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Abstract

This study evaluates several stabilization strategies for the discontinuous Galerkin Spec-
tral Element Method in scale-resolved simulations of compressible turbulence, with em-
phasis on accuracy, robustness, and computational efficiency. A novel selective entropy-
stable approach (DG-ES) is introduced, which activates entropy stabilization only in
localized regions to enhance robustness while minimizing dissipation. The performance
of DG-ES is benchmarked against artificial viscosity (DG-AV), as well as fully entropy-
stable methods based on Gauss–Legendre (ESDG-GL) and Gauss–Lobatto (ESDG-GLL)
quadratures, across a range of canonical shock–turbulence interaction test cases. Results
show that DG-AV performs well in scenarios involving highly mobile shocks, effectively
resolving both shocks and small-scale turbulence, but its accuracy deteriorates in sta-
tionary shock configurations. Additionally, DG-AV is highly sensitive to the choice and
calibration of its detector. In contrast, entropy-stable methods improve post-shock turbu-
lence accuracy but tend to introduce spurious oscillations near shocks and incur greater
computational cost. The ESDG-GL method suffers from entropy projection errors in
shocklet-dominated regions, while ESDG-GLL is affected by excess dissipation due to
under-integration. DG-ES achieves a favorable balance, accurately capturing turbulence
with reduced sensitivity to detector calibration and maintaining competitive efficiency.
However, like the ESDG-GL, it requires smaller time steps to ensure stability in the
presence of strong shocks, due to the stiffness introduced by the entropy projection.

Keywords: Discontinuous Galerkin, Discontinuous Galerkin Spectral Element Method,
Entropy Stability, Budget Kinetic Energy, Turbulence, Transonic Flows, Artificial
Viscosity

1. Introduction

In recent years, the discontinuous Galerkin (DG) method has gained significant in-
terest in the field of computational fluid dynamics (CFD) due to its high-order accuracy,
flexibility in handling complex geometries, and excellent parallel scalability [1, 2, 3]. The
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method has demonstrated rapid convergence and accuracy in the context of Direct Nu-
merical Simulation (DNS) and Large-Eddy Simulation (LES) of aeronautic applications
by accurately detecting the laminar-to-turbulent transition and correctly representing
turbulence in the subsonic regime on either airfoils [4, 5, 6] or turbomachinery pas-
sages [7].

However, aeronautic applications often operate under conditions where the flow be-
comes transonic, leading to complex interactions between shock waves, turbulence, and
boundary layers. In particular in the novel high-speed low-pressure compressors and
turbines [8, 9], featuring transitional flow at high Mach numbers, DNS and LES are be-
coming increasingly important from an industrial perspective. These interactions pose
significant challenges for numerical methods, which often struggle to maintain accuracy
and stability in such conditions [10, 11]. Moreover, DNS is rarely feasible for many in-
dustrial flows due to the relatively high Reynolds numbers involved, which necessitate
extremely fine spatial and temporal resolutions. Instead, LES is employed, where only the
larger turbulent structures are resolved. This approach results in highly under-resolved
turbulence, further complicating the simulations [12, 13].

Stabilization techniques are employed to ensure numerical stability, but these tech-
niques should have the smallest possible impact on the overall accuracy of the simulation.
Importantly, stabilization is generally not required throughout the entire domain but
should be selectively applied wherever shocks or under-resolved turbulent features are
present. In the non-troubled regions, the numerical scheme must maintain high accuracy
to capture the intricate details of the turbulent flow.

To address these challenges, various stabilization techniques have been proposed in the
context of the DG method. Artificial viscosity methods introduce additional dissipation
to stabilize the solution and accurately capture shocks but can be overly diffusive [14]
introducing large error on the turbulence budgets. These methods range from simple
Laplacian-based approaches [15] to more sophisticated physics-based strategies [16] that
adaptively adjust the viscosity based on local flow conditions, such as dilatation and
vorticity. Entropy-stable schemes [17, 18] ensure that the numerical solution adheres to
the second law of thermodynamics, enhancing robustness and stability but at the cost
of computational efficiency [19]. So far, the literature has not really acknowledged nor
quantified the significant, yet counter-intuitive impact that these methods have at the
non-linear level, in particular concerning small flow features.

In this work, we aim to evaluate the performance of different DG-based stabiliza-
tion techniques, including artificial viscosity (DG-AV) and entropy stability based on
either the Gauss-Lobatto quadrature (ESDG-GLL ) [17, 20, 19] or the Gauss-Legendre
quadrature using the hybridized SBP operator (ESDG-GL) [21, 22, 18, 23], in simulat-
ing under-resolved compressible turbulent flows. We compare these methods with the
vanilla DG method to assess their impact on accuracy, robustness, and computational
cost. Furthermore, we propose an alternative stabilization approach that maintains the
accuracy of the DG method while ensuring robustness at an affordable computational
cost by applying entropy stability only locally and not globally (DG-ES). To assess the
convergence of the methods, we use the budget of kinetic energy [24]. The kinetic en-
ergy equation provides a comprehensive measure of the energy variation and dissipation
processes within the flow. It has been observed that entropy stable methods, despite not
adding explicit diffusion, significantly impact these budgets and should therefore be used
with caution.
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The structure of the paper is as follows: Section 2 briefly introduces the compressible
Navier-Stokes equations, the global entropy inequality, and the budget of kinetic energy
used to study the convergence of the simulations. Section 3 reviews the numerical meth-
ods employed to discretize the compressible Navier-Stokes equations, from the vanilla
DG to the entropy stable schemes. Section 4 presents and discusses the numerical re-
sults, including the accuracy, robustness, and computational cost of the methods on four
under-resolved compressible turbulent cases: compressible homogeneous turbulence, the
compressible Taylor-Green vortex, the strong-vortex/shock-wave interaction and shock-
turbulence interaction. The impact of the detectors on the stabilization methods is also
presented. We finally summarize the main findings in Section 5.

2. Compressible Navier-Stokes equations

The governing equations used in this work are the compressible Navier-Stokes equa-
tions. Let u denote the vector of conservative variables

u = {ρ, ρv, ρE},

where ρ is the density, v the velocity vector, E the specific total energy and H total
enthalpy, defined as

E = e+ k, H = h+ k = e+
p

ρ
+ k,

e being the internal energy, h the enthalpy and k = v · v/2 the kinetic energy. The
relationships between pressure p, density ρ, temperature T , energy e and enthalpy h are
defined by the following constitutive equations

p = ρe(γ − 1) = ρRT, e = cvT, h = cvT +
p

ρ
= cpT,

where γ is the specific heat ratio, R is the gas constant and cv and cp = cv + R are the
specific heat capacities at constant volume and pressure, respectively. As suggested by
the constitutive equations, all these parameters will be considered constant throughout
the development in this paper.

The compressible Navier-Stokes equations can be written in the following form

∂u

∂t
+∇ · f(u) = ∇ · d(u,∇u). (1)

Here the convective flux f and the diffusive flux d vectors are given by

f =

 ρv
ρv · v + pI
ρv ·H

 =


ρvi

ρviv1 + pδi1
ρviv2 + pδi2
ρviv3 + pδi3

ρviH

 ei, d =

 0
τ

τ · v +Q

 =


0
τ1i
τ2i
τ3i

vjτji +Qi

 ei,

where ei is the unit vector in direction i and Einstein notation is used. The heat flux
vector is defined as Q = κ∇T , where κ is the thermal conductivity. For a Newtonian
fluid, the shear stress tensor τ is expressed as

τ = 2µSd + ζ (∇ · v) I
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where Sd = S − 1
3 (∇ · v) I is the shear rate tensor, S = 1

2

(
∇u+∇uT

)
is the strain

rate tensor, µ is the dynamic viscosity and the bulk viscosity ζ is set to ζ = 0, following
Stokes hypothesis. The stress tensor can be rewritten as

τ = µ
(
∇u+∇uT

)
− 2µ

3
(∇ · v) I.

2.1. Kinetic energy balance
The kinetic energy balance equation, derived from the mass and momentum conser-

vation laws, for a domain Ω with boundaries ∂Ω is expressed as

− d

dt

∫
Ω

ρk dV =

∫
Ω

τ : ∇v dV −
∫
Ω

p∇ · v dV +

∫
∂Ω

(pv − τ · v − ρkv) · n dS, (2)

where n is the outward normal vector on the boundary ∂Ω. The left-hand side of equation
(2) represents the rate of change of kinetic energy, while the right-hand side accounts for
the dissipation of kinetic energy due to viscous effects, the work done by pressure forces,
and the transport of kinetic energy across the domain boundaries.

