

SciPost Phys. **15**, 120 (2023)

PRA **109**, 022430 (2024)

PRA **111**, 042418 (2025)

Symmetric Absolutely Separable states

J. MARTIN, T. BASTIN, J. DENIS, J. LOUVET & E. SERRANO ENSÁSTIGA

Institut de Physique Nucléaire, Atomique et de Spectroscopie Université de Liège, 4000 Liège, Belgium

University of Liège

Founded in 1817 and based in Liège, Wallonia, Belgium

Separable vs entangled mixed state

SEPARABLE STATE [WERNER (1989)]

A state $\rho_{\text{sep}} \in \mathcal{S}(\mathcal{H})$ is separable if it can be written as a convex combination of product states:

$$\rho_{\rm sep} = \sum_{k} w_k \left(\rho_k^{(1)} \otimes \cdots \otimes \rho_k^{(N)} \right)$$

with $w_k \geq 0$, $\sum_k w_k = 1$. Otherwise, it is entangled.

Negativity [Peres (1996)], [Horodecki et al. (1996)]

The negativity is an entanglement witness (sometimes a measure), defined as

$$\mathcal{N}(\rho) = -2\sum_{\mu_k < 0} \mu_k$$

where μ_k are the eigenvalues of the partial transposition ρ^{T_A}

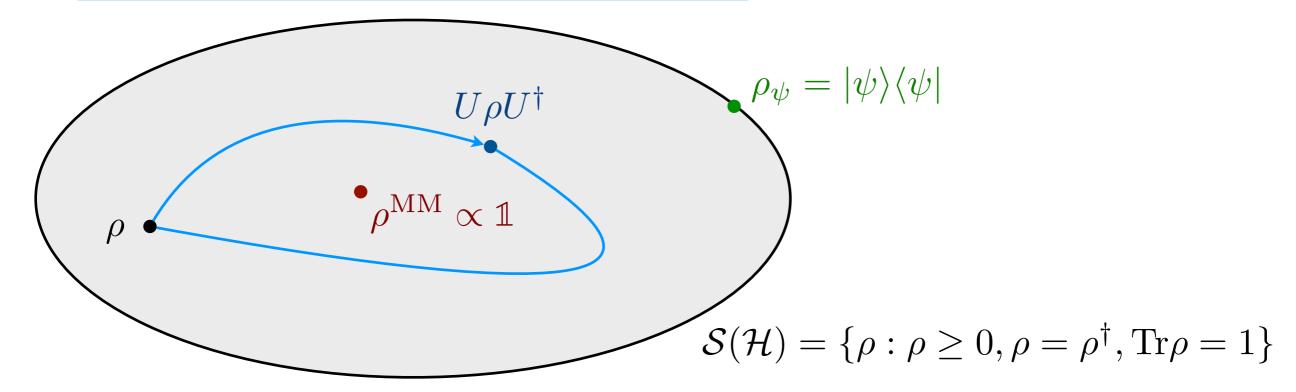
- $\mathcal{N}(\rho_{\text{sep}}) = 0$ for any separable state
- Invariant under local unitary transformations

Maximal negativity of two-qubit states

[Verstraete, Audenaert & De Moor (2001)] $\mathcal{H} \simeq \mathbb{C}^2 \otimes \mathbb{C}^2 \simeq \mathbb{C}^4$

• Goal: Find the maximum entanglement (negativity) of ρ in its SU(4)-orbit

Unitary orbit of
$$\rho$$
: $\{U\rho U^{\dagger}: U^{-1} = U^{\dagger}\}$



- Spectrum $\lambda_0 \geq \lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \text{ of } \rho \text{ invariant along the orbit}$
- Entanglement varies along the orbit

Maximal negativity of two-qubit states

[Verstraete, Audenaert & De Moor (2001)] $\mathcal{H} \simeq \mathbb{C}^2 \otimes \mathbb{C}^2 \simeq \mathbb{C}^4$

$$\mathcal{H}\simeq\mathbb{C}^2\otimes\mathbb{C}^2\simeq\mathbb{C}^4$$

• Result: $\max_{U \in SU(4)} \mathcal{N}\left(U\rho U^{\dagger}\right) = \max\left(0, \sqrt{(\lambda_0 - \lambda_2)^2 + (\lambda_1 - \lambda_3)^2} - \lambda_1 - \lambda_3\right)$

AS STATE [Kuś, Życzkowski (2001)]

