
EFFICIENT VERSIONING
FOR UNIKERNELS

GAULTHIER GAIN, BENOIT KNOTT & PROF. LAURENT MATHY

THE IEEE INTERNATIONAL CONFERENCE
ON CLOUD COMPUTING

IEEE World Congress on SERVICES
July 7-12, 2025, Helsinki, Finland

University of Liège

2

DILEMMA

Virtual Machines (VMs) Containers

Heavyweight
— Degrade performance

Strong isolation Less isolation
— More exploits

Lightweight
— Share underlying kernel

To deploy microservices, developers commonly rely on Virtual
Machines (VMs) or Containers

DILEMMA

3

Heavyweight
— Degrade performance

Strong isolation Less isolation
— More exploits

Lightweight
— Share underlying kernel

To deploy microservices, developers commonly rely on Virtual
Machines (VMs) or Containers

Solution → Unikernels

Virtual Machines (VMs) Containers

Unikernels are purpose-built:

‣ in kernel layer (only the necessary features that the application needs)

‣ Essential functions are placed into libraries with well-defined behaviour

UNIKERNELS

 Virtual Machines (VMs) Unikernels

Hypervisor

Hardware

App1

bins/libs

App2

bins/libs

App3

bins/libs

Hypervisor

Hardware

4

App1

libs

App2

libs

App3

libs

UNIKERNELS: CLOUD PLATFORMS

5

Unikra Cloud

Unikernels are gradually
being adopted in cloud

computing

Nanovms

https://unikraft.cloud
https://nanovms.com

THE UNIKERNEL TRADE-OFF

6

Major unikernel projects use a static linking model:

‣ All application code and required libraries are compiled into a single
binary at build time

‣ No need for a dynamic linker

Results in:

‣ Faster boot times

‣ Improved security through reduced aack surface + isolation

‣ No “dependency hell” issue

But… handling library versioning when deploying many unikernels
in cloud platforms introduces challenges

MEMORY DEDUPLICATION WITH VERSIONING

7

.text

.data

0x1000

Unikernel1

uklibV@v1

uklibIII uklibIV

uklibI uklibII

uklibVIIuklibVI

0x8000

.text

.data

0x1000

Unikernel2

uklibV@v2

uklibIII uklibIV

uklibI uklibII

uklibVII

uklibVI

0x9000

uklibV@v2

uklibVI

uklibVI

…

… uklibVIII

uklibVIII

uklibVIII

uklibVIII

Let’s consider 2 unikernels using ≠ versions of the same library (e.g., uklibV@v1 and uklibV@v2)

‣ In memory, code is divided into pages (the basic unit of memory management)

anks to memory deduplication:

‣ Identical pages are shared and merged into the same frame

‣ Reduce the total #frames

{

page (4KiB)

MEMORY DEDUPLICATION WITH VERSIONING

8

.text

.data

0x1000

Unikernel1

uklibV@v1

uklibIII uklibIV

uklibI uklibII

uklibVIIuklibVI

0x8000

.text

.data

0x1000

Unikernel2

uklibV@v2

uklibIII uklibIV

uklibI uklibII

uklibVII

uklibVI

0x9000

uklibV@v2

uklibVI

<f1>:
55 48 89 e5 bf
5b 41 e1 ff b8
01 00 00 5d c3
<f2>: […]
<f3>: […]
<f4>:
55 48 89 e5 bf
[…]

<f1>:
55 48 89 e5 bf
5b 41 e1 ff b8
01 00 00 5d c3
<f2>: […]
<f3>:
55 48 89 e5 bf
e8 41 41 e1 ff
01 00 00 5d c3

<f4>:
[…]
e8 41 41 e1 ff
01 00 00 5d c3

=
 p

ag
es

uklibVI

…

… uklibVIII

uklibVIII

uklibVIII

uklibVIII

⚠ Problem: Having different versions (uklibV@v2) impacts the memory
sharing

1. is causes page misalignment (≠ pages)

2. is causes cross-reference addresses to be different (≠ pages)

Result: Most of the pages are different and cannot be shared

*1: CALL fct_ukLibVI (0x4100) *2: CALL fct_ukLibVI (0x5300)

≠
 p

ag
es

page (4KiB)

{

*2

Issue 1: ≠ pages

Issue 1: ≠ pages

Issue 2: ≠ pages Issue 2: ≠ pages

*1

.text 0x1000

uklibI

.text 0x1000

uklibI

=
 p

ag
es

{

Unikernel1 Unikernel2

USING ALIGNMENT AS A SOLUTION?

9

.data

uklibV@v1

uklibIII

.data

uklibV@v2

uklibIII

uklibV@v2

0x90000x9000

uklibVI uklibVI

align(0x1000)

… …align(0x1000)

uklibVII uklibVII
……

≠
 p

ag
e

Alignment could be a potential solution:

‣ Libraries are placed at fixed, page-aligned absolute addresses

Seems a good solution:

1. Fixes the page misalignment issue?

2. Fixes the cross-reference addresses issue?

*2

*1

Is it
enough?

<f1>:
55 48 89 e5 bf
5b 41 e1 ff b8
01 00 00 5d c3
<f2>: […]
<f3>:
55 48 89 e5 bf
[…]
00 00 00 00 00

*1: CALL fct_ukLibVI (0x6100)

Issue 1: = pages

Issue 2: = pages

page (4KiB)
<f1>:
55 48 89 e5 bf
5b 41 e1 ff b8
01 00 00 5d c3
<f2>: […]
<f3>:
55 48 89 e5 bf
[…]
00 00 00 00 00

<f4>:
55 48 89 e5 bf
e8 41 41 e1 ff
01 00 00 5d c3

*2: CALL fct_ukLibVI (0x6100)

Issue 1: = pages

Issue 2: = pages

.text 0x1000

uklibI

.text 0x1000

uklibI{

Unikernel1 Unikernel2

USING ALIGNMENT AS A SOLUTION?

10

.data

uklibV@v1

uklibIII

.data

uklibV@v2

uklibIII

uklibV@v2

0x90000x9000

uklibVI uklibVI

… …

uklibVII uklibVII
……

Alignment could be a potential solution:

‣ Libraries are placed at fixed, page-aligned absolute addresses

Seems a good solution:

1. Fixes the page misalignment issue?

2. Fixes the cross-reference addresses issue?

*2

*1

Need to consider
most complex cases

align(0x1000)

align(0x1000)<f1>:
55 48 89 e5 bf
5b 41 e1 ff b8
01 00 00 5d c3
<f2>: […]
<f3>:
55 48 89 e5 bf
[…]
00 00 00 00 00

*1: CALL fct_ukLibVI (0x6100)

Issue 1: = pages

Issue 2: = pages

page (4KiB)

≠
 p

ag
e

<f1>:
55 48 89 e5 bf
5b 41 e1 ff b8
01 00 00 5d c3
<f2>: […]
<f3>:
55 48 89 e5 bf
[…]
00 00 00 00 00

<f4>:
55 48 89 e5 bf
e8 41 41 e1 ff
01 00 00 5d c3

*2: CALL fct_ukLibVI (0x6100)

Issue 1: = pages

Issue 2: = pages

=
 p

ag
es

.text 0x1000

uklibI

.text 0x1000

uklibI

=
 p

ag
es{

Unikernel1 Unikernel2

USING ALIGNMENT AS A SOLUTION?

⚠ Problem: If code has bigger changes like function removal, reordering, or
modification, alignment is not enough:

1. Still page misalignment due to functions placement (≠ pages)

2. Still different cross-references addresses (≠ pages)

Result: Pages are different and cannot be shared → Need a better function placement

11

.data

uklibV@v1

uklibIII

.data

uklibV@v2

uklibIII

uklibV@v2

0x90000x9000

uklibVI uklibVI≠
 p

ag
es

… …

uklibVII uklibVII

=
 p

ag
es

……

<f1>:
55 48 89 e5 bf
5b 41 e1 ff b8
01 00 00 5d c3
<f2>: […]
<f3>:
55 48 89 e5 bf
[…]
00 00 00 00 00

page (4KiB)

Issue 1: ≠ pages

*1 align(0x1000)

align(0x1000)

*1: CALL f1 (0x4000)
Issue 2: ≠ pages

*2

<f0>:
55 48 89 e5 bf
01 00 00 5d c3
<f1>: […]
<f2’>: […]
e8 41 41 e1 ff
[…]
00 00 00 00 00

<f4>:
[…]
e8 41 41 e1 ff
01 00 00 5d c3

*2: CALL f1 (0x4100)

Issue 1: ≠ pages

Issue 2: ≠ pages

Table 1 shows the functions used by versioned libraries of 3 unikernels

‣ Each function is assigned a fraction of a page

Without consistent function placement:

‣ All pages are unique, which leads to no deduplication between instances

(.
n)

:
pa

ge
 p

or
ti

on
 o

cc
up

ie
d

by
 t

he
 f

un
ct

io
n

uklibV@v1

uklibI

uklibV@v1

uklibVI

uklibIV

uklibVII

…

Unikernel1 Unikernel2

lib@v1 lib@v2 lib@v3

f1 (.5) f1 (.5) f1 (.5)

f2 (.3) / f2 (.3)

f3 (.1) f3’ (.3) f3’ (.3)

f4 (.6) f4 (.6) f4’ (.5)

f5 (.4) f5 (.4) f5 (.4)

/ f6 (.3) f6 (.3)

/ f7 (.2) f7’ (.1)

uklibV@v2

uklibI

uklibV@v2

uklibV@v2

uklibVI

uklibIV

uklibVII

…
f1 (.5)
f3’ (.3)
f4 (.2)*

f4 (.4)*
f5 (.4)
f6 (.2)*

f6 (.1)*
f7 (.2)

Unikernel3

uklibV@v3

uklibI

uklibV@v3

uklibV@v3

uklibVI

…

uklibVII

uklibIV

f1 (.5)
f2 (.3)
f3’ (.2)*

f5 (.1)*
f6 (.3)
f7’ (.1)

Table 1: Functions per
versioned libraries

f4 (.5)*
f5 (.4)

f1 (.5)
f2 (.3)
f3 (.1)
f4 (.1)*

.text 0x1000 0x1000 .text 0x1000.text
page 1

page 2
f3’ (.2)*
f4’ (.5)
f5 (.3)*

Total: 8 pages 8 frames
12

0 pages shared

We first focus on function misalignment (issue 1):

*:spread across pages’:modified function

TRYING TO IMPROVE MEMORY SHARING

(.
n)

:
pa

ge
 p

or
ti

on
 o

cc
up

ie
d

by
 t

he
 f

un
ct

io
n

uklibV@v1

uklibI

uklibV@v1

uklibVI

.text 0x1000

uklibIV

uklibVII

…

Unikernel1 Unikernel2

uklibV@v2

uklibI

uklibV@v2

uklibV@v2

uklibVI

0x1000

uklibIV

uklibVII

…
f1 (.5)
f5 (.4)
f3’ (.1)*

f3’ (.2)*
f4 (.6)
f6 (.2)*

f6 (.1)*
f7 (.2)

Unikernel3

uklibI

uklibV@v3

uklibV@v3

uklibVI

.text 0x1000

…

uklibVII

uklibIV

f1 (.5)
f5 (.4)
f2 (.1)*

f4’ (.3)*
f7’ (.1)

Track functions across library versions and organize them in a consistent order
(e.g., per occurrence)

‣ Sharing is a bit improved but still not great…

‣ Bad idea: Too complex to optimally place functions when multiple
instances/versions

f1 (.5)
f5 (.4)
f2 (.1)*

f2 (.2)*
f4 (.6)
f3 (.1)

page 2

sh
ar

in
g

sh
ar

in
g

.text
lib@v1 lib@v2 lib@v3

f1 (.5) f1 (.5) f1 (.5)

f2 (.3) / f2 (.3)

f3 (.1) f3’ (.3) f3’ (.3)

f4 (.6) f4 (.6) f4’ (.5)

f5 (.4) f5 (.4) f5 (.4)

/ f6 (.3) f6 (.3)

/ f7 (.2) f7’ (.1)

page 1

uklibV@v3 f2 (.2)*
f3’ (.3)
f6 (.3)
f4’ (.2)*

underline: subsetbold: common to all

Total: 8 pages 7 frames2 pages shared

13

Table 1: Functions per
versioned libraries *:spread across pages’:modified function

TRYING TO IMPROVE MEMORY SHARING

TRYING TO IMPROVE MEMORY SHARING

14

We also explore:

1. Optimization methods, such as bin-packing, strip-packing, etc.

⚠ Problem: Requires significant computation, making it impractical
at scale

2. Aligning each function to a separate page

⚠ Problem: significant internal fragmentation if functions are small

Need a better approach

IMPROVING MEMORY SHARING WITH SPACER-∆

(.
n)

:
pa

ge
 p

or
ti

on
 o

cc
up

ie
d

by
 t

he
 f

un
ct

io
n

Spacer-∆: Backward-Compatible Alignment across versions

‣ Each new library version is expressed as a delta from previous ones

‣ Reuses existing functions to preserve alignment and improve sharing

‣ Modified and new functions are added at the start of a new page

uklibI

uklibIV

uklibV@v1

uklibV@v1

uklibVI

uklibVII

…
uklibI

uklibV@v2

uklibVI

uklibVII

…

uklibIV

uklibV@v1

uklibV@v1

f3’ (.3)
f6 (.3)
f7 (.2)

f1 (.5)
f2 (.3)
f3 (.1)
f4 (.1)*

f4 (.5)*
f5 (.4)

new functions

f4 (.5)*
f5 (.4)

f1 (.5)
f2 (.3)
f3 (.1)
f4 (.1)*

page 2

page 1

.text 0x1000 0x1000 .text 0x1000.text

uklibI

uklibV@v3

uklibVI

uklibVII

…

uklibIV

uklibV@v1

uklibV@v1

uklibV@v2

new_symbols

f1 (.5)
f2 (.3)
f3 (.1)
f4 (.1)*

f4 (.5)*
f5 (.4)

f4’ (.5)
f7’ (.1)

new functions

Unikernel1 Unikernel2 Unikernel3

f3’ (.3)
f6 (.3)
f7 (.2)

lib@v1 lib@v2 lib@v3

f1 (.5) f1 (.5) f1 (.5)

f2 (.3) / f2 (.3)

f3 (.1) f3’ (.3) f3’ (.3)

f4 (.6) f4 (.6) f4’ (.5)

f5 (.4) f5 (.4) f5 (.4)

/ f6 (.3) f6 (.3)

/ f7 (.2) f7’ (.1)

Total: 9 pages 4 frames8 pages shared

sh
ar

in
g

sh
ar

in
g

sh
ar

in
g

Is it
enough?

Table 1: Functions per
versioned libraries

bold: new function (per instance)

15

*:spread across pages’:modified function

MANAGING VERSIONS: ADDITIONAL STEPS

16
Unikernel2

.text 0x1000

stack

Unikernel1

.text 0x1000

stack

Unikernel3

.text 0x1000

libs

stack

heap

other libs

uklibV@v1

tpl.ΔuklibV@v2

ΔuklibV@v2

tpl.uklibV@v1

libs

heap

other libs

uklibV@v1

tpl.uklibV@v1

libs

heap

other libs

uklibV@v1

tpl.uklibV@v1

tpl.ΔuklibV@v2

ΔuklibV@v2

ΔuklibV@v3

tpl.ΔuklibV@v3
≠

 p
ag

es
≠

 p
ag

es

≠
 p

ag
es

Still needs to handle the cross-references issue:

‣ Use Trampoline tables (.tpl):

‣ To isolate problematic instructions (e.g., f1 calls f2 in v1 then f1 calls f2’ in v3)

‣ Use binary rewriting to replace problematic instructions with a combination of call, ret and jmp instructions (see workflow)

‣ Ensures the library’s page remains identical across instances

To also avoid overlap with adjacent memory pages

‣ Each new version (or delta) is placed between the heap and the stack

tpl.uklibV@v1 (0x2000):
 jmp eip+1110(f2)
 ret

uklibV@v1 (0x3000):
 call eip-0x1000(0x2000)
 …

≠
 p

ag
es

=
 p

ag
es

tpl.uklibV@v1 (0x2000):
 jmp eip+1120(f2’)
 ret

uklibV@v1 (0x3000):
 call eip-0x1000(0x2000)
 …

≠
 p

ag
es

=
 p

ag
es

workflow:
1. Replace problematic

instruction with a relative
call to trampoline table;

2. Execute the problematic
instruction (indirection);

3. Come back to the library
code.

‣ We compared Spacer-Δ with DCE (Dead Code Elimination) and the Default Unikra
configuration

‣ 5 applications ported as unikernels

‣ Library versions selected based on specific GitHub tags

‣ We rely on 2 different memory deduplication mechanisms:

1. KSM: Runtime scanner that merges identical pages

2. Loader: Load-time deduplication integrated into the hypervisor, which uses a
library pool

‣ On several dimensions: memory consumption, filesize and performance

17

EVALUATION: METHODOLOGY

Please refer to the paper for the full evaluation.

18

EVALUATION (1)

Memory consumption:

‣ 8 Nginx unikernel instances, each using a different version of lib-sqlite

‣ Spacer-∆ (+KSM) reduces memory usage by up to 2.8×

‣ Spacer-∆ (loader) slightly higher memory usage → merges only read-only
pages to prevent CoW and side channel aacks[1]

M
em

or
y U

sa
ge

 (M
iB

)

[1] Soware Side Channel Aack on Memory Deduplication, Suzaki et al.

19

EVALUATION (2)

Filesize consumption:

‣ 8 Nginx unikernel instances, each using a different version of lib-sqlite

‣ Spacer-∆ (+KSM) increases file size by up to 1.6×

‣ Spacer-∆ (loader) achieves optimal reduction via shared libraries pool

20

EVALUATION (3)
Setup:

‣ Several experiments: different cores, same core, different workloads

‣ Total execution time of short-lived and long-lived unikernels

Performance:

‣ Spacer-∆ (+KSM): Slight overhead due to inflation and trampoline
tables

‣ KSM also has a slight impact on scanning and merging pages

‣ Spacer-∆ (loader): Best performance (~5–12%) uses a preloaded
library pool (code + read-only data) and avoids KSM overhead

CONCLUSION

‣ Unikernels are lightweight and high-performance, ideal for the cloud

‣ Versioning & updates are challenging due to static linking

‣ Spacer-∆ enables efficient library versioning via alignment &
backward compatibility

‣ Yields notable gains in memory, disk usage and execution time
(especially when coupled with our loader)

21

THANK YOU!

QUESTIONS?

SPACER-Δ & UNIKRAFT

Spacer-Δ: hps://github.com/gaulthiergain/Spacer-delta

Unikra: hps://unikra.org/

Contact by email: gaulthier.gain@uliege.be

License: 3-Clause BSD License

https://unikraft.org/
mailto:gaulthier.gain@uliege.be
https://github.com/gaulthiergain/Spacer-delta