By following the formulations of Zeman [25] and Sarkar [26] for Newtonian fluids, the
viscous dissipation rate can be decomposed as∫

Ω

τ : ∇v dV =

∫
Ω

µ (ω · ω) dV +
4

3

∫
Ω

µ(∇ · v)2 dV, (3)

where ω = ∇ × v is the vorticity. The kinetic energy dissipation rate is therefore the
sum of three contributions:

− d

dt

∫
Ω

ρk dV︸ ︷︷ ︸
ϵ1

= 2

∫
Ω

µξ dV︸ ︷︷ ︸
ϵ2

+
4

3

∫
Ω

µ(∇ · v)2 dV︸ ︷︷ ︸
ϵ3

−
∫
Ω

p∇ · v dV︸ ︷︷ ︸
ϵ4

+

∫
∂Ω

(pv − τ · v − ρkv) · n dS︸ ︷︷ ︸
ϵ5

, (4)

where ξ = ω ·ω/2 denotes the enstrophy. The second term, ϵ2, represents the solenoidal
contribution to the viscous dissipation rate in compressible turbulence [25, 26, 2, 27].
Since high-enstrophy regions are associated with small-scale vortical structures, the
solenoidal dissipation rate is a measure of the dissipation of kinetic energy into heat
due to the presence of small-scale vortices.

The third term, ϵ3, corresponds to the dilatational contribution to the viscous dissi-
pation rate, representing the portion of kinetic energy dissipation associated with com-
pressive or expansive motions. This contribution becomes particularly significant in flows
with strong compressibility effects, such as high-speed, shock-dominated, or acoustically
active regimes.

The fourth term, ϵ4, represents the work done by pressure forces and describes the
energy transfer resulting from pressure acting on volumetric changes within the flow.
This term is closely linked to compressibility effects, such as shock waves, expansion
fans, and acoustic phenomena. Positive values indicate the dissipation of kinetic energy
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through an increase in internal energy, as seen in shock waves. Conversely, negative
values reflect an increase in kinetic energy due to a decrease in internal energy, as occurs
in expansion fans.

The fifth term, ϵ5, represents the net flux of kinetic energy across the boundaries of
the domain. It comprises three physical mechanisms: the work done by pressure forces,
the mechanical work associated with viscous stresses, and the convective transport of
kinetic energy.

The difference between the right and left-hand-side is the budget of kinetic energy,
defined as ∆ϵ = ϵ2 + ϵ3 + ϵ4 + ϵ5 − ϵ1. Since this balance is only approximately satisfied
by the discretized equations of Section 3, it may be used as a direct indicator of the
instantaneous numerical error.

2.2. Entropy variables
Let U denote a convex entropy function [28] of equation (1). The only admissible

entropy function for the compressible Navier-Stokes equations with non-zero heat flux is
(a multiple of) [29]

U(u) = −ρs, (5)

where s = log
(

p/pref
(ρ/ρref)γ

)
is the nondimensional physical entropy [29]. The entropy

variables w(u) are defined as the Jacobian of the mathematical entropy function with
respect to the conservative variables

w(u) =
∂U

∂u
. (6)

One of the conditions for U to be a mathematical entropy function is the existence of a
scalar flux function F , called the entropy flux, for which

∂F
∂u

=
∂U

∂u

∂f

∂u
. (7)

Premultiplying equation (1) by the entropy variables wT and integrating it over a control
volume Ω with boundary ∂Ω and applying the divergence theorem yields∫

Ω

∂U

∂t
dV +

∫
∂Ω

(
F(u)−wTK∇w

)
· n dS = −

∫
Ω

K∇w : ∇w dV, (8)

where K is the Jacobian of the diffusive flux with respect to the gradients of the entropy
variables. By construction, K is a symmetric and positive semi-definite matrix [29]; hence
the last term is always non-positive. Therefore, the net contribution of any process within
the control volume is to reduce the mathematical entropy, with the only way to increase
it being through a net flux across the boundary. By enforcing appropriate boundary
conditions, the entropy inequality is given by

d

dt

∫
Ω

U(u) dV ≤ 0. (9)

This property ensures that the mathematical entropy of the system is non-increasing in
time and therefore introduces a bound for the energy of the real solution [30, 31], as

5



constrained by the boundary conditions. The existence of U guarantees the uniqueness
of the weak solution. The discrete equivalent of this equation is used to stabilize the
discretization of the Euler and Navier-Stokes equations for transonic and supersonic flows,
ensuring convergence to the correct weak solution. Its application to the discontinuous
Galerkin method is explained in Section 3.3.

The transformation from conservative to entropy variables is given by

w(u) =

 w1

w1+i

wd+2

 =


ρe(γ+1−s)−ρE

ρe
ρvi
ρe

− ρ
ρe

 , (10)

and from entropy to conservative variables by

u(w) =

 ρ
ρvi
ρE

 =


−(ρe)wd+2

(ρe)w1+i

(ρe)

(
1−

∑d
j=1 w2

1+j

2wd+2

)
 . (11)

The internal energy density ρe and the physical entropy s can also be derived in terms
of the entropy variables

ρe =

(
γ − 1

(−wd+2)γ

) 1
γ−1

exp

(
−s

γ − 1

)
, s = γ − w1 +

∑d
j=1 w

2
1+j

2wd+2
. (12)

3. Numerical methods

All the simulations presented in this work were performed using a high-order Cartesian
solver based on the discontinuous Galerkin Spectral Element (DG) method. Different
variants of the DG method are considered to assess their performance on the compressible
Navier-Stokes equations. Unless otherwise specified, all variants are based on Gauss-
Legendre quadrature and therefore the Gauss-Legendre shape functions. The following
methods are evaluated in this study:

• the vanilla DG method (DG),

• the DG method with Laplacian artificial viscosity (DG-AV),

• the entropy-stable DG method based on the SBP operator and the entropy variables
(ESDG-GL),

• the entropy-stable DG method based on the Gauss-Lobatto polynomial (ESDG-
GLL),

• a novel approach proposed in this work, the local entropy-stable DG method (DG-
ES) based on the troubled cells detection and activation of the entropy stability in
the vicinity of under-resolved features (similar to the artificial viscosity principle).

The following section introduces the necessary definitions and provides a succinct overview
of each method.
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3.1. Some definitions
The discretization of equation (1) is based upon a tessellation ε, consisting of elements

K, of the domain Ω, such that Ω ∼ ε = ∪K. The trial space (Vp)Nv used for all discon-
tinuous Galerkin methods in this work consists of p-degree polynomial approximations
on a reference element K̂, for each of the Nv variables in system (1). Since the same basis
functions are used for all variables, we restrict our attention to the trial space Vp in the
following definitions. As only tensor product reference elements (quadrilaterals in 2D
and hexahedra in 3D) are considered, the natural polynomial space on a d-dimensional
element is the space of maximum degree p polynomials

Qp(K̂) =
{
x̂i1
1 . . . x̂id

d , x̂ ∈ K̂, 0 ≤ ik ≤ p, k = 1, . . . , d
}
.

Let f̂ denote a face belonging to the reference element K̂. The trace space Vp
(
f̂
)

is

defined as the set of functions in Vp
(
K̂
)

restricted to f̂

Vp(f̂) =
{
q|f̂ , q ∈ Vp(K̂), f̂ ∈ ∂K̂

}
.

For the d-dimensional tensor product element considered here, the trace space Vp
(
∂K̂

)
is composed of polynomials with a maximum degree p over a tensor product of dimension
(d− 1).

A set of linearly independent functions, called shape functions, is chosen to form a
basis for Vp. The shape functions provide a local support in the context of the discontin-
uous Galerkin method, allowing the solution to be discontinuous between the elements.
Hence, for each element, Nϕ = dim

(
Vp

(
K̂
))

is the local number of unknowns per vari-

able. By choosing the shape functions ϕi of Vp
(
K̂
)
, the discrete approximation of any

variable q, qh, can be expressed as

qh(x, t) =

Nϕ∑
i

ϕi(x)qi(t).

Note that at this stage, we do not specify the set of variables qh which can either be the
conservative uh or entropy variables wh.

The basis functions used in this work are the Lagrange interpolants, and the inter-
polation points are defined either by the Gauss-Legendre (GL) or by the Gauss-Lobatto
(GLL) quadrature points. The integrations are performed by using quadrature rules(
ξ̂v, wv

)
and

(
ξ̂f , wf

)
, where ξ̂v and ξ̂f are the volume and surface quadrature points,

respectively, and wv and wf represent the volume and surface quadrature weights. The
specifications of these quadrature rules may differ based on the DG variants and will be
explicitly stated later.

Let us define the interpolation matrices Cv and Cf , which map the basis coefficients
from the interpolation to the quadrature points

(Cv)qi = ϕi(ξ̂v), (Cf )qi = ϕi(ξ̂f ). (13)
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The collocated solutions at the volume and surface quadrature points,
(
qv, qf

)
, are given

respectively by
qv = (Cv)qiqi, qf = (Cf )qiqi. (14)

The mass matrix M can be assembled as

M = CT
v WCv (15)

where W is the diagonal matrix of the volume quadrature weights. In the Spectral
Element Method, the volume quadrature points coincide with the interpolation points.
This simplifies the interpolation matrix Cv to the identity matrix, and consequently, the
mass matrix reduces to M = W .