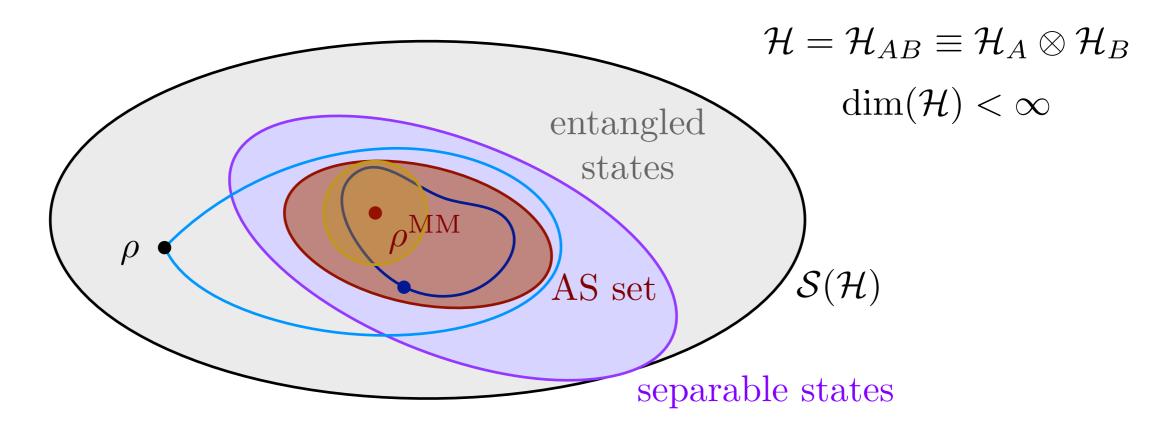
A state $\rho \in \mathcal{S}(\mathcal{H})$ is Absolutely Separable (AS) if

$$\rho' = U\rho U^{\dagger}$$

is separable for any unitary transformation U.

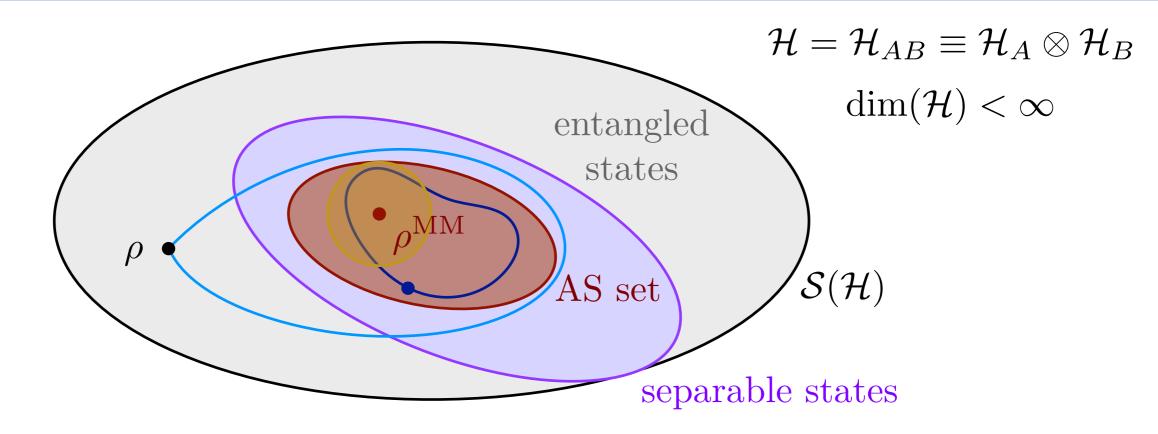
Corollary: ρ is AS iff $\lambda_0 \leqslant \lambda_2 + 2\sqrt{\lambda_1\lambda_3}$

AS states for bipartite systems



- $\mathcal{S}(\mathcal{H})$ is a convex and compact set
- Separable states form a convex and compact set $\mathcal{S}_{\text{sep}} \subset \mathcal{S}$
- AS states form a convex and compact set $\mathcal{A}_{sep} \subset \mathcal{S}_{sep}$
- Ball of AS states around the MMS [Życzkowski (1998), Gurvits & Barnum (2002)]

AS states: some properties



- \bullet Noise Resilience \rightarrow remain separable under arbitrary unitary noise
- ullet Quantum Control \to cannot be entangled via any global control operation
- ullet Quantum Thermodynamics \to relevant in studies of passive states and thermalization

Known results for bipartite systems

Exact results for maximum entanglement in larger systems remain incomplete

Partial results for qubit-qutrit: Mendonça, Marchiolli, Hedemann (2017)

... but exact results for absolute separability

•
$$\mathcal{H} \simeq \mathbb{C}^2 \otimes \mathbb{C}^2$$
 : ρ is AS iff $\lambda_0 \leqslant \lambda_2 + 2\sqrt{\lambda_1 \lambda_3}$

[VAD (2001)]

•
$$\mathcal{H} \simeq \mathbb{C}^2 \otimes \mathbb{C}^m$$
: ρ is AS iff $\lambda_0 \leq \lambda_{2m-2} + 2\sqrt{\lambda_{2m-3}\lambda_{2m-1}}$

[Johnston (2013)] based on PPT

- $\mathcal{H} \simeq \mathbb{C}^n \otimes \mathbb{C}^m$: ? (only sufficient conditions)
 - \rightarrow what about symmetry-constrained systems?

