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Context and objectives Macroscopic stress & tangent modulus from the master nodes
Additive manufacturing (AM) is a key enabler in the space sector, particularly within the “New Space” Methodology:
or “Space 4.0" paradigm, which promotes satellite miniaturization, reusable launchers, and innovation. T“y L . .
) = Periodic boundary conditions are imposed between op-

AM allows for groundbreaking structural designs that are optimized and built as a single piece. 3 sosite faces using Lagrange multipliers. driven by the dis-

placements of the associated master node.

= From the macroscopic deformation gradient F, displace-
ments w are imposed on the two (2D) or three (3D) master
nodes, driving the microscale boundary value problem.
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Master node x The full macroscopic response can be extracted from the
two (2D) or three (3D) master nodes:

1. Thereaction forces f at the master nodes yield the macro-
SCOpIC stress oryE.

Figure 1. Two different 3D printed parts from mottcorp.com. Different microstructures of AlSI10Mg alloys obtained by

additive manufacturing [1]: as built (a) and after stir friction processing (b). ﬂyLF;(xenode 2. Static condensation of the RVE onto the master nodes
. L. : . ields the consistent macroscopic tangent modulus:
» Meanwhile, new opportumhgs and challenges emerge frgm the microstructure r.’esulhng from Al\,/l laure 4. RVE with periodic domain. mesh, and ylelds t sist gf acroscopic tangent ulus
processes and post-processing (e.g. gaps, porosities, inclusions, etc.), affecting the material’s highlighted master nodes. < =[..] = M.
strength and behaviors. ou

» However, considering the microstructure with all its subtleties and potential effects on the macro-

. . . ot llence. _ _ .
scopic scale, still remains a significant challenge Completely replacing the microscale model with a neural network?

» \While multiscale methods such as homogenization attempt to address these challenges, they remain

impractical for industrial applications due to their high computational cost. A Neural Network (NN) can be viewed as a powerful function that has been rained to produce
specific outputs given particular inputs by adjusting its internal parameters.

Hence, a key objective of this thesis is to explore the potential of machine learning, such as neural
network surrogates, for efficient multiscale simulations. v "One could use such a tool to accelerate multiscale simulations, i.e., the neural network is trained

using data from the microscale. In other words, the neural network emulates the behaviour of
the microstructure. This approach is often referred to as FE-NN.

== While it does reduce computation time compared to vanilla FE?, it is important to consider the
“offline resources” invested in generating the data and training the neural network.

X Correct predictions only occur if the data—sets of inputs and outputs—have already been seen by
the NN during its training. Therefore, such an approach (FE-NN) must rely on large amounts of
high-quality data.

All developments are implemented in Metafor [2], our in-house nonlinear finite element solver.

Why should we care about the microstructure?

= Traditional numerical methods often overlook small-scale effects or assume homogeneity, which
does not reflect real-world materials. Multiscale analysis integrates microscale details, leading to
more accurate and realistic predictions.

= Understanding the link between microstructure and macroscale behavior helps engineers opti-
mize designs by considering how small-scale features influence overall performance.

* |n additive manufacturing, numerical studies can help define optimal microstructures tailored for
specific printing strategies.

Toward a hybrid approach combining FE* & FE-NN

Instead, a simpler neural network, such as a feedforward neural network, can be used. Trained on a lim-
ited dataset of path-dependent microscale simulations, it efficiently handles known loading scenarios.
When the NN encounters an unseen loading path evolution, Metafor seamlessly switches from the
NN to a finite element analysis of the microstructure, i.e. FE-NN — FEZ2. This process is performed
independently at each Gauss point of the macroscale when needed.

FE? in our in-house nonlinear FEM code Metafor In this proof of concept, a simple feed-forward neural network (FFNN) is used to model the elastic

response of the RVE shown in Figure 3. The network has been trained to detect when input values
fall outside the training domain, in which case its predictions are considered unreliable.

» This is particularly crucial for aeronautical and space structures, where an optimized material
representation enables lighter and more efficient designs, ultimately reducing costs.

Significant progress has been made in implementing an efficient parallel FE? [3] paradigm in Metafor.

Microscale Macroscale Microscale The offline phase required 30 minutes for data generation and 50 minutes for training on 10 cores.
RVE at Gauss point 138 » RVE at Gauss point 2596 Notably, this offline cost is amortised after just two simulations, as illustrated by the examples below.
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Representative Volume Element (RVE) features an elasto-plastic matrix with embedded elastic particles. A total of 120
steps were computed, requiring 165 global iterations. The simulation was completed in 1h50 using 64 cores.
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Microscale Macroscale Microscale

_ , Figure 5. FE? simulation using Metafor with a hybrid approach. The macroscale model consists of 1,440 linear quadrilateral
RVE at Gauss point 8235 RVE at Gauss point 8283

elements, each with four integration points. A total of 40 steps were computed. The hybrid approach completed the
simulation in 3 minutes, compared to 40 minutes for the classical approach on 10 cores. This resulted in a 12.3x speed-
up in online computation time.
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Figure 3. 3D FE?Z simulation using Metafor. The macroscale model consists of 4,470 linear tetrahedral elements, each with
a single integration point, while the microscale is discretized into 43,000 linear tetrahedral elements. The RVE features an s e e K =

elasto-plastic matrix with embedded elastic particles. A total of 75 steps were computed, requiring 127 global iterations. _ | Equivalent von Mises siress
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