Let Dk
v and Dk

f denote the gradient interpolation matrices, which map the basis
coefficients of a function from the interpolation points to the basis coefficients of its
derivative in the kth direction at the volume and surface quadrature points

(Dk
v)qi =

∂ϕi

∂ξk

(
ξ̂v

)
, (Dk

f )qi =
∂ϕi

∂ξk

(
ξ̂f

)
. (16)

Let n be the scaled normal vector pointing outward of the element K̂,

n = {nkJf , k = 1, ..., d} ,

where Jf denotes the determinant of the Jacobian associated with the mapping from a
face of ∂K̂ to its corresponding reference face. Finally, Bk is the boundary integration
matrix defined as

Bk = W fdiag(nk). (17)

3.2. Vanilla DG method
This section introduces the reference vanilla discontinuous Galerkin method described

in [32, 33]. Multiplying equation (1) with any test function φ ∈ Vp defined on the element
and using the conservative variables u yields∑

K

∫
K
φ

(
∂uh

∂t

)
dV +

∑
K

∫
K
φ (∇ · f(uh)) dV =

∑
K

∫
K
φ (∇ · d(uh,∇uh)) dV. (18)

3.2.1. Convective term
By using integration by parts and replacing the boundary integral by the sum over

all faces, the convective term, i.e., the second term in equation (18), becomes∑
K

∫
K
φ∇ · f(uh) dV = −

∑
K

∫
K
∇φ · f(uh) dV +

∑
f

∫
f

[φ]f∗(u+
h ,u

−
h ;n)dS. (19)

The jump operator for any state vector a is defined as [a] = a+ − a−, where a+ and
a− are values on the element K from the interior and exterior of the face f , respectively.
The numerical flux f∗ used in this work is the local Lax-Friedrichs flux, defined as

f∗(u+,u−;n) =
fn(u+) + fn(u−)

2
+ max |λ|u

+ − u−

2
, (20)

where λ represents the characteristic wave speeds of the convective part of the Navier-
Stokes equations (1). While the local Lax-Friedrichs flux is relatively dissipative, it
significantly enhances the stability of the vanilla DG method and leads to accurate results,
as shown in Section 4.
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3.2.2. Diffusive term
The diffusive terms are discretized by using the incomplete interior penalty method

(IIPM) developed in [1, 34] 1

∑
K

∫
K
φ∇ · d(uh,∇uh) dV =

∑
K

∫
K
∇φ d(uh,∇uh) dV

−
∑
f

∫
f

[φ]{d(uh,∇uh)} dS

+
∑
f

∫
f

σf [φ][uh] dS, (21)

where σf is the penalty parameter. The average operator for any state vector a is
defined as {a} = (u+ + u−) /2. To ensure the coercivity of the bilinear form, the penalty
parameter is chosen, for tensor product elements, as [1]

σf > max
K∋f

(
nfρ(D)(p + 1)2

A(f)

8V (K)

)
, (22)

where p is the interpolation order, A(f) is the area of the face, V (K) is the volume of the
element K, nf is the number of faces in the element K and the diffusive spectral radius
is defined as ρ(D) = 2µ+ κ/cv.

3.2.3. Final formulation
Finally, by performing the integrations with the quadrature rules and using the matrix

notation defined in Section 3.1, the vanilla discontinuous Galerkin method is given by

M
∂uh

∂t
−

d∑
k=1

W (Dk
v)

T [f(uv) + d(uv,∇uv)]

+

d∑
k=1

CT
f B

k
[
f∗
k(u

+
f ,u

−
f ;n) + {dk(uf ,∇uf )} − σf [uf ]

]
= 0. (23)

For this method, the integration is performed using Gauss-Legendre quadrature, which
yields exact integration for polynomials of degree up to 2N + 1.

3.3. Entropy stable DG method based on Gauss-Legendre polynomial (ESDG-GL)
The introduction of high-order entropy stable discretization is motivated by the lack of

robustness of the vanilla discontinuous Galerkin method in the presence of discontinuities
such as shocks or under-resolved turbulence. The aim of this method is to satisfy a semi-
discrete entropy inequality, thereby providing better control over the production and
destruction of energy in the simulation. All entropy stable schemes are based on two
main components:

1No improvement has been noticed by using the symmetric version of the IPM for all the methods
presented in this work.
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• The entropy variables are used to interpolate the solution wh ∈ Vp : wh =∑Nϕ

i ϕi(x)wi(t). Since the variational formulation tests for any function in Vp,
it can be weighted with the solution itself, i.e. the entropy variables, resulting in
a discrete equivalent of the entropy conservation equations. This in turn allows
controlling the evolution of the entropy of the solution [29, 28, 35].

• The non-linear convective terms are discretized using the flux differencing using
summation-by-parts (SBP) differentiation operators which satisfy a discrete ana-
logue of integration by parts [36, 17, 37], providing a rigorous discrete entropy
conservation equation.

Integration by parts of equation (19) is avoided in entropy-stable schemes, with a
preference for discretizing a differentiation matrix for the term ∇ · f by performing a
flux differencing operation Qk

N ◦ F S , where ◦ denotes the Hadamard product. Qk
N is

an SBP operator and F S is a two-argument matrix flux function based on a two-point
entropy stable numerical flux fS as defined by Tadmor [30]. In this work, the entropy
conservative Chandrashekar flux is employed [38].

The skew-symmetric hybridized SBP operator Qk
N from Chan [23] is used for this

method. To prevent all-to-all element coupling and satisfy the chain rule in the case
of Gauss-Legendre quadrature [39], this operator introduces a link between volume and
surface quadrature

Qk
N =

(
Qk − (Qk)T ETBk

−BkE 0

)
, (24)

where Qk is the generalized SBP operator, E is an extrapolation matrix that maps basis
coefficients from volume to surface quadrature points using P , a quadrature-based L2

projection matrix:

Qk = WDk
vP , E = CfP , P = M−1CT

v W . (25)

The matrix formulation of equation (1) for the ESDG-GL is given by

M
∂uh

∂t
+

d∑
k=1

[
Cv

Cf

]T (
Qk

N ◦ F k
S

)
1−

d∑
k=1

W (Dk
v)

Td(wv,∇wv)

+

d∑
k=1

CT
f B

k
[
f∗
S,k(w

+
f ,w

−
f ;n) + {dk(wf ,∇wf )} − σf [wf ]

]
= 0, (26)

(F k
S)ij = fk

S(wi,wj), 1 ≤ i, j ≤ Nq +Nf
q ,

where Nq and Nf
q represent the number of volume and surface quadrature points, respec-

tively, and 1 is a vector of ones. At interfaces, a Lax-Friedrichs penalization is added to
the entropy stable numerical flux to ensure stability,

f∗
S,k(w

+,w−) = fk
S ({w}log) +

max |λ|
2

(
w+ −w−) . (27)

Finally, to ensure that equation (26) enforces the entropy inequality (9), it is necessary
to employ the projected entropy variables wh at the quadrature points, as demonstrated
by Chan et al. [23]. This set of variables is obtained as follows:
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• computation of the entropy variables from the conservative variables at the volume
quadrature points wv = w(uv),

• projection of the entropy variables to the functional basis and interpolation to the

volume and surface quadrature points w̃ =

[
Cv

Cf

]
Pwv,

• conversion of the entropy variables at quadrature points to conservative variables
wh = u(w̃). This step is not strictly necessary; however, it enables the use of
the same flux functions for both the entropy-stable schemes and the vanilla DG
method.

The discretized evolution equations provide the time change of the conservative variables,
rather than the entropy variables, and is expressed with the same basis functions. Due
to the non-linearity of the relation between the conservative and entropy variables, the
conversion to the entropy variables through the so-called entropy projection is not fully
accurate and introduces a source of error, as observed in Section 4.

3.4. Entropy stable DG method based on Gauss-Lobatto polynomial (ESDG-GLL )
An interesting variant to the entropy stable method based on the Gauss-Legendre

quadrature is the entropy stable scheme based on the Gauss-Lobatto quadrature, pro-
viding the advantage of having interpolation points directly located on the boundaries.
Consequently, numerous matrices simplify to identity matrices, such as the face interpo-
lation matrix Cf , and the extraction matrix E. As the quadrature incorporates points
on the boundary, connecting volume and surface quadrature rules is no longer necessary,
allowing the use of the generalized SBP operator Qk for flux differencing operations.
Therefore, the matrix formulation of equation (1) for the ESDG-GLL is given by

M
∂uh

∂t
+

d∑
k=1

(
(Qk − (Qk)T ) ◦ F k

S

)
1−

d∑
k=1

W (Dk
v)

T [d(uv,∇uv)]

+

d∑
k=1

Bk
[
f∗
S,k

(u+
f ,u

−
f ;n) + {dk(uf ,∇uf )} − σf [uf ]

]
= 0, (28)

(F k
S)ij = fk

S(ui,uj), 1 ≤ i, j ≤ Nq.

The entropy projected variables are equal to the conservative variables for equation (28)
due to the one-to-one mapping defined in equations (10-11). The main drawback of the
ESDG-GLL is the lower integration accuracy of the Gauss-Lobatto quadrature, which is
only exact up to a (2N − 1) polynomial. This issue leads to effects such as aliasing in
the simulation.