APPT states

APPT STATE

A state $\rho \in \mathcal{S}(\mathcal{H}_{AB})$ is Absolutely PPT (APPT) if

$$\rho' = U\rho U^{\dagger}$$

is PPT for all unitary transformation U, i.e.,

$$\min_{U} \lambda_{\min} \left(U \rho^{T_A} U^{\dagger} \right) \ge 0$$

- The set of APPT states is convex and compact $(\mathcal{A}_{PPT} \subseteq \mathcal{A}_{sep})$
- The set of APPT states is fully characterized in terms of LMI Hildebrand (2007) (Linear Matrix Inequalities)
- Open question: AS set ₹ APPT set

 $2 \times n \text{ systems } \checkmark$ Johnston (2013)

APPT states

- The set of APPT states is fully characterized in terms of LMI Hildebrand (2007) (Linear Matrix Inequalities)
- State ρ with eigenspectrum $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_{m \times n}$

$$2 \times n$$
:

$$\begin{pmatrix} 2\lambda_{2n} & \lambda_{2n-1} - \lambda_1 \\ \lambda_{2n-1} - \lambda_1 & 2\lambda_{2n-2} \end{pmatrix} \succeq 0$$

$$3 \times n$$

$$(n \ge 3)$$

$$\begin{pmatrix} 2\lambda_{3n} & \lambda_{3n-1} - \lambda_1 & \lambda_{3n-3} - \lambda_2 \\ \lambda_{3n-1} - \lambda_1 & 2\lambda_{3n-2} & \lambda_{3n-4} - \lambda_3 \\ \lambda_{3n-3} - \lambda_2 & \lambda_{3n-4} - \lambda_3 & 2\lambda_{3n-5} \end{pmatrix} \succeq 0$$

$$\begin{pmatrix} 2\lambda_{3n} & \lambda_{3n-1} - \lambda_1 & \lambda_{3n-2} - \lambda_2 \\ \lambda_{3n-1} - \lambda_1 & 2\lambda_{3n-3} & \lambda_{3n-4} - \lambda_3 \\ \lambda_{3n-2} - \lambda_2 & \lambda_{3n-4} - \lambda_3 & 2\lambda_{3n-5} \end{pmatrix} \succeq 0$$

Symmetric and SAS states

Symmetric state

A state ρ_S is symmetric if it is supported on \mathcal{H}_S :

$$\rho_S = P_S \rho_S P_S^{\dagger}$$

where P_S is the projector onto the symmetric subspace $\mathcal{H}_S \subset \mathcal{H}$ spanned by the Dicke states.

SAS STATE

A state $\rho_S \in \mathcal{S}(\mathcal{H}_S)$ is Symmetric Absolutely Separable (SAS) if

$$\rho_S' = U_S \rho_S U_S^{\dagger}$$

is separable for any symmetry-preserving unitary transformation U_S .

SAS and SAPPT states

SAPPT STATE

A state $\rho_S \in \mathcal{S}(\mathcal{H}_S)$ is Symmetric Absolutely PPT (SAPPT) if

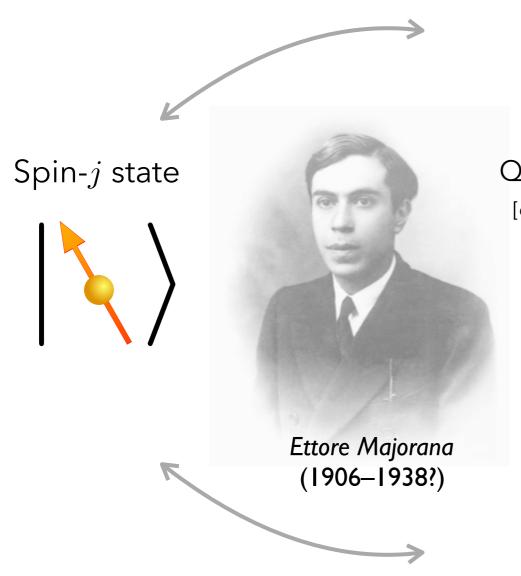
$$\rho_S' = U_S \rho_S U_S^{\dagger}$$

is PPT for any symmetry-preserving unitary transformation U_S .

