



# Efficient multiscale simulations of additively manufactured alloys at finite strain: Towards a hybrid approach combining FE-NN and FE<sup>2</sup>

Ph.D. Cand. Arnaud RADERMECKER<sup>1,2</sup>

Prof. J-P. Ponthot<sup>1</sup> & Prof. A. Simar<sup>2</sup>

<sup>1</sup>Université de Liège (BE), MN2L

<sup>2</sup>Université Catholique de Louvain (BE), IMAP

5th International Conference on Computational Methods for Multi-scale, Multi-uncertainty and Multi-physics Problems, Porto, Portugal, 1-3 July 2025









#### **Outline**

- Background & Motivation
- > Finite element squared in our in-house FE code Metafor
  - → Challenge 1: Efficiency & robustness
- ➤ A hybrid approach combining FE-NN and FE<sup>2</sup>
  - → Challenge 2: Reducing cost while preserving reliability of multiscale simulations
- Conclusion and future perspectives





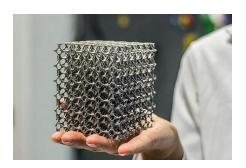
#### **Background & Motivation**

- Context
  - Additive Manufacturing (AM) holds promising prospects in the space sector, particularly within the "New Space" movement, which emphasizes the use of miniature satellites (CubeSats), reusable launchers, and more.

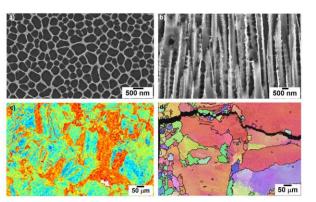


- AM enables the design of innovative structures, unlocking new design possibilities:
  - Optimized and constructed in a single piece.
  - Unachievable with conventional methods.
- > Challenges
  - However, AM introduces new challenges due to the **microstructure** it generates, including gaps, porosities, inclusions, etc., which can **influence** the material's strength.

Reality is complex!











#### Multiscale simulations: Finite Element Squared (FE<sup>2</sup>)

#### The key idea is to include smaller scale effects while avoiding "large" FE simulations.

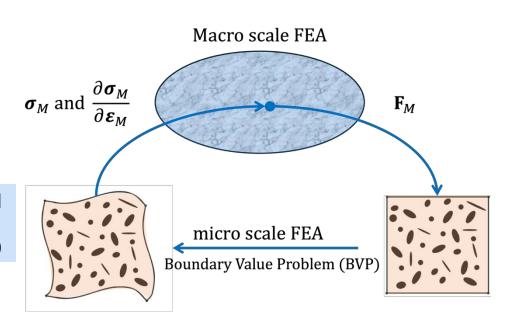
- > There are two scales simultaneously:
  - Macroscopic scale (*M*): Mechanical part
  - microscopic scale (m): 3D scans, RVE, etc.
- > Hill-Mandel macro-homogeneity condition:

Virtual work of a Macro point 
$$P_M: \delta F_M = \frac{1}{V_0} \int_{V_0} P_m: \delta F_m \, dV_0$$
 Virtual work averaged of a micro volume  $\rightarrow$  its micro FEA (BVP)

- → Specific boundary conditions @micro
- > Scale transition:

• 
$$\mathbf{F}_M = \frac{1}{V_0} \int \mathbf{F}_m dV_0 \to \mathbf{F}_m = \mathbf{F}_M + \tilde{\mathbf{F}}$$

• 
$$\mathbf{P}_{M} = \frac{1}{V_{0}} \int \mathbf{P}_{m} dV_{0} \ (\text{or} \ \boldsymbol{\sigma}_{M} = \frac{1}{V} \int \boldsymbol{\sigma}_{m} dV)$$







### Challenge 1: An efficient FE<sup>2</sup> code

#### Multiscale simulations such as FE<sup>2</sup> are **inherently computationally expensive**.

- > To mitigate this intrinsic cost:
  - Multiple microscale boundary value problems in parallel.
  - Consistent macroscopic tangent moduli operator  $\frac{\partial \sigma_M}{\partial \varepsilon_M}$   $\rightarrow$  better convergence.
  - Reduced computational cost associated with  $\sigma_M$  and  $\frac{\partial \sigma_M}{\partial \varepsilon_M}$  thanks to the master nodes.
- ➤ All developments have been integrated into Metafor, our in-house nonlinear finite element solver:
  - finite strain
  - updated Lagrangian,
  - hypoelastic formulation,
  - Jaumann rate of the Cauchy stress.