3.5. Discontinuous Galerkin method with artificial viscosity (DG-AV)
The artificial viscosity method used in this work is based on the Laplacian method

from Persson and Peraire [15]. The detection of the troubled cells is performed using the
Hennemann sensor [40] based on the regularity criterion of the solution from Persson and
Peraire [15]. The amount of under-resolution is estimated by comparing the energy in
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the highest polynomial over the energy of the solution. This method defines a blending
function α ∈ [0, 1] as

α =
1

1 + exp
(−s

T (E − T )
) , (29)

where the sharpness factor s = 9.21024, the threshold T = 0.5 · 10−1.8(p+1)
1
4 . To prevent

unnecessary activation of the sensor, a minimum cutoff value αmin = 0.001 is introduced,
such that the modified sensor value is defined as α = max(α − αmin, 0). The energy
indicator E is given on an element by

E =
(q − q̂, q − q̂)K

(q, q)K
, (30)

where (., .)K is the inner product in L2, q is the full expansion up to order p of the indicator
variable and q̂ is the truncated expansion up to order p− 1 of the same variable. In this
work, the indicator variable is the density. A comparison between different detectors is
performed in Section 4.1.5. The diffusive term in equation (1) is modified by adding the
artificial viscosity term ∇ · (µav∇u), where µav is the artificial viscosity defined as

µav = αµav,0, µav,0 = c
h

p
λmax. (31)

µav,0 represents the maximum artificial viscosity that can be applied within an element,
h denotes the element size and λmax is the maximum wave speed. The scaling factor c is
defined based on the recommendations of Vandenhoeck et al. [41], eliminating the need
for parameter tuning, as c = 0.27M∞−1

M∞
where M∞ is the freestream Mach number. To

ensure positivity, M∞ is bounded below by 1.2.

3.6. Discontinuous Galerkin method with entropy stability (DG-ES)
The aim of the novel DG-ES method is to activate entropy stability discretization (en-

tropy variables and SBP operator) only in the vicinity of under-resolved features, such
as shocks or regions with high gradients. This approach leverages the high accuracy of
the discontinuous Galerkin method while ensuring the robustness provided by entropy-
stable schemes. As demonstrated in Section 4, entropy variables can negatively impact
the solution compared to the vanilla DG method when applied globally. Therefore, by
selectively applying entropy stability only where necessary, the DG-ES method achieves
an optimal balance between accuracy and stability, making it particularly suited for prob-
lems with localized under-resolved regions. Additionally, the computational cost remains
controlled, as entropy stability is applied judiciously, avoiding excessive stabilization.
Troubled cells are identified using the Hennemann sensor, as detailed in equation (29)
for the DG-AV method. The discretization of normal cells follows equation (23), while
troubled cells are discretized using equation (26).

4. Numerical results

This section presents the numerical results obtained from various under-resolved test
cases designed to evaluate the performance of the methods considered. The focus is
on assessing the accuracy, robustness, and computational efficiency of the stabilization
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techniques in different flow scenarios. Accuracy is assessed by comparing the numerical
results to reference solutions obtained from high-resolution simulations, using metrics
such as the kinetic energy budget, density profiles, and Reynolds stresses. Robustness
is evaluated in both spatial and temporal dimensions: spatial robustness is evaluated
through mesh refinement studies, while temporal robustness is measured by identifying
the maximum stable CFL number that can be used without simulation failure, computed
as [42]

CFL = ∆t
2p + 1

h

(
max |λ|+ d · ρ(D)

2p + 1

h

)
. (32)

The CFL number is defined based on the initial conditions of the test cases, and the
time step is considered constant throughout the simulation2. Computational efficiency
is assessed by normalizing the total simulation time with respect to the least expensive
method. The four test cases correspond to compressible homogeneous isotropic tur-
bulence, the Taylor-Green vortex at a Mach number M0 = 1.25, strong-vortex/shock
interaction and shock-turbulence interaction.

4.1. Compressible Homogeneous Isotropic Turbulence
The objective of this test case is to evaluate the accuracy, robustness and computa-

tional cost of the shock capturing methods in the presence of under-resolved compressible
turbulence. In this paper, the decay of compressible homogeneous isotropic turbulence
with eddy shocklets is considered [14, 44, 45, 19, 16, 46] to ensure the activation of the
numerical dissipation mechanisms.

4.1.1. Case description and computational setup
The computational domain is a cube Ω = [−Lπ,Lπ]3 with periodic boundary con-

ditions in all directions. The characteristic length scale L is set to L = 1. The
procedure to generate the initial conditions is explained in Johnsen et al. [47]. The
initial density, pressure, and temperature fields are uniform, and the velocity field is
solenoidal. The initial kinetic energy spectrum is given as E(k̃) ∼ k̃4 exp[−2(k̃/k̃M )2],
where k̃M = 4/L is the most energetic wavenumber. The initial turbulent Mach num-
ber is Mt,0 =

√
⟨vi,0vi,0⟩/⟨c0⟩ = 0.6 and the initial Taylor-scale Reynolds number is

Reλ,0 = ⟨ρ0⟩vrms,0λ0/⟨µ0⟩ = 100, where the subscript zero is for the initial values, ⟨·⟩ is
the spatial average and c0 is the initial speed of sound. The root-mean-square velocity
and the Taylor microscale are defined by vrms =

√
⟨vivi⟩/3, and λ =

√
⟨v21⟩/⟨(∂1v1)2⟩,

respectively. The chosen energy spectrum results in λ0 = 2/k̃M . To conclude the
non-dimensional description of the problem, the shear viscosity is assumed to follow

a power-law given by µ(T ) = µ0

(
T
T0

)3/4

and the initial eddy turn-over time is given by
τ0 = λ0/vrms,0. The Prandtl number is set to Pr = 0.71 and the specific heat ratio is
γ = 1.4.

The RK(4,4) time integration scheme is used with a fixed time step of ∆t = 5 ·10−3τ0,
leading to a CFL number CFL = 0.16. The simulations are performed from t0 = 0 to

2The primary goal is not to determine an absolute CFL value, but to enable a fair comparison of
the different methods under a consistent definition. For a detailed and rigorous definition, the reader is
referred to the work of Chan et al. [43].
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tf = 4τ0. The computational domain is discretized into a uniform 113 Cartesian grid
with an interpolation order p = 5, leading to 663 degrees of freedom (DOF). Although
this setup leads to severe spatial under-resolution, Hillewaert et al. [14] have shown that
the vanilla DG method does not require additional stabilization mechanisms. Hence,
the impact of the entropy stable scheme, the SBP operator, and artificial viscosity on
the accuracy of the method can be assessed. The results are compared to the direct
numerical simulation from Hillewaert et al. [14] with a resolution of 19203 DOF.

4.1.2. Numerical results
Figure 1 illustrates the time evolution of the volume-averaged mean-square velocity,

vorticity, temperature fluctuations, and dilatation fluctuations (θ = ∇ · u). Despite the
level of under-resolution in the simulations, there is an overall good agreement with the
DNS solution. The full entropy stable methods, ESDG-GL and ESDG-GLL, show good
agreement with the vanilla DG method for the mean-square velocity, temperature, and
dilatation fluctuations. However, these methods tend to dampen the vortical structures
and underestimate the peak of mean-square vorticity. While this behavior is expected
for the ESDG-GLL due to its lower quadrature order, it is surprising for the ESDG-GL
method, which had been anticipated to match the vanilla DG method. Since the conser-
vative variables and the test functions are polynomial, but the entropy variables are not,
projecting the entropy variables onto the polynomial space introduces numerical error.
To mitigate this issue, over-integration can be performed; however, this significantly de-
grades computational performance. Our alternative, the DG-ES method, improves the
accuracy of the ESDG-GL method by applying the SBP operator and the entropy pro-
jection only in the vicinity of under-resolved features. Interestingly, the DG-AV method
performs better than the full entropy-stable schemes and shows similar results to the DG-
ES method. For this case, both methods detect a maximum of ∼ 10% of the elements as
troubled cells.

Figure 2 shows the temporal evolution of the measured rate of change of density-
weighted kinetic energy, computed via finite differences between consecutive time steps,
theoretical dissipation ϵt = ϵ2+ϵ3+ϵ4+ϵ5 as defined in equation (4), pressure dilatation,
and the budget error for the compressible homogeneous isotropic turbulence problem.
The budget error is defined as the difference between the measured rate of change of
density-weighted kinetic energy and the theoretical dissipation. Among all methods, the
vanilla DG approach exhibits the smallest budget error, in agreement with the results in
Figure 1. In contrast, both ESDG methods overestimate the measured rate of change of
density-weighted kinetic energy during the initial acoustic transient and throughout the
early part of the simulation, from t/τ0 = 0.8 to 2. In the later stages, from t/τ0 = 2.5 to
the end, they underestimate the theoretical dissipation due to the damping of vortical
structures. As a result, the ESDG schemes show the largest budget errors, particularly
the ESDG-GL, highlighting the influence of entropy projection on numerical accuracy.
The DG-ES and DG-AV methods yield results similar to the vanilla DG, suggesting that
applying entropy-stabilizing schemes or artificial viscosity selectively, only near under-
resolved features, can preserve the favorable behavior of the baseline method.