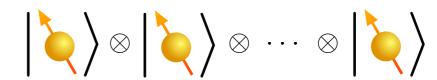
- The AS and SAS states are fundamentally different:
 - SAS states are low-rank states
 - no SAS state is also AS (except the symmetric MM state for two qubits)
 - SAS states \equiv Absolutely classical spin-j states

[Bohnet-Waldraff, Giraud, Braun (2017)]

Majorana's representation

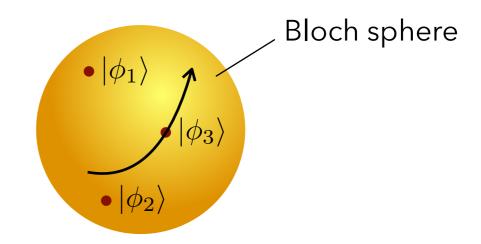


Multipartite state of 2j spin- $\frac{1}{2}$



Quantum Information Theory Toolbox

[entanglement; qubits; Von Neumann entropy; ...]



Geometry Toolbox

[symmetry; geometric phase; topology; ...]

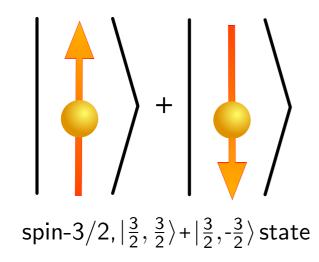
- J. H. Hannay, J. Mod. Opt. **45**, 1001 (1998); J. Phys. A: Math. Gen. **31** L53 (1998)
- P. Bruno, Phys. Rev. Lett. 108, 240402 (2012)
- C. Chryssomalakos et al., J. Phys. A: Math. Theor. 51, 165202 (2018)
- P. Aguilar et al., J. Phys. A: Math. Theor. **53**, 065301 (2020)

One-to-one mapping

Single spin-j state $|\psi_j\rangle$

spin operators \mathbf{J}^2, J_z standard basis $\{|j,m\rangle\}$ full Hilbert space \mathcal{H} coherent state rotation

anticoherent state

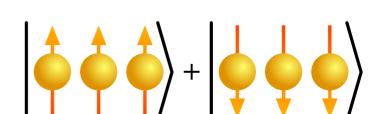


$N\equiv 2j$ -qubit symmetric state $|\psi_S angle$

collective spin operators \mathbf{S}^2, S_z symmetric Dicke basis $\{|D_N^{(j-m)}\rangle\}$ symmetric subspace \mathcal{H}_S symmetric separable state local unitary transf. $U^{\otimes N}$

maximally entangled

symmetric state



3 spin- $\frac{1}{2}$ or qubits, $|GHZ\rangle$ state

[Baguette, Bastin, Martin (2014)]

SAS and SAPPT states: open questions

• The set of SAPPT states remains to be fully characterized

open question

• SAS set **?** SAPPT set

open question

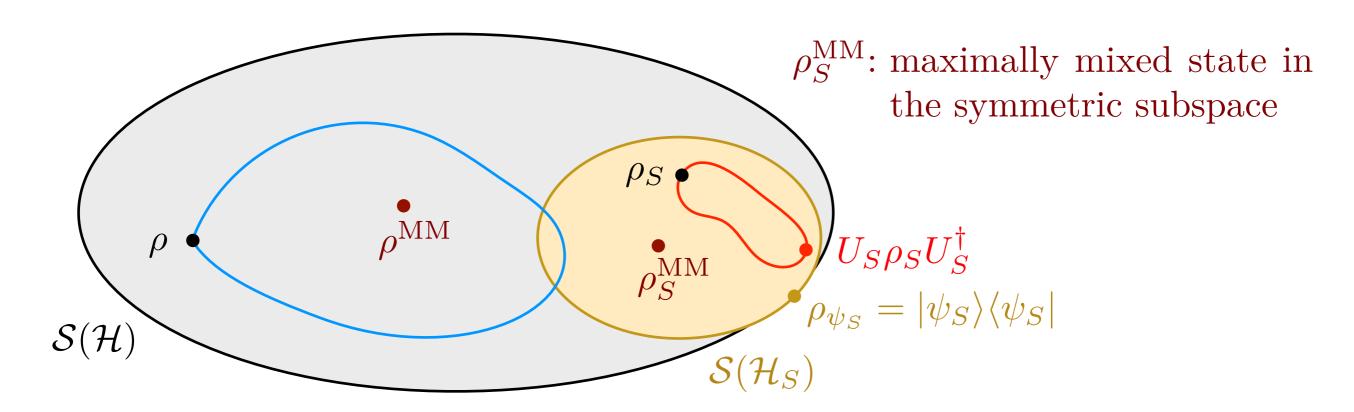
Maximal negativity of symmetric two-qubit states

