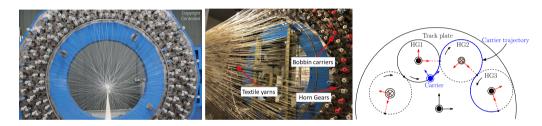
Simulation of multibody systems with switching constraints: Formulation and time integration

Indrajeet Patil^{1,2} and Olivier Brüls¹

¹Department of Aerospace and Mechanical Engineering, University of Liège, Belgium ²Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany

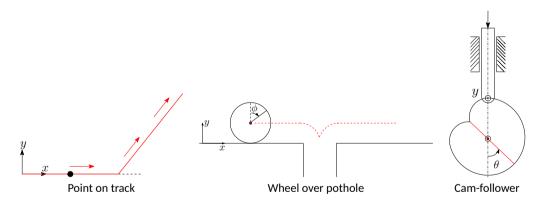
Motivating application: Overbraiding process



Each bobbin carrier follows a complex trajectory, with periodic transitions (switchings) from one horn gear to the next.

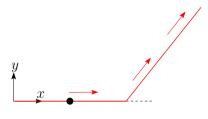
At switching, jumps in angular velocity occur.

More examples of systems with switching constraints



At every time instant, the number of active constraints is the same.

Modelling approaches



Point on track: at every time, a single constraint is active

Two possible approaches to handle the different modes

- Use two constraints + an activation criterion for each of them.
 - ▶ Number of constraints (and multipliers) increases with the number of modes
 - ▶ No global coordination of the activations ⇒ risk of over-/under-constrainments
- Use a single constraint whose mathematical expression is switching
 - ▶ How can we formulate the switching constraint?
 - ▶ How can we obtain the equations of motion?
 - How can we solve the equations of motion?

Related work

Switching dynamical systems, which fall in the broader class of **hybrid systems**, have been studied on various aspects: stability, control, relation to DAE theory, numerical methods, applications in electrical engineering and power electronics^{1,2,3,4,5,6,7,8}

Open question:

can we adapt these theories to mechanical systems with switching bilateral constraints?

¹A. J. van der Schaft, J. M. Schumacher, IEEE Transactions on Automatic Control 43, 483-490 (1998).

²J. Cortes, IEEE Control systems magazine **28**, 36–73 (2008).

³V. Mehrmann, L. Wunderlich, Journal of Process Control 19, 1218–1228 (2009).

⁴R. Goebel et al., IEEE control systems magazine **29**, 28–93 (2009).

⁵V. Acary et al., IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems **29**, 1042–1055 (2010).

⁶Z. Sun, S. S. Ge, Stability theory of switched dynamical systems, (Springer, London, 2011).

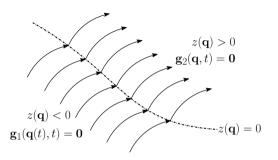
⁷S. Trenn, Dynamics and Control of Switched Electronic Systems: Advanced Perspectives for Modeling, Simulation and Control of Power Converters, 189–216 (2012).

⁸A. Rocca et al., IFAC-PapersOnLine **53**, 1888–1893 (2020).

Outline

- Introduction
- Switching constraints
- Equations of motion
- 4 Time integration
- Mumerical results
- **6** Conclusion

Switching function and switching surface

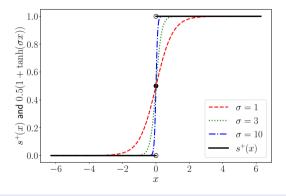


Switching function: $z(\mathbf{q}) : \mathbb{R}^n \to \mathbb{R}$ Switching surface: $\{\mathbf{q} : z(\mathbf{q}) = 0\}$

Switching constraints: g(q, t) = o with

$$\mathbf{g}(\mathbf{q},t) \triangleq \begin{cases} \mathbf{g}_1(\mathbf{q},t) & \text{if } z(\mathbf{q}) < o \\ \frac{1}{2}(\mathbf{g}_1(\mathbf{q},t) + \mathbf{g}_2(\mathbf{q},t)) = o & \text{if } z(\mathbf{q}) = o \\ \mathbf{g}_2(\mathbf{q},t) & \text{if } z(\mathbf{q}) > o \end{cases}$$

Compact reformulation using the Heaviside step function



Heaviside step function $s^+(x)$ vs smooth approximations $(1 + \tanh(\sigma x))/2$

$$\mathbf{g}(\mathbf{q},t) \triangleq (1-s^+(z(\mathbf{q}))) \ \mathbf{g}_1(\mathbf{q},t) + s^+(z(\mathbf{q})) \ \mathbf{g}_2(\mathbf{q},t)$$

- We keep $s^+(x)$ as it is (no regularization or smooth approximation)
- The formulation can be extended to multiple switching surfaces

Switching function: Technical conditions

The two portions of the constraint space should intersect at the switching surface

