
Accelerating large-strain multiscale
simulations through deep learning

Arnaud Radermecker, Ph.D. Candidate1,2 Prof. J-P. Ponthot 1 Prof. A. Simar 2

1Université de Liège, MN2L 2Université catholique de Louvain, IMAP

Context and objectives

Additive manufacturing (AM) is a key enabler in the space sector, particularly within the “New Space”

or “Space 4.0” paradigm, which promotes satellite miniaturization, reusable launchers, and innovation.

AM allows for groundbreaking structural designs that are optimized and built as a single piece.

Figure 1. Two different 3D printed parts from mottcorp.com. Different microstructures of AlSi10Mg alloys obtained by

additive manufacturing [1]: as built (a) and after stir friction processing (b).

ä Meanwhile, new opportunities and challenges emerge from the microstructure resulting from AM

processes and post-processing (e.g. gaps, porosities, inclusions, etc.), affecting the material’s

strength and behaviors.

ä However, considering the microstructure with all its subtleties and potential effects on the macro-

scopic scale, still remains a significant challenge.

ä Whilemultiscalemethods such as homogenization attempt to address these challenges, they remain

impractical for industrial applications due to their high computational cost.

Hence, a key objective of this thesis is to explore the potential of machine learning, such as neural

network surrogates, for efficient multiscale simulations.

All developments are implemented in Metafor [2], our in-house nonlinear finite element solver.

Why should we care about the microstructure?

Traditional numerical methods often overlook small-scale effects or assume homogeneity, which

does not reflect real-world materials. Multiscale analysis integrates microscale details, leading to

more accurate and realistic predictions.

Understanding the link between microstructure and macroscale behavior helps engineers opti-

mize designs by considering how small-scale features influence overall performance.

In additive manufacturing, numerical studies can help define optimal microstructures tailored for

specific printing strategies.

ä This is particularly crucial for aeronautical and space structures, where an optimized material

representation enables lighter and more efficient designs, ultimately reducing costs.

FE2 in our in-house nonlinear FEM code Metafor

Significant progress has been made in implementing an efficient parallel FE2 [3] paradigm inMetafor.

Figure 2. 2D plane strain FE2 simulation using Metafor. The macroscale model consists of 700 linear quadrilateral ele-

ments, each with four integration points, while the microscale is discretized into 2,200 linear quadrilateral elements. The

Representative Volume Element (RVE) features an elasto-plastic matrix with embedded elastic particles. A total of 120

steps were computed, requiring 165 global iterations. The simulation was completed in 1h50 using 64 cores.

Figure 3. 3D FE2 simulation using Metafor. The macroscale model consists of 4,470 linear tetrahedral elements, each with

a single integration point, while the microscale is discretized into 43,000 linear tetrahedral elements. The RVE features an

elasto-plastic matrix with embedded elastic particles. A total of 75 steps were computed, requiring 127 global iterations.

The simulation was completed in 47h20 using 64 cores.
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Macroscopic stress & tangent modulus from the master nodes

Figure 4. RVE with periodic domain, mesh, and

highlighted master nodes.

Methodology:

Periodic boundary conditions are imposed between op-

posite faces using Lagrange multipliers, driven by the dis-

placements of the associated master node.

From the macroscopic deformation gradient F, displace-
ments u are imposed on the two (2D) or three (3D) master

nodes, driving the microscale boundary value problem.

The full macroscopic response can be extracted from the

two (2D) or three (3D) master nodes:

1. The reaction forces f at the master nodes yield the macro-

scopic stress σRVE.

2. Static condensation of the RVE onto the master nodes

yields the consistent macroscopic tangent modulus:

∂f

∂u
⇒ [· · · ] ⇒ M .

Completely replacing the microscale modelwith a neural network?

A Neural Network (NN) can be viewed as a powerful function that has been rained to produce

specific outputs given particular inputs by adjusting its internal parameters.

3 ”One could use such a tool to accelerate multiscale simulations, i.e., the neural network is trained

using data from the microscale. In other words, the neural network emulates the behaviour of

the microstructure. This approach is often referred to as FE-NN.

+ While it does reduce computation time compared to vanilla FE2, it is important to consider the

“offline resources” invested in generating the data and training the neural network.

7 Correct predictions only occur if the data—sets of inputs and outputs—have already been seen by

the NN during its training. Therefore, such an approach (FE-NN) must rely on large amounts of

high-quality data.

Toward a hybrid approach combining FE2 & FE-NN

Instead, a simpler neural network, such as a feedforward neural network, can be used. Trained on a lim-

ited dataset of path-dependent microscale simulations, it efficiently handles known loading scenarios.

When the NN encounters an unseen loading path evolution, Metafor seamlessly switches from the

NN to a finite element analysis of the microstructure, i.e. FE-NN → FE2. This process is performed

independently at each Gauss point of the macroscale when needed.

In this proof of concept, a simple feed-forward neural network (FFNN) is used to model the elastic

response of the RVE shown in Figure 3. The network has been trained to detect when input values

fall outside the training domain, in which case its predictions are considered unreliable.

The offline phase required 30 minutes for data generation and 50 minutes for training on 10 cores.

Notably, this offline cost is amortised after just two simulations, as illustrated by the examples below.

Figure 5. FE2 simulation using Metafor with a hybrid approach. The macroscale model consists of 1,440 linear quadrilateral

elements, each with four integration points. A total of 40 steps were computed. The hybrid approach completed the

simulation in 3 minutes, compared to 40 minutes for the classical approach on 10 cores. This resulted in a 12.3× speed-

up in online computation time.

Figure 6. FE2 simulation using Metafor with a hybrid approach. The macroscale model consists of 1000 linear quadrilateral

elements, each with four integration points with four integration points. A total of 100 steps were computed. The hybrid

approach completed the simulation in 140 minutes, compared to 180 minutes for the classical approach on 10 cores.

This resulted in a 1.3× speed-up in online computation time.
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