[Martin, Serrano Ensástiga (2023)]

• Goal: Find the maximum entanglement (negativity) of ρ_S in its SU(3)-orbit

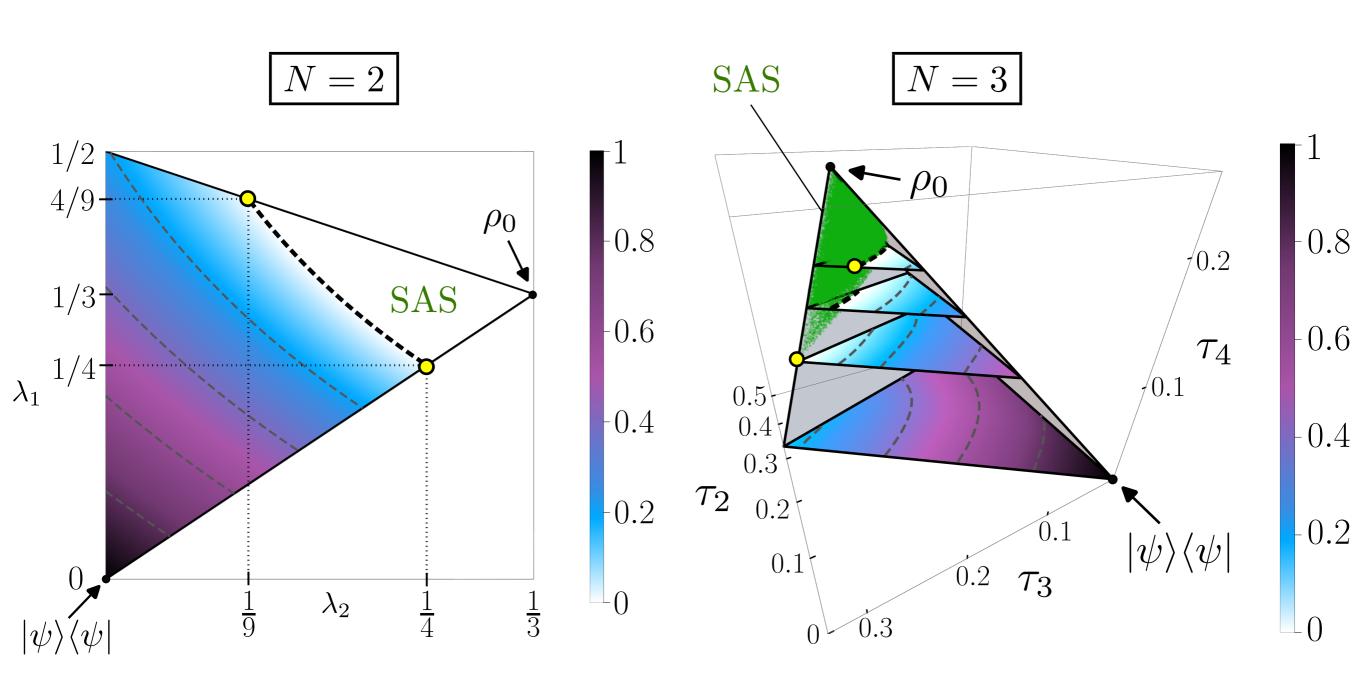
• Result:
$$\max_{U_S \in SU(3)} \mathcal{N}\left(U_S \rho_S U_S^{\dagger}\right) = \max\left(0, \sqrt{\lambda_0^2 + (\lambda_1 - \lambda_2)^2} - \lambda_1 - \lambda_2\right)$$

• Corollary : ρ is SAS iff $\sqrt{\lambda_1} + \sqrt{\lambda_2} \geq 1$ see also [Champagne (2022)]



Maximal negativity in the unitary orbit

[Martin, Serrano Ensástiga (2023)]