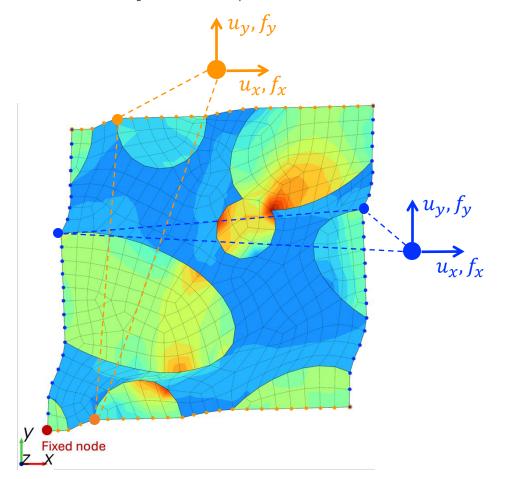






#### Challenge 1: An efficient FE<sup>2</sup> code, the master nodes

Periodic boundary conditions are imposed between opposite faces using Lagrange multipliers, driven by the displacements of their associated master node.



From  $\mathbf{F_M}$ , displacements  $\mathbf{u}$  are imposed on the two (2D) or three (3D) master nodes, driving the microscale boundary value problem:

$$\begin{cases} u_y^1 - u_y^0 = u_y \\ u_y^1 - u_y^0 = u_y \end{cases} \begin{cases} u_y^1 - u_y^0 = u_y \\ u_y^1 - u_y^0 = u_y \end{cases}$$

The full macroscopic response is obtained from the two (2D) or three (3D) master nodes.

- 1. The reaction forces f at the master nodes give  $\sigma_{\mathrm{M}}$
- 2. Static condensation of the RVE onto the master nodes provides the consistent macroscopic tangent modulus:

$$\mathbf{K}_{\mathrm{S.E.}} = \frac{\partial f}{\partial u} \Rightarrow [\dots] \Rightarrow \frac{\partial \sigma_{M}}{\partial \varepsilon_{M}}$$





#### Challenge 1: An efficient FE<sup>2</sup> code, the master nodes

Periodic boundary conditions are imposed between opposite faces using Lagrange multipliers, driven by the displacements of their associated master node.



$$\mathbf{K}_{\text{S.E.}} = \begin{bmatrix} \frac{\partial f_x}{\partial u_x} & \frac{\partial f_x}{\partial u_y} & \frac{\partial f_x}{\partial u_x} & \frac{\partial f_x}{\partial u_y} \\ \frac{\partial f_y}{\partial u_x} & \frac{\partial f_y}{\partial u_y} & \frac{\partial f_y}{\partial u_x} & \frac{\partial f_y}{\partial u_y} \\ \frac{\partial f_x}{\partial u_x} & \frac{\partial f_x}{\partial u_y} & \frac{\partial f_x}{\partial u_x} & \frac{\partial f_x}{\partial u_y} \\ \frac{\partial f_y}{\partial u_x} & \frac{\partial f_y}{\partial u_y} & \frac{\partial f_y}{\partial u_x} & \frac{\partial f_y}{\partial u_y} \end{bmatrix}$$



From  $\mathbf{F_M}$ , displacements  $\boldsymbol{u}$  are imposed on the two (2D) or three (3D) master nodes, driving the microscale boundary value problem:

$$\begin{cases} u_y^1 - u_y^0 = u_y \\ u_y^1 - u_y^0 = u_y \end{cases} \begin{cases} u_y^1 - u_y^0 = u_y \\ u_y^1 - u_y^0 = u_y \end{cases}$$

The full macroscopic response is obtained from the two (2D) or three (3D) master nodes.