- $\forall \mathbf{q}$ satisfying both $\mathbf{g}_1(\mathbf{q},t) = \mathbf{o}$ and $z(\mathbf{q}) = \mathbf{o}$, we require $\mathbf{g}_2(\mathbf{q},t) = \mathbf{o}$
- $\forall \mathbf{q}$ satisfying both $\mathbf{g}_2(\mathbf{q},t) = \mathbf{o}$ and $z(\mathbf{q}) = \mathbf{o}$, we require $\mathbf{g}_1(\mathbf{q},t) = \mathbf{o}$

The switching function cannot be tangent to the constraint space

On the switching surface, the gradient matrices $\begin{bmatrix} \mathbf{G_1}(\mathbf{q},t) \\ \mathbf{Z}(\mathbf{q}) \end{bmatrix}$ and $\begin{bmatrix} \mathbf{G_2}(\mathbf{q},t) \\ \mathbf{Z}(\mathbf{q}) \end{bmatrix}$ are full rank

The gradient of the switching constraint $\mathbf{g}(\mathbf{q},t)$ can be discontinuous

On the switching surface, we allow $\mathbf{G_1}(\mathbf{q},t) \neq \mathbf{G_2}(\mathbf{q},t)$

The switching function shapes the constraint manifold

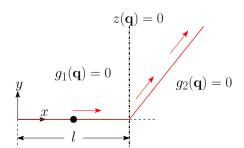
Point on track example: $\mathbf{q} = [x \ y]^T$

$$g_1(\mathbf{q}) \triangleq y$$

 $g_2(\mathbf{q}) \triangleq y - a(x - I)$

$$z(\mathbf{q}) \triangleq x - I$$

$$z(\mathbf{q}) \triangleq y - 0.5 a (x - I)$$





Hybrid DAE

For almost every time:
$$\begin{cases} \dot{\mathbf{q}} = \mathbf{v} \\ \mathbf{M}(\mathbf{q})\dot{\mathbf{v}} + \mathbf{G}^{\mathsf{T}}(\mathbf{q},t)\lambda &= \mathbf{f}(\mathbf{q},\mathbf{v},t) \\ \mathbf{g}(\mathbf{q},t) &= \mathbf{o} \end{cases}$$

At the switching time t_i , we expect a velocity jump and a reaction impulse (impact):

$$\begin{cases} \mathbf{M}(\mathbf{q}_i) (\mathbf{v}_i^+ - \mathbf{v}_i^-) + \mathbf{R} &= \mathbf{o} \\ \mathbf{G}^+(\mathbf{q}_i, t_i) \mathbf{v}_i^+ &= -\mathbf{g}_t^+(\mathbf{q}_i, t_i) \end{cases}$$

Assumption: $R = G_{\mathcal{E}}^T \Lambda$, where $G_{\mathcal{E}}$ is an intermediate constraint gradient

At switching time
$$t_i$$
:
$$\begin{cases} \mathbf{M}(\mathbf{q}_i) (\mathbf{v}_i^+ - \mathbf{v}_i^-) + \mathbf{G}_{\mathcal{E}}^\mathsf{T} \mathbf{\Lambda} &= \mathbf{o} \\ \mathbf{G}^+(\mathbf{q}_i, t_i) \mathbf{v}_i &= -\mathbf{g}_t^+(\mathbf{q}_i, t_i) \end{cases}$$

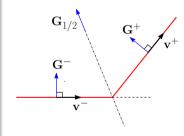
Reformulation as an equality of differential measures

$$egin{aligned} \dot{\mathbf{q}} &= \mathbf{v} \ \mathbf{M}(\mathbf{q}) \, \mathrm{d}\mathbf{v} - \mathbf{G}_{\mathcal{E}}^\mathsf{T} \, \mathrm{d}\mathbf{i} &= \mathbf{f}(\mathbf{q},\mathbf{v},t) \, \mathrm{d}t \ \mathbf{g}(\mathbf{q},t) &= \mathbf{o} \end{aligned}$$

How to define the intermediate constraint gradient?

In the case of a **single constraint**, $G_{\mathcal{E}}$ can be defined by interpolation between the vectors G^- and G^+ (with $\mathcal{E} \in [0,1]$)

- the interpolation should be insensitive to scaling and sign inversion of the two vectors
 - ⇒ normalization steps are needed
- if G_E = G⁺ (post-switch gradient), then energy is dissipated at switching (the velocity component orthogonal to the post-switch constraint is annihilitated)
- if $G_{\mathcal{E}} = G_{1/2}$ (mid-gradient), then energy is preserved at switching



⇒ The intermediate gradient drives the energy behaviour at switching

How to define the intermediate constraint gradient?

In the **general case**, $G_{\mathcal{E}}$ can still be defined by interpolation

- G^- and G^+ are linear subspaces of \mathbb{R}^n \Rightarrow the interpolation is performed on a Grassmann manifold, see also^a
- if $G_{\mathcal{E}} = G^+$ (post-switch gradient), then energy is dissipated at switching (the velocity component orthogonal to the post-switch constraint is annihilitated)
- if $G_{\mathcal{E}} = G_{1/2}$, ??

^aD. Amsallem, C. Farhat, AIAA Journal 46, 1803–1813 (July 2008).