SAS states for any N

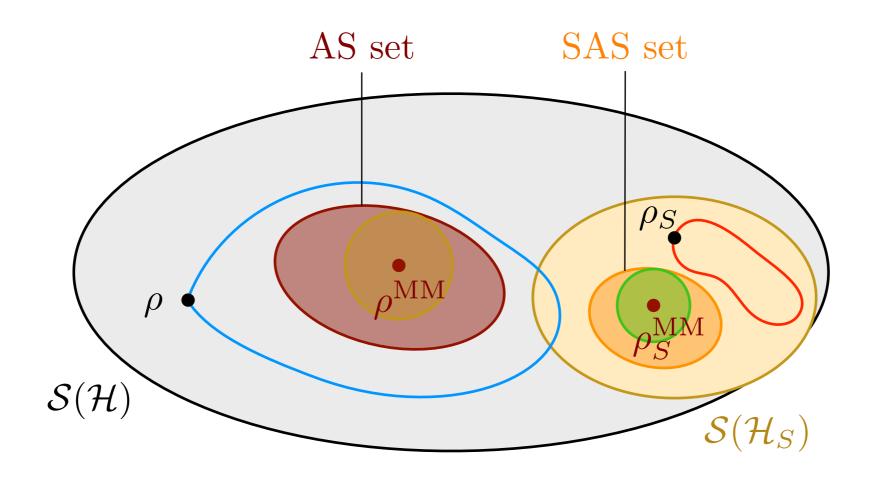
[Martin, Serrano Ensástiga (2023), Champagne (2022)]

• Ball of SAS states around the symmetric MMS

[Bohnet-Waldraff (2017)]

• Polytope (⊃ ball) of SAS states around the symmetric MMS

[Martin, Denis, Serrano Ensástiga (2024)]



SAS states ball and polytope

[Martin, Denis, Serrano Ensástiga (2024)] [Denis, Davis, Mann, Martin (2023)]

SAS STATES BALL

An N-qubit symmetric state $\rho_S \in \mathcal{S}(\mathcal{H}_S)$ is SAS if

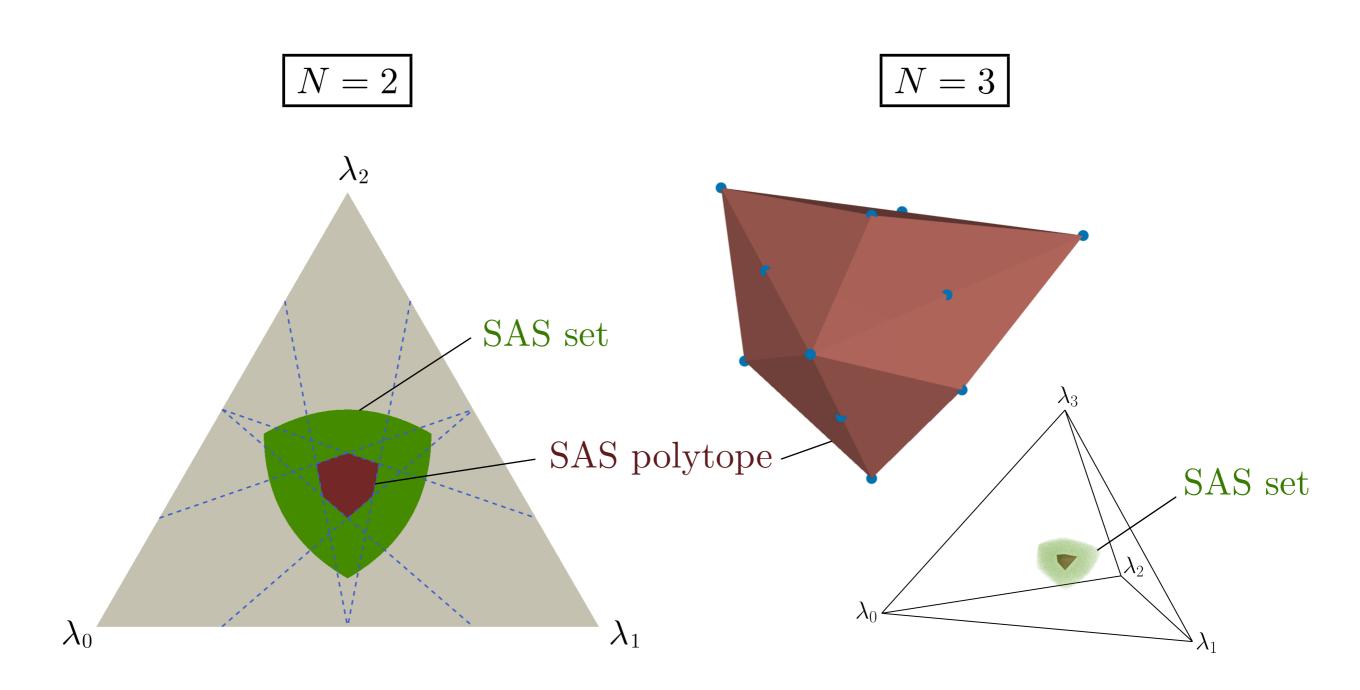
$$\operatorname{Tr}\left(\rho_S^2\right) \leqslant \frac{1}{N+1} \left(1 + \frac{1}{2(2N+1)\binom{2N}{N} - (N+2)}\right)$$