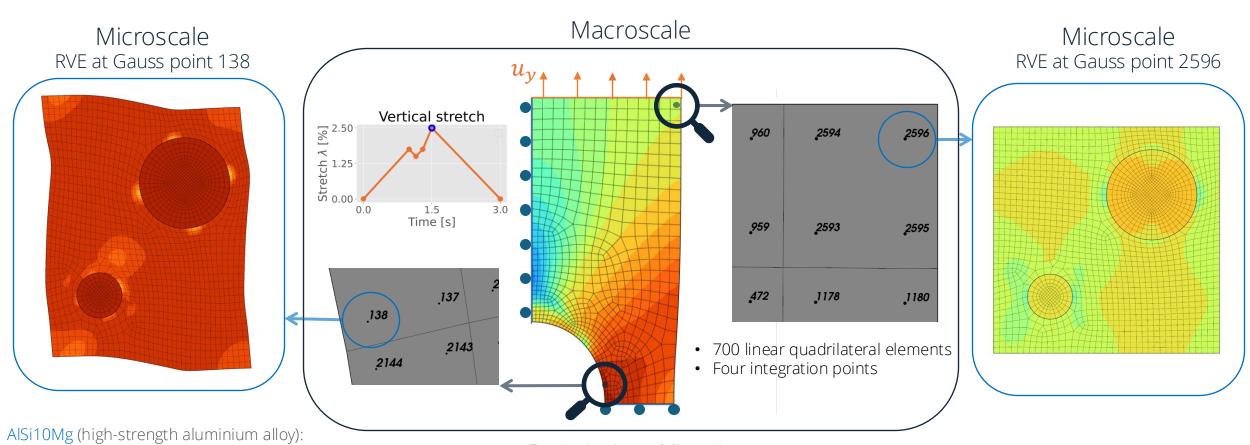
- 1. The reaction forces f at the master nodes give  $\sigma_{\mathrm{M}}$
- 2. Static condensation of the RVE onto the master nodes provides the consistent macroscopic tangent modulus:

$$\mathbf{K}_{\mathrm{S.E.}} = \frac{\partial f}{\partial u} \Rightarrow [\dots] \Rightarrow \frac{\partial \sigma_M}{\partial \varepsilon_M}$$





#### Metafor: an efficient plane strain and 3D FE<sup>2</sup> solver



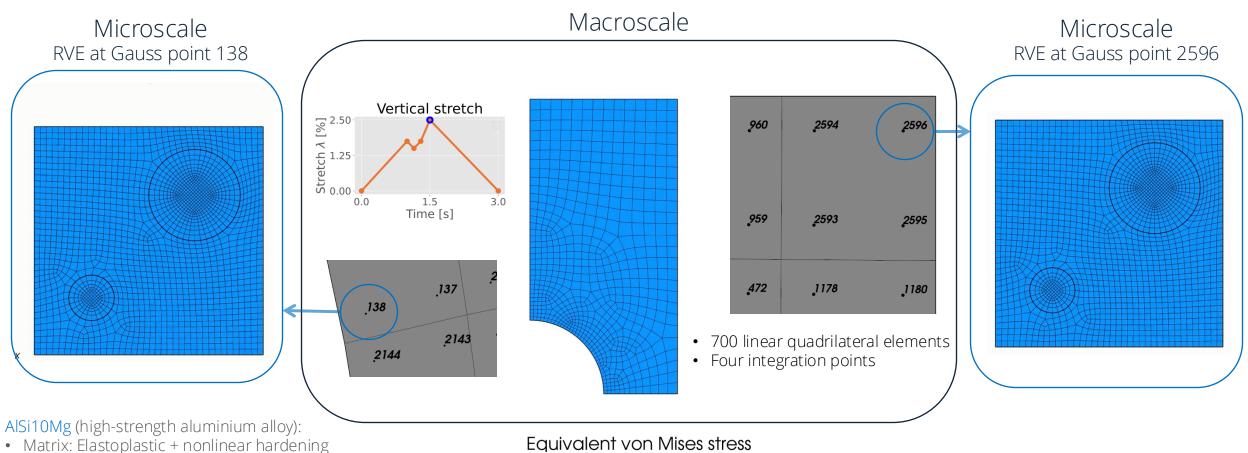
- Matrix: Elastoplastic + nonlinear hardening
- Particles: Elastic
- 2,200 linear quadrilateral elements