4.1.3. Numerical stability
Table 1 provides the impact of different features on the numerical stability of the

simulations. The simulations were performed with approximately the same number of
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Figure 1: Temporal evolution of the volume-averaged mean-square velocity, vorticity, temperature
variance and dilatation variance for the compressible homogeneous isotropic turbulence problem at
Reλ,0 = 100 and Mt,0 = 0.6 with p = 5 and 113 elements.

degrees of freedom (∼ 163 − 323 − 643) at different interpolation orders p = 3, 4, 5. As
expected, the vanilla DG discretization is the most unstable and results in the divergence
of the simulation at the lowest grid resolution. The use of either artificial viscosity or
entropy stability is mandatory to stabilize the simulation at low resolution. The entropy
stable schemes are always stable, even when applied locally. Hence, it appears sufficient
to satisfy the second law of thermodynamics only in the troubled cells to improve the
stability of the method.

Table 2 presents the maximum stable time step at different grid resolution. The results
highlight that methods incorporating an entropy projection exhibit more restrictive time
step constraints compared to the other approaches.

4.1.4. Computational cost
This section investigates the computational cost of the proposed methods. To this

end, a dual-socket compute node with two AMD EPYC 7763 64-core processors and 256
GiB RAM was used. The computational cost of the different methods is normalized
by the cost of the vanilla DG method. The results are summarized in Table 3. The
ESDG-GL approach using the SBP operator with the Gauss-Legendre quadrature is the
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Figure 2: Temporal evolution of the measured rate of change of density-weighted kinetic energy (top
left), the theoretical dissipation (top right), the pressure dilatation (bottom left) and the budget error
(bottom right) for the compressible homogeneous isotropic turbulence problem at Reλ,0 = 100 and
Mt,0 = 0.6 with p = 5 and 113 elements.

p = 3 p = 4 p = 5

43 83 163 33 63 133 33 53 113

DG ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓
DG-AV ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ESDG-GLL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ESDG-GL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
DG-ES ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Numerical stability for the compressible homogeneous isotropic turbulence at Reλ,0 = 100 and
Mt,0 = 0.6 for different grid resolutions at the fixed time step ∆t = 5 · 10−3τ0 (p is the interpolation
order and the values below denote the number of elements). ✓: stable; ✗: unstable.

most computationally expensive. The SBP operator requires O(p4) two-point inviscid
flux evaluations (coupling both the surface and volume quadrature points) compared to
the O(p3) single-point flux evaluations (only at the volume quadrature points) for the
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DG DG-AV DG-ES ESDG-GL ESDG-GLL

p = 5, 33 / 0.31 0.19 0.19 0.28
p = 5, 53 / 0.28 0.22 0.22 0.29
p = 5, 113 0.23 0.23 0.18 0.18 0.27

Table 2: Maximum stable CFL for the compressible homogeneous isotropic turbulence at Reλ,0 = 100
and Mt,0 = 0.6 for different grid resolutions (p is the interpolation order and the right value denotes the
number of elements).

vanilla DG method. The entropy projection in the ESDG-GL method also increases
the computational cost. The ESDG-GLL method, which uses the SBP operator and
Gauss-Lobatto quadrature, does not require the coupling between the surface and volume
quadrature points, nor the entropy projection, resulting in a lower cost compared to the
ESDG-GL method. The DG-ES method significantly reduces the computational cost of
the ESDG-GL method, although the cost can vary depending on the number of troubled
cells. The DG-AV method has a computational cost close to that of the vanilla DG
method, as artificial viscosity does not modify the discretization of the method.

DG DG-AV DG-ES ESDG-GL ESDG-GLL

p = 3, 163 1 1.07 1.25 2.27 1.24
p = 4, 133 1 1.07 1.25 2.25 1.30
p = 5, 113 1 1.08 1.27 2.19 1.53

Table 3: Computational cost of the different methods normalized by the cost of the vanilla DG method
for the compressible homogeneous isotropic turbulence at Reλ,0 = 100 and Mt,0 = 0.6 at different grid
resolutions (p is the interpolation order and the right value denotes the number of elements). CPU: 2x
AMD EPYC 7763 64-core @2.45 GHz.

4.1.5. Impact of the detector
Figure 3 illustrates the impact of different detectors on the mean-square vorticity

and dilatation fluctuations for the DG-AV and DG-ES methods. Three detectors are
employed for the Laplacian artificial viscosity:

• The regularity criterion based on Persson and Peraire calibration (PP) [15].

• The regularity criterion based on Hennemann calibration (H) [40] and explained in
Section 3.5.

• The shock sensor based on local flow features such as dilatation and vorticity [16].

The sensors based on the regularity criterion yield an elementwise artificial viscosity
(constant within each element), while the shock sensor yields a subcellwise artificial vis-
cosity. Only the two regularity-based detectors are employed for the DG-ES scheme. The
detectors have not been fine-tuned for this problem; standard values of the parameters
are used [15, 16, 41].
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Figure 3: Temporal evolution of the mean-square vorticity (left) and dilatation fluctuations (right) for
the DG-AV and DG-ES methods with various detectors for the compressible homogeneous isotropic
turbulence problem at Reλ,0 = 100 and Mt,0 = 0.6 with p = 5 and 113 elements.

The results show the significant sensitivity of the DG-AV method to the choice of
detector, consistent with previous findings [16, 48]. In contrast, our method, DG-ES,
demonstrates greater insensitivity to the choice of detector and, in the worst case, pro-
vides results comparable to those of the full ESDG-GL method, highlighting its robust-
ness and reliability.

While the shock sensor yields similar mean square vorticity levels to the Hennemann-
based detector, it introduces significantly higher dissipation in dilatation fluctuations.
This is likely due to its reliance on local flow features, such as shocklets, that persist
throughout the simulation. As a result, the shock sensor is triggered in a larger number
of cells, leading to the application of excessive artificial viscosity, as shown in Figure 4.
Among the regularity-based detectors, the Hennemann calibration clearly outperforms
the original Persson and Peraire formulation, which tends to flag nearly all cells as trou-
bled and thus introduces excessive dissipation.

Table 4 shows that regularity-based sensors offer greater numerical stability compared
to the shock sensor. Overall, these findings confirm that regularity-based detectors, prop-
erly calibrated, can improve the performance of the DG-AV method while maintaining
robustness.

p = 3 p = 4 p = 5

43 83 163 33 63 133 33 53 113

Persson and Peraire ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Hennemann ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Shock sensor ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓

Table 4: Numerical stability of the various DG-AV simulations for the compressible homogeneous
isotropic turbulence problem at Reλ,0 = 100 and Mt,0 = 0.6 at the fixed time step ∆t = 5 · 10−3τ0. ✓:
stable; ✗: unstable.
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isotropic turbulence problem at Reλ,0 = 100 and Mt,0 = 0.6. Results are shown for two configurations:
163 elements with polynomial order p = 3 (left), and 113 elements with p = 5 (right).

Finally, the behavior of the DG-ES and DG-AV methods is analyzed with respect
to the choice of interpolation and quadrature points. Specifically, the DGSEM basis is
compared to a standard non-collocated basis, in which the solution variables are stored
at the interpolation points corresponding to Gauss–Lobatto nodes and subsequently in-
terpolated to the quadrature points corresponding to Gauss–Legendre nodes. The results
shown in Figure 5 indicate that the DG-ES method exhibits minimal sensitivity to the
choice of interpolation and quadrature points. In contrast, the DG-AV method, some-
what unexpectedly, demonstrates a pronounced sensitivity to this distinction.
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Figure 5: Temporal evolution of the percentage of troubled cells for the compressible homogeneous
isotropic turbulence problem at Reλ,0 = 100 and Mt,0 = 0.6 using 113 elements with p = 5. Two
discretizations are compared: the DGSEM basis and a standard non collocated basis with Gauss-Lobatto
interpolation points and Gauss-Legendre quadrature points.

19



4.2. Taylor-Green Vortex
The Taylor-Green vortex [49] is a well-known benchmark problem for the transition

to turbulence, as depicted in Figure 6. The incompressible case has been extensively
studied in the literature [2, 50, 51]. Recently, several works have focused on compressible
variants at both low Reynolds number (Re = 400) [52, 53], and higher Reynolds number
(Re = 1600) [54, 27, 55]. In this article, we consider the compressible Taylor-Green
vortex at an initial Mach number M0 = 1.25 and Reynolds number Re = 1600 to assess
the performance of the methods across a wide range of scales.

Figure 6: Q-criterion iso-surfaces colored by the z-component of the vorticity for the 3D Taylor-Green
vortex at Re = 1600 and M0 = 1.25 extracted from a 2563 DOF simulation using the vanilla DG method.
On the left, t/tc = 0, and on the right, t/tc = 20.

