THE IEEE INTERNATIONAL CONFERENCE
ON CLOUD COMPUTING

EFFICIENT VERSIONING
FOR UNIKERNELS

GAULTHIER GAIN, BENOIT KNOTT & PROF. LAURENT MATHY
University of Liege

T LlEG E IEEE World Congress on SERVICES
% universite July 7-12, 2025, Helsinki, Finland

DILEMMA

To deploy microservices, developers commonly rely on Virtual
Machines (VMs) or Containers

Virtual Machines (VMs) Containers

Strong isolation X Less isolation
— More exploits

X Heavyweight Lightweight
— Degrade performance — Share underlying kernel

LIEGE 2

DILEMMA

To deploy microservices, developers commonly rely on Virtual
Machines (VMs) or Containers

Virtual Machines (VMs) Containers

Strong isolation X Less isolation
— More exploits

X Heavyweight Lightweight
— Degrade performance — Share underlying kernel

Solution — Unikernels

LIEGE 3

UNIKERNELS

App

bins/libs bins/libs

Virtual Machines (VMs) Unikernels

Unikernels are purpose-built:
» Thin kernel layer (only the necessary features that the application needs)

» Essential functions are placed into libraries with well-defined behaviour

UNIKERNELS: CLOUD PLATFORMS

Unikraft Cloud Solutions Docs Open Source Company Pricing Blog - Contact Us Get Started

(HOSTED - CLOUD-PREM - ON-PREM)

Ué“(“’” ”ijs ar ed 8" adlualclly The Millisecond Cloud Platform.
eling adopted in clou
g p How it Works — Schedule a Demo [X

computing

kraft cloud --metro fra® deploy -p 443:8080 ./project
Stateful Scale-to-Zero,
Building rootfs via Dockerfile... done!
Autoscale & Cold Starts Packaging. .. done!
Deploying... done!
Deployed successfully!

el e
— e

name: my-project-6cfcd

. e i state:
Nnano Product Services Use Cases DevOps Open Source Pricing Security Schedule a Demo url: https://long-violet-92ka3gk7.fra0.unikraft.app

image: my-project@sha256:fbh3e5fb1609ab4fd40d38ae. ..
boot time: 16.65 ms
scale-to-zero:
memory: 128 MiB
service: long-violet-92ka3gk7
private fqdn: my-project-é6cfc4.internal
private ip: 172.16.6.4

Deploy unikernels to Gt mepmlopactecn st | o

Installing ops!

any cloud in seconds |z .
y ::ijcegsfull;) inZt:)]leglo.;;leps version: 0.1.12 Unlkrauﬁ- CIOUd

[]
Wlth no devo s Nanos version: 0.0! Please open another terminal where the ops
command will now be available.

$ ops pkg load eyberg/node:20.5.0 -p 8083 -a hi.js
[node hi.js]

booting /Users/root/ops/images/node.img ...
assigned: 10.0.2.15

Server running at http://127.0.0.1:8083/

Run up to 300% faster with far less cost and strong defensive security.

Schedule a Demo Download Now

Nanovms

E 5
1) LIEGE

https://unikraft.cloud
https://nanovms.com

THE UNIKERNEL TRADE-OFF

Major unikernel projects use a static linking model:

» All application code and required libraries are compiled into a single
binary at build time

» No need for a dynamic linker
Results in:
» Faster boot times
» Improved security through reduced attack surface + isolation

» No “dependency hell” issue

But... handling library versioning when deploying many unikernels
in cloud platforms introduces challenges

E 6
1) LIEGE

MEMORY DEDUPLICATION WITH VERSIONING

page (4KiB) Jtext 0x1000, .text 0x1000.,

{ uklibl uklibll uklibl uklibll
ukliblll - S -
uklibv@v1 uklibVi uklibvV@v2

uklibVI uklibVIl uklibVill uklibv@v2 uklibVI
uklibVIII uklibVI uklibVIl | uklibViII
uklibViil
data 0x8000
data 0x9000
Unikernel1 Unikernel2