SAS STATES POLYTOPE

An N-qubit symmetric state $\rho_S \in \mathcal{S}(\mathcal{H}_S)$ with eigenspectrum $\lambda =$ $(\lambda_0, \lambda_1, \ldots)$ is SAS if

$$\lambda^{\downarrow} \Delta^{\uparrow T} \geqslant 0$$
 with $\Delta_k = (-1)^{N-k} \binom{N+1}{k}$

Polytopes for N=2, 3 qubits



[in barycentric coordinates]

SAS witness for arbitrary bipartite systems

[Abellanet-Vidal, Müller-Rigat, Rajchel-Mieldzioć, and Sanpera (2025)]

• P but not CP maps usually provide sufficient conditions for entanglement, but can also be used to provide sufficient conditions for separability

[Lewenstein, Augusiak, Chruściński, Rana, and Samsonowicz (2016)]

- Let $\Lambda : \mathcal{S}(\mathbb{C}^n \otimes \mathbb{C}^m) \to \mathcal{S}_{sep}(\mathbb{C}^n \otimes \mathbb{C}^m)$ be an invertible linear map. If $\Lambda^{-1}(\sigma) \in \mathcal{S}(\mathbb{C}^n \otimes \mathbb{C}^m)$, then $\sigma \in \mathcal{S}_{sep}(\mathbb{C}^n \otimes \mathbb{C}^m)$.
- Let $\Lambda : \mathcal{S}(\mathbb{C}^n \otimes \mathbb{C}^m) \to \mathcal{A}_{sep}(\mathbb{C}^n \otimes \mathbb{C}^m)$ be an invertible linear map. If $\Lambda^{-1}(\sigma) \in \mathcal{S}(\mathbb{C}^n \otimes \mathbb{C}^m)$, then $\sigma \in \mathcal{A}_{sep}(\mathbb{C}^n \otimes \mathbb{C}^m)$.

SAS witness based on reduction-like maps

- Unitarily equivariant linear maps $\left[\Lambda\left(U\rho U^{\dagger}\right) = U\Lambda(\rho)U^{\dagger}\right]$ provide sufficient criteria to detect AS
- These maps are reduction-like and defined as

[Bardet, Collins, and Sapra (2020)]

$$\Lambda_{\alpha}(\rho) = \text{Tr}(\rho)\mathbb{1} + \alpha\rho,$$

with $\alpha \in \mathbb{R}$. Invertible for $\alpha \neq 0$, the inverse is

$$\Lambda_{\alpha}^{-1}(\sigma) = \frac{1}{\alpha} \left(\sigma - \frac{\operatorname{Tr}(\sigma)\mathbb{1}}{D + \alpha} \right),\,$$

where D is the Hilbert space dimension.

• For $\alpha \in [-1, 2]$, $\Lambda_{\alpha}(\rho)$ renders any ρ separable. Thus, $\Lambda_{\alpha}^{-1}(\sigma) \geq 0$ ensures separability. Since $\Lambda_{\alpha}^{-1}(\sigma)$'s positivity depends only on σ 's spectrum and is unitarily invariant, it provides a sufficient criterion for absolute separability.

SAS witness based on min and max eigenvalues

[Abellanet-Vidal, Müller-Rigat, Rajchel-Mieldzioć, and Sanpera (2025)]

Let ρ be a normalized bipartite state acting on the space $\mathbb{C}^N \otimes \mathbb{C}^M$ with minimal and maximal eigenvalues $\lambda_{\min}(\rho)$ and $\lambda_{\max}(\rho)$ respectively. If

$$\lambda_{\min}(\rho) \ge \frac{1}{N \cdot M + 2}$$
 or $\lambda_{\max}(\rho) \le \frac{1}{N \cdot M - 1}$

then ρ is absolutely separable.

SAS witness for symmetric states

[Abellanet-Vidal, Müller-Rigat, Rajchel-Mieldzioć, and Sanpera (2025)]

Let ρ_S be a symmetric state of N qubits and $\{\lambda_i\}_{i=0}^N$ its eigenvalues in increasing order. If

