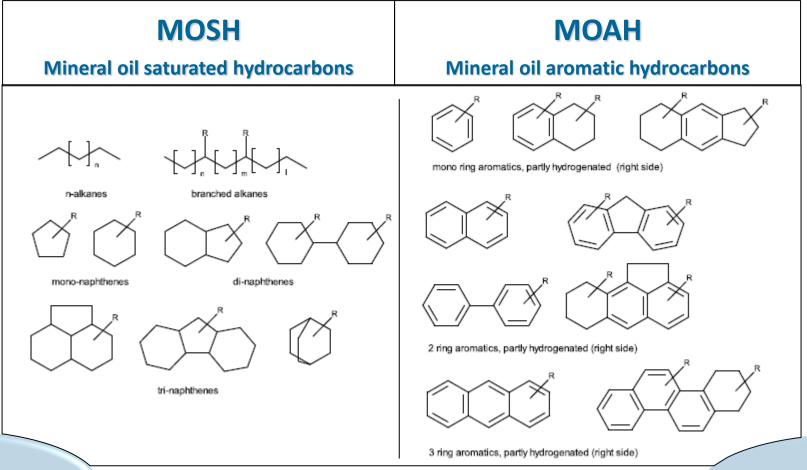


MOSH & MOAH: remediation strategies and analytical challenges

Giorgia Purcaro, Aleksandra Gorska, Sabine Danthine, Nicolas Jacquet

Gembloux Agro Bio-Tech, University of Liège, Belgium

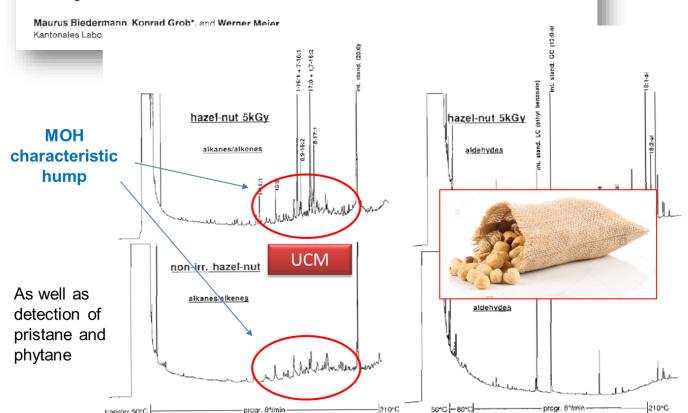

gpurcaro@uliege.be

MINERAL OIL HYDROCARBONS (MOH): DEFINITION*

a wide range of products deriving from petroleum distillation fractions

- -n-alkane
- isoalkane
- cycloalkane

Aromatic hydrocarbons, mainly alkylated



1989

Original Research Papers

Partially Concurrent Eluent Evaporation with an Early Vapor Exit; Detection of Food Irradiation through Coupled LC-GC Analysis of the Fat

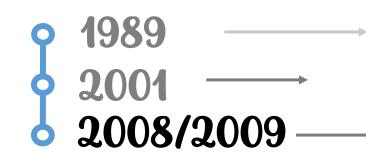
transfer 50°C

Alkane/alkene and aldehyde fractions of irradiated and non-irradiated hazelnuts. The poorly resolved alkanes in the matrix of the alkane/alkene fraction probably indicate a contamination of the nuts with mineral oil.

Eur. J. Lipid Sci. Technol. 2009, 111, 313-319

Highlight Article

How "white" was the mineral oil in the contaminated Ukrainian sunflower oils?


Maurus Biedermann and Koni Grob

Official Food Control Authority of the Canton of Zurich, Zurich, Switzerland

Up to **1800 mg/kg** of **MOAH**

Original Research Papers

Mineral Paraffins in Vegetable Oils

apor

English EN

ABOUT V NEWSROOM V TOPICS V RESOURCES V PUBLICATIONS APPLICATIONS V ENGAGE V CALENDA

<u>Home</u> / <u>Newsroom</u> / Sunflower oil: contamination with mineral oil from Ukrain.

Sunflower oil: contamination with mineral oil from Ukraine - Update

Eur. J. Lipid Sci. Technol. 2009, 111, 313-319

Highlight Article

How "white" was the minera sunflower oils?

Maurus Biedermann and Koni Grob

Official Food Control Authority of the Canton of Z

and

Feed

J. Agric. Food Chem. 2009, 57, 8711–8721 DOI:10.1021/jf901375e

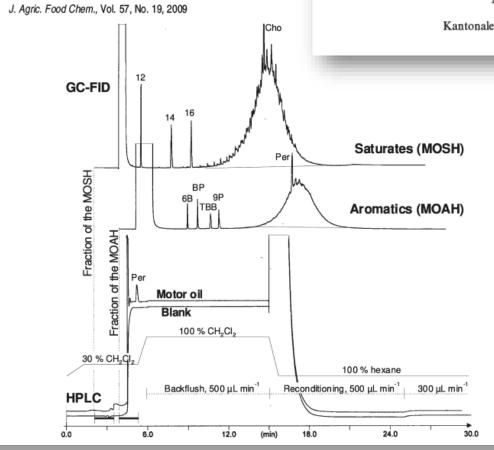
Aromatic Hydrocarbons of Mineral Oil Origin in Foods: Method for Determining the Total Concentration and First Results

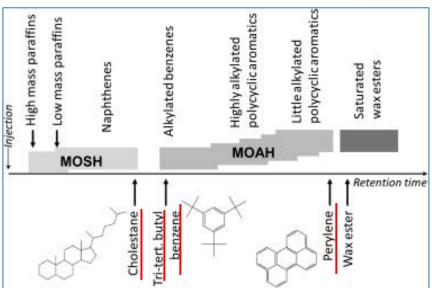
MAURUS BIEDERMANN, KATELL FISELIER, AND KONI GROB*

Kantonales Labor (Official Food Control Authority of the Canton of Zurich), Fehrenstrasse 15, CH-8032 Zurich, Switzerland

1989 2001 2008/2009 – AGRICULTURAL AND FOOD CHEMISTRY

J. Agric. Food Chem. 2009, 57, 8711–8721 DOI:10.1021/jf901375e


Aromatic Hydrocarbons of Mineral Oil Origin in Foods: Method for Determining the Total Concentration and First Results


MAURUS BIEDERMANN, KATELL FISELIER, AND KONI GROB*

Kantonales Labor (Official Food Control Authority of the Canton of Zurich), Fehrenstrasse 15, CH-8032 Zurich, Switzerland

3726

J. Sep.

J. Agric. Food Chem. 2009, 57, 8711-8721 DOI:10.1021/if901375e

> Maurus Biedermann Koni Grob

> > Official Food Control Authority of the Canton of Zurich, Zurich, Switzerland

Received May 23, 2009 Revised August 3, 2009 Accepted August 5, 2009 Research Article

Comprehensive two-dimensional GC after **HPLC** preseparation for the characterization of aromatic hydrocarbons of mineral oil origin in contaminated sunflower oil

CH-8032 Zurich, Switzerland GC-FID Saturates (MOSH) Fraction of the MOSH Aromatics (MOAH) of the MOAH Motor oil Blank 100 % CH,CI, 30 % CH₂C 100 % hexane Reconditioning, 500 µL min Backflush, 500 µL min

Aromatic Hydrocarbons of Mineral Oil Origin in Foods: Method

for Determining the Total Concentration and First Results

MAURUS BIEDERMANN, KATELL FISELIER, AND KONI GROB*

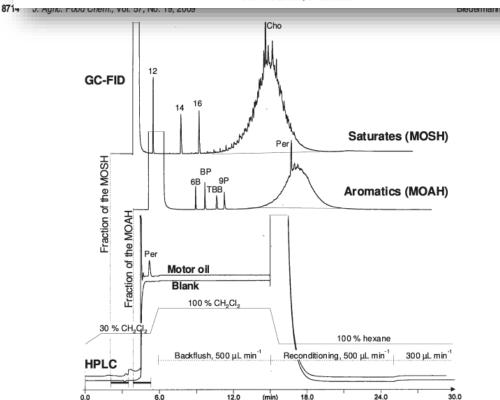
Kantonales Labor (Official Food Control Authority of the Canton of Zurich), Fehrenstrasse 15,

24.0

"For **risk evaluation**, the concentration of the sum of all MOAH might not be satisfactory. The method of Moret et al. used HPLC to group the MOAH by ring number. In the meantime, comprehensive two-dimensional GC (GC×GC) was established [12, 13], which is an attractive alternative because of its simplicity, the enhanced sensitivity resulting from focusing by modulation and the additional information provided on the extent of alkylation.

Mineral oil analysis is the most widely described application of GCGC, though mainly on products like gasoline, heavy naphtha or kerosene with a lower molecular mass than the food contaminants most frequently found."

