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Time-resolved small-angle x-ray scattering �SAXS� is used to follow the formation of resorcinol-
formaldehyde �RF� gels. An existing morphological model based on Gaussian random fields, and validated on
RF aerogels, is generalized to analyze the data. The generalization is done in two different ways, one being
relevant to colloid aggregation and the other to microphase separation. The SAXS data do not enable discrimi-
nation between the two mechanisms of gel formation, which shows that aggregation and microphase separation
can generate very similar morphologies at the length scales explored by SAXS. Furthermore, physical argu-
ments suggest that, in the case of RF gels, aggregation and microphase separation can be regarded as two
idealizations of the same complex physical process.
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I. INTRODUCTION

Chemical gels are obtained from the polymerization of
precursor molecules in a solvent, until the obtained macro-
molecules form a network that percolates through the solu-
tion. In some cases, the macromolecules and the solvent are
mixed at a molecular scale, in which case the gel is made of
a single phase that is locally not different from a solution �1�.
In many instances, however, the gel is biphasic as it is made
of a solid polymer skeleton and of a liquid phase, both hav-
ing very complex morphologies with a characteristic size in
the nanometer range. The latter gels are sometimes referred
to as being colloidal and the former as being polymeric. Col-
loidal gels are of a particular importance in materials science
as they are an intermediate step in the sol-gel synthesis of
nanostructured materials �2�. Therefore, understanding the
physical and chemical mechanisms that control the structur-
ing of colloidal gels is of both fundamental and practical
importance.

Researchers active in different disciplines use different
paradigms to explain the processes that govern the formation
of colloidal gels. The formation of inorganic gels—like SiO2
�3�, TiO2 �4�, or ZrO2 �5�—from the polycondensation of
alkoxide precursors is often discussed in terms of the aggre-
gation of colloidal particles. According to this scenario, the
precursor molecules polymerize to form first dense colloidal
particles that afterward aggregate to form a space-filling
cluster. This scenario was made very popular in the 1980s
and 1990s through the use of fractal concepts, like diffusion-
�DLA� or reaction-limited aggregation �RLA� �6,7�. This
scenario is supported by the microscopy observation of the
gels after desiccation; their structure can be thought of as
filamentary aggregates of colloidal particles, which are
sometimes referred to as strings of pearls. For many systems,
in situ small-angle x-ray scattering �SAXS� data can be ana-
lyzed in the frame of an aggregation model, e.g., �8,9�.

When analyzing the structuring of organic colloidal gels,
on the other hand, fractal concepts are rarely used: the pro-
cess that is most often hypothesized is microphase separation
�10–12�. According to this process, the polymerization first

leads to a polymeric gel or microgel; the progressive increase
of the reticulation of the network is accompanied by a low-
ering of the solubility of the polymer, which triggers a de-
mixing process. During the demixing, the existing polymer
folds up so as to create a dense skeleton, the pores of which
are filled with pure solvent. There are theoretical arguments
showing that the occurrence of microphase separation in gel-
ling systems leads to a spongelike morphology �13� that is
very similar to the string-of-pearls morphology of many in-
organic gels.

Resorcinol-formaldehyde gels �14,15� are materials that
are of interest to both researchers active in the domain of
organic polymers and researchers active in the sol-gel syn-
thesis of porous materials, who often have a background in
inorganic chemistry. Accordingly, the formation of the mi-
crostructure of that particular type of material is sometimes
analyzed in terms of a microphase separation �16�, and some-
times in terms of an aggregation process �17�.

In the present paper, in situ small-angle x-ray scattering is
used to analyze the development of the morphology of
resorcinol-formaldehyde �RF� gels synthesized in alkaline
conditions. The morphology of the final gels is well de-
scribed by a geometrical model based on the level cut of
Gaussian random fields �18�. This model is generalized in
two independent ways, so as to analyze the SAXS data in
terms of an aggregation process on one hand, and of a mi-
crophase separation on the other hand. The results of the two
different analyses of the same data set give some insight into
the structure development of RF gels and help reconcile the
two apparently opposing conceptions.

II. EXPERIMENTAL SECTION

A. Preparation of the gels

Organic aqueous gels were produced from polycondensa-
tion of resorcinol and formaldehyde in water with sodium
carbonate as a catalyst, as described thoroughly elsewhere
�19�. The resorcinol/formaldehyde molar ratio was set to
R /F=0.5, the dilution molar ratio D=water / �resorcinol
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+formaldehyde+sodium carbonate� was set to 6, and six
gels were analyzed corresponding to resorcinol/sodium car-
bonate molar ratios equal to R /C=1000, 250, 200, 150, 100,
and 50. After dissolution of resorcinol �Vel, 99%� and so-
dium carbonate �UCB, 99.5%� in deionized water under stir-
ring, formaldehyde �Aldrich, 37 wt % in water, stabilized by
10–15 wt % methanol� was added.

The major reactions implied in the formation of the gels
are sketched in Fig. 1 �see, e.g., �15��, both of which are base
catalyzed. Hydroxymethyl groups �−CH2OH� are added to
the resorcinol ring via an addition reaction �Fig. 1�a��. Sub-
sequent condensation reactions occur by which resorcinol
rings link together to form a three-dimensional gel-forming
network �Fig. 1�b��. The links between resorcinol rings can
result either from the condensation of two hydroxymethyl
groups or from the condensation of a hydroxymethyl with a
hydroxyl group; both reactions release water.

The density of the solid forming the skeleton of the gel,
measured by helium pycnometry after drying, is about
1.5 g /cm3 �19�. With that value, and from the composition
of the reacting solutions reported earlier, the volume fraction
of the gel that is indeed occupied by its solid skeleton is
estimated to be 23%.

B. SAXS measurements and raw data

The time-resolved SAXS measurements were done at
DUBBLE, the Dutch-Flemish beamline BM26 at the Euro-

pean Synchrotron Radiation Facility �Grenoble, France�. Im-
mediately after the preparation of the gel-forming solution, a
small fraction of it is extracted from the flask and placed in a
1.5-mm-thick cell with parallel mica windows, with the tem-
perature set to 70 °C. Consecutive in situ pinhole SAXS
patterns are recorded over time spans of 30 s on a two-
dimensional �2D� charge-coupled device �CCD� detector
placed at 3.5 m from the sample. At 70 °C, the gelation of
the solutions occurs in about 60 min in the flask and after 30
min in the measuring cell, which points to an effect of x-ray
irradiation on the gel-forming reactions.

The SAXS intensity is expressed as a function of the scat-
tering vector modulus q= �4� /��sin�� /2�, � being the wave-
length �set to 1 Å� and � the scattering angle. The intensity
scattered by the empty sample holder is measured and sub-
tracted from the scattering patterns. A correction is made for
the detector response, and the data are normalized to the
intensity of the primary beam measured by an ionization
chamber placed downstream from the sample. The number
of counts in the patterns at the high-q limit of the SAXS is
about one order of magnitude larger for the samples than for
the empty cell.

The SAXS patterns I�q , t� measured during the formation
of the gels are reported in Fig. 2 on double logarithmic
scales. Globally, the intensity scattered by any sample in-
creases with reaction time; at any given reaction time I�q�
exhibits a plateau at small angles and decreases with q at
larger angles. Toward the end of the runs, the decrease of I
with increasing q at large angles follows roughly a power
law with exponent 4 �Porod’s scattering�. For small reaction
times, however, the decrease of I vs q is less steep.

Three trends are visible when the gels are prepared with
smaller and smaller R /C ratios. First, the evolution of the
SAXS patterns becomes more rapid �see e.g., Fig. 2�f� com-
pared to Fig. 2�a��. Second, the cutoff between the plateau
and the Porod scattering region moves toward larger scatter-
ing angles, which points to smaller structures. Third, a slight
maximum appears in the patterns that points to a structure
with a better-defined characteristic length.

The SAXS patterns for q�0.1 Å−1 are first fitted with the
following equation:

FIG. 1. Main reactions involved in the gel formation from re-
sorcinol and formaldehyde: �a� addition reactions and �b� conden-
sation reactions with water being released.
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FIG. 2. Time-resolved SAXS
patterns measured during the
formation of resorcinol-
formaldehyde gels with R /C
=1000 �a�, 250 �b�, 200 �c�, 150
�d�, 100 �e�, and 50 �f�. The two
straight lines added to each graph
are power law scatterings of the
type I�q−2 �t=0 min� and I
�q−4 �t=30 min�.
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I�q� = Aq−D + I0 �1�

with A, D, and I0 as adjustable parameters, with the only aim
of estimating roughly the asymptotic exponent D. The evo-
lution of D with time is plotted in Fig. 3�a�; for all gels D is
initially close to 2 and it progressively increases until a value
close to 4 is reached. Due mostly to numerical correlations
between the various parameters in Eq. �1�, the value of D
cannot be estimated very precisely �Fig. 3�a��. Therefore,
whenever D�3.5, its value was set to D=4, and Eq. �1� was
fitted again to the data with A and I0 as the only adjustable
parameters. The obtained values of I0 are plotted in Fig. 3�b�;
the background scattered intensity I0 is seen to decrease with
reaction time.

With the estimated value of I0, the total scattered intensity
�Porod’s invariant� is estimated as �20�

Q = �
0

�

�I�q� − I0�4�q2dq , �2�

where the integration outside the measured q range is done
by extrapolating I�q�− I0 as Aq−4, in agreement with Eq. �1�,
and D=4. The temporal evolution of Q is plotted in Fig.
3�c�; for all gels Q increases continuously with reaction time
until a plateau is reached at intermediate reaction times. Note
that the estimation of Q is justified only when a Porod scat-
tering is observed, which we considered to be the reaction
times with D�3.5 in Fig. 3�a�.

III. MODEL OF THE GEL’S MORPHOLOGY
AND ANALYSIS OF THE SAXS DATA

Two important features of the SAXS data presented in
Figs. 2 and 3 are �i� the existence of a Porod scattering re-
gion with exponent 4, which—as nicely put by Ciccariello et
al. �21�—“ensures that the sample admits an idealization
with sharp boundaries,” and �ii� the presence of background
scattering at large angles, which points to the presence of a
structure with a characteristic size smaller than the resolution
limit of the SAXS. The background scattering I0 decreases
with reaction time, which indicates the disappearance of the
corresponding small-scale structure. Over the same period
the total intensity Q scattered by the large-scale structure
progressively increases, implying a change of electron den-

sity contrast or of the volume fraction of the phases �20�.
Figure 4 shows two different models that could qualita-

tively explain the evolution of the SAXS data. In model A
�Fig. 4�a��, the skeleton of the gel is uniform, with electron
density �P corresponding to the dense polymer, and the liq-
uid filling the pores of the gel is a colloidal suspension of
polymer particles of density �P in a pure liquid of electron
density �L. Another possible morphological model �model B,
Fig. 4�b�� is a uniform liquid phase, with density �L, filling
the largest pores of a skeleton, the skeleton also having much
smaller pores, also filled with liquid. When discussing model
B, we shall comply with the recommendations of the Inter-
national Union of Pure and Applied Chemistry and refer to
the largest pores of the skeleton as mesopores, and to the
smallest pores within the skeleton as micropores �22�.

In the course of the gel formation, the morphology and
the volume fractions of the various phases possibly evolve;
the model used to analyze the SAXS data must therefore
incorporate both the small-scale and the large-scale struc-
tures, as well as ensure polymer conservation in the gel-
forming process. In Sec. III A, a general expression is de-
rived for the scattering by a biphasic structure with two very
different length scales. This expression is afterwards special-
ized and used to analyze the time-resolved SAXS data.

A. Scattering by a biphasic structure with two very different
length scales

The intensity scattered by a statistically isotropic system
is proportional to the Fourier transform of the autocorrelation
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FIG. 3. Temporal evolution of
the asymptotic scattering expo-
nent D �a�, of the background
scattering I0 �b�, and of Porod’s
invariant Q �c�, during the forma-
tion of gels with R /C=1000 ���,
250 ���, 200 ���, and 150 ���.
The dotted horizontal line in �a�
corresponds to D=3.5, below
which value I0 and Q are not esti-
mated �see text�.

FIG. 4. Sketch of the two different two-scale models of the gel
used to analyze the SAXS data. In model A, the solid skeleton of
the gel is a dense polymer, while the liquid phase is a colloidal
suspension. In model B, the liquid phase is pure solvent, while the
solid skeleton comprises small pores filled with solvent. In both
cases, the characteristic length of the large-scale structure is as-
sumed a priori to be much larger than that of the small-scale
structure.
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function of the electron density ��x� of the system, i.e., �20�

I�q�
IeV

= �
0

�

����x + r���x�� − ���x��2�
sin�qr�

qr
4�r2dr , �3�

where the � � is the average over all possible values of x, Ie is
the intensity scattered by a single electron, and V is the irra-
diated volume. The purpose of the present section is to de-
rive a general expression for the intensity scattered by a two-
scale model as sketched in Fig. 4. For the sake of clarity we
shall derive the expression in the case of model A, its gen-
eralization to model B being straightforward.

Let �S�x� be the indicator function of the skeleton, i.e.,
�S�x� takes the value 1 in the skeleton and 0 in the pore
space �23�. Similarly, let �C�x� be the indicator function of
colloidal polymer suspension that fills the pores of the skel-
eton; �C�x� is defined as if that phase filled the entire space
and is not confined to the pores of the gel’s skeleton. With
these notations, the electron density can be written as

��x� = �P�S�x� + �1 − �S�x��	�L�1 − �C�x�� + �P�C�x�
 ,

�4�

where �P is the electron density of the polymer making both
skeleton and colloidal phase, and �L is the electron density of
the liquid. From Eq. �4�, the average electron density is

��� = ��S + �1 − �S��C��P + �1 − �S − �1 − �S��C��L,

�5�

where �S= ��S� ��C= ��C�� is the volume fraction of the
skeleton �colloidal polymer�; in Eq. �5� it has been assumed
that the random processes S and C are statistically indepen-
dent, which implies ��C�x��S�x��= ��C�x����S�x��. Simi-
larly, from Eqs. �4� and �5�, one finds

���x + r���x�� − ���x��2

= �	��2	�1 − �C�2�PSS�r� − �S
2� + �1 − �S�2�PCC�r� − �C

2 �

+ �PSS�r� − �S
2��PCC�r� − �C

2 �
 , �6�

where 	�=�P−�L is the electron density contrast between
the polymer and the liquid, and where the notation

PSS�r� = ��S�x + r��S�x�� �7�

was used for the two-point probability function of the skel-
eton. Similarly, PCC�r� is the two-point probability function
of the colloidal polymer suspension, in the absence of the
skeleton.

The two-point probability function PCC�r� is the probabil-
ity that two points at a distance r from each other, taken
randomly in the system, both belong to phase C �see, e.g.,
�23–25��. For r=0, i.e., if the two points coincide, PCC=�C,
and PCC converges to �C

2 for large values of r. The decrease
of PCC�r� from �C to �C

2 occurs over a distance r that com-
pares with the characteristic size LC of C. The same applies
mutatis mutandis to PSS. Therefore, the term �PSS�r�
−�S

2��PCC�r�−�C
2 � in Eq. �6� is significantly different from

zero only for values of r smaller than LC. As the character-
istic length of S is, by assumption, much larger than LC, one
can approximate PSS�r���S. This implies

�PSS�r� − �S
2��PCC�r� − �C

2 � � �S�1 − �S��PCC�r� − �C
2 � .

�8�

Using Eqs. �6�, the scattered intensity is estimated from
Eq. �3� to be

IA�q�
IeV

= ��1 − �C�	��2IS�q� + �1 − �S��	��2IC�q� �9�

with

IS�q� = �
0

�

�PSS�r� − �S
2�

sin�qr�
qr

4�r2dr , �10�

and a similar definition for IC�q�. Equation �9� shows that the
small-angle scattering by a structure having the morphology
of Fig. 4�a� �model A� is the sum of two contributions. One
contribution is the scattering from the skeleton, with electron
density �P, the pores of which are filled with a liquid of
average electron density �L+	��C, so that the effective con-
trast between the two phases is �1−�C�	�. The second con-
tribution is the scattering from the colloidal polymer suspen-
sion, the contrast of which with the liquid is simply 	�. This
contribution is, however, weighted by the factor �1−�S�, be-
cause this is the fraction of the total irradiated volume that is
occupied by that structure.

The case of model B �Fig. 4�b�� is handled in the same
way; instead of Eq. �9�, one finds

IB�q�
IeV

= ��1 − �MP�	��2IS�q� + �S�	��2IMP�q� �11�

where IMP�q� is defined by a relation identical to Eq. �10�.
�MP is the volume fraction of the micropores within the skel-
eton; it should not be confused with the fraction of mi-
cropores in the whole sample, which is given by �S�MP.

B. Specific large-scale and small-scale models

Equations �9� and �11� are very general. In this section,
they are specialized with the aim of analyzing the in situ
SAXS data collected during resorcinol-formaldehyde gel for-
mation. The SAXS patterns �Sec. II B and Fig. 3�b�� have a
background scattering, which we attribute to the small-scale
structure. Let us first focus on model A.

As the colloidal phase gives rise to a background scatter-
ing uniform over all measured angles, it is natural—in the
frame of model A—to model it as a dilute suspension of
objects with a size smaller than the resolution limit of the
SAXS. In such a case �see, e.g., �20,26��, the intensity scat-
tered by the small-scale structure depends only on the con-
centration c of the dispersed objects and on their average
volume v through

IC�q� � cv2, �12�

which, from Eq. �9�, predicts a background scattering of in-
tensity

I0
A = IeV�	��2�1 − �S��Cv , �13�

where it has been taken into account that �C=cv.
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The derivation of Eq. �12� is based on the general as-
sumption that the structure is made of objects of volume v
that scatter incoherently from one another �20�. Equation
�12� is therefore not restricted to diluted suspensions; it ap-
plies to any system of noninteracting objects. If the mi-
cropore structure �model B� is modeled as a Poisson process
�23,27�, i.e., as a random distribution of possibly overlapping
pores, Eq. �12� applies, with v the volume of the micropores
and c their concentration. In such a case, the background
scattering is

I0
B = IeV�	��2�S�MPv , �14�

which is the equivalent of Eq. �13� in the case of model B.
In the case of resorcinol-formaldehyde aerogels, i.e., after

supercritical removal of the solvent �see, e.g., �2��, the mor-
phology of the gel’s skeleton is well described by the Gauss-
ian random field intersection model of Roberts �18�. The
model is described in detail in the Appendix. Briefly, two
statistically independent Gaussian random fields �GRFs� y�x�
and w�x� are considered, with mean equal to zero and vari-
ance equal to one. Given two thresholds 
 and �, the solid
skeleton of the gel is defined as the regions of space where
both 
�y�x��� and 
�w�x���. The following func-
tional form is chosen for the field-field correlation function
of the GRFs:

g�r� =
1

cosh�r/�
sin�2�r/d�

�2�r/d�
. �15�

This analytical form is simpler than the one used in Ref.
�18�; it has only two parameters: a correlation length  and a
domain scale d. The correlation length  can be thought of as
the size of the uniform regions �either positive or negative�
in the GRFs, and the d-dependent factor in Eq. �15� intro-
duces a short-range order in the structure, which is respon-
sible for the presence of a peak in the scattering patterns.

As discussed in more detail in the Appendix, the field-
field correlation function in Eq. �15� is quadratic for vanish-
ingly small values or r, which guarantees that the specific
surface area of the level-cut morphology is finite. The scat-
tering function IS�q�, to be used in Eq. �9� or Eq. �11�, is
calculated numerically through Eq. �10� using the two-point
probability function of the intersection model given in the
Appendix �Eqs. �A7� and �A9��.

C. Analysis of the SAXS data

At any reaction time, I0 and Q are determined from Eqs.
�1� and �2�, and the SAXS data are fitted by least-squares
minimization to

I�q� − I0

Q
=

1

�2��3

IS�q�
�S�1 − �S�

, �16�

which results from Eqs. �9� and �13� for model A �Eqs. �11�
and �14� for model B�, and where we have taken account of
the general result �20�

�
0

�

IS�q�4�q2dq = �2��3�S�1 − �S� �17�

that applies to any biphasic structure. The parameters that
enter the right-hand side of Eq. �16� are the two characteris-
tic lengths of the GRFs  and d, and the two thresholds 
 and
�. Note that �S is related to 
 and � via Eq. �A8� of the
Appendix.

It will hereafter be assumed that the development of the
gel’s morphology is finished at the end of the measurements,
i.e., that the skeleton is made of dense polymer, and its pores
are filled with pure solvent. In the frame of the two models
of Fig. 4, this is equivalent to assuming �C=0 �model A�, or
�MP=0 �model B� at the end of the measurement. In this
case, the two models are identical to the model used by Rob-
erts to analyze the structure of aerogels �18�. Polymer con-
servation implies �S=�S

�=0.23 at the end of the runs �Sec.
II B�. Using this value of �S in Eq. �16�, the SAXS patterns
are fitted with only three adjustable parameters: , d, and one
single threshold �. Figure 5�a� compares the data with the
fitted model. The gel with R /C=1000 is not analyzed be-
cause its SAXS pattern at the end of the measurement �Fig.
2�a�� exhibits only Porod scattering, which points to struc-
tures larger than the upper resolution of the SAXS. Figure 6
shows realizations of the intersection model with the fitted
parameters corresponding to gels with various R /C ratios.
The discussion of this figure is postponed to Sec. IV.

To analyze the SAXS patterns at any intermediate reac-
tion time, the value of the total intensity Q �Fig. 3�c�� is first
used to estimate the volume fraction of the skeleton at that
particular time. For model A, from Eqs. �2�, �9�, and �12�,
one finds

Q = �2��3IeV�	��2�1 − �C�2�S�1 − �S� , �18�

where Eq. �17� was used. The unknown quantities Ie and V
are constant in time; they can therefore be removed from Eq.
�18� by considering the ratio of Q to its final value Q�, cor-
responding to �C

�=0 and �S
�=0.23. Furthermore, at any stage

of the gel formation, polymer volume conservation implies
the following relation between �S and �C:

�S + �1 − �S��C = �S
�. �19�

Combining Eqs. �18� and �19� leads to the following estimate
of �S:

�S
A = �1 +

1 − �S
�

�S
�

Q�

Q
−1

, �20�

where the exponent A highlights the fact that this expression
is valid for model A only. An estimate of the volume of the
objects in the dispersed colloidal polymer phase can be ob-
tained by combining Eqs. �13�, �18�, and �19�, giving

vA = �2��3 I0

Q

�S

1 − �S

�1 − �S
��2

�S
� − �S

. �21�

Figures 7�a1�–7�c1� plot the time evolution of the volume
fractions �S and �C, as well as the volume of the colloids v.
The evolution of �C and v is roughly exponential �note the
semilogarithmic axes in Figs. 7�b1� and 7�c1��.
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Once the volume fraction of the skeleton is known from
Eq. �20�, the value is used in Eq. �16� to fit the SAXS data
with the intersection model, with , d, and � as the only
adjustable parameters. The quality of the fits is illustrated in
Fig. 5�b�. Instead of plotting  and d independently, it is
convenient to visualize the evolution of the specific surface
area of the skeleton S, obtained from Eq. �A12� of the Ap-
pendix. Furthermore, as the volume fraction of the skeleton
is changing with reaction time, it is useful to consider the
ratio S /�S, which is inversely proportional to the average
chord length of the skeleton �23,28�. As seen in Fig. 8�a1�,
S /�S decreases with reaction time, which points to a coars-
ening of the skeleton. Another parameter of interest is the
ratio  /d, which is related to the presence of a peak in the
scattering patterns �18� and can therefore be thought of as a
measure of the regularity of the structure �see the Appendix�.
For all gels,  /d increases at early reaction time and remains
constant afterward �Fig. 8�b1��. The evolution of the upper
threshold � used to define the level-cut Gaussian field is
plotted in Fig. 8�c1�.

The results presented so far �Figs. 7�a1�–7�c1� and 8�a1�–
8�c1�� are for model A. A similar analysis can be carried out
for model B. For model B, polymer conservation implies

�S�1 − �MP� = �S
�. �22�

The same analysis as the one leading to Eq. �20� leads to

�S
B = �1 +

1 − �S
�

�S
�

Q

Q�−1

�23�

in the case of model B, and the volume of the micropores is
obtained as

vB = �2��3 I0

Q

1 − �S

�S

��S
��2

�S − �S
� , �24�

which is analogous to Eq. �21�. The evolution of �S, �MP,
and v in the case of model B is plotted in Figs. 7�a2�–7�c2�.
The evolution of Q and I0 is interpreted in the framework of
model B as shrinkage of the skeleton �Fig. 7�a2�� resulting
from the progressive disappearance of its microporosity �Fig.
7�b2��, the volume of the micropores �Fig. 7�c2�� increasing
exponentially with time �this is discussed below�. On the
basis of the estimated volume fraction �S, the SAXS data are
also fitted with Eq. �16� �Fig. 5�b��. The corresponding val-
ues of S / �1−�S�,  /d, and � are plotted in Figs. 8�a2�–8�c2�.
Note that the ratio S / �1−�S� is inversely proportional to the
average chord length of the mesopores.

IV. DISCUSSION

The two main hypotheses that underlie the used modeling
methodology are �i� that the structure of the gels is biphasic
comprising a polymer phase and a liquid phase, with conser-
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FIG. 5. Example fits of the in-
tersection model to the final
SAXS patterns of gels with vari-
ous R /C ratios �a�, and to the in-
termediate SAXS patterns of the
gel with R /C=150 �b�. In �b�, the
solid and dotted lines are the best
fits with models A and B, respec-
tively �the two models are nearly
indistinguishable�. The insets
show on a double-logarithmic
scale the intensities scattered at
large angle, as well as their fit
with Eq. �1� with D=4. The
curves are arbitrarily shifted verti-
cally and the order of the curves is
the same in the insets and in the
main figures.

FIG. 6. Realizations of the in-
tersection model with the param-
eters corresponding to the optimal
fits of the SAXS patterns of the
final gels: d=112 Å, =36 Å, �
=−0.04 �R /C=50�; d=210 Å, 
=63 Å, � =−0.02 �R /C=150�;
d=340 Å, =67 Å, �=−0.02
�R /C=250�; for all gels �S=0.23.
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FIG. 7. Evolution of morpho-
logical parameters during the for-
mation of the gels with R /C
=250 ���, 200 ���, and 150 ���.
The top row is for model A: �a1�
volume fraction of the skeleton
�S, �b1� volume fraction of the
colloids �C in the pores, �c1� vol-
ume of the colloids. The bottom
row is for model B: �a2� volume
fraction of the skeleton �S, �b2�
volume fraction of the micropores
�MP within the skeleton, �c2� vol-
ume of the micropores. The hori-
zontal dotted line in �c1� and �c2�
is roughly the resolution limit of
the SAXS; the analysis is valid
only for values of v below the
line.

FIG. 8. Evolution of the skel-
eton’s morphology during the for-
mation of the gels with R /C
=250 ���, 200 ���, and 150 ���,
for model A �top row� and model
B �bottom row�: �a� specific sur-
face area S /�S �model A� and
S / �1−�S� �model B�, �b� ratio of
the two characteristic lengths of
the Gaussian random fields  /d,
and �c� upper threshold � used to
level-cut the Gaussian random
fields.
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vation of the total volume of polymer during the gel forma-
tion, and �ii� that the morphology has two different length
scales, one of which falls in the SAXS range �roughly from 3
to 60 nm� and the other contributes to a uniform background
scattering in the measured angular range. Two specific mod-
els are considered: in model A, the small-scale structure is a
colloidal polymer suspension that fills the pores of the skel-
eton; in model B the small-scale structure consists of mi-
cropores within the gel’s skeleton.

To analyze the morphology of the large-scale structure,
the intersection model of Roberts is used �18�. That model
was initially proposed to analyze resorcinol-formaldehyde
aerogels. Aerogels are obtained from gels by supercritical
solvent removal, and it is therefore expected that the mor-
phologies of the solid skeleton of the gels and aerogels are
identical �see, e.g., �2��. For the aerogels, the intersection
model was validated not only for the SAXS—i.e., for two-
point probability functions—but also for thermal conductiv-
ity which depends on higher-order statistics �18,23�. It is
therefore believed that the model captures many morphologi-
cal features of resorcinol-formaldehyde aerogels and gels.
The fit of the SAXS of the final gels is quite satisfactory
�Fig. 5�a��, and the different morphologies of the gels syn-
thesized with various R /C ratios �Fig. 6� are also in agree-
ment with the known morphology of the xerogels obtained
after drying �19�. On the basis of microscopy and of nitrogen
physisorption, synthesizing gels with a lower R /C ratio re-
sults in smaller structures and pores �see, e.g., �15��, in
agreement with the present SAXS. Our analysis also shows
that the structure becomes qualitatively more ordered, as as-

sessed by the fact that  /d passes from ca 0.2 for R /C
=250 to 0.3 for R /C=50.

The time-dependent volume fraction of the skeleton and
of the relevant small-scale structure �colloids or micropores�
is determined from the value of Porod’s invariant Q, and the
volume of the colloids or micropores is determined from the
background intensity I0. The interpretation of the data plotted
in Fig. 7 depends on the model used to analyze them. On one
hand, in the framework of model A �Fig. 4�a��, the evolution
of �S, �C, and v is interpreted as a progressive increase of
the volume of the skeleton at the expense of the colloid
suspension in its pores. Concomitantly, the volume of the
colloids remaining in the pores increases, which is expected
if they aggregate. The exponential growth �Figs. 7�b1� and
7�c1�� could also find an explanation in the context of a
reaction-limited aggregation �29�. On the other hand, in the
framework of model B �Fig. 4�b��, the skeleton of the gel is
initially very voluminous and very porous; its volume frac-
tion progressively decreases together with its porosity. In the
context of gels, such a process is generally referred to as
syneresis and it is common to phase separation �2,10�. The
growth of the remaining micropores �Fig. 7�c2�� can also be
understood because v is an average volume and the smallest
pores are likely to be the first to disappear. In this context
also the exponential kinetics of Figs. 7�b2� and 7�c2� is not
surprising �30�.

Figure 9 and 10 represent realizations of model A and B,
respectively, in the course of the formation of the gel with
R /C=150. The morphological parameters used result from
the fit of the SAXS data in Fig. 5�b�; they are plotted in Fig.

FIG. 9. Possible evolution of the morphology of the gel with R /C=150 as a function of reaction time for t=2.5 �a�, 3.5 �b�, 5 �c�, and
20 min �d�, according to model A �see Fig. 4�a��. Top row, morphology of the skeleton, and bottom row, morphology of the colloidal
suspension that fills the mesopores. The analysis gives no information about the shape of the colloids; they are represented as spheres for
convenience.
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7 and 8. The small-scale structures are represented as
spheres—spherical colloids in model A, and spherical mi-
cropores in model B—although the only information avail-
able is their average volume v and volume fraction �C or
�MP. Although the final structure of the gels is the same for
both models �Figs. 9�d1�, 9�d2�, 10�d1�, and 10�d2��, they
correspond to apparently very different reaction pathways.

The behavior of model A approximately corresponds to
the aggregation theory of gel formation �3,31,32�, which
some authors use to analyze the formation of resorcinol-
formaldehyde gels �see, e.g., �15��. This theory was popular-
ized in the 1980s and 1990s, notably through the use of
fractal concepts like diffusion-limited or reaction-limited ag-
gregation �5,6�. According to this theory, the gels form via
the formation of colloidal particles that aggregate until they
form a space filling cluster, at which moment a gel is ob-
tained. Quite often, the clusters take the form of filamentary
aggregates of particles that are sometimes referred to as a
string of pearls. The SAXS data of gels and aerogels can
sometimes be modeled as aggregates of polydisperse colloi-
dal particles �33�; the fits are very poor when polydispersity
is not incorporated in the model �34�. The intersection model
used in the present work exhibits a string-of-pearls morphol-
ogy and its polydispersity can be tuned very naturally
through the factor  /d �see the Appendix�. At early reaction
times, the skeleton is made of very small objects with a large
specific surface area �Fig. 8�a1��, a large polydispersity as
assessed by the low values of  /d �Fig. 8�b1��, and these
objects do not form a percolating network as assessed by the
initial low value of � �Fig. 8�c1��. In the course of the gel

formation, the skeleton increases its volume �Fig. 7�a1��, it
coarsens �Fig. 8�a1��, and becomes more ordered �Fig. 8�b1��
and better connected �Fig. 8�c1��.

On the other hand, the behavior of model B more closely
mimics the microphase separation theory of gel formation
�see, e.g., �12��, which some authors use to analyze the for-
mation of resorcinol-formaldehyde gels �16�. According to
this theory, the precursor molecules polymerize and form a
branched network in which the polymer and the solvent are
mixed at the molecular scale. When the degree of branching
and/or the molecular weight increases, the solubility of the
polymer in the solvent decreases which leads to syneresis
�10�: the polymer chains progressively fold to form locally
denser structures from which the solvent is expelled. The
skeleton of the gel is initially very voluminous with �S
�0.5 �Figs. 7�a2� and 10�a1��, but it contains a large amount
of solvent �MP�0.5 �Figs. 7�b2� and 10�a2�� under the form
of very small pores that are almost of molecular size �Fig.
7�c2��. In the course of the gel structuring process, these
pores progressively disappear, and the largest pores outside
the skeleton increase in size, as indicated by the lowering of
S / �1−�S�. At the same time, the structure becomes more
ordered �Fig. 8�b2�� as indicated by the appearance of a
maximum in the SAXS patterns. Actually, the presence of a
maximum in SAXS patterns of gels and aerogels is often
considered as a proof for the occurrence of microphase sepa-
ration �see, e.g., �16��, because microphase separation gener-
ally occurs on a well-defined length scale that depends on the
degree of branching of the macromolecules �10�.

Although aggregation and microphase separation seem to
be two distinct processes, the present analysis shows that—in

FIG. 10. Possible evolution of the morphology of the gel with R /C=150 as a function of reaction time for t=2.5 �a�, 3.5 �b�, 5 �c�, and
20 �d�, according to model B �see Fig. 4�b��. Top row, morphology of the skeleton, and bottom row, small-scale morphology of the skeleton
showing its microporosity. The analysis gives no information about the shape of the micropores; they are represented as spherical for
convenience.
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the case of resorcinol-formaldehyde gels—both scenarios
can lead to very similar morphologies. The fact that models
A and B are both compatible with the SAXS data shows that
the corresponding morphologies are not very different after
all, as they have the same two-point probability functions
above 3 nm. In principle, several different morphologies can
have the same two-point probability function. In practice,
however, a knowledge of the two-point function is often suf-
ficient to reconstruct the corresponding morphology �25�.
The similarity between the morphologies of models A and B
above 3 nm is also seen from Figs. 9 and 10.

The physical difference between aggregation and phase
separation should not be overestimated either. Although both
scenarios are physically sound, none of them is fully satis-
factory when it is considered alone. On one hand, the colloi-
dal aggregation model predicts a fractal structure that is sel-
dom observed experimentally over more than one decade of
length scale �35�. Also, the aggregation model predicts a gel
time that is dependent on the volume of the gel �see, e.g.,
�36��, in disagreement with experiment. A volume-
independent gel time can be obtained if the aggregates are
allowed to reorganize their inner structure as in the fluctuat-
ing bond model �37�. Furthermore, the latter reorganization
of the aggregates—very similar to a microphase
separation—is needed to account for the mechanical proper-
ties of the gels �38�. On the other hand, the pure microphase
separation scenario is not fully satisfactory either. It is, for
instance, well known that polycondensation leads to poly-
mers with a broad molar mass distribution �2,39�: even after
the gel time, most of the polymer is not connected to the
percolating network. At the moment of the microphase sepa-
ration, the pores of the incipient gel’s skeleton are therefore
necessarily filled with a suspension of colloidal polymer that
can afterward aggregate. Therefore, colloidal aggregation
and microphase separation should not be regarded as mutu-
ally exclusive mechanisms, but rather as two different ideali-
zations of the same complex physical process.

V. CONCLUSIONS

SAXS patterns of resorcinol-formaldehyde gels can be
modeled with the intersection model initially proposed to
model the SAXS and thermal conductivity of the resorcinol-
formaldehyde aerogels. To analyze time-resolved SAXS data
in the course of the gel formation, however, it is necessary to
generalize the model in order to introduce a small-scale
structure. This can be done in two different ways: it can be
assumed that the mesopores of the skeleton are filled with a
colloidal polymer suspension, or it can be assumed that the
skeleton of the gel contains pores which are a few nanom-
eters across. The two morphological models correspond to
two apparently different mechanisms of gel formation,
namely colloid aggregation and microphase separation. Both
are compatible with the time-resolved SAXS data.

The fact that the two models can be used to fit the same
data set points to the morphological similarity between real-
istic structures formed by colloidal aggregation and by mi-
crophase separation, in the length scales explored by the
SAXS. Physical arguments also show that these two mecha-

nisms are not mutually exclusive and that they can be re-
garded as two idealizations of the same complex physical
process.

ACKNOWLEDGMENTS

C.J.G. acknowledges support from the Belgian national
funds for scientific research �FNRS�. The authors are grateful
to Dr. Bart Goderis �Katholieke Universiteit Leuven� and to
Dr. Florian Meneau �DUBBLE, European Synchrotron Ra-
diation Facility�, as well as to Dr. Nathalie Job and Dr. René
Pirard �University of Liège� for their help during the mea-
surement of the time-resolved SAXS data; fruitful discussion
with Dr. Silvia Blacher �University of Liège� is also ac-
knowledged. Part of this work was done during a stay of
C.J.G. in Brisbane, supported by the University of Queen-
sland and by the Patrimoine de l’Université de Liège.

APPENDIX

A Gaussian random field y�x� can be constructed as a
superposition of plane waves as

y�x� =� 2

N
�
i=1

N

cos�ki · x − �i� , �A1�

where ki and �i are independent random numbers; �i is uni-
formly distributed in �0,2�� and the probability distribution
P�k� of the wave vectors ki is rotationally symmetric. When
N is very large, the value of y�x� at any given x is a Gaussian
variable; the factor �2 /N in Eq. �A1� ensures that its vari-
ance is 1 �40�. The GRF is completely determined by its
two-point correlation function g�r�= �y�x+r�y�x�� �where r
= �r��, or equivalently by the probability density function of
k= �k� given by �40�

P�k� =
2

�
k�

0

�

rg�r�sin�kr�dr . �A2�

In the last equation, the erroneous factor �2��3 of Eq. �42� of
Ref. �40� was replaced by 2 /�.

A useful description of porous media is provided by mod-
eling the internal surface as an isosurface �or level cut� of a
Gaussian random field y�x�. This approach has proved suc-
cessful for the modeling the morphology of systems arising
from spinodal decomposition �41�, microemulsion �42,43�,
and polymer blends �44�, among others �45�. For the level-
cut model to have a finite specific surface area, the leading
term in the Taylor development of g�r� has to be quadratic
�40�,

g�r� = 1 − �r/l�2 + ¯ for r → 0, �A3�

where l is a constant having the dimension of a length. If the
condition of Eq. �A3� is not met, the level-cut morphology is
a surface fractal with an infinite specific surface area. This is
notably the case if the leading term in g�r� is linear as in an
exponential, in which case the surface fractal dimension is
2.5 �40�.
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Several analytical forms of g�r� satisfying Eq. �A3� have
been used in the literature �see, e.g., �44,46��. The particular
analytical form proposed in Eq. �15� of the main text satisfies
Eq. �A3� with

1

l2 =
2�2

3d2 +
1

22 . �A4�

Equation �15� has only two parameters d and . The 1/cosh
factor decreases asymptotically like an exponential function
and the sin�x� /x factor is needed to account for the presence
of a maximum in the scattering patterns. In order to generate
realizations of the GRF via Eq. �A1�, it is necessary to cal-
culate the wave vector probability density function: substi-
tuting Eq. �15� into Eq. �A2�, one finds

P�k� =
k

�
d

sinh��k/2�sinh��2/d�
cosh��k� + cosh�2�2/d�

. �A5�

Figures 11�a1� and 11�a2� represent two independent realiza-
tions of GRFs obtained by summing 500 plane waves ac-
cording to Eq. �A1�, with a wave vector probability distribu-
tion given by Eq. �A5� with d=60 nm and =20 nm.

The simplest level-cut model consists in modeling the
morphology of a given phase as the set of all points at which
the GRF y�x� is lower than a given threshold �41�. Berk �42�
generalized this model by introducing two thresholds 
 and
� and by defining, say, phase 1 to occupy the region of space
where 
�y�x���, and phase 2 to occupy the remainder. As
the values of y�x� are Gaussian distributed with a variance
equal to 1, the volume fraction �1 of phase 1 is related to the
thresholds via �1= p�− p
, with �42�

p
 =
1

�2�
�

−�




exp�−
t2

2
dt . �A6�

Figures 11�b1� and 11�b2� represent two independent realiza-
tions of two-cut morphologies with 
=−2.3 and �=0.

The scattering properties of an isotropic system depend
only on the two-point probability function P11�r�, defined as
the probability that two points chosen randomly in space and
at a distance r from one another both belong to phase 1 �see,
e.g., �23��. The two-point probability function is related to
the field-field correlation function of the GRF and to the two
thresholds via �47�

P11�r� = �1
2 +

1

2�
�

0

g�r� dt
�1 − t2�exp�−


2

1 + t


− 2 exp�−

2 − 2
� + �2

2�1 − t2�  + exp�−
�2

1 + t
� .

�A7�

The latter expression could be used in Eq. �10� of the main
text to estimate the intensity scattered by the skeleton.

Models based on a single GRF, with either one or two
cuts, are not useful to model the morphology of gels or aero-
gels. At densities typical of the latter systems, one-cut mod-
els consist of disconnected blobs corresponding to the re-
gions of space where the GRF has its lowest values; the
blobs become connected only at densities larger than about
15% �18�. On the other hand, two-cut models are connected
at smaller densities. The latter models, however, have a shee-

FIG. 11. Example of two independent realizations of a Gaussian random field y�x� with field-field correlation function given by Eq. �15�
with d=60 nm and =20 nm ��a1� and �a2��; two-cut morphologies obtained by thresholding these random fields between 
=−2.3 and �=0
��b1� and �b2��; intersection of the two independent two-cut models �c�.
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tlike morphology that is not representative of the struts that
constitute the skeleton of gels. Such sheets are visible from
Figs. 11�b1� and 11�b2�, in which it is seen that the solid
phase is indeed hollow. To avoid the presence of these hol-
low structures, Roberts �18� proposed a model generated
from the intersection of two statistically independent two-cut
models �Fig. 11�c��. The intersection of two structures with
sheet morphology yields a structure with a strut morphology
that can be used as a model of gels and aerogels. The statis-
tical independence of the two intersected models enables the
properties of the intersection to be calculated. In particular,
the density of the intersection is related to the threshold via

�1
I = ��1�2 = �p� − p
�2, �A8�

where p
 and p� are given by Eq. �A6�. The two-point prob-
ability function of the intersection model P11

I �r� is obtained
as

P11
I �r� = �P11�r��2, �A9�

where P11�r� is given by Eq. �A7�. Using Eq. �A9� the scat-
tered intensity can be estimated via Eq. �10� of the main text.

The specific surface area S /V of the intersection model
can be calculated using the general relation �23,28�

S

V
= − 4�dP11�r�

dr


r=0
. �A10�

Using Eqs. �A10�, �A9�, and �A7� and the general relation
Eq. �A3�, the specific surface area of the intersection model
is found to be

� S

V
I

=
4

�
�2�1

I�exp�− 
2

2
 + exp�− �2

2
�1

l
�A11�

with �1
I given by Eq. �A8�. In the particular case where Eq.

�15� is used for the field-field correlation function, l is given
by Eq. �A4�; the specific surface area of the intersection
model becomes

� S

V
I

=
4

�
�2�1

I�exp�− 
2

2
 + exp�− �2

2
��4�2

6d2 +
1

22 .

�A12�

To illustrate the various morphologies that can be obtained
through the intersection model, four realizations are repre-
sented in Fig. 12, obtained with the field-field correlation

given by Eq. �15� of the main text. All realizations in the
figure correspond to a specific surface area of 1000 m2 /cm3

according to Eq. �A12�, and a volume fraction �=0.2 ac-
cording to Eq. �A8�. They differ in the ratio  /d and in the
way in which the thresholds 
 and � are chosen. Figures
12�a� and 12�b� are obtained with 
=−�; they therefore cor-
respond to a single cut; they have a continuous structure with
local bulges, which has been described as a string-of-pearls
morphology �see, e.g., �16��. Figures 12�c� and 12�d� on the
other hand are obtained with 
=−�; they have a fiber mor-
phology. In both cases �string of pearls or fiber� decreasing
 /d results in a more random or disordered structure. In-
creasing � at a given density results in a better connected
structure.
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