue into the soil

Decomposition and storage

Gazeous losses
CO₂, N₂O, CH₄

Bulk losses
Erosion, leaching

Fig. 1: crop residue managements decomposition, storage and N₂O emissions

of a cash-crop or destruction of a cover-crop. This practice might lead to greater nitrous oxide (N_2O) emissions. N_2O is a greenhouse gas with a 273 times stronger global warming potential than carbon dioxide and the single greatest ozone-depleting substance. Recent meta-analysis on N_2O emissions during crop residue decomposition shows high-unexplained variability and a lack of long-term data on interactions between residue management and other agricultural practices.

Objectives

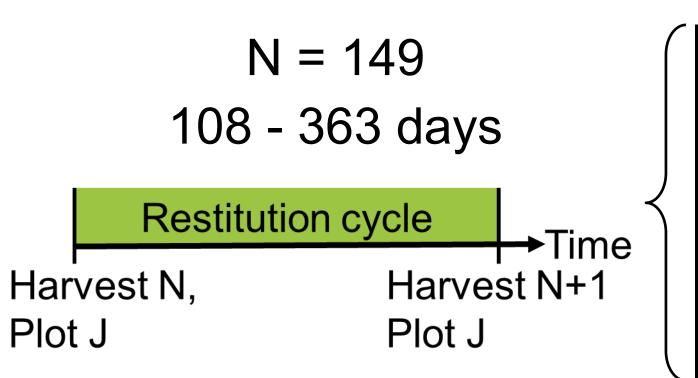
hat is the relative contribution of crop residue management to N₂O emissions?

Using a 12-years field experiment and statistical models,

- 1. identify key variables driving N₂O emissions and,
- 2. assess the relative importance of different crop residue management practices, *i.e.* tillage, biomass (quantity, carbon and nitrogen content), on N₂O emissions, compared to other known drivers such as nitrogen fertilization or soil water content.

Materials & Methods

We used the ACBB long-term experiment located in northern France, cf. Table 1. The soil is a deep silt loam, with 9.8 g.kg⁻¹ of organic carbon and a pH of 7.8.


<u>Table 1:</u> the eight experimental treatments of SOERE ACBB

Treatment	1	2	3	4	5	6	7	8
Plowing	\checkmark	×	×	\checkmark	\checkmark	×	\checkmark	\checkmark
Exportation of cash crop residues	×	×	\checkmark	×	×	\checkmark	×	×
Mineral N (% of ref. dose)	100%	100%	100%	35%	35%	100%	0%	0%
Legumes' frequency	low	low	low	low	high	low	low	high
Perennial crops within succession	×	×	×	×	×	\checkmark	×	×
Chemical protection	\checkmark	\checkmark	\checkmark	\checkmark	low	\checkmark	×	×

 N_2O emissions have been measured daily since 2011 with automatic chambers, cf Fig 2. and are summarized at the scale of restitution cycles, cf Fig. 3.

Fig. 2: the automatic chambers system measures N₂O emissions

Total N₂O emissions

- Biomass (C, N, quantity)
- Nitrogen fertilization
- Weather conditions
- Soil environment (WFPS, T°C)

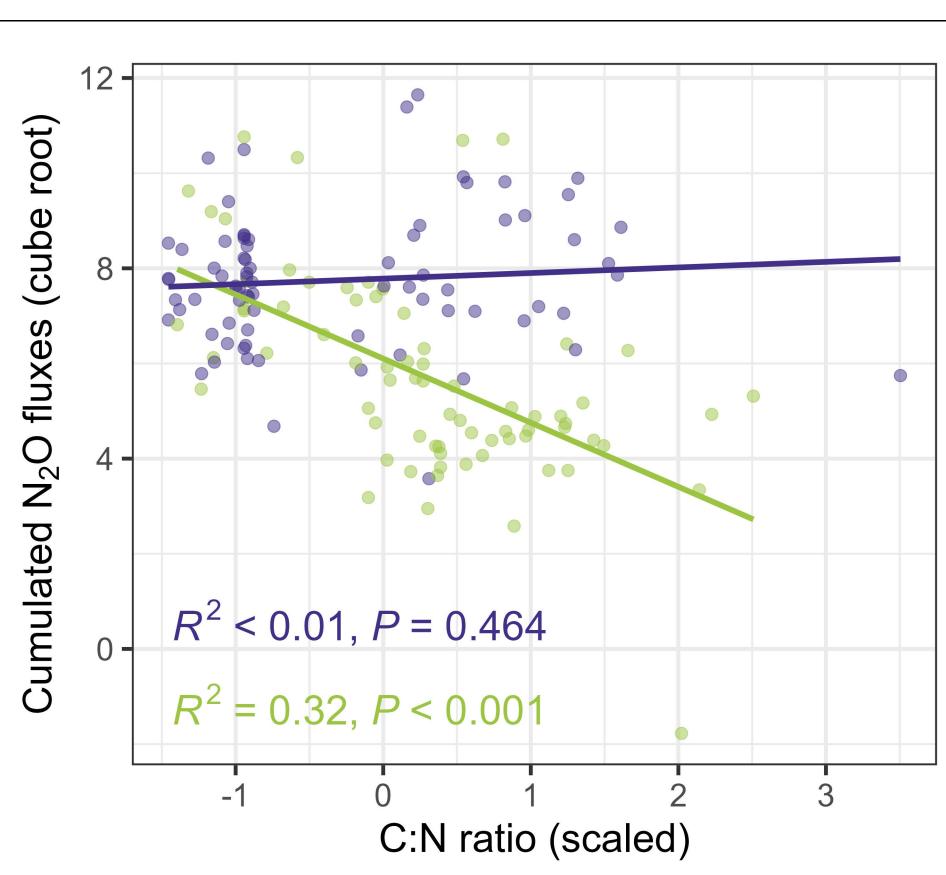
Fig. 3: spatiotemporal scales and variables of each individual in the analysis