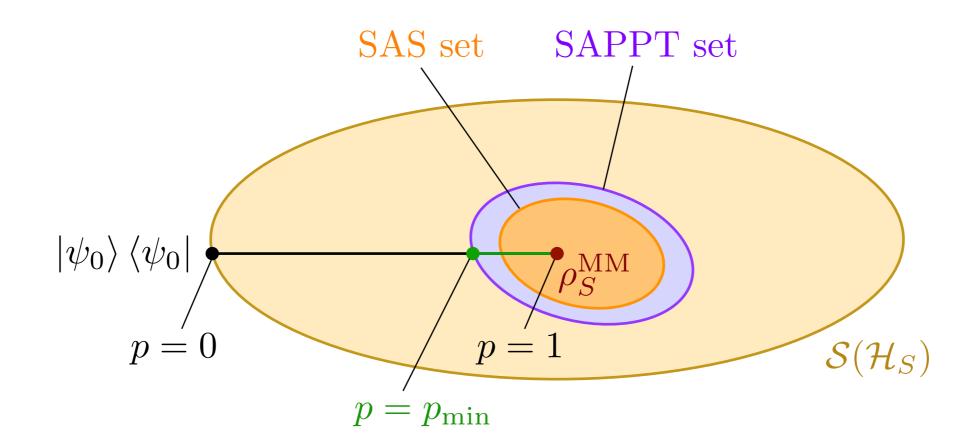
$$3\binom{N}{\lfloor N/2\rfloor} \sum_{i=0}^{\left\lfloor \frac{N+1}{3} \right\rfloor - 1} \lambda_i + \left[\binom{N}{\lfloor N/2\rfloor} \left(N + 1 - 3 \left\lfloor \frac{N+1}{3} \right\rfloor \right) + 2 \right] \lambda_{\left\lfloor \frac{N+1}{3} \right\rfloor} \ge \binom{N}{\lfloor N/2\rfloor}$$

then ρ_S is SAPPT.

Construction of SAPPT states

• $\rho(p) = p \rho_S^{\text{MM}} + (1-p) |\psi_0\rangle \langle \psi_0| \text{ with } p \in [0,1]$

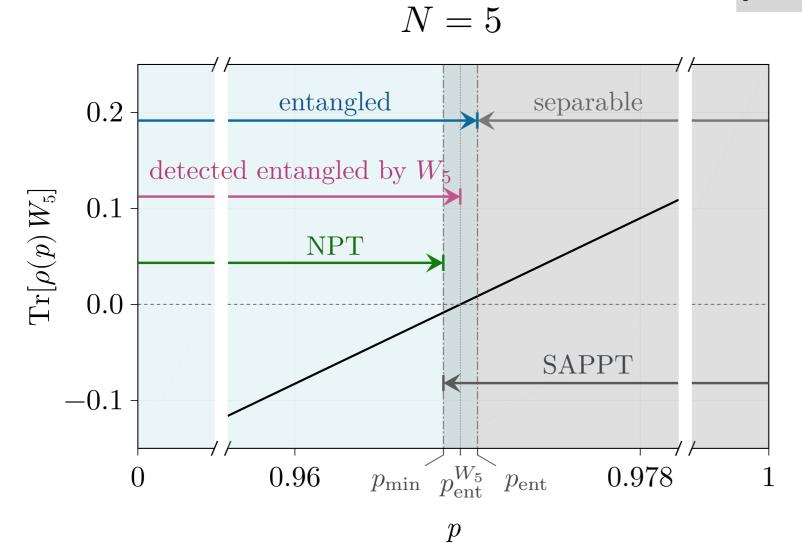
[Louvet, Serrano-Ensástiga, Bastin, Martin (2025)]



- $\rho(p)$ SAPPT $\Leftrightarrow p \in [p_{\min}, 1]$ with $p_{\min} = \frac{1}{1 + 2\left[(N+1)\binom{N}{\lfloor N/2\rfloor}\right]^{-1}}$
- $|\psi_0\rangle = |\text{GHZ}(N)\rangle \Rightarrow \rho(p)$ entangled $\Leftrightarrow p \in [0, p_{\text{ent}}]$ with $p_{\text{ent}} > p_{\text{min}}$ (odd N)

SAS ≠ SAPPT ✓

[Louvet, Serrano-Ensástiga, Bastin, Martin (2025)]



N	$p_{ m min}$	$p_{ m ent}$	
4	$\frac{15}{16}$	$\frac{15}{16}$	
5	$\frac{30}{31} \approx 0.96774$	0.96953	√
6	$\frac{70}{71}$	$\frac{70}{71}$	
7	$\frac{140}{141} \approx 0.99291$	0.99329	✓
8	$\frac{315}{316}$	$\frac{315}{316}$	
9	$\frac{630}{631} \approx 0.99842$	0.99849	✓
10	$\frac{1386}{1387}$	$\frac{1386}{1387}$	

Open questions

• The set of SAPPT states remains to be fully characterized

open question

- SAS set \neq SAPPT set because there are entangled SAPPT states
- \bullet Existence of entangled SAPPT states with N even ?

open question