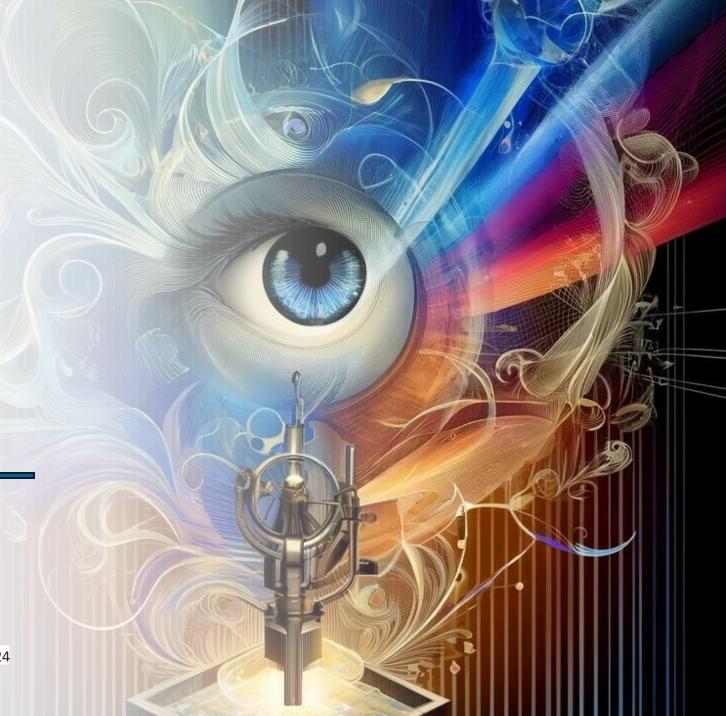