Let’s consider 2 unikernels using # versions of the same library (e.g., uklibV@v1 and uklibV@v2)
» In memory, code is divided into pages (the basic unit of memory management)

Thanks to memory deduplication:

» Identical pages are shared and merged into the same frame

» Reduce the total #frames

v LIEGE 7

université

ke

MEMORY DEDUPLICATION WITH VERSIONING

Issue 1: £ pages

55 48 89 e5 bf

page (4KiB) A8t 0x1000. .text 0x1000, /|cfe
' ./ |5b 41 el f b8

01 00 00 5d c3

page.;......

{ uklibl uklibll uklibl uklibll TS
Issue 1: # pages <f3>: [.]
ssue 1. 2 pag ukliblll ukliblV ukliblil L ukiibIv RS

55 48 89 e5 bf 55 48 89 e5 bf

5b 41 el ff b8 uklibvev1 uklibVI uklibv@v2 [...]
01 00 00 5d c3 D s
<:2>: [..] / uklibVI uklibVIl uklibViii uklibvev2 uklibVI <>
<f3>: ¢

]
NS o RS . |cs 41 41 e1 ff

55 48 89 e5 bf uklibVIlI ‘
K E& 01 00 00 5d c3

e8 41 41 el ff
01 00 00 5d c3

uklibVIII

+ pages

Issue 2: # pages Issue 2: # pages

*1: CALL fct_ukLibVI (0x4100) Sata 0x8000 *2: CALL fct_ukLibVI (0x5300)
data 0x2000

Unikernel1 Unikernel2

! Problem: Having different versions (uklibV@v2) impacts the memory
sharing

1. This causes page misalignment (# pages)
2. This causes cross-reference addresses to be different (+ pages)

Result: Most of the pages are different and cannot be shared

LIEGE 8

université

ke

USING ALIGNMENT AS A SOLUTION

0x1000

N?

0x1000, /| =f

page (4KiB) ext

{: uklibl

Issue-1: = pages
<fl>:

55 48 89 e5 bf
5b 41 el ff b8
01 00 00 5d c3
<f2>: [.]

<f3>:

55 48 89 e5 bf
[...]

00 00 00 00 00

| 411gn(0x1000)
ukliblll

uklibv@v1

‘\ ialign(ox1000)

Issue-2: = pages

*1: CALL fct_ukLibVI (0x6100) i

text

uklibVII

ukliblll
uklibv@v2
uklibv@v2
uklibVI

{155 48
5b 41

01 00
<f2>:
<f3>:

55 48

[...]
00 00

89 e5
el ff
00 5d
[..]

89 e5

00 00

. = pages

bf
b8
c3
bf

00

<f4>:
55 48
. e8 41
" | 01 00

89 e5
41 el
00 5d

bf
ff
c3

data 0x2000

data

02000

Unikernel1

Alignment could be a potential solution:

Unikernel2

» Libraries are placed at fixed, page-aligned absolute addresses

Seems a good solution:

1. Fixes the page misalignment issue?

2. Fixes the cross-reference addresses issue?

LIEGE

université

9

Is 1t
enough?

Issue-2: = pages
*2: CALL fct_ukLibVI (0x6100)

ke

USING ALIGNMENT AS A SOLUTION?