4.2.1. Case description and computational setup
The computational domain is a cube Ω = [−Lπ,Lπ]3 with triply-periodic boundary

conditions. The analytical initial conditions of the Taylor-Green vortex are given by:

u(x, y, z, t = 0) = V0 sin
( x

L

)
cos

( y

L

)
cos

( z

L

)
, (33)

v(x, y, z, t = 0) = V0 cos
( x

L

)
sin

( y

L

)
cos

( z

L

)
, (34)

w(x, y, z, t = 0) = 0, (35)

p(x, y, z, t = 0) = p0 +
ρ0V

2
0

16

(
cos

(
2x

L

)
+ cos

(
2y

L

))(
cos

(
2z

L

)
+ 2

)
, (36)

where the characteristic length scale is set to L = 1 and the subscript zero denotes
constant values. The velocity scale V0 = M0c0 depends on the initial Mach number
and the speed of sound c0 =

√
γRT0 at the temperature T0 = p0

Rρ0
= 1. The pressure

p0 =
ρ0V

2
0

γM2
0

and the initial density ρ0 = 1 are evaluated from the state equation ρ = p
RT
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with T (x, y, z, t = 0) = T0. For the following simulations, the specific heat ratio is set
to γ = 1.4 and the Prandtl number Pr = 0.71. The Reynolds number is defined as
Re = ρ0V0L

µ0
, and the dynamic viscosity is assumed to follow Sutherland’s law [56]:

µ(T ) = µ0

(
T

T0

)3/2
T0 + S

T + S
, (37)

where S = 0.4042 is Sutherland’s constant. To conclude the non-dimensional description
of the problem, the characteristic convective time is defined as tc = L/V0, and all simu-
lations are performed from t0 = 0 to tf = 20tc with a fixed time step of ∆t = 3× 10−4tc
using the RK(4,4) scheme. This corresponds to a CFL ∼ 0.15 for the highest spatial res-
olution. Different grid resolutions at a polynomial order p = 3 have been used to assess
the convergence of the methods, as summarized in Table 5. The results are compared to
a reference solution obtained from a pseudo-spectral method with 5123 Fourier modes [2]
for the incompressible case. For the compressible case, the reference solution comes from
a simulation based on sixth-order TENO scheme performed with 20483 DOF [55].

Elements Numerical DOF

163 643

323 1283

643 2563

1283 5123

Table 5: Grid resolutions for the 3D Taylor-Green vortex at Re = 1600 and M0 = 1.25 with p = 3.

4.2.2. Numerical stability
At a Mach number M0 = 1.25, the dilatational contribution to the viscous dissipation

rate is large due to the presence of shock waves reaching a peak Mach number of 2 at
t/tc = 6 [27]. As a result, the DG method is unstable at coarse resolutions, whereas all
stabilization methods maintain stability across all grid resolutions, as shown in Table 6.
The proportion of troubled cells detected by both methods decreases from approximately
37% at the coarsest resolution to around 6.5% at 1283 degrees of freedom, and drops below
1% at the finest resolution.

323 643 1283 2563 5123

DG ✗ ✗ ✗ ✓ ✓
DG-AV ✓ ✓ ✓ ✓ ✓
DG-ES ✓ ✓ ✓ ✓ ✓
ESDG-GL ✓ ✓ ✓ ✓ ✓
ESDG-GLL ✓ ✓ ✓ ✓ ✓

Table 6: Numerical stability of the methods on different grid resolutions for the 3D Taylor-Green vortex
at Re = 1600 and M0 = 1.25 with p = 3 at the fixed time step ∆t = 3× 10−4tc. ✓: stable; ✗: unstable.
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Table 7 reports the maximum stable time step for each method. At the coarsest reso-
lution, the DG-AV and ESDG-GLL methods exhibit a less restrictive time step constraint
than the methods based on the entropy projection. However, as the grid is refined, all
methods demonstrate a parabolic time step restriction to be stable due to the importance
of the viscous effects.

643 1283 2563 5123

DG / / 0.25 0.15
DG-AV 0.51 0.27 0.25 0.15
DG-ES 0.23 0.27 0.25 0.15
ESDG-GL 0.23 0.27 0.25 0.15
ESDG-GLL 0.51 0.54 0.31 0.19

Table 7: Maximum stable CFL of the methods on different grid resolutions for the 3D Taylor-Green
vortex at Re = 1600 and M0 = 1.25 with p = 3.

4.2.3. Numerical results
Figure 7 presents the temporal evolution of the solenoidal contributions to the vis-

cous dissipation rate for the 3D Taylor–Green vortex at Re = 1600 and M0 = 1.25,
using p = 3. All methods converge to the reference solution at the finest resolution. The
DG-ES and DG-AV methods consistently exhibit the highest levels of solenoidal dissi-
pation across all grid resolutions, closely matching the performance of the vanilla DG
method at the two finest resolutions. In contrast, the ESDG-GL method underpredicts
the dissipation rate from the peak onward, relative to the DG-ES method, highlighting
the influence of shocklets and the associated numerical error introduced by the entropy
projection. The ESDG-GLL method tends to be more dissipative than ESDG-GL, fur-
ther illustrating the impact of lower quadrature accuracy on the resolution of turbulent
scales. The influence of numerical dissipation on small turbulent structures is depicted in
Figure 8, which presents Q-criterion iso-contours colored by the z-component of the vor-
ticity at t/tc = 12.5. This time corresponds to the peak of solenoidal dissipation shown
in Figure 7, using a grid resolution of 1283 DOF. The DG-ES method (left) demon-
strates superior performance in capturing small turbulent structures due to its low level
of dissipation compared to the ESDG-GLL method (right). Accurately resolving these
small-scale structures, even under conditions of under-resolution and the presence of
shocklets, is essential for predicting the correct flow enstrophy and, consequently, the
solenoidal dissipation rate in more complex flow configurations.

Figure 9 illustrates the temporal evolution of the dilatational contribution to the vis-
cous dissipation rate, primarily driven by dilatation effects such as strong compression
waves. Numerically, the degree of dilatation is closely linked to the intensity of shocks.
A high level of dilatation indicates that the method applies low numerical dissipation,
enabling the capture of sharper shock profiles but at the risk of introducing spurious
oscillations that may compromise the simulation’s stability. Conversely, a low level of
dilatation signifies high numerical dissipation, resulting in smoother, thicker shock pro-
files. This behavior is evident with the DG-AV method, which reduces shock intensity
and consistently underpredicts the dilatational dissipation rate across all resolutions. In
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Figure 7: Temporal evolution of the solenoidal contribution to the viscous dissipation rate for the 3D
Taylor-Green vortex at Re = 1600 and M0 = 1.25 with p = 3. Top left: 643 DOF; top right: 1283 DOF;
bottom left: 2563 DOF; bottom right: 5123 DOF. The DG method is unstable at lower resolutions and
is only shown at higher resolutions (2563 and 5123 DOF).

constrast, methods based on the SBP operator, which do not introduce numerical shock
dissipation, tend to overpredict the dilatational dissipation rate. This overprediction is
larger for the methods using the entropy projection, such as ESDG and DG-ES, high-
lighting the difficulty of the entropy projection in accurately representing the correct
level of dilatation. As explained in Section 3.3, entropy variables have a larger impact
on the solution at surface quadrature points, leading to larger errors in surface quanti-
ties, such as the divergence of velocity (via the divergence theorem). Interestingly, the
DG-ES method does not match with the vanilla DG method, unlike for the solenoidal
dissipation. At finer grid resolutions, the vanilla DG method shows strong convergence
to the reference solution for the dilatational dissipation rate.

Figure 10 illustrates the impact of the stabilization method on the profiles of the
Mach number at the first peak of dilatational dissipation (t/tc = 2.5), extracted along
a line in the y-direction at x = z = 0. At the coarsest resolution, all methods exhibit
significant oscillations, with the DG-AV method producing a visibly thicker shock profile.
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Figure 8: Q-criterion iso-surfaces colored by the z-component of the vorticity for the 3D Taylor-Green
vortex at Re = 1600 and M0 = 1.25 at t/tc = 12.5 and 1283 DOF. On the left, the DG-ES method and
on the right, the ESDG-GLL method.

At 1283 DOF, DG-AV significantly reduces oscillations compared to the entropy-based
methods. In contrast, the ESDG-GL and DG-ES methods exhibit larger undershoots
and overshoots near the shock, whereas the ESDG-GLL method shows better control
of oscillations. At the finest resolution, all methods converge toward a sharp shock
profile. DG-AV remains free of oscillations. Both ESDG-GL and DG-ES display minor
undershoots at the shock, while ESDG-GLL still shows some oscillations upstream. The
vanilla DG method, despite the absence of any added numerical dissipation, achieves an
almost oscillation-free profile at the highest resolution.

Finally, the pressure dilatation, ϵ4, is presented in Figure 11 for the various methods.
The reference solution for this term is derived using the vanilla DG with 5123 DOF, as no
comparable data exists in the literature to the authors’ knowledge. All methods demon-
strates convergence toward a similar solution as the grid resolution increases. However,
the ESDG-GL method introduces larger errors than other methods, particularly at the
coarsest grid resolution, and exhibits slower spatial convergence. The mapping from the
entropy variables to the conservative variables (12) defines the specific energy density ρe
as an exponential function of the physical entropy. While the entropy is a convex func-
tion, the mapping is well-posed. Issues arise near large pressure gradients such as those
caused by shock waves, under-resolved turbulent features, or near vacuum states. In
such situations, the entropy can become nearly non-convex, leading to ill-conditioning of
the mapping. This ill-conditioning results in significant errors in the projected variables,
particularly in the pressure computed directly from the specific energy density. The novel
DG-ES method addresses this issue by selectively activating the entropy projection only
in regions with under-resolved features. By limiting the projection to problematic areas,
the DG-ES method improves the accuracy of the pressure dilatation representation, as
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Figure 9: Temporal evolution of the dilatational contribution to the viscous dissipation rate for the 3D
Taylor-Green vortex at Re = 1600 and M0 = 1.25 with p = 3. Top left: 643 DOF; top right: 1283 DOF;
bottom left: 2563 DOF; bottom right: 5123 DOF.

observed after t/tC = 10 for the coarsest grid and at any time for the other resolutions.
The ESDG-GLL method exhibits a similar level of fluctuations to the DG-ES method,
with larger errors at the coarsest grid resolution. The DG-AV method shows the best
performance in representing the pressure dilatation at the coarsest grid resolution.