## Metafor: an efficient plane strain and 3D FE<sup>2</sup> solver

120 steps were computed, requiring 165 (macro) iterations and 1h50 using 64 cores.



• Particles: Elastic

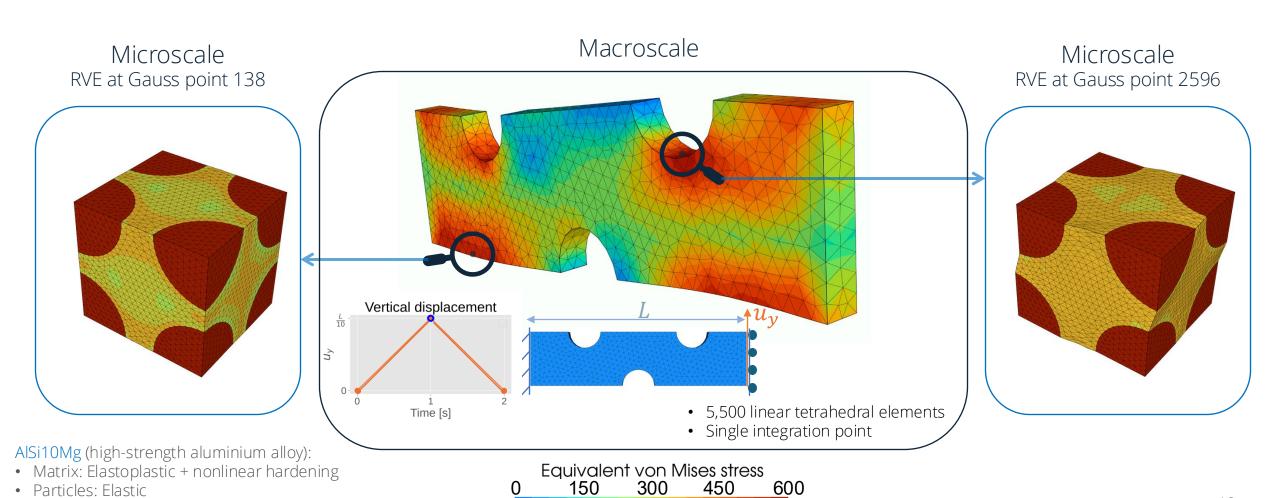
• 2,200 linear quadrilateral elements



• 43,000 linear tetrahedral elements



### Metafor: an efficient plane strain and 3D FE<sup>2</sup> solver



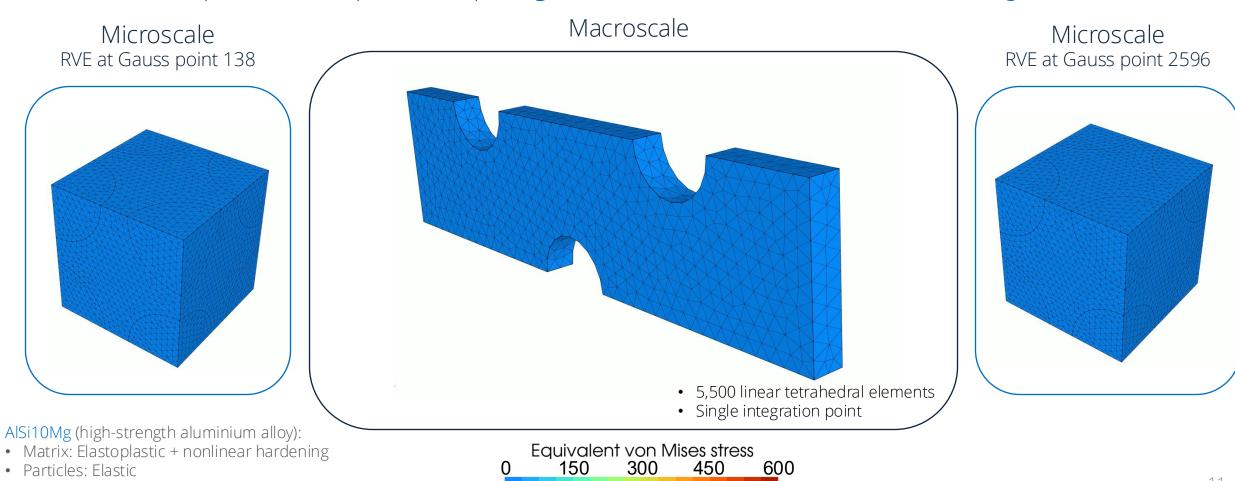


• 43,000 linear tetrahedral elements



#### Metafor: an efficient plane strain and 3D FE<sup>2</sup> solver

75 steps were computed, requiring 127 (macro) iterations and 47h20 using 64 cores.







## Challenge 2: combine FE<sup>2</sup> with deep learning

Multiscale simulations such as FE<sup>2</sup> are **inherently computationally expensive.** 

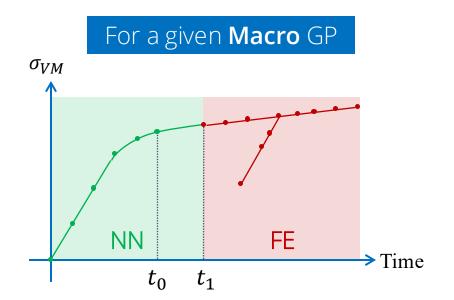
- ➤ Neural Networks (NN) *once properly trained* can be employed to reduce the computational cost of the microscale simulations → FE-NN.
  - Offline cost associated with training the model and generating the data.
  - NN will never be able to extrapolate infinitively beyond their training data.
  - A complex neural network architectures may not be an effective strategy,
  - nor relying solely on neural networks for multiscale simulations.