. = pages
; <fl>:
page (4KiB) ;.text 0x1000 g.tex‘c 0x1000 /|55 48 89 e5 bf
: g |5b 41 el ff b8
' ' 01 00 00 5d c3
{ uklibl uklibl <f2>: [.]
Issue-1: = pages <f3>:
<fl>: ._ Ealin(0x1®0®) 5[5]48 89 e5 bf
55 48 89 e5 bf ., . : N
5b 41 el f b8 : ukliblll ukliblll 00 00 00 00 00
1 by : :
szf? ?@]Sd < : uklibv@v1 uklibv@v2)
: [<fa>:
<f3>:
: : 55 48 89 e5 bf
?5]48 89 e> bf :a1ign(0x1000) sldlisvZ . e8 41 41 el ff
00 00 00 00 00 uklibVI - |01 0000 5d c3
,-SSHG—Z.' = pages UI(IIbV” #55&6—2.’ = pages
*1: CALL fct_ukLibVI (0x6100) i : *2: CALL fct_ukLibVI (0x6100)
data 0x2000 data 0x2000

Alignment could be a potential solution:

Unikernel1

Unikernel2

» Libraries are placed at fixed, page-aligned absolute addresses

Seems a good solution:

1. Fixes the page misalignment issue?

2. Fixes the cross-reference addresses issue?

LIEGE

université

10

X

Need to consider

most complex

cases

USING ALIGNMENT AS A SOLUTION?

Issue 1: £ pages

text 0x1000. .text 0x1000. | <fos:
page Qﬁﬂ) /|55 48 89 e5 bf
i |01 00 00 5d c3
. v : i <fl>r L]
| { uklibl & uklibl i <f2rs L]
Issue 1: # pages : S e8 41 41 el ff

<f1>: {a11gn(0x1000) [..]

208 e ot .‘ ukliblll ukliblll / |00 00 00 00 00
Sy e uklibV@v1 uklibV@v2
S] <fa>:

: L]
uklibvevz e8 41 41 el ff
uklibVI

|01 00 00 5d c3

55 48 89 e5 bf
[...]
00 00 00 00 00

< align(0x1000)

uklibVII

Issue 2: # pages
*1: CALL f1 (0x4000)

Issue 2: # pages
*2: CALL f1 (0x4100)

= pages # pages

data 0x92000. .data 02000

Unikernel1 Unikernel2

!. Problem: If code has bigger changes like function removal, reordering, or
modification, alignment is not enough:

1. Still page misalignment due to functions placement (+ pages)
2. Still different cross-references addresses (# pages)

Result: Pages are different and cannot be shared — Need a better function placement

Y "

TRYING TO IMPROVE MEMORY SHARING

We first focus on function misalignment (issue 1):

') ' text 0x1000 text 0x1000, ctext 0x1000
lib@vl lib@v2 lib@v3 i 5P = : :
£1(5) | f1(.5) | f1(5) g m: 2 (3) B,((.g) £ (%)
_GC) , f3 (1) . H - f4 (2)* H : f3’ (2)*
2 (.3) / f2 (.3) 2 ukliblV f4 (1) ukliblV ukliblV
f3 (1) f3> (3) f3’ (3) -02 UI(IIbV@V1 Uk/’bV@VZ f1 (4)* UI(IIbV@V3
uklibvV@v1 uklibvev? Fege uklibvV@v3
fa(o) | fal6) | (5| s uklibV@v2 f6 2y uklibV@v3
f5 (4) | 5 (4) | 5 (.4) 2 uklibVi uklibVi
g uklibVIl fo (.1)* klibVII
(3 | f6(3) | : 7 (2 — e
/ol ey

Table 1: Functions per

Unikernel1

Unikernel2

Unikernel3

versioned libraries

"'modified function *:spread across pages

Table 1 shows the functions used by versioned libraries of 3 unikernels
» Each function is assigned a fraction of a page
Without consistent function placement:

» All pages are unique, which leads to no deduplication between instances

0 pages shared

Total: 8 pages == 8 frames

Y= ?

TRYING TO IMPROVE MEMORY SHARING

_.text

0x1000.