J. Sep.



J. Agric. Food Chem. 2009, 57, 8711-8721 DOI:10.1021/if901375e

Aromatic Hydrocarbons of Mineral Oil Origin in Foods: Method for Determining the Total Concentration and First Results

MAURUS BIEDERMANN, KATELL FISELIER, AND KONI GROB*

Kantonales Labor (Official Food Control Authority of the Canton of Zurich), Fehrenstrasse 15, CH-8032 Zurich, Switzerland

3726

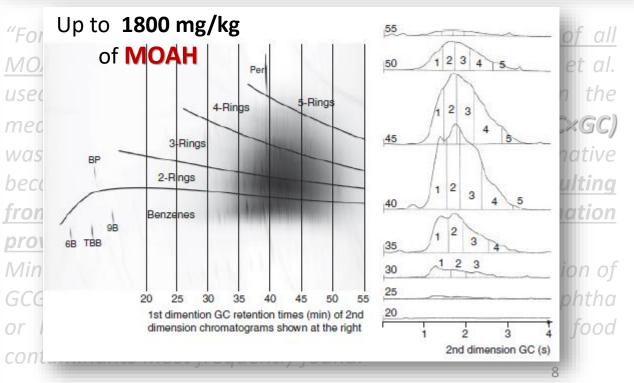
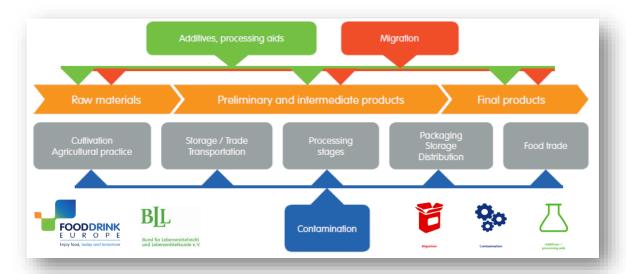
Maurus Biedermann Koni Grob

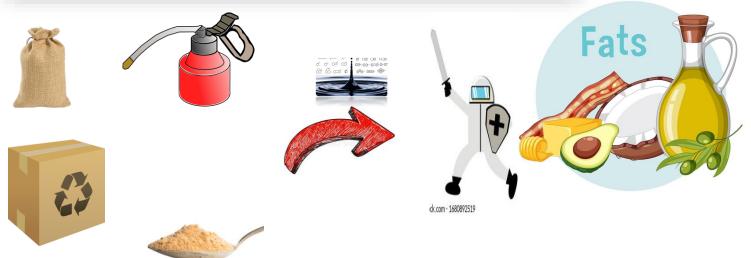
Official Food Control Authority of the Canton of Zurich, Zurich, Switzerland

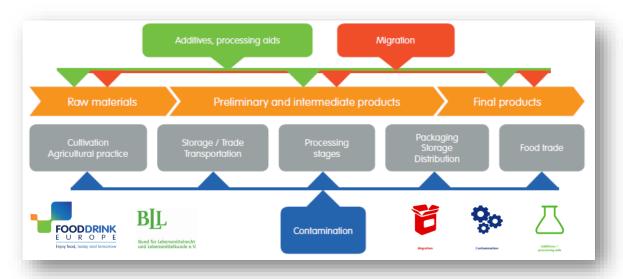
Received May 23, 2009 Revised August 3, 2009 Accepted August 5, 2009

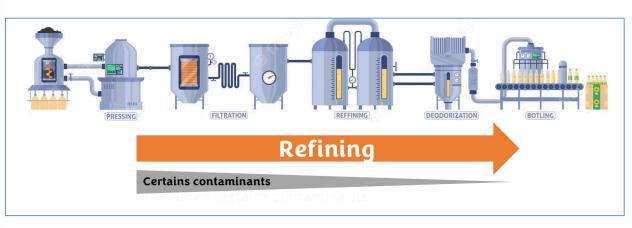
Research Article

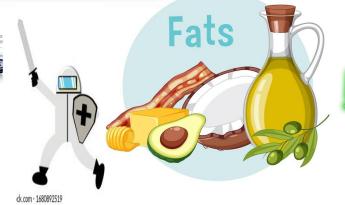
Comprehensive two-dimensional GC after **HPLC** preseparation for the characterization of aromatic hydrocarbons of mineral oil origin in contaminated sunflower oil


Figure 7. MOAH in the crude mineral oil fraction by GC×GC




FOOD ADDITIVES



FOOD ADDITIVES

remediation

MOH – Remediation

Refining:

- Industrial process applied to edible oils to remove undesirable compounds that are either naturally present (e.g., free fatty acids, waxes, phospholipids) or introduced during cultivation or processing (e.g., pesticides, metals, MOH, PAH).
- The objective is to obtain a standardized product with low odour, neutral taste, and clear appearance, which is stable over time, and safe for consumption.

MOH – Remediation

Refining:

- Industrial process applied to edible oils to remove undesirable compounds that are either naturally present (e.g., free fatty acids, waxes, phospholipids) or introduced during cultivation or processing (e.g., pesticides, metals, MOH, PAH).
- The objective is to obtain a standardized product with low odour, neutral taste, and clear appearance, which is stable over time, and safe for consumption.

MOH – Remediation

Refining:

- Industrial process applied to edible oils to remove undesirable compounds that are either naturally present (e.g., free fatty acids, waxes, phospholipids) or introduced during cultivation or processing (e.g., pesticides, metals, MOH, PAH).
- The objective is to obtain a standardized product with low odour, neutral taste, and clear appearance, which is stable over time, and safe for consumption.

Effect of refining on MOH content

• Limited litterature, mostly published between 2017 and 2025

MOH Remediation

1989

→ | °

Original Papers _____

Mitt. Lebensm. Hyg. 92, 499-514 (2001)

Mineral Paraffins in Vegetable Oils and Refinery By-Products for Animal Feeds

Christoph Wagner, Hans-Peter Neukom and Koni Grob, Official Food Control Authority of the Canton of Zurich (Kantonales Labor), Zurich, Switzerland

Sabrina Moret, Tiziana Populin and Lanfranco S. Conte, Department of Food Science, University of Udine, Udine, Italy

Received 2 August 2001, accepted 23 August 2001

Acids for animal feed

The by-products of edible oil refining, consisting of the free fatty acids and the condensate from the deodorization process, contained between 120 and 6800 mg/kg of mineral paraffins. This by far exceeds the Swiss limit of 30 mg/kg for fats used in animal feeds (22).

Edible oils

Probably more than half of all raw vegetable oils and fats produced worldwide contain more than 10 mg/kg mineral paraffins and still a substantial proportion exceeds 50 mg/kg. Deodorization removes the hydrocarbons up to C25-C30, depending on the conditions. Usually this corresponds to about two thirds of the contamination (depending on the composition of the paraffins and the conditions of deodorization). However, many refined oils on the market still contained 20-80 mg/kg mineral paraffins. Some exceptional samples reached concentrations up to 3000 mg/kg.

Total MOH (no MOSH+MOAH distinction)

Summary of litterature (2017-2025)

Authors	Key Process	Main Findings				
Stauff et al.	Deodorization	 Min. temperature for noteworthy MOH reduction: 210 °C 				
2020	(140-240°C, 18-27 mbar, 2% water)	• 10-75% of removal of MOH ≤ C24				
Gelmez et al.						
2017	Molecular distillation	2050/ MOLL < C40 va magua d				
Zhang et al.	(220°C, 10^{-3} mbar, 1 kg/h feedstock)	• ~85% MOH ≤ C40 removed				
2022						
Bauwens et al. 2023	Bleaching	• 66% C16-C25 MOH removed				
	+	No modifications in C25-C50 MOH				
	Deodorization	 >98.9% spiked alkylated PAHs ≥ 3 rings removed 				
	(230°C, 3h, 1 mbar)					
Gorska et al.	Deodorization	 At 200 °C, < LOQ MOAH < C24 (incl. weakly alkylated triaromatics) 				
2024	(150–240°C, 3 mbar, 1% water)	 At 230 °C, >60% reduction of C24–C35 MOAH (incl. low-alkylated pentaromatics) 				
	Bleaching	 ~10–30% total MOH reduction, ~90% C10-25 MOH reduction, ~40% C10–35 				
Ursol et al.	+	MOH reduction				
2025	Deodorization (180-227 °C, 2.5-5h, 0.8-	 Deodorization was the only effective MOH-reducing step 				
	1 mbar)	Bleaching reduced weakly alkylated/non-alkylated 2–4 ring PAHs 15				

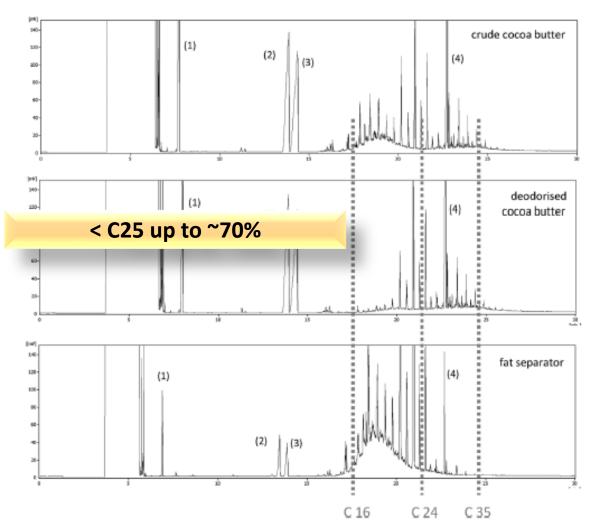
MOH - Remediation

RESEARCH ARTICLE

European Journal of Lipid Science and Technology

www.ejlst.com

Mineral Oil Hydrocarbons (MOSH/MOAH) in Edible Oils and Possible Minimization by Deodorization Through the **Example of Cocoa Butter**


Eur. J. Lipid Sai. Technol. 2020, 122, 1900383

Anna Stauff,* Julia Schnapka, Frank Heckel, and Reinhard Matissek

Table 2. Reduction of MOSH/MOAH subfractions ≤C24 by industrial deodorization of cocoa butter (LOD: 1.5 mg kg-1, LOQ: 2.5 mg kg-1; n = 9). MACH

	IV	IO2H	WOAH					
	MOSH	≤ C24 [m	g kg ⁻¹]	$MOAH \le C24 [mg kg^{-1}]$				
	Crude		dorized luction)	Crude	Deodorized (reduction)			
Set 1	12	5.8	(53%)	<loq< th=""><th><lod< th=""><th>(40%)</th></lod<></th></loq<>	<lod< th=""><th>(40%)</th></lod<>	(40%)		
Set 2	4.9	2.5	(49%)	3.4	<lod< td=""><td>(5696)</td></lod<>	(5696)		
Set 3	8.9	5.0	(44%)	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<>	<lod< td=""><td></td></lod<>			
Set 4	27	12	(54%)	8.8	3.3	(6296)		
Set 5	21	6.3	(70%)	16	4.0	(7596)		
Set 6	17	13	(25%)	9.0	7.1	(2.196)		
Set 7	5.8	5.2	(1096)	2.8	<loq< td=""><td>(2.196)</td></loq<>	(2.196)		
Set 8	5.3	4.2	(21%)	<lod< td=""><td><lod< td=""><td>_</td></lod<></td></lod<>	<lod< td=""><td>_</td></lod<>	_		
Set 9	4.3	3.3	(23%)	<loq< td=""><td><lod< td=""><td>_</td></lod<></td></loq<>	<lod< td=""><td>_</td></lod<>	_		

2020

MOH – Remediation Molecular distillation

Eur. J. Lipid Sci. Technol. 2017, 119, 1600001

2017

Research Article

Removal of di-2-ethylhexyl phthalate (DEHP) and mineral oil from crude hazelnut skin oil using molecular distillation—multiobjective optimization for DEHP and tocopherol

Beyza Gelmez¹, Onur Ketenoglu², Huseyin Yavuz³ and Aziz Tekin²

Only MOSH

Table 1. Chain length distribution of MOSH in the samples

		MOSH fractions, mg/kg							
		C(0)- C(15)	C(16)- C(24)	>C(25)	Total				
Crude hazelnut skin oil		4.1	13.95	45.95	64				
Temp.	Pressure								
(°C)	(mbar)								
200	1	0.86	3.09	7.24	11.19				
	2	1.53	3.83	3.49	8.85				
	3	0.66	3.11	3.16	6.93				
210	1	0.72	4.15	7.41	12.28				
	2	1.35	5.36	6.67	13.38				
	3	1.16	3.93	3.18	8.27				
220	1	0.34	1.45	3.79	5.58				
	2	0.97	5.83	5.81	12.61				
	3	0.41	3.65	2.24	6.30				
230	1	0.20	4.28	4.95	9.43				
	2	0.72	4.80	5.60	11.12				
	3	1.10	2.96	3.61	7.67				

ORIGINAL ARTICLE

2022

ACCS* WILEY

Mineral saturated hydrocarbons and mineral aromatic hydrocarbons in tropical plant oils and their removal by molecular distillation

MOSH+MOAH

TABLE 3 Reduction of MOSH/MOAH sub-factions (C10-C50) by molecular distillation

Palm olein		MOSH su	b-fractions	(mg kg ⁻¹)					MOAH su	b-fractions	(mg kg ⁻¹)		
Temp. (°C)	Feed rate (kg h ⁻¹)	C10– C16	C16– C20	C20- C25	C25– C35	C35– C40	C40– C50	Sum (C10– C50)	C10– C16	C16– C25	C25– C35	C35– C50	Sum (C10- C50)
-	-	<loq< td=""><td><loq< td=""><td>4.5</td><td>36.8</td><td>8.1</td><td>8.7</td><td>58.1</td><td><loq< td=""><td>3.0</td><td>6.1</td><td>1.2</td><td>10.3</td></loq<></td></loq<></td></loq<>	<loq< td=""><td>4.5</td><td>36.8</td><td>8.1</td><td>8.7</td><td>58.1</td><td><loq< td=""><td>3.0</td><td>6.1</td><td>1.2</td><td>10.3</td></loq<></td></loq<>	4.5	36.8	8.1	8.7	58.1	<loq< td=""><td>3.0</td><td>6.1</td><td>1.2</td><td>10.3</td></loq<>	3.0	6.1	1.2	10.3
200	1	<loq< td=""><td><loq< td=""><td><loq< td=""><td>6.7 (82)^a</td><td>4.8 (40)</td><td>8.5 (2)</td><td>20.0 (65)</td><td><loq< td=""><td><loq< td=""><td>1.9 (69)</td><td>1.2 (-)</td><td>3.1 (70)</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>6.7 (82)^a</td><td>4.8 (40)</td><td>8.5 (2)</td><td>20.0 (65)</td><td><loq< td=""><td><loq< td=""><td>1.9 (69)</td><td>1.2 (-)</td><td>3.1 (70)</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>6.7 (82)^a</td><td>4.8 (40)</td><td>8.5 (2)</td><td>20.0 (65)</td><td><loq< td=""><td><loq< td=""><td>1.9 (69)</td><td>1.2 (-)</td><td>3.1 (70)</td></loq<></td></loq<></td></loq<>	6.7 (82) ^a	4.8 (40)	8.5 (2)	20.0 (65)	<loq< td=""><td><loq< td=""><td>1.9 (69)</td><td>1.2 (-)</td><td>3.1 (70)</td></loq<></td></loq<>	<loq< td=""><td>1.9 (69)</td><td>1.2 (-)</td><td>3.1 (70)</td></loq<>	1.9 (69)	1.2 (-)	3.1 (70)
	2	<loq< td=""><td><loq< td=""><td><loq< td=""><td>17.1 (54)</td><td>6.1 (24)</td><td>8.5 (2)</td><td>31.7 (45)</td><td><loq< td=""><td><loq< td=""><td>3.0 (51)</td><td>1.2 (-)</td><td>4.2 (59)</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>17.1 (54)</td><td>6.1 (24)</td><td>8.5 (2)</td><td>31.7 (45)</td><td><loq< td=""><td><loq< td=""><td>3.0 (51)</td><td>1.2 (-)</td><td>4.2 (59)</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>17.1 (54)</td><td>6.1 (24)</td><td>8.5 (2)</td><td>31.7 (45)</td><td><loq< td=""><td><loq< td=""><td>3.0 (51)</td><td>1.2 (-)</td><td>4.2 (59)</td></loq<></td></loq<></td></loq<>	17.1 (54)	6.1 (24)	8.5 (2)	31.7 (45)	<loq< td=""><td><loq< td=""><td>3.0 (51)</td><td>1.2 (-)</td><td>4.2 (59)</td></loq<></td></loq<>	<loq< td=""><td>3.0 (51)</td><td>1.2 (-)</td><td>4.2 (59)</td></loq<>	3.0 (51)	1.2 (-)	4.2 (59)
	3	<loq< td=""><td><loq< td=""><td><loq< td=""><td>21.1 (43)</td><td>6.9 (14)</td><td>8.6 (1)</td><td>36.6 (37)</td><td><loq< td=""><td><loq< td=""><td>4.1 (33)</td><td>1.2 (–)</td><td>5.3 (49)</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>21.1 (43)</td><td>6.9 (14)</td><td>8.6 (1)</td><td>36.6 (37)</td><td><loq< td=""><td><loq< td=""><td>4.1 (33)</td><td>1.2 (–)</td><td>5.3 (49)</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>21.1 (43)</td><td>6.9 (14)</td><td>8.6 (1)</td><td>36.6 (37)</td><td><loq< td=""><td><loq< td=""><td>4.1 (33)</td><td>1.2 (–)</td><td>5.3 (49)</td></loq<></td></loq<></td></loq<>	21.1 (43)	6.9 (14)	8.6 (1)	36.6 (37)	<loq< td=""><td><loq< td=""><td>4.1 (33)</td><td>1.2 (–)</td><td>5.3 (49)</td></loq<></td></loq<>	<loq< td=""><td>4.1 (33)</td><td>1.2 (–)</td><td>5.3 (49)</td></loq<>	4.1 (33)	1.2 (–)	5.3 (49)
210	1	<loq< td=""><td><loq< td=""><td><loq< td=""><td>1.7 (95)</td><td>3.1 (61)</td><td>8.4 (3)</td><td>13.2 (77)</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1.2 (-)</td><td>1.2 (88)</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>1.7 (95)</td><td>3.1 (61)</td><td>8.4 (3)</td><td>13.2 (77)</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1.2 (-)</td><td>1.2 (88)</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>1.7 (95)</td><td>3.1 (61)</td><td>8.4 (3)</td><td>13.2 (77)</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1.2 (-)</td><td>1.2 (88)</td></loq<></td></loq<></td></loq<></td></loq<>	1.7 (95)	3.1 (61)	8.4 (3)	13.2 (77)	<loq< td=""><td><loq< td=""><td><loq< td=""><td>1.2 (-)</td><td>1.2 (88)</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>1.2 (-)</td><td>1.2 (88)</td></loq<></td></loq<>	<loq< td=""><td>1.2 (-)</td><td>1.2 (88)</td></loq<>	1.2 (-)	1.2 (88)
	2	<loq< td=""><td><loq< td=""><td><loq< td=""><td>9.8 (73)</td><td>5.1 (36)</td><td>8.5 (2)</td><td>23.4 (60)</td><td><loq< td=""><td><loq< td=""><td>1.8 (71)</td><td>1.2 (-)</td><td>3.0 (71)</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>9.8 (73)</td><td>5.1 (36)</td><td>8.5 (2)</td><td>23.4 (60)</td><td><loq< td=""><td><loq< td=""><td>1.8 (71)</td><td>1.2 (-)</td><td>3.0 (71)</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>9.8 (73)</td><td>5.1 (36)</td><td>8.5 (2)</td><td>23.4 (60)</td><td><loq< td=""><td><loq< td=""><td>1.8 (71)</td><td>1.2 (-)</td><td>3.0 (71)</td></loq<></td></loq<></td></loq<>	9.8 (73)	5.1 (36)	8.5 (2)	23.4 (60)	<loq< td=""><td><loq< td=""><td>1.8 (71)</td><td>1.2 (-)</td><td>3.0 (71)</td></loq<></td></loq<>	<loq< td=""><td>1.8 (71)</td><td>1.2 (-)</td><td>3.0 (71)</td></loq<>	1.8 (71)	1.2 (-)	3.0 (71)
	3	<loq< td=""><td><loq< td=""><td><loq< td=""><td>10.3 (72)</td><td>5.8 (28)</td><td>8.5 (2)</td><td>24.6 (58)</td><td><loq< td=""><td><loq< td=""><td>2.2 (64)</td><td>1.3</td><td>3.5 (67)</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>10.3 (72)</td><td>5.8 (28)</td><td>8.5 (2)</td><td>24.6 (58)</td><td><loq< td=""><td><loq< td=""><td>2.2 (64)</td><td>1.3</td><td>3.5 (67)</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>10.3 (72)</td><td>5.8 (28)</td><td>8.5 (2)</td><td>24.6 (58)</td><td><loq< td=""><td><loq< td=""><td>2.2 (64)</td><td>1.3</td><td>3.5 (67)</td></loq<></td></loq<></td></loq<>	10.3 (72)	5.8 (28)	8.5 (2)	24.6 (58)	<loq< td=""><td><loq< td=""><td>2.2 (64)</td><td>1.3</td><td>3.5 (67)</td></loq<></td></loq<>	<loq< td=""><td>2.2 (64)</td><td>1.3</td><td>3.5 (67)</td></loq<>	2.2 (64)	1.3	3.5 (67)
220	1	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1.6 (80)</td><td>8.2 (5)</td><td>9.8 (83)</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1.2 (-)</td><td>1.2 (89)</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>1.6 (80)</td><td>8.2 (5)</td><td>9.8 (83)</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1.2 (-)</td><td>1.2 (89)</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>1.6 (80)</td><td>8.2 (5)</td><td>9.8 (83)</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1.2 (-)</td><td>1.2 (89)</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>1.6 (80)</td><td>8.2 (5)</td><td>9.8 (83)</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1.2 (-)</td><td>1.2 (89)</td></loq<></td></loq<></td></loq<></td></loq<>	1.6 (80)	8.2 (5)	9.8 (83)	<loq< td=""><td><loq< td=""><td><loq< td=""><td>1.2 (-)</td><td>1.2 (89)</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>1.2 (-)</td><td>1.2 (89)</td></loq<></td></loq<>	<loq< td=""><td>1.2 (-)</td><td>1.2 (89)</td></loq<>	1.2 (-)	1.2 (89)
	2	<loq< td=""><td><loq< td=""><td><loq< td=""><td>2.1 (94)</td><td>3.4 (58)</td><td>8.4 (3)</td><td>13.9 (76)</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1.2 (-)</td><td>1.2 (89)</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>2.1 (94)</td><td>3.4 (58)</td><td>8.4 (3)</td><td>13.9 (76)</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1.2 (-)</td><td>1.2 (89)</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>2.1 (94)</td><td>3.4 (58)</td><td>8.4 (3)</td><td>13.9 (76)</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1.2 (-)</td><td>1.2 (89)</td></loq<></td></loq<></td></loq<></td></loq<>	2.1 (94)	3.4 (58)	8.4 (3)	13.9 (76)	<loq< td=""><td><loq< td=""><td><loq< td=""><td>1.2 (-)</td><td>1.2 (89)</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>1.2 (-)</td><td>1.2 (89)</td></loq<></td></loq<>	<loq< td=""><td>1.2 (-)</td><td>1.2 (89)</td></loq<>	1.2 (-)	1.2 (89)
	3	<loq< td=""><td><loq< td=""><td><loq< td=""><td>7.0 (81)</td><td>4.0 (50)</td><td>8.5 (2)</td><td>19.5 (66)</td><td><loq< td=""><td><loq< td=""><td>1.5 (75)</td><td>1.2 (-)</td><td>2.7 (74)</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>7.0 (81)</td><td>4.0 (50)</td><td>8.5 (2)</td><td>19.5 (66)</td><td><loq< td=""><td><loq< td=""><td>1.5 (75)</td><td>1.2 (-)</td><td>2.7 (74)</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>7.0 (81)</td><td>4.0 (50)</td><td>8.5 (2)</td><td>19.5 (66)</td><td><loq< td=""><td><loq< td=""><td>1.5 (75)</td><td>1.2 (-)</td><td>2.7 (74)</td></loq<></td></loq<></td></loq<>	7.0 (81)	4.0 (50)	8.5 (2)	19.5 (66)	<loq< td=""><td><loq< td=""><td>1.5 (75)</td><td>1.2 (-)</td><td>2.7 (74)</td></loq<></td></loq<>	<loq< td=""><td>1.5 (75)</td><td>1.2 (-)</td><td>2.7 (74)</td></loq<>	1.5 (75)	1.2 (-)	2.7 (74)

Abbreviations: LOQ, limit of quantification; MOAH, mineral aromatic hydrocarbons: MOSH, mineral saturated hydrocarbons

^aRemoval rate (%) is given in brackets.

MOH – Remediation Analytical strategy

FOOD ADDITIVES & CONTAMINANTS: PART A https://doi.org/10.1080/19440049.2022.2164621 2022

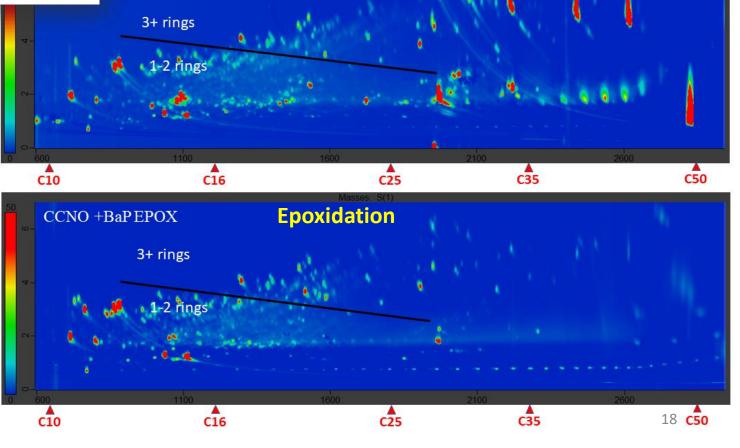
Taylor & Francis

VERNOF Check for updates

+BaPNO EPOX

Crude coconut oil

NO-Epoxidation


Investigation of the effect of refining on the presence of targeted mineral oil aromatic hydrocarbons in coconut oil

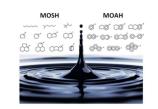
Grégory Bauwensa, Alexandre Cavaco Soaresb, Florence Lacosteb, Daniel Riberac, Coen Blomsmad, lekje Berg^e, Fernando Campos^f, Alwin Coenradie^g, Adina Creanga^h, Ralph Zwagermanⁱ and Giorgia Purcaro^a

Deodorization + bleaching

(230°C, 3h, 1 mbar + 1.7% mass of bleaching earth (Pureflow B80) 95°C x 30 min)

Epoxidation cannot be applied for this kind of studies!

MOH – Remediation Analytical strategy

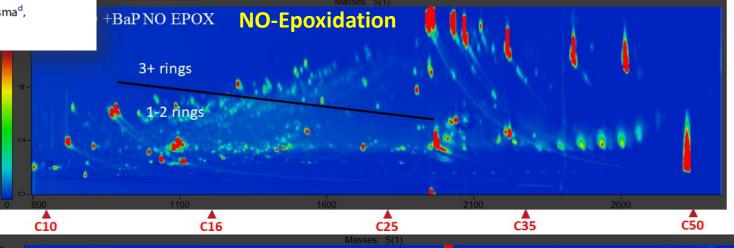

FOOD ADDITIVES & CONTAMINANTS: PART A https://doi.org/10.1080/19440049.2022.2164621 2022

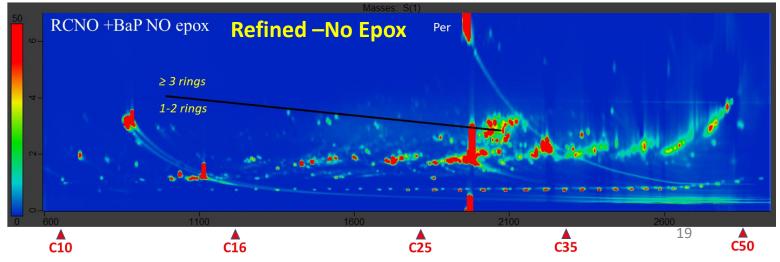
Taylor & Francis
Taylor & Francis Group

On Check for updates

VERNOF

Crude coconut oil

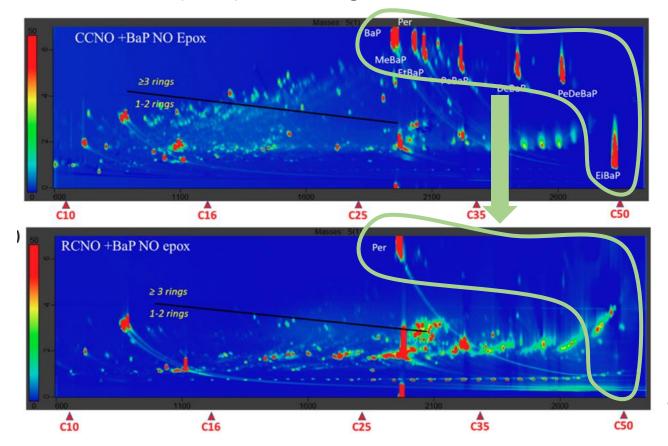

Investigation of the effect of refining on the presence of targeted mineral oil aromatic hydrocarbons in coconut oil


Grégory Bauwens^a, Alexandre Cavaco Soares^b, Florence Lacoste^b, Daniel Ribera^c, Coen Blomsma^d, Iekje Berg^e, Fernando Campos^f, Alwin Coenradie^g, Adina Creanga^h, Ralph Zwagermanⁱ and Giorgia Purcaro^a

Deodorization + bleaching

Epoxidation cannot be applied for this kind of studies!

- 66% C16-C25 MOH removed
- No modifications in C25-C50 MOH (but not clear contamination there)
- >98.9% spiked alkylated PAHs ≥ 3 rings removed



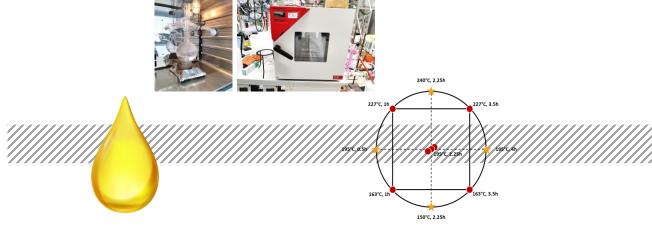
Removal of alkylated PAHs by bleaching

Bauwens et al. (2023) – bleaching + deodorization

Which is the contribution of deodorization and bleaching separately?

>98.9% removal of the spiked alkylated PAHs

MOH – Remediation Deodorization



Impact of deodorisation time and temperature on the removal of different MOAH structures: a lab-scale study on spiked coconut oil

Aleksandra Gorska^a, Sabine Danthine^b, Nicolas Jacquet^b and Giorgia Purcaro^a

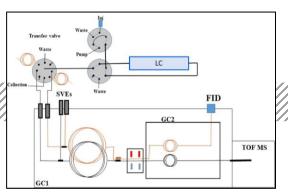
^aAnalytical Chemistry, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; ^bFood Technology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium

Coconut oil spiked with MOAH (9 mg/kg)

Deodorization at lab-scale

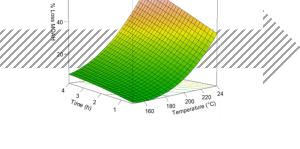
(11 experiments - CCD)

Variables:


time (0.5-4h), T° (150-240°C)

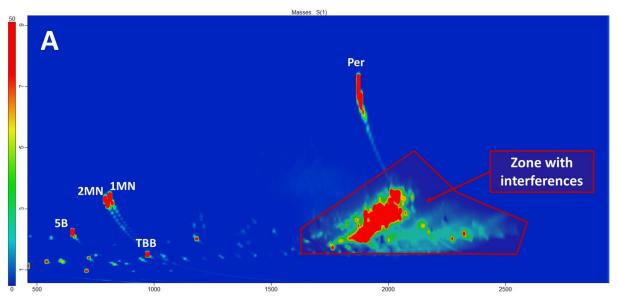
Constants:

pressure (3mbar), steam flow (1%_w/h)

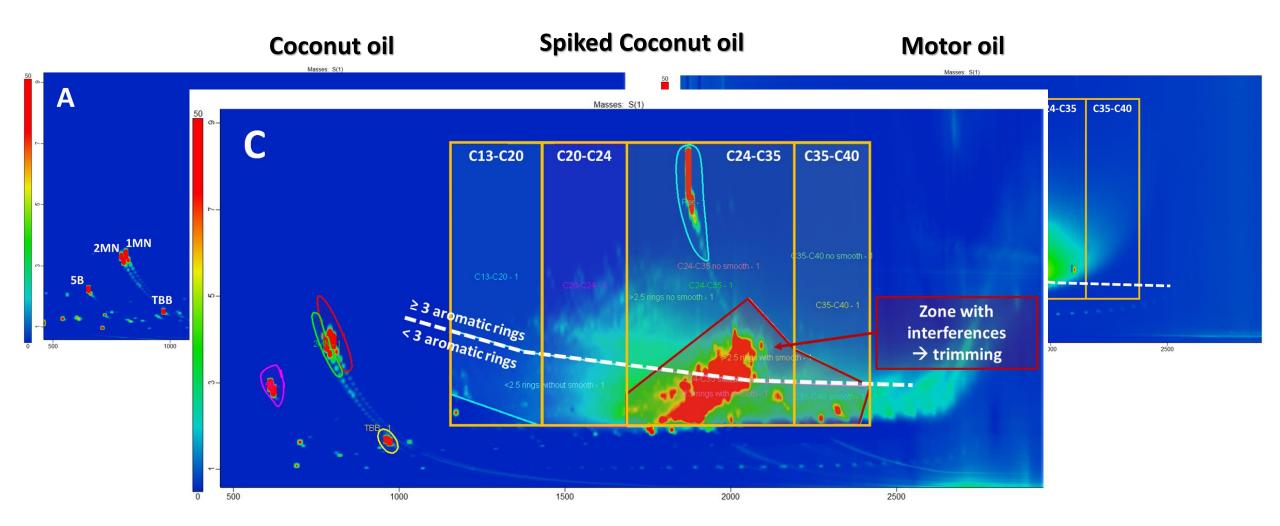

DEODORIZATION

The most delicate step of this project was the MOAH analysis → required an adapted **strategy**

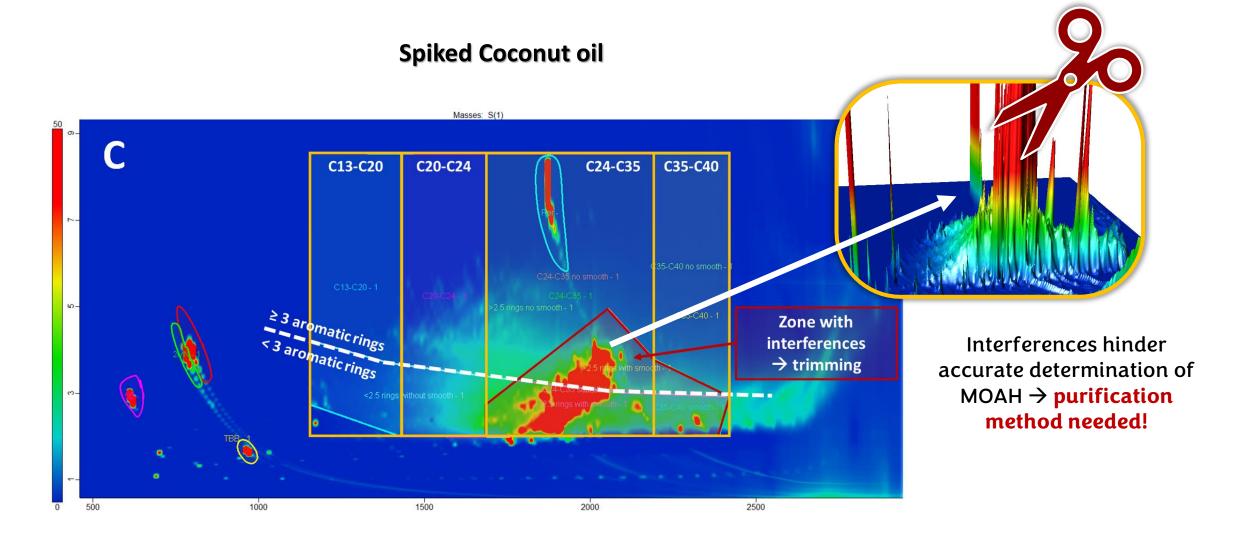
MOAH analysis before/after deodorization (by LC-GC×GC-FID)


Response surfaces
MOAH loss according to
time and temperature

MOH – Remediation Deodorization time-temperature



MOH – Remediation Deodorization time-temperature



MOH – Remediation Deodorization time-temperature

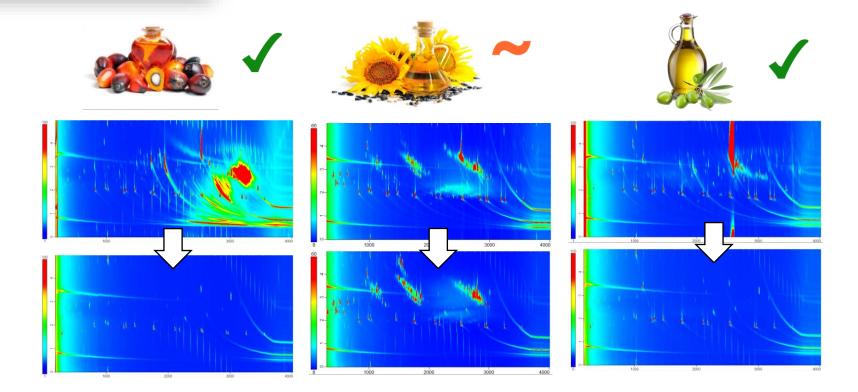
MOH – Remediation Analytical strategy

Journal of Chromatography A 1743 (2025) 465684

Contento listo available at ScienceDirect

Journal of Chromatography A

journal homepage: www.elsevier.com/locate/chroma


Purification of mineral oil aromatic hydrocarbons and separation based on the number of aromatic rings using a liquid chromatography silica column. An alternative to epoxidation

Aleksandra Gorska ** Q, Grégory Bauwens **, Marco Beccaria ** Q, Giorgia Purcaro ** Q

Very good removal of carotenoids and squalene

Other terpenoids are less well removed

MOH – Remediation Analytical strategy

Journal of Chromatography A 1743 (2025) 465684

Contento lioto available at ScienceDirect

Journal of Chromatography A

journal homepage: www.elsevier.com/locate/chroma

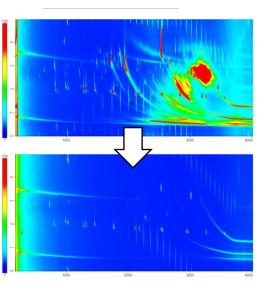
Purification of mineral oil aromatic hydrocarbons and separation based on the number of aromatic rings using a liquid chromatography silica column. An alternative to epoxidation

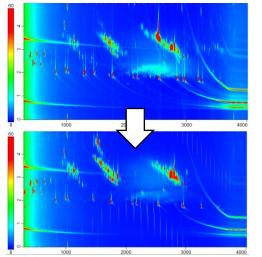
Aleksandra Gorska * 0, Grégory Bauwens *, Marco Beccaria * 0, Giorgia Purcaro * 0

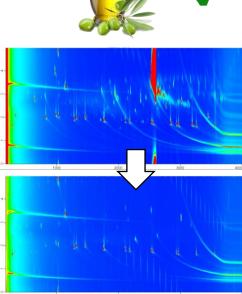
Very good removal of carotenoids and squalene

Other terpenoids are less well removed

MOAH Recovery LC Purification:

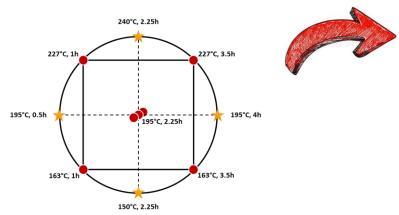

94% ± 2%


Epoxidation

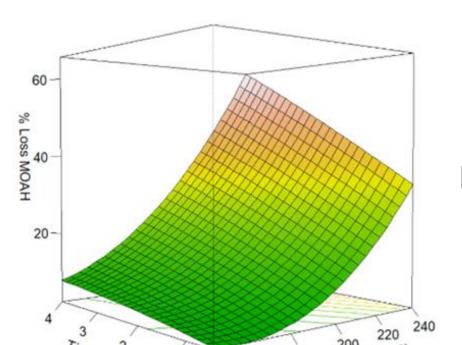

mCPBA

performic acid

82%± 10% 71 ± 16%



MOH – Remediation Analytical strategy



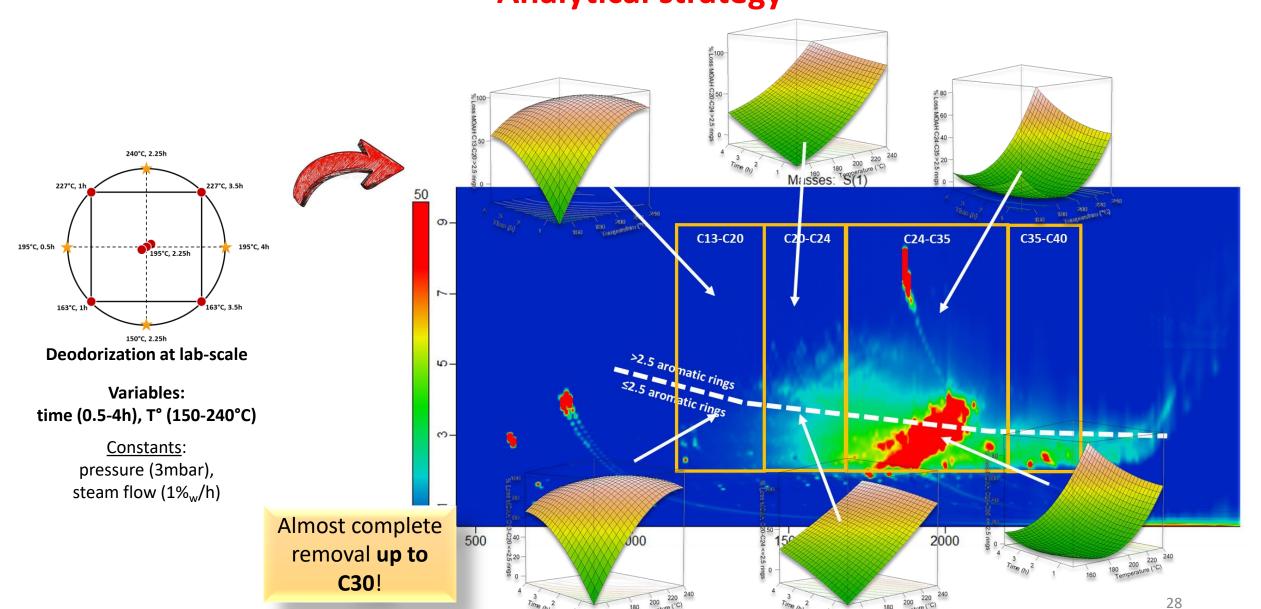
Deodorization at lab-scale

Variables: time (0.5-4h), T° (150-240°C)

Constants: pressure (3mbar), steam flow (1%_w/h)

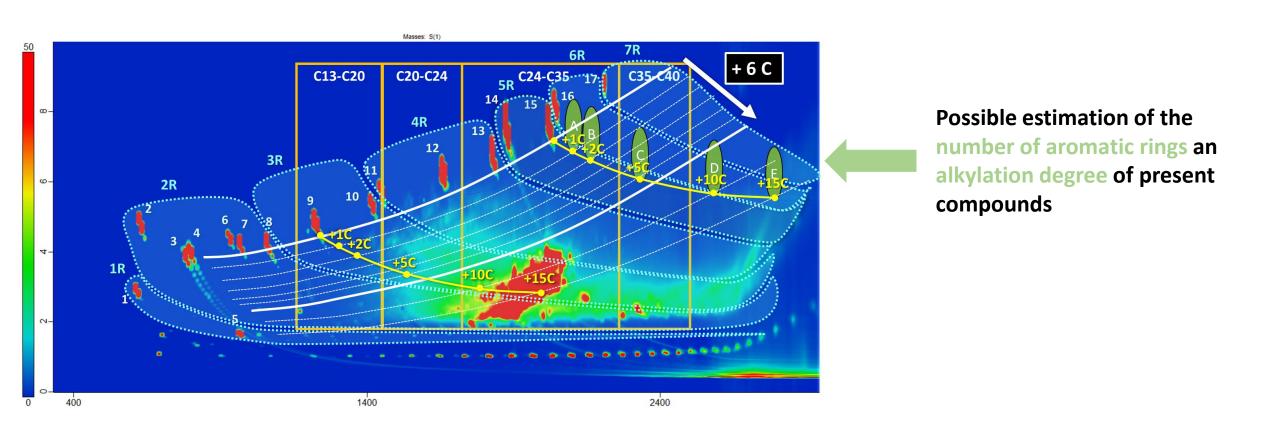
160

80 200 220 Temperature (°C)

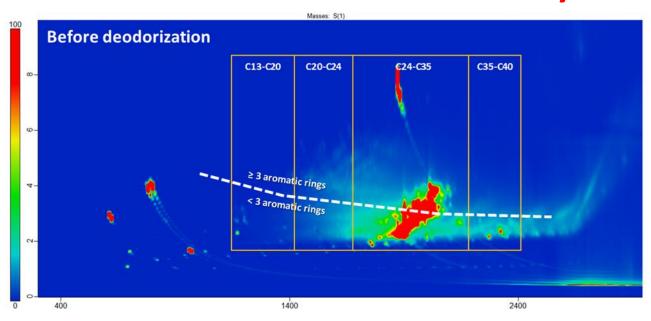

Total

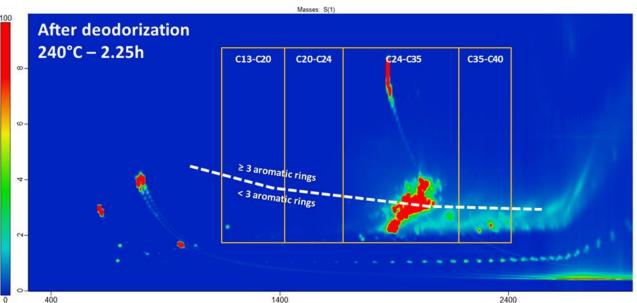
Max removal: 60%

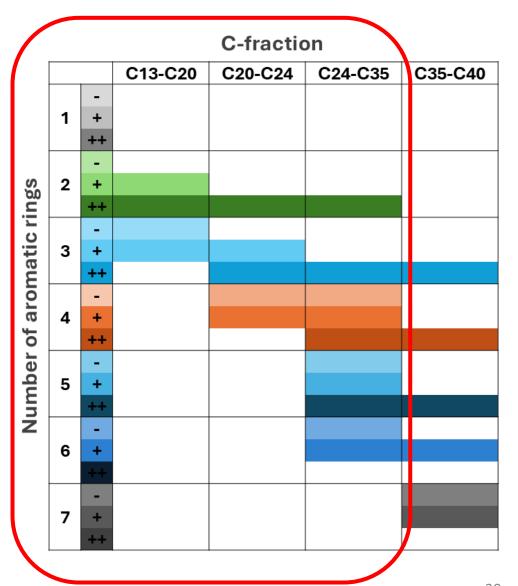
MOH – Remediation Analytical strategy



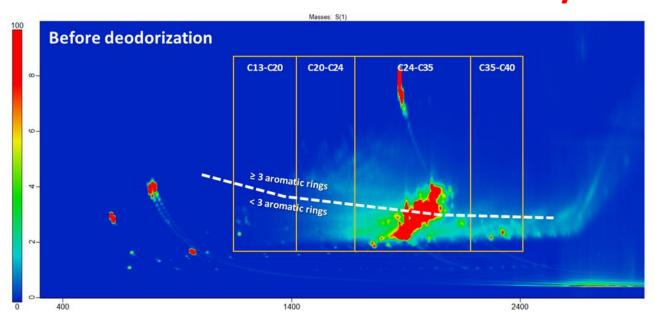
What chemical structures are removed?

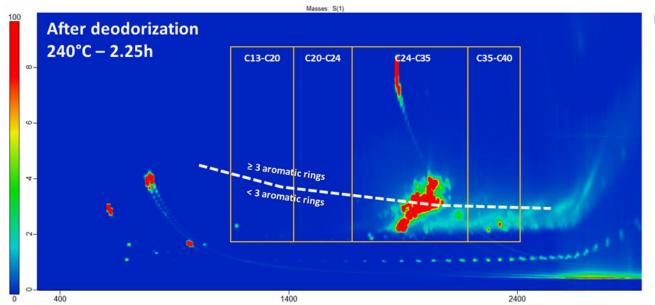

Possible to study the MOAH chemical structures that are removed thanks to an LC-GC×GC-FID/TOFMS analysis



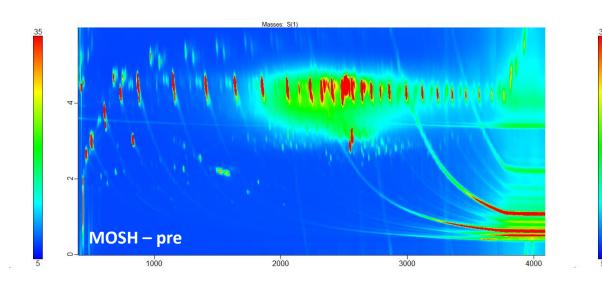


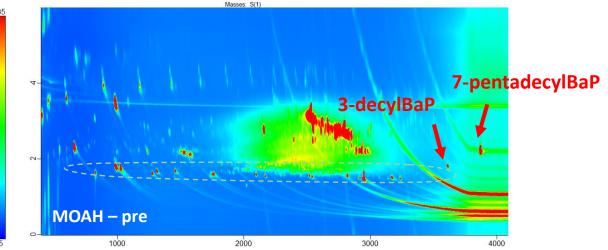
MOH – Remediation Analytical strategy



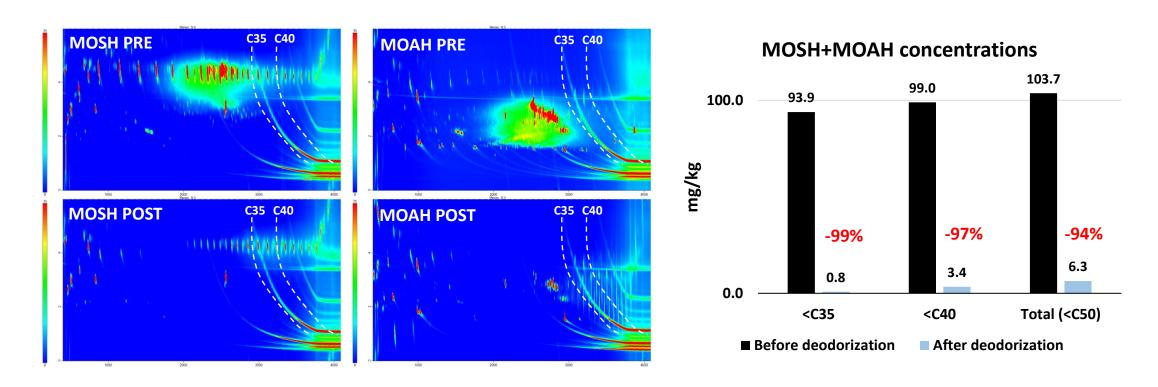

MOH – Remediation Analytical strategy

- C13-C20: reduction <LOQ at ~200°C ✓
- C20-C24: reduction <LOQ ~220°C ✓
- **C24-C35**: reduction of ~60% at >230°C ~
- C35-C40: no visible reduction at 240°C ⊗


Open question at the end of the study


Is it possible to reduce **C35-C40 MOH** applying lower (but technically feasible) pressures?

New deodorization trials with lower pressure



New deodorization trials with lower pressure

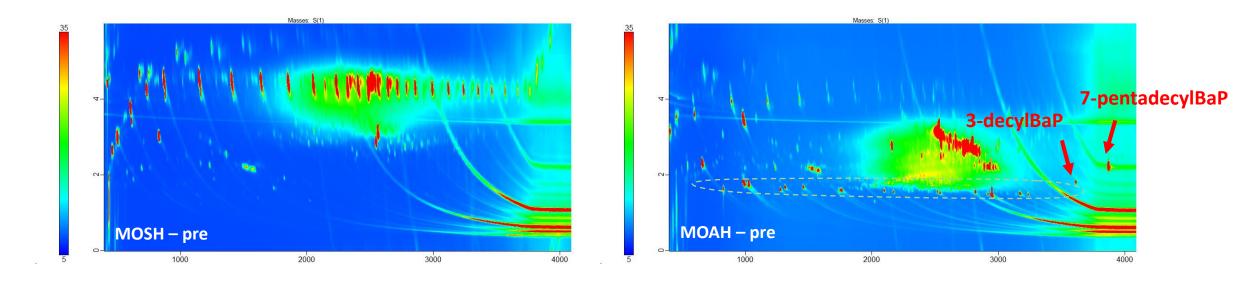
Deodorization conditions: 240°C, 4h, 1 mbar (instead of 3 mbar as in *Gorska et al.*), 1%/h steam

Matrix: spiked coconut oil

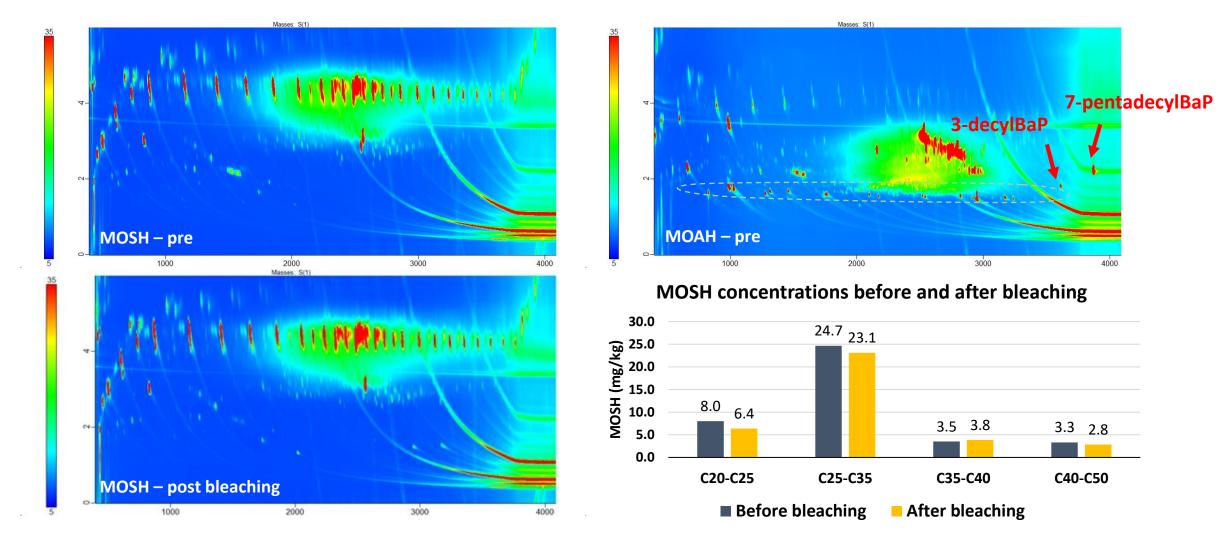
Reduction of 99% (from 66.9 to <1 mg/kg) of the C25-C35 fraction (compared to ~60% in Gorska et al. (2024))

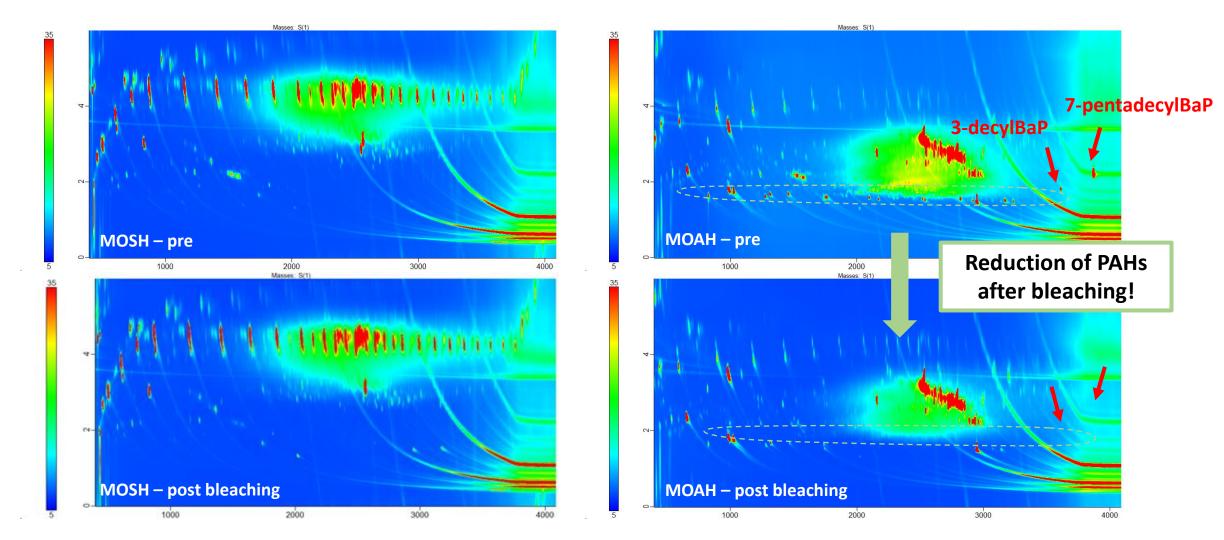
Weak reduction of ~50% of the C35-C40 (5.5 to 2.7 mg/kg MOH) and C40-C50 (4.8 to 2.9 mg/kg MOH)

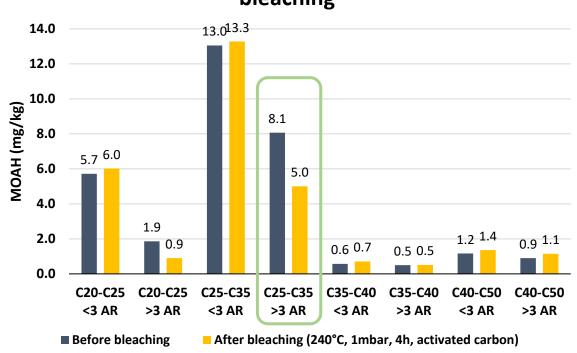
Bleaching: Adsorptive treatment (e.g. bleaching earth) under vacuum and heat to remove pigments (carotenoids, chlorophyll), peroxides, soaps, and residual salts.

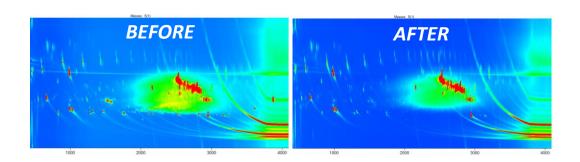

Limited available litterature for MOH

- Heavy PAHs are known to be able to adsorb on activated carbon
- Little information on the effect of alkylation of the parent PAH
- Significant (> 98.5%) reduction of alkylated BaP was observed by Bauwens et al. (2023) after combined bleaching and deodorization, but the effect of each individual step was not investigated
- Ursol et al. (2025) observed a reduction of low alkylated PAHs in bleached samples, but epoxidation was applied



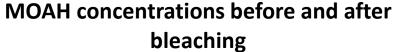


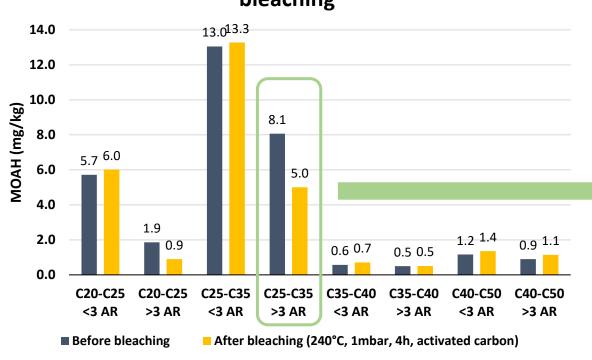


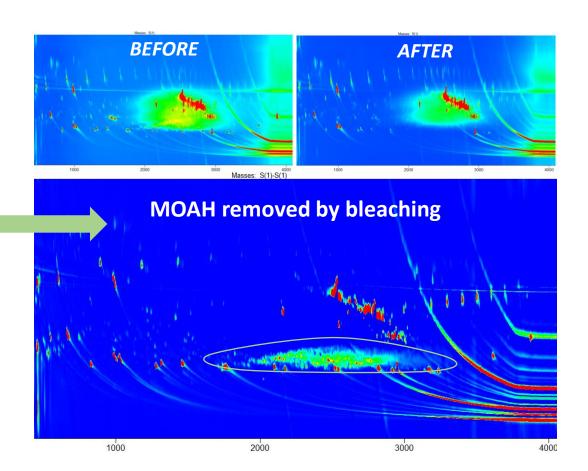


Effect of bleaching on MOAH

MOAH concentrations before and after bleaching

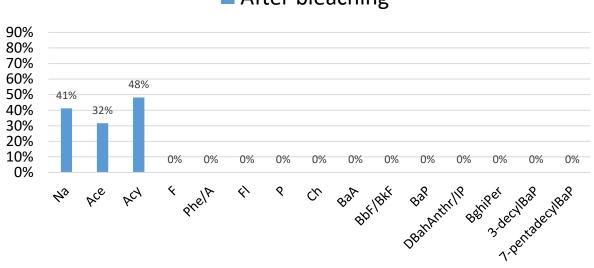

Noticeable reduction of MOAH >3 aromatic rings between C25 and C35



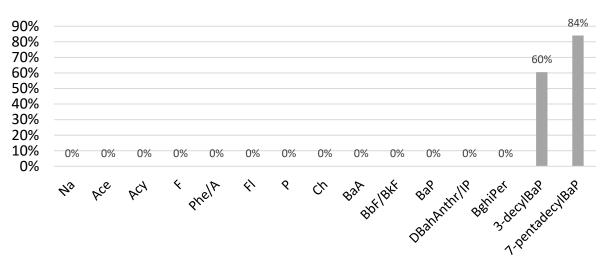


Effect of bleaching on MOAH

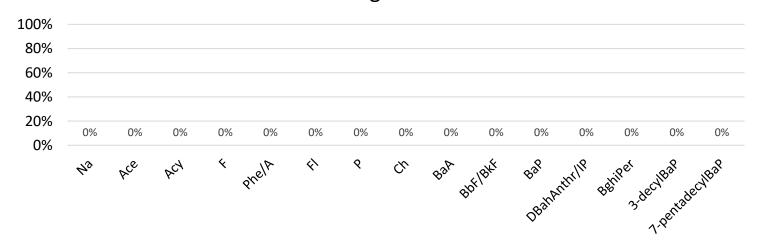
Noticeable reduction of MOAH >3 aromatic rings between C25 and C35



Effect on PAHs and PACs

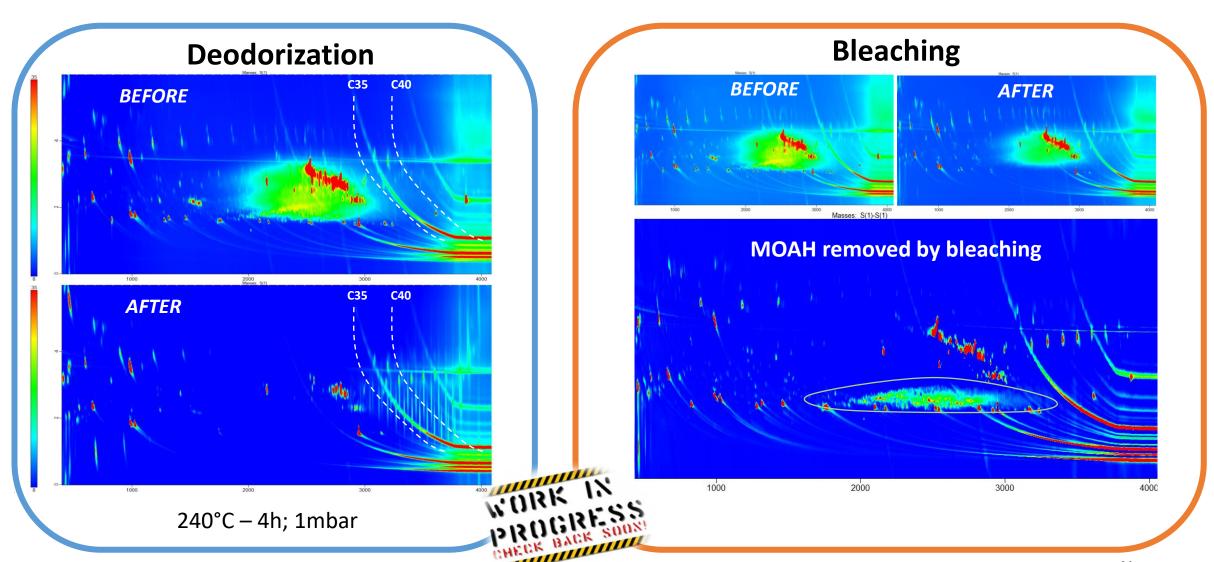

Remaining PAHs and PAC

After bleaching



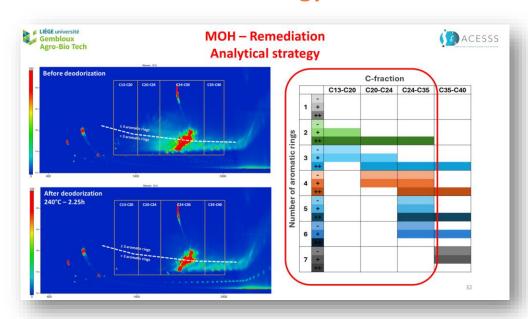
Remaining PAHs and PAC

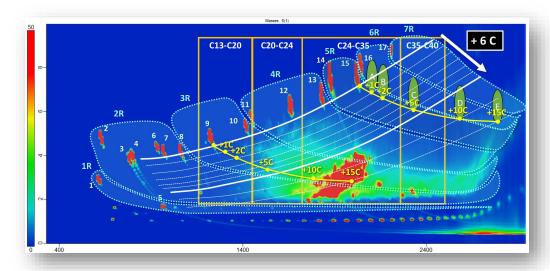
After bleaching and deodorization

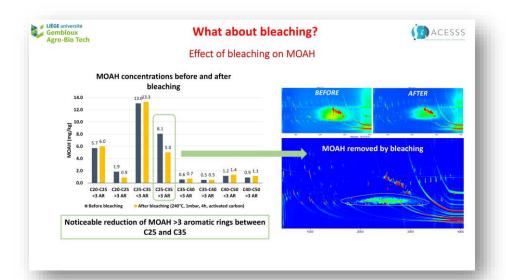

Bleaching removed all PAHs apart from Na, Ac, Ap, which could then anyway be removed during the deodorization step

Work in progress

Effect of deodorization and/or bleaching on MOAH




CONCLUSION


➤ **GC**×**GC** is a **strategic tool**, not only for getting more insight on the profile of the MOSH & MOAH contamination but also to elucidate the role of **remediation strategy**.

➢ Bleaching significantly reduce MOAH >3 aromatic rings between C25 and C35

➤ **Deodorization** significantly remove MOH contamination depending on the **T/t** and **pressure** applied

June, 12-13

3rd ADVANCES IN SEPARATION SCIENCE WORKSHOP

Gembloux, Belgium

J. Pawliszyn

C. Cordero

G. Hopfgrtaner

H. Mol

B. Bojko

E. Leitner

P. Tranchida

E. Rosenberg

K. Schug

H.-G. Janssen

E. Gionfriddo

• SPME

• GC

My research group:

Sophie Vancraenenbroeck

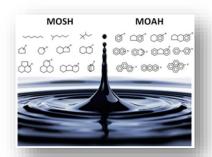
Paula Albendea

Damien Eggermont

Aleksandra Gorska

Donatella Ferrara

Damien Pierret



My research group:

Sophie Vancraenenbroeck

Paula Albendea

Damien Eggermont

Aleksandra Gorska

Donatella Ferrara

Damien Pierret

Carlo Bellinghieri