4.2.4. Computational cost
Table 8 presents the computational cost of the different methods for the 3D Taylor-

Green vortex case with p = 3 and a grid of 643 cells. As expected, the ESDG-GL
method is the most computationally expensive due to its use of SBP operators and
Gauss–Legendre quadrature. The DG-ES method achieves a substantial reduction in
cost compared to the fully stabilized ESDG method, though it remains more expensive
than the other approaches. The cost savings from DG-ES are somewhat reduced in this
case due to a higher number of troubled cells across the domain. The DG-AV method
is the most efficient, with a cost increase of less than 10% relative to the vanilla DG
method, while also demonstrating the best overall performance in terms of robustness
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Figure 10: Profiles of the Mach number extracted from the y line at x = y = 0 at t/tc = 2.5, for the
3D Taylor-Green vortex at Re = 1600 and M0 = 1.25 with p = 3. Top left: 643 DOF; top right: 1283

DOF; bottom left: 2563 DOF; bottom right: 5123 DOF.

and accuracy for this test case. The ESDG-GLL method is slightly more expensive than
DG-AV but remains significantly cheaper than ESDG-GL for almost the same level of
accuracy.

DG DG-AV DG-ES ESDG-GL ESDG-GLL

1 1.07 1.27 1.86 1.16

Table 8: Computational cost of the different methods normalized by the cost of the vanilla DG method
for the 3D Taylor-Green vortex at Re = 1600, M = 1.25 with p = 3 and 64 cells per direction. CPU: 2x
AMD EPYC 7763 64-core @2.45 GHz.

4.3. Inviscid strong-vortex/shock-wave interaction
As third test case, we consider the two-dimensional inviscid interaction between a

strong vortex and a stationary shock wave [57]. Although this case is not strictly turbu-
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Figure 11: Temporal evolution of the pressure dilatation for the 3D Taylor-Green vortex at Re = 1600
and M0 = 1.25 with p = 3. Top left: 643 DOF; top right: 1283 DOF; bottom left: 2563 DOF; bottom
right: 5123 DOF. The reference solution, circle symbol, is obtained from the vanilla DG method with
5123 DOF.

lent, it provides a valuable benchmark for assessing the ability of the methods to capture
both shock waves and vortex structures.

4.3.1. Case description and computational setup
The computational domain is defined as Ω = (0, 2)× (0, 1), with a stationary normal

shock wave located at xs = 0.5. The inflow Mach number is set to Ms = 1.5, and the flow
proceeds from left to right. The upstream flow conditions are specified as (ρ0, u0, v0, p0) =(
1,Ms

√
γ, 0, 1

)
, where γ = 1.4, while the downstream conditions are determined using

the Rankine–Hugoniot relations. A counter-clockwise rotating vortex is initialized within
the domain, centered at (xv, yv) = (0.25, 0.4), with semi-axes (a, b) = (0.075, 0.175) and
a vortex strength defined by Mv = vm/

√
γ = 0.9. The angular velocity of the vortex is
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given by

vθ(r) =


vm

r

a
if r ≤ a,

vm
a

a2 − b2

(
r − b2

r

)
if a < r ≤ b,

0 if r > b,

(38)

where r denotes the distance from the vortex center. The remaining flow variables within
the vortex are derived from the ideal gas law and the assumption of isentropic flow.
The left and right boundaries are set to supersonic inlet and subsonic outlet conditions,
respectively. The top and bottom boundaries are treated as slip-wall boundary. Two
grid resolutions are considered: 100 × 50 and 200 × 100 elements, with a polynomial
order of p = 3. The reference solution is obtained using a high-resolution finite volume
solver with approximately 18×106 DOF, as provided by the 5th International Workshop
on High-Order CFD Methods (HiOCFD5) [58]. The RK(4,4) time integration scheme is
used with a time step size of ∆t = 1× 10−4 for the coarsest grid and ∆t = 2.5× 10−5 for
the finest grid, corresponding to CFL = 0.16 and CFL = 0.08, respectively. These values
represent the maximum common CFL number that ensures stability across all methods,
as further discussed in the next section. All simulations are performed over the time
interval t ∈ [0, 0.7].

4.3.2. Numerical stability
Due to the presence of a strong shock wave, the vanilla DG method becomes unstable

at the considered grid resolutions, whereas the fully entropy-stable methods maintain
numerical stability. However, the troubled-cell indicator α is not sufficiently robust in
this case to stabilize the DG-AV and DG-ES schemes. To enhance stability, the sensor
is modified by applying a single diffusion sweep

α = max
K

(α, 0.5αK) , (39)

where αK denotes the sensor value in all elements sharing a face. While this modification
improves robustness, it also extends the region where stabilization is applied, potentially
impacting solution accuracy, as discussed in the following section. The maximum pro-
portion of troubled cells detected by the sensor is approximately 9.5% for the DG-ES
method and 4% for the DG-AV method at the coarsest resolution, decreasing to about
3.5% and 1.5%, respectively, at the finest resolution.

The entropy stable methods based on the entropy projection impose stricter time step
constraints, requiring significantly lower CFL numbers for stability, as shown in Table 9.
Moreover, the time step constraint for the entropy stable methods based on the entropy
variables decrease quadratically with grid refinement, rather than linearly as might be
expected. In contrast, the DG-AV and ESDG-GLL methods maintains a stable CFL
number of ∼ 0.8 across resolutions.

4.3.3. Numerical results
Figure 12 shows the non-dimensional density fields for the strong vortex/shock-wave

interaction problem at two key time instances: t/tc = 0.3, when the vortex interacts with
the shock, and t = 0.7, during the vortex-splitting stage, both shown at the coarsest
grid resolution. At this resolution, the DG-AV method provides clean, oscillation-free
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DG-AV DG-ES ESDG-GL ESDG-GLL

p = 3, 100× 50 0.8 0.16 0.16 0.86
p = 3, 200× 100 0.8 0.08 0.08 0.86

Table 9: Maximum stable CFL number for the different methods for the strong vortex/shock-wave
interaction problem.

shock capture but significantly under-resolves the vortex structures. In contrast, DG-ES
captures the vortex features more accurately but introduces visible oscillations in the
shock region. These differences are further examined in Figure 13, which presents the
density distribution along the line y = 0.4 at t = 0.7 for both grid resolutions and all
methods. The line plots confirm the improved vortex resolution of the entropy-stable
methods over DG-AV on coarse meshes, while also highlighting the oscillatory behavior
near and downstream of the shock. At finer resolution, all methods converge toward the
reference solution, although the entropy-stable schemes still exhibit mild oscillations just
upstream of the vortex and the DG-AV method continues to underpredict the vortex
density.

1 2

ρ

Figure 12: Non-dimensional density fields of the strong-vortex/shock-wave interaction problem with
p = 3 and 100 × 50 elements at times t = 0.3 (top) and t = 0.7 (bottom). On the left, the DG-ES
method is used, while on the right, the DG-AV method is employed.

Figure 14 displays the sensor fields at the same time instances as in Figure 12. These
fields illustrate two key features. First, the DG-ES method exhibits significantly higher
sensor activation near the shock, reflecting the sensitivity of entropy-stable schemes to
shock presence. Second, in both methods and throughout the entire simulation, the
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Figure 13: Distribution of density of the strong-vortex/shock-wave interaction problem along the line
y = 0.4 at t = 0.7 with p = 3 and 100× 50 elements (left) and 200× 100 elements (right).

sensor is not triggered in the vortex regions. This indicates that the under-resolution of
vortex structures observed with the DG-AV method is not caused by artificial viscosity
being applied within the vortex itself, but rather results from dissipation introduced
during the earlier interaction phase between the vortex and the shock.

0 1

α

Figure 14: Snapshot of the sensor α fields of the strong-vortex/shock-wave interaction problem with
p = 3 and 100 × 50 elements at times t = 0.3 (top) and t = 0.7 (bottom). On the left, the DG-ES
method is used, while on the right, the DG-AV method is employed.
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4.3.4. Computational cost
Table 10 compares the computational cost of the different methods normalized by the

cost of the DG-AV method for the strong vortex/shock-wave interaction problem. All
simulations were performed using p = 3 on a 200× 100 mesh.

DG-AV DG-ES ESDG-GL ESDG-GLL

1 1.28 1.68 1.01

Table 10: Computational cost of the different methods normalized by the cost of the DG-AV method for
the strong-vortex/shock-wave interaction problem with p = 3 and 200 × 100 elements. CPU: 2x AMD
EPYC 7763 64-core @2.45 GHz.

4.4. Shock turbulence interaction
The final test case focuses on the well-known shock–turbulence interaction problem,

which has been widely investigated in previous studies [59, 60, 61, 62]. It involves a
normal shock wave interacting with upstream homogeneous isotropic turbulence. The
incoming turbulence is characterized by a turbulent Mach number of Mt,0 = 0.22 and a
Taylor-scale Reynolds number of Reλ = 40. This interaction causes significant changes
in the flow, including the amplification of turbulence and the generation of acoustic and
entropy waves.

4.4.1. Case description and computational setup
The computational domain is defined as a box with dimensions [4π× 2π× 2π], where

x = x1 represents the streamwise direction, and y = x2 and z = x3, denote the trans-
verse directions. A nearly stationary normal shock is initially positioned at x = π, in
agreement with the laminar Rankine-Hugoniot relations. Periodic boundary conditions
are applied in the transverse directions, while a sponge layer is implemented from x = 3π
to the downstream end of the domain. Within this zone, flow variables are gradually
relaxed toward a laminar base state using a smoothing function, effectively suppressing
nonphysical oscillations near the outflow, as demonstrated by Larsson and Lele [59]. A
constant back pressure, derived from the Rankine–Hugoniot relations, is prescribed at the
outflow boundary. This boundary treatment induces only minor fluctuations in the shock
position [59]. The turbulence is considered homogeneous in the transverse directions and
isotropic upstream of the shock wave. Flow statistics are obtained by averaging over the
homogeneous directions and time t. The Reynolds stresses are defined as Rij = ṽ′′i v

′′
j ,

where Favre averages are indicated by a tilde, f̃ = ρf/ρ and the fluctuations are defined
as f ′′ = f − f̃ .

At the domain inlet, isotropic turbulence is superimposed on a uniform mean flow
with a Mach number of M = 1.28, and subsequently convected downstream under the
assumption of Taylor’s frozen turbulence hypothesis. The inflow turbulence is generated
using a separate temporal simulation of decaying homogeneous isotropic turbulence, fol-
lowing the methodology of Ristorcelli and Blaisdell [63]. The velocity field in this precur-
sor simulation is initialized from a three-dimensional Gaussian spectral density with zero
mean velocity and a peak wave number of k̃M = 6. The simulation is advanced in time
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until the turbulence develops to a state characterized by a velocity derivative skewness
of approximately −0.5 and a flatness factor approaching 4.0. At this stage, the resulting
turbulence exhibits a turbulent Mach number Mt = 0.22, and a Taylor-scale Reynolds
number of Reλ = 40.

Two grid resolutions are considered: 368 × 642 and 736 × 1282 DOF. The reference
solution is taken from the simulation by Larsson and Lele [59]. The computational mesh is
Cartesian, with no element clustering near the shock, ensuring uniform spatial resolution
throughout the domain. The simulation is advanced in time using the RK(4,4) scheme
with a time step of ∆t = 0.02/(k̃Mvrms,0), which corresponds to a CFL number of CFL =

0.535. Statistical averaging is performed over a time interval ∆tstat = 100/(k̃Mvrms,0).

4.4.2. Numerical stability
As in the strong vortex–shock-wave interaction case, the vanilla DG method is un-

stable at the tested grid resolutions, whereas all stabilized methods remain numerically
stable. At the coarsest resolution, the maximum proportion of troubled cells detected by
the sensor is approximately 6% for the DG-ES method and 2% for the DG-AV method.
At the finest resolution, these values decrease to around 3% and 1.5%, respectively.

Table 11 presents the maximum stable CFL numbers for each method, which remain
nearly constant across mesh refinements. Due to the reduced shock strength in this case,
the methods using Gauss quadrature (DG-AV, DG-ES and ESDG-GL) achieve similar
CFL limits. The ESDG-GLL method, based on Gauss–Lobatto quadrature, supports a
slightly higher CFL number.

DG-AV DG-ES ESDG-GL ESDG-GLL

0.53 0.53 0.53 0.69

Table 11: Maximum stable CFL number for the different methods for the shock-turbulence interaction
problem.

4.4.3. Numerical results
Figure 15 presents the streamwise and transverse Reynolds stress components, R11

and R22, respectively, normalized by their values upstream of the shock, and compared
against the reference solution from Larsson and Lele [59]. Both methods reproduce the
expected monotonic decay of Reynolds stresses upstream of the shock and the sharp am-
plification of R11 downstream, attributed to the unsteady shock motion. At the coarsest
resolution, the entropy stable methods capture more accurately the post-shock amplifi-
cation of both stress components than DG-AV, without introducing spurious oscillations;
further highlighting the impact of the numerical dissipation on the turbulent structures
during the interaction. Upon mesh refinement, the methods exhibit convergence toward
the reference solution, with diminishing differences in stress profiles.

4.4.4. Computational cost
The computational cost results are presented in Table 12. Similar to the strong

vortex–shock wave interaction case, the ESDG-GLL method exhibits a computational
cost comparable to that of the DG-AV method.
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Figure 15: Streamwise (top) and transverse (bottom) Reynolds stress profiles for the shock–turbulence
interaction case. Results are shown at two resolutions: 368×642 DOF (left) and 736×1282 DOF (right).
Reference data from Larsson and Lele [59] are included for comparison.

DG-AV DG-ES ESDG-GL ESDG-GLL

1 1.21 1.58 1.06

Table 12: Computational cost of the different methods normalized by the cost of the DG-AV method
for the shock-turbulence interaction problem with 736× 1282 DOF. CPU: 2x AMD EPYC 7763 64-core
@2.45 GHz.

5. Conclusion

This study examines the performance of several discontinuous Galerkin Spectral El-
ement (DG) stabilization techniques for scale-resolved simulations of compressible tur-
bulence, with a focus on accuracy, robustness, and computational efficiency. The key
contributions of this work are (1) a detailed comparison of different DG variants across a
range of challenging flow conditions and (2) the introduction of the new DG-ES method,
which selectively applies entropy stabilization in under-resolved regions, achieving a bal-
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ance between accuracy, efficiency and robustness.
Key findings from the numerical results are summarized as follows. In terms of ac-

curacy, the DG-AV method performs surprisingly well in cases involving highly mobile
shocks, accurately capturing both shock positions and small-scale turbulent structures.
However, for stationary shock configurations, it tends to alter the shock–turbulence in-
teraction, leading to reduced accuracy in the post-shock turbulent field, even when no
explicit numerical dissipation is applied in the turbulence region. In contrast, entropy-
stable methods (DG-ES, ESDG-GL, and ESDG-GLL) offer a more accurate representa-
tion of post-shock turbulence but are prone to oscillations in the vicinity of shocks. In
mobile shock cases, ESDG-GL and ESDG-GLL are generally more dissipative and less
accurate than DG-AV and DG-ES. The ESDG-GL method is particularly affected by
projection errors arising from the ill-conditioning of the entropy-to-conservative variable
mapping in shock-dominated regions, which degrades the accuracy of key flow quanti-
ties, such as dilatational dissipation and pressure dilatation, and hinders kinetic energy
budget closure. The ESDG-GLL method, while avoiding projection errors, suffers from
under-integration due to Gauss-Lobatto quadrature, resulting in higher numerical dis-
sipation. Regarding sensitivity to user-defined parameters, the DG-AV method is more
sensitive than DG-ES, with its accuracy depending significantly on the choice of detector
and, unexpectedly, on the choice of the Lagrange control points. A spectral element-
type approach, where Lagrange points coincide with Gauss-Legendre quadrature points,
clearly outperforms the classical formulation, in which the two sets of points are dis-
tinct. Overall, the DG-ES method delivers the most accurate representation of turbulent
structures across all test cases.

In terms of robustness, all stabilization methods demonstrate spatial robustness across
grid resolutions. However, methods relying on entropy variables are more sensitive to
shock strength and require smaller time steps for stability. For weaker shocks, time step
restrictions are similar across all methods.

In terms of computational cost, among the tested schemes, DG-AV is the most ef-
ficient, incurring less than a 10% cost increase compared to the vanilla DG method
across all cases. The DG-ES method significantly reduces the cost compared to the fully
entropy-stable ESDG-GL method, with a runtime comparable to ESDG-GLL depending
on the number of troubled cells. All cost comparisons are made under a fixed time step
shared by all methods.

These findings highlight the importance of selecting appropriate stabilization strate-
gies for compressible turbulence, particularly in the presence of shocks. The DG-AV
method is recommended when robust and efficient shock resolution is the primary con-
cern, while the DG-ES approach is better suited for accurately capturing under-resolved
turbulent structures. Recent studies propose entropy-stable methods with positivity-
preserving limiters to reduce sensitivity to shocks [40, 64, 65, 66]. However, these schemes
often rely on first or second order finite-volume discretizations, leading to potential ac-
curacy degradation that requires further evaluation. As demonstrated in this work, even
modest numerical dissipation introduced near shocks by DG-AV can degrade post-shock
turbulence representation, despite no explicit stabilization in that region.

These conclusions are based on the specific test cases analyzed. Future work will
explore these stabilization approaches in more complex flow scenarios, including shock
turbulence interactions at varying turbulent Mach numbers, higher Reynolds numbers,
and more realistic engineering configurations.
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