_.text

_.text

0x1000,

lib@vl lib@v2 lib@v3 i : , E E
B page
£1(.5) | £1(.5) | £1(.5) ym:ﬁ‘(i) g | f5(4) |5
2 * § ' f2 (.1)* a
£03)| / |[£203)] =§ e f2(1r ukliblV ukliblV
£3 (1) | £3°(3) | £3°(.3) 3 uklibvV@v1 uklibvV@v2 uklibvV@v3
: uklibvev1 j uklibvVev2 uklibV@v3
f4(6) | f4(0) |H4(5)] ¢ - uklibV@v2 uklibV@v3
£5 (.4) | £5 (.4) | £5 (.4) 2 | uklibVi uklibVi
/| f6.(3) | f6(.3) 2 uklibVil uklibVil
/ol ey
Table 1: Functions per Unikernel1 Unikernel2 Unikernel3
versioned libraries *:modified function x:spread across pages bold: common to all underline: subset

Track functions across library versions and organize them in a consistent order
(e.g., per occurrence)

» Sharing is a bit improved but still not great...

» Bad idea: Too complex to optimally place functions when multiple
instances/versions

2 pages shared

—_—

Total: 8 pages 7 frames

Y= °

TRYING TO IMPROVE MEMORY SHARING

We also explore:

1. Optimization methods, such as bin-packing, strip-packing, etc.

l. Problem: Requires significant computation, making it impractical
at scale

2. Aligning each function to a separate page

! Problem: significant internal fragmentation if functions are small

Need a better approach

N 14
1 LIEGE

IMPROVING MEMORY SHARING WITH SPACER-A

:.text 0x1 OOO: text 0x1 OOO: text 0x1 OOO:

| £2 (.3) | £2 (.3) : £2 (.3)
£3 (1) f3 (1) . £3 (1)
ukliblvV f4 (.1)* ukliblvV f4 (.1)*

lib@vl lib@v2 lib@v3

£1(5) | f1(5) | f1(.5)

sharing
sharing
sharing

iblV fa (.1)*

£2(3) | /| £2(3)

£3(1) [£3°(3)| 3 (3)| % uklibvev1 uklibvev1 uklibvev1
) uklibvev1 uklibv@v1 uklibvV@v1
fa(6) | 4 (6) | 147(5) = uklibV@v2 uklibV@v2
f5(4) | £5(4) | £5 (4 2 ! EEE .
(-4) (-4) (4) g ; £3' (3) uklibvV@v3 £ (3)
- ' f6 (.3
/| £6(.3) | f6(.3) . g g; uklibV1 HE.Z;
- Inew f;mctions UkIIbV”
/| £7(2) [£7 (1) | | : |

Table 1: Functions per Unikernel Unikernel2 Unikernel3| fa’ (.5)
£7° (.1)

|new functions

versioned libraries

"'modified function *:spread across pages bold: new function (per instance)

Spacer-A: Backward-Compatible Alignment across versions
» Each new library version is expressed as a delta from previous ones I S lt

» Reuses existing functions to preserve alignment and improve sharing
enough?

» Modified and new functions are added at the start of a new page

Total: 9 pages =% 4 frames

) LiEGE 15

MANAGING VERSIONS: ADDITIONAL STEPS

Still needs to handle the cross-references issue:

» Use Trampoline tables (.tpl):

» To isolate problematic instructions (e.g., f1 calls f2 in v1 then f1 calls f2’ in v3)

» Use binary rewriting to replace problematic instructions with a combination of call, ret and jmp instructions (see workflow)

» Ensures the library’s page remains identical across instances

To also avoid overlap with adjacent memory pages

» Each new version (or delta) is placed between the heap and the stack

tpl.uklibvevl (@x2000):
jmp eip+1110(f2)
ret

v

_/
7/ # pages’

pages [/

uklibVevl (0x3000):
call eip-0x1000(0x2000)

workflow:

1. Replace problematic
instruction with a relative
call to trampoline table;

2. Execute the problematic
instruction (indirection);

3. Come back to the library
code.

text 0x1000
libs

text 0x1000
libs

text 0x1000
libs

tol.uklibv@v1 tol.uklibvV@v1 tpl.uklibvV@v1

pages
pages

uklibv@v1 uklibv@v1 uklibv@v1

other libs

other libs other libs

heap heap

heap

pages

tol. AuklibV@v2

tol.AuklibV@v2
Auklibv@v?2

tol. Auklibv@v3

Auklibv@v3

Unikernel Unikernel2 Unikernel3
16

_# pages .

tpl.uklibvevl (0x2000):

ret

jmp eip+1120(f2°) \\
\

Dages

uklibvevl (0x3000):
call eip-0x1000(0x2000)

A

EVALUATION: METHODOLOGY

» We compared Spacer-A with DCE (Dead Code Elimination) and the Default Unikraft
configuration

» 5 applications ported as unikernels
» Library versions selected based on specific GitHub tags
» We rely on 2 different memory deduplication mechanisms:
1. KSM: Runtime scanner that merges identical pages

2. Loader: Load-time deduplication integrated into the hypervisor, which uses a
library pool

» On several dimensions: memory consumption, filesize and performance

Please refer to the paper for the full evaluation.

¢ LlEGtE 17

EVALUATION (1)

Vanilla
40 - =
o Dce (+Ksm) — - Spacer-A (+Ksm) - ’, ————
g 30 - = = Default (+Ksm) Spacer-A (Loader) ,"‘————I, ===
87 I\\ I“____I
& 20- fmmm e ACTYLY .
3 T s A Sy W
g 10— ----J:\=;'=;':f’.;.-.;-.'_', S n_p— —_—.d I
5 r
- [
O i 1 1 1 1 1 1 1 1 1
0) 10 20 30 40 50 00 70 80
Time (s)

Memory consumption:
» 8 Nginx unikernel instances, each using a difterent version of lib-sqlite
» Spacer-A (+KSM) reduces memory usage by up to 2.8x

» Spacer-A (loader) slightly higher memory usage — merges only read-only
pages to prevent CoW and side channel attacks|[1]

¥ LIEGE 18

4» université

[1] Software Side Channel Attack on Memory Deduplication, Suzaki et al.

EVALUATION (2)

N
o
]

B binary
30 - pool

Size on the disk (MiB)
N
o

R I y 11 I

Default Spacer-A Spacer-A DCE Default Spacer-A SpacerA
(loader) [ASLR] [ASLR] [ASLR] (loader)
[ASLR]

Filesize consumption:
» 8 Nginx unikernel instances, each using a different version of lib-sqlite
» Spacer-A (+KSM) increases file size by up to 1.6x

» Spacer-A (loader) achieves optimal reduction via shared libraries pool

- # LIEGE 19

‘r

EVALUATION (3)

Setup:
» Several experiments: different cores, same core, different workloads
» Total execution time of short-lived and long-lived unikernels
Performance:

» Spacer-A (+KSM): Slight overhead due to inflation and trampoline
tables

» KSM also has a slight impact on scanning and merging pages

» Spacer-A (loader): Best performance (~5-12%) uses a preloaded
library pool (code + read-only data) and avoids KSM overhead

¢ L|EGtE 20

CONCLUSION

» Unikernels are lightweight and high-performance, ideal for the cloud
» Versioning & updates are challenging due to static linking

» Spacer-A enables eflicient library versioning via alignment &
backward compatibility

» Yields notable gains in memory, disk usage and execution time
(especially when coupled with our loader)

¢ L|EGtE 21

THANK YOU!

(QUESTIONS?

SPACER-A & UNIKRAFT

Spacer-A: https://github.com/gaulthiergain/Spacer-delta

Unikraft: https://unikraft.org/

Contact by email: gaulthier.gain@uliege.be

License: 3-Clause BSD License

@ HIESE Unikraft

https://unikraft.org/
mailto:gaulthier.gain@uliege.be
https://github.com/gaulthiergain/Spacer-delta