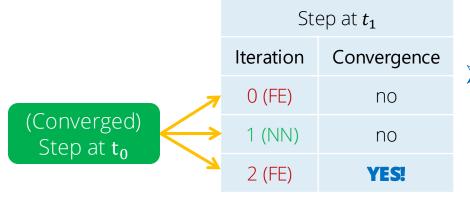
A promising direction could lie in a hybrid approach, combining the efficiency of neural networks FE-NN with the reliability of traditional FE<sup>2</sup>.





#### The FE-NN-FE<sup>2</sup> Hybrid Approach: concept and applicability





- At time t=0, all macro Gauss points (GP) use the neural network surrogate model to predict microscale responses.
- During the simulation, some macro Gauss points may switch to the FEA of the RVE if the local loading conditions fall outside the neural network's training data.



- > The NN surrogate must be:
  - Be trained on a well-defined dataset (no random walk algorithms) → switching criterion.
  - As simple as possible (avoiding black-box architectures).

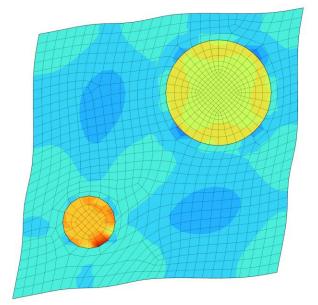




#### The FE-NN-FE<sup>2</sup> Hybrid Approach: elastic domain of an elastoplastic RVE

#### AlSi10Mg (high-strength aluminium alloy):

- Matrix: Elastoplastic + nonlinear hardening
- Particles: Elastic



As for the homogenized stress:

$$\bar{\varepsilon}_{M}^{p} = \frac{1}{v} \int_{v} \bar{\varepsilon}_{m}^{p} dv \implies \eta = \begin{cases} 1 & \bar{\varepsilon}_{M}^{p} > 0 \\ 0 & \text{otherwise} \end{cases}$$

- The switching criterion is triggered when plasticity occurs in the RVE.
- $\rightarrow$  Before path dependency: a simple feed-forward neural network  $\mathcal N$  can be used.
- ightharpoonup 
  igh

$$\sigma_M$$
,  $\eta = \mathcal{N}(\varepsilon_M)$ 

 $\eta = 0 \rightarrow$  Elastic region: can rely on  $\mathcal{N}$ 's prediction.

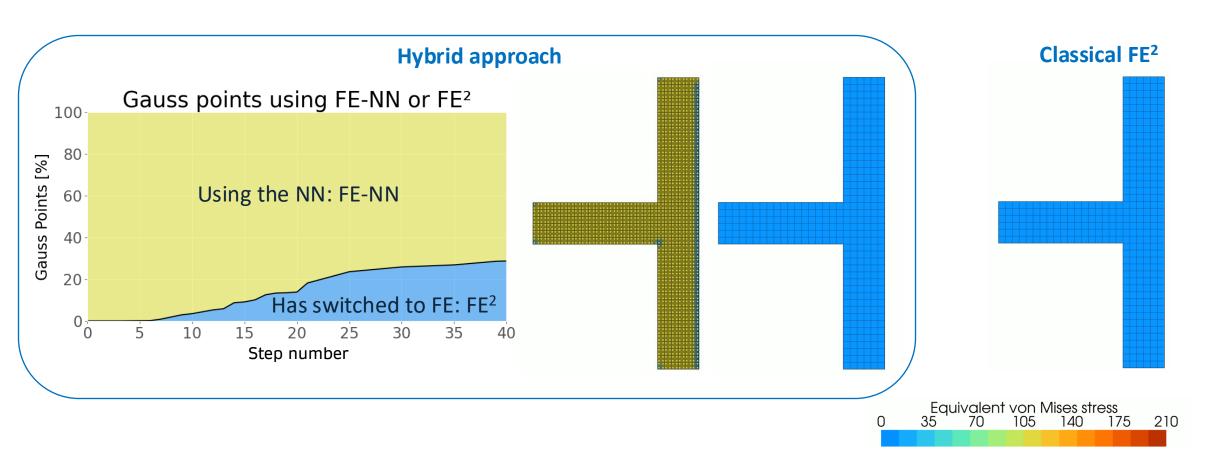
 $\eta > 0 \rightarrow$  Plasticity occurred: switching from  ${\mathcal N}$  to FE.





## The FE-NN-FE<sup>2</sup> Hybrid Approach: result (1)

- ➤ Offline: 40 min to generate the data and training the model (5 cores)
- $\rightarrow$  Online: 3 min for FE-NN-FE<sup>2</sup> compared to 40 min for FE<sup>2</sup> (10 cores)  $\rightarrow$  12.3× speed-up (and 80x less disk space!)

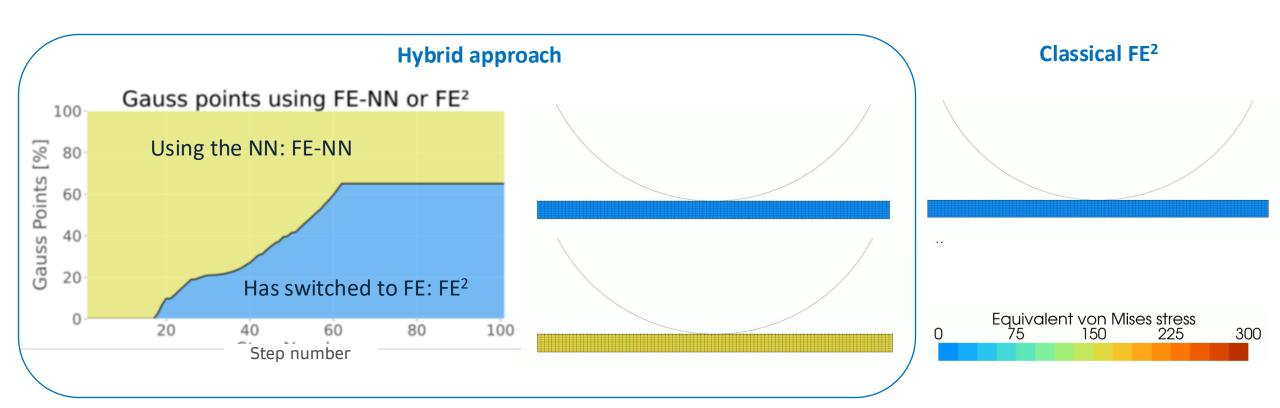






## The FE-NN-FE<sup>2</sup> Hybrid Approach: result (2)

- > Offline: 40 min to generate the data and training the model (5 cores)
- $\rightarrow$  Online: 140 min for FE-NN-FE<sup>2</sup> compared to 180 min for FE<sup>2</sup> (10 cores)  $\rightarrow$  1.3× speed-up (and 20x less disk space!)







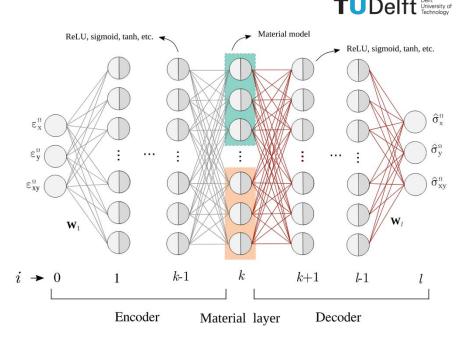
## Challenge 2: extension to path-dependent region

- Classical Recurrent Neural Networks (LSTM, GRU, MGRU, etc.) ?
  - Self-inconsistent, strain increment size dependence, lots of internal parameters → expensive training.
  - History variables: little to no physical meaning.
  - Trained on random-walk-generated paths → how to define the switching criterion?



- Self-consistent, strain increment size independence, very few internal parameters → inexpensive training.
- History variables: fictitious material models in the NN.
- Predict unloading/reloading behavior when trained monotonic data.

No random-walk-generated paths → switching criterion ✓

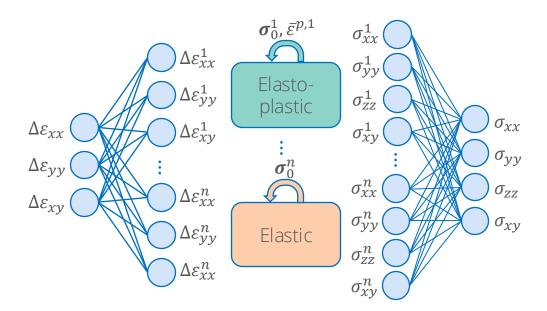






#### Challenge 2: extension to path-dependent region

- The PRNN used in this hybrid approach is highly inspired by M.A. Maia et al. (2024), with the following adaptations:
  - Input: logarithm strain increment  $\Delta \varepsilon_M$ .
  - Encoder and decoder are a linear layer without bias:  $\Delta \varepsilon = \mathbf{0} \rightarrow \Delta \sigma = \mathbf{0}$ .
  - The same material models and radial return algorithm as those implemented in Metafor.
- $\triangleright$  Each macro GP stores its loading history + the history variables of the n material models.







#### The FE-NN-FE<sup>2</sup> Hybrid Approach: extension to path-dependent region

Application: A macroscopic simulation under monotonic loading, with a RVE (¼ elastic and ¾ elastoplastic with saturated hardening materials).

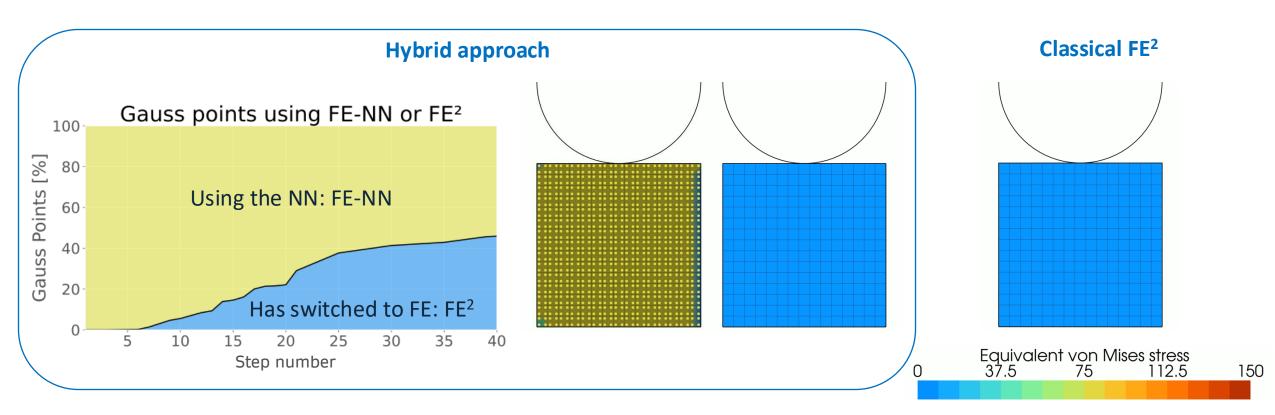
- Knowing this application, the PRNN is:
  - Composed of the same material ratio.
  - Trained on monotonic loadings (100 paths with  $\|\varepsilon\| = 10\%$ ); following M.A. Maia et al. (2024).
  - Offline phase 60 min: 20 min to generate the data, 40 min to train the model on a single core.
  - Tested within this range, the PRNN predicts loading/unloading as in M.A. Maia et al. (2024)
    - → Monotonic loading @Macro but GP may see loading/unloading.
- > The hybrid approach for this application:
  - Switching criterion: when the macro strain norm exceeds  $\|\varepsilon_M\| > 9\%$ .
  - $\frac{\partial \sigma_M}{\partial \epsilon_M}$  from backpropagation (more efficient than finite difference).





#### The FE-NN-FE<sup>2</sup> Hybrid Approach: extension to path-dependent region

- ➤ Offline: 60 min to generate the data (100 monotonic paths) and training the PRNN on a single core.
- $\rightarrow$  Online: 120 min for FE-NN-FE<sup>2</sup> compared to 170 min for FE<sup>2</sup> (10 cores)  $\rightarrow$  1.4× speed-up (and 10x less disk space!)



#### Conclusion and future perspectives

- Multiscale simulations such as FE<sup>2</sup> are inherently expensive:
  - Importance of an efficient implementation and robust approximation of  $\frac{\partial \sigma_{\rm M}}{\partial \varepsilon_{\rm M}}$ .
- > We proposed a hybrid approach:
  - Combines the efficiency of neural networks in specific ranges,
  - while switching to a FEA of the microscale once we can no longer rely on the NN.
  - → Reduces online cost compared to vanilla FE².
  - → Reduces offline cost compared to vanilla FE-NN.
  - →The user has the control of the neural network.
- > Future directions:
  - Extend this hybrid approach to broader loading path coverage.
  - Apply both methods (FE<sup>2</sup> + hybrid) to real mechanical tests on AM parts.





# Efficient multiscale simulations of additively manufactured alloys at finite strain: Towards a hybrid approach combining FE-NN and FE<sup>2</sup>

Ph.D. Cand. Arnaud RADERMECKER<sup>1,2</sup>

Prof. J-P. Ponthot<sup>1</sup> & Prof. A. Simar<sup>2</sup>

<sup>1</sup>Université de Liège (BE), MN2L

<sup>2</sup>Université catholique de Louvain (BE), IMAP

5th International Conference on Computational Methods for Multi-scale, Multi-uncertainty and Multi-physics Problems, Porto, Portugal, 1-3 July 2025