Regression Main of crop residue management

Fig. 4: general workflow to reach the objectives

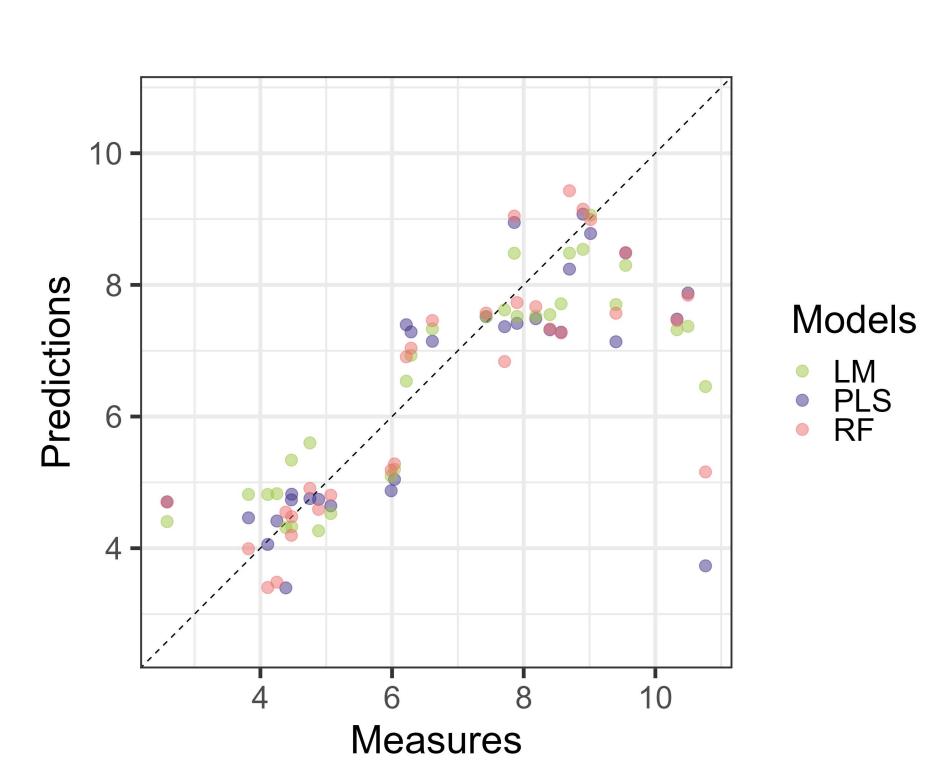
Results & discussion

isual assessment, such as the one in Fig 5, of the relationship between N₂O and all variables, gives an *a priori* indication of key drivers for the LM.


PLS and RF models are trained using the entire dataset.

Abbreviations:

LM: linear model


PLS: partial least square

RF: random forest

Cumulated rainfall (mm) • (0,380] • (380,760]

Fig. 5: visual exploration, here illustrating the interaction between C:N ratio and cumulated rainfall

The three tested models perform similarly on a test dataset (20% of the full dataset sampled), cf Fig. 6.

The analysis of these models give indications about the hierarchy of the drivers and the contribution of crop residue to N₂O emissions, cf Table 2.

Fig. 6: models' predictions of cumulated N₂O fluxes (cube root) using test dataset.

Table 2: variable importance assessed on training dataset

Method	Importance of variables
Wethou	Importance of variables
LM	Cum. Rain. > C:N ratio ~ N Ferti.
RF	Cycle length ~ Cum. Rain ~ C:N ratio ~ N ferti.
PLS	Cycle length ~ Cum. Rain ~ N ferti. >> C:N ratio

- Cum. Rain., Cycle length and N Ferti. are the main influential variables.
- C:N ratio is the only variable directly related to residue in this list.
- None of the Soil-related or tillage-related variables are identified as "important" which is surprising for the WFPS-related variables.
- Results are consistent with existing literature.

Conclusion & perspective

rop residues and related management, within this pedoclimatic context, impact N₂O emissions through C:N ratio, when cumulated rainfall is low. Cumulated rainfall, cycle length and mineral nitrogen fertilization are the main drivers of N₂O

emissions. Soil water content, surprisingly, is not a driver of N₂O emissions here. This work suggests that it is possible to aim for carbon storage, using crop residue, without causing extra N₂O emissions, especially if the C:N of the latter is high.