Time integration

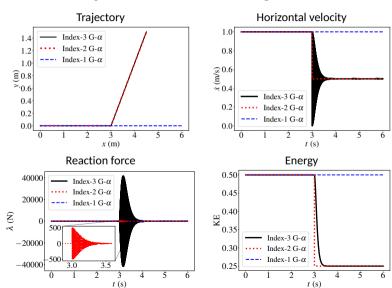
At switching, we expect a nonsmooth behaviour with velocity jumps

- Classical time integration schemes may fail to handle such discontinuous behaviours.
- Methods from nonsmooth dynamics should rather be considered
 - Event-driven methods
 - Event-capturing methods (e.g., Moreau-Jean & nonsmooth generalized- α schemes)

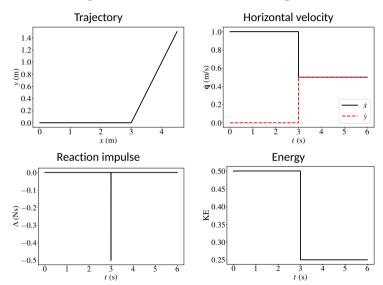
4 different versions of the generalized- α will be compared

- Index-3 G- α : classical generalized- α with constraints at position level
- Index-2 G- α : classical generalized- α with constraints at velocity level
- Index-1 G- α : classical generalized- α with constraints at acceleration level
- NSGA: nonsmooth generalized- α with constraints both at position and velocity levels

Point on track with $G_{\mathcal{E}} = G^+$: Classical integration scheme



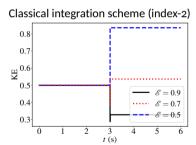
Point on track with $G_{\mathcal{E}} = G^+$: Nonsmooth integration scheme (NSGA)

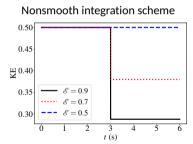


Point on track: Choice of intermediate gradient

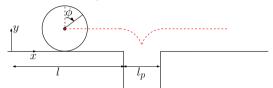
Interpolation parameter

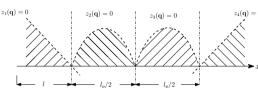
- $\mathcal{E} = 1 \rightarrow G_{\mathcal{E}} = G^+$ (energy dissipation at switching, as in previous simulation)
- $\mathcal{E} = 0.5 \rightarrow \mathbf{G}_{\mathcal{E}} = \mathbf{G}_{1/2}$ (energy conservation at switching)





Wheel over pothole: Model definition



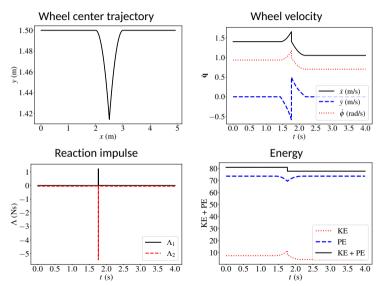


- \bullet $\mathbf{q} = \begin{bmatrix} x & y & \phi \end{bmatrix}^T$
- Constraint 1: rolling without slipping
- Constraint 2: non-penetration

• 4 switching functions:
$$\begin{cases} z_1(\mathbf{q}) &= -x + l \\ z_2(\mathbf{q}) &= -(x - l)(x - l - l_p/2) \\ z_3(\mathbf{q}) &= -(x - l - l_p/2)(x - l - l_p) \\ z_4(\mathbf{q}) &= x - l - l_p \end{cases}$$

• Constraint formulation:
$$\mathbf{g}(\mathbf{q},t) = \sum_{i=1}^{k+1} \left(\prod_{j \neq i} (1 - s^+(z_j(\mathbf{q}))) s^+(z_i(\mathbf{q})) \mathbf{g}_i(\mathbf{q},t) = \mathbf{o} \right)$$

Wheel over pothole: Numerical results ($G_{\mathcal{E}} = G^+$)



Conclusion

- Multibody systems with switching bilateral constraints
- The switching functions shape the geometry of the constraint manifold
- At switching: discontinuous constraint gradient & velocity jump (impact)
 We postulate that the reaction impulse is along an intermediate constraint gradient
 - ▶ $G_{\mathcal{E}}$ is defined by a subspace interpolation between G^- and G^+
 - ▶ If $G_{\mathcal{E}}$ = post-switch gradient \Rightarrow energy dissipation
 - ▶ If $G_{\mathcal{E}} = \text{mid-gradient} \Rightarrow \text{energy conservation}$ in the single constraint case
- Equations of motion can be formulated either as a hybrid DAE or as an equality of differential measures
- Classical time integration schemes fail to deliver acceptable numerical solutions
- Nonsmooth time integration schemes are reliable in this case

I. Patil and O. Brüls. Numerical simulation of nonsmooth multibody systems with switching bilateral constraints. *Nonlinear Dynamics*, online since June 2025.

Thank you for your attention!

Simulation of multibody systems with switching constraints: Formulation and time integration

Indrajeet Patil^{1,2} and Olivier Brüls¹

¹Department of Aerospace and Mechanical Engineering, University of Liège, Belgium ²Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany

Acknowledgement:

