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DILEMMA

Virtual Machines (VMs) Containers

Heavyweight 
— Degrade performance

Strong isolation Less isolation 
— More exploits

Lightweight 
— Share underlying kernel

To deploy microservices, developers commonly rely on Virtual 
Machines (VMs) or Containers
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Heavyweight 
— Degrade performance

Strong isolation Less isolation 
— More exploits

Lightweight 
— Share underlying kernel

To deploy microservices, developers commonly rely on Virtual 
Machines (VMs) or Containers

Solution → Unikernels

Virtual Machines (VMs) Containers



Unikernels are purpose-built: 

‣ in kernel layer (only the necessary features that the application needs) 

‣ Essential functions are placed into libraries with well-defined behaviour

UNIKERNELS

 Virtual Machines (VMs) Unikernels
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UNIKERNELS: CLOUD PLATFORMS
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Unikra Cloud

Unikernels are gradually  
being adopted in cloud 

computing

Nanovms

https://unikraft.cloud
https://nanovms.com


THE UNIKERNEL TRADE-OFF
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Major unikernel projects use a static linking model: 

‣ All application code and required libraries are compiled into a single 
binary at build time 

‣ No need for a dynamic linker 

Results in: 

‣ Faster boot times 

‣ Improved security through reduced aack surface + isolation 

‣ No “dependency hell” issue

But… handling library versioning when deploying many unikernels 
in cloud platforms introduces challenges



MEMORY DEDUPLICATION WITH VERSIONING
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Let’s consider 2 unikernels using ≠ versions of the same library (e.g., uklibV@v1 and uklibV@v2) 

‣ In memory, code is divided into pages (the basic unit of memory management) 

anks to memory deduplication:  

‣ Identical pages are shared and merged into the same frame 

‣ Reduce the total #frames

{ 

page (4KiB)
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[…]
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⚠ Problem: Having different versions (uklibV@v2) impacts the memory 
sharing 

1.  is causes page misalignment (≠ pages) 

2.  is causes cross-reference addresses to be different (≠ pages) 

Result: Most of the pages are different and cannot be shared

*1: CALL fct_ukLibVI (0x4100) *2: CALL fct_ukLibVI (0x5300)

≠
 p

ag
es

page (4KiB)

{ 

*2

Issue 1: ≠ pages

Issue 1: ≠ pages

Issue 2: ≠ pages Issue 2: ≠ pages

*1
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Unikernel1 Unikernel2

USING ALIGNMENT AS A SOLUTION?
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Alignment could be a potential solution: 

‣ Libraries are placed at fixed, page-aligned absolute addresses 

Seems a good solution: 

1.  Fixes the page misalignment issue? 

2.  Fixes the cross-reference addresses issue?

*2

*1

Is it 
enough?
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page (4KiB)
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Alignment could be a potential solution: 

‣ Libraries are placed at fixed, page-aligned absolute addresses 

Seems a good solution: 

1.  Fixes the page misalignment issue? 

2.  Fixes the cross-reference addresses issue?
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most complex cases
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*2: CALL fct_ukLibVI (0x6100)

Issue 1: = pages

Issue 2: = pages

=
 p

ag
es



.text 0x1000
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Unikernel1 Unikernel2

USING ALIGNMENT AS A SOLUTION?

⚠ Problem: If code has bigger changes like function removal, reordering, or 
modification, alignment is not enough: 

1. Still page misalignment due to functions placement (≠ pages) 

2. Still different cross-references addresses (≠ pages) 

Result: Pages are different and cannot be shared → Need a better function placement
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Table 1 shows the functions used by versioned libraries of 3 unikernels 

‣ Each function is assigned a fraction of a page 

Without consistent function placement: 

‣ All pages are unique, which leads to no deduplication between instances 
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uklibI

uklibV@v1

uklibVI

uklibIV

uklibVII

…

Unikernel1 Unikernel2

lib@v1 lib@v2 lib@v3

f1 (.5) f1 (.5) f1 (.5)

f2 (.3) / f2 (.3)

f3 (.1) f3’ (.3) f3’ (.3)

f4 (.6) f4 (.6) f4’ (.5)

f5 (.4) f5 (.4) f5 (.4)

/ f6 (.3) f6 (.3)

/ f7 (.2) f7’ (.1)

uklibV@v2

uklibI

uklibV@v2

uklibV@v2

uklibVI

uklibIV

uklibVII

…
f1 (.5) 
f3’ (.3) 
f4 (.2)*

f4 (.4)* 
f5 (.4) 
f6 (.2)*

f6 (.1)* 
f7 (.2)

Unikernel3

uklibV@v3

uklibI

uklibV@v3

uklibV@v3

uklibVI

…

uklibVII

uklibIV

f1 (.5) 
f2 (.3) 
f3’ (.2)*

f5 (.1)* 
f6 (.3) 
f7’ (.1)

Table 1: Functions per 
versioned libraries

f4 (.5)* 
f5 (.4)

f1 (.5) 
f2 (.3) 
f3 (.1) 
f4 (.1)*

.text 0x1000 0x1000 .text 0x1000.text
page 1

page 2
f3’ (.2)* 
f4’ (.5) 
f5 (.3)*

Total: 8 pages             8 frames
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0 pages shared

We first focus on function misalignment (issue 1):

*:spread across pages’:modified function

TRYING TO IMPROVE MEMORY SHARING
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Track functions across library versions and organize them in a consistent order 
(e.g., per occurrence) 

‣ Sharing is a bit improved but still not great…  

‣ Bad idea: Too complex to optimally place functions when multiple 
instances/versions 

f1 (.5) 
f5 (.4) 
f2 (.1)*

f2 (.2)* 
f4 (.6) 
f3 (.1)
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f1 (.5) f1 (.5) f1 (.5)

f2 (.3) / f2 (.3)

f3 (.1) f3’ (.3) f3’ (.3)

f4 (.6) f4 (.6) f4’ (.5)
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/ f6 (.3) f6 (.3)

/ f7 (.2) f7’ (.1)

page 1

uklibV@v3 f2 (.2)* 
f3’ (.3) 
f6 (.3) 
f4’ (.2)*

underline: subsetbold: common to all

Total: 8 pages             7 frames2 pages shared
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Table 1: Functions per 
versioned libraries *:spread across pages’:modified function

TRYING TO IMPROVE MEMORY SHARING



TRYING TO IMPROVE MEMORY SHARING
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We also explore:  

1. Optimization methods, such as bin-packing, strip-packing, etc. 

⚠ Problem: Requires significant computation, making it impractical 
at scale 

2. Aligning each function to a separate page  

⚠ Problem: significant internal fragmentation if functions are small

Need a better approach



IMPROVING MEMORY SHARING WITH SPACER-∆
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Spacer-∆: Backward-Compatible Alignment across versions 

‣ Each new library version is expressed as a delta from previous ones 

‣ Reuses existing functions to preserve alignment and improve sharing 

‣ Modified and new functions are added at the start of a new page 
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uklibV@v2
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f4 (.5)* 
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new functions

Unikernel1 Unikernel2 Unikernel3

f3’ (.3) 
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lib@v1 lib@v2 lib@v3

f1 (.5) f1 (.5) f1 (.5)

f2 (.3) / f2 (.3)

f3 (.1) f3’ (.3) f3’ (.3)

f4 (.6) f4 (.6) f4’ (.5)
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/ f7 (.2) f7’ (.1)

Total: 9 pages             4 frames8 pages shared
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Table 1: Functions per 
versioned libraries

bold: new function (per instance)
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*:spread across pages’:modified function



MANAGING VERSIONS: ADDITIONAL STEPS
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Unikernel2
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Still needs to handle the cross-references issue: 

‣ Use Trampoline tables (.tpl): 

‣ To isolate problematic instructions (e.g., f1 calls f2 in v1 then f1 calls f2’ in v3) 

‣ Use binary rewriting to replace problematic instructions with a combination of call, ret and jmp instructions (see workflow) 

‣  Ensures the library’s page remains identical across instances 

To also avoid overlap with adjacent memory pages 

‣ Each new version (or delta) is placed between the heap and the stack

tpl.uklibV@v1 (0x2000):
   jmp eip+1110(f2)
   ret 

uklibV@v1 (0x3000):
 call eip-0x1000(0x2000)
 …

≠
 p

ag
es

=
 p

ag
es

tpl.uklibV@v1 (0x2000):
   jmp eip+1120(f2’)
   ret 

uklibV@v1 (0x3000):
 call eip-0x1000(0x2000)
 …

≠
 p

ag
es

=
 p

ag
es

workflow: 
1. Replace problematic 

instruction with a relative 
call to trampoline table; 

2. Execute the problematic 
instruction (indirection); 

3. Come back to the library 
code.



‣ We compared Spacer-Δ with DCE (Dead Code Elimination) and the Default Unikra 
configuration 

‣ 5 applications ported as unikernels 

‣ Library versions selected based on specific GitHub tags 

‣ We rely on 2 different memory deduplication mechanisms: 

1. KSM: Runtime scanner that merges identical pages 

2. Loader: Load-time deduplication integrated into the hypervisor, which uses a 
library pool 

‣ On several dimensions: memory consumption, filesize and performance
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EVALUATION: METHODOLOGY

Please refer to the paper for the full evaluation.
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EVALUATION (1)

Memory consumption: 

‣ 8 Nginx unikernel instances, each using a different version of lib-sqlite 

‣ Spacer-∆ (+KSM) reduces memory usage by up to 2.8× 

‣ Spacer-∆ (loader) slightly higher memory usage → merges only read-only 
pages to prevent CoW and side channel aacks[1]
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[1] Soware Side Channel Aack on Memory Deduplication, Suzaki et al.
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EVALUATION (2)

Filesize consumption: 

‣ 8 Nginx unikernel instances, each using a different version of lib-sqlite 

‣ Spacer-∆ (+KSM) increases file size by up to 1.6× 

‣ Spacer-∆ (loader) achieves optimal reduction via shared libraries pool
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EVALUATION (3)
Setup: 

‣ Several experiments: different cores, same core, different workloads 

‣ Total execution time of short-lived and long-lived unikernels 

Performance: 

‣ Spacer-∆ (+KSM): Slight overhead due to inflation and trampoline 
tables  

‣ KSM also has a slight impact on scanning and merging pages 

‣ Spacer-∆ (loader): Best performance (~5–12%) uses a preloaded 
library pool (code + read-only data) and avoids KSM overhead



CONCLUSION

‣ Unikernels are lightweight and high-performance, ideal for the cloud 

‣ Versioning & updates are challenging due to static linking 

‣ Spacer-∆ enables efficient library versioning via alignment & 
backward compatibility 

‣ Yields notable gains in memory, disk usage and execution time 
(especially when coupled with our loader)
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THANK YOU!

QUESTIONS?



SPACER-Δ & UNIKRAFT

Spacer-Δ: hps://github.com/gaulthiergain/Spacer-delta

Unikra: hps://unikra.org/

Contact by email: gaulthier.gain@uliege.be

License: 3-Clause BSD License

https://unikraft.org/
mailto:gaulthier.gain@uliege.be
https://github.com/gaulthiergain/Spacer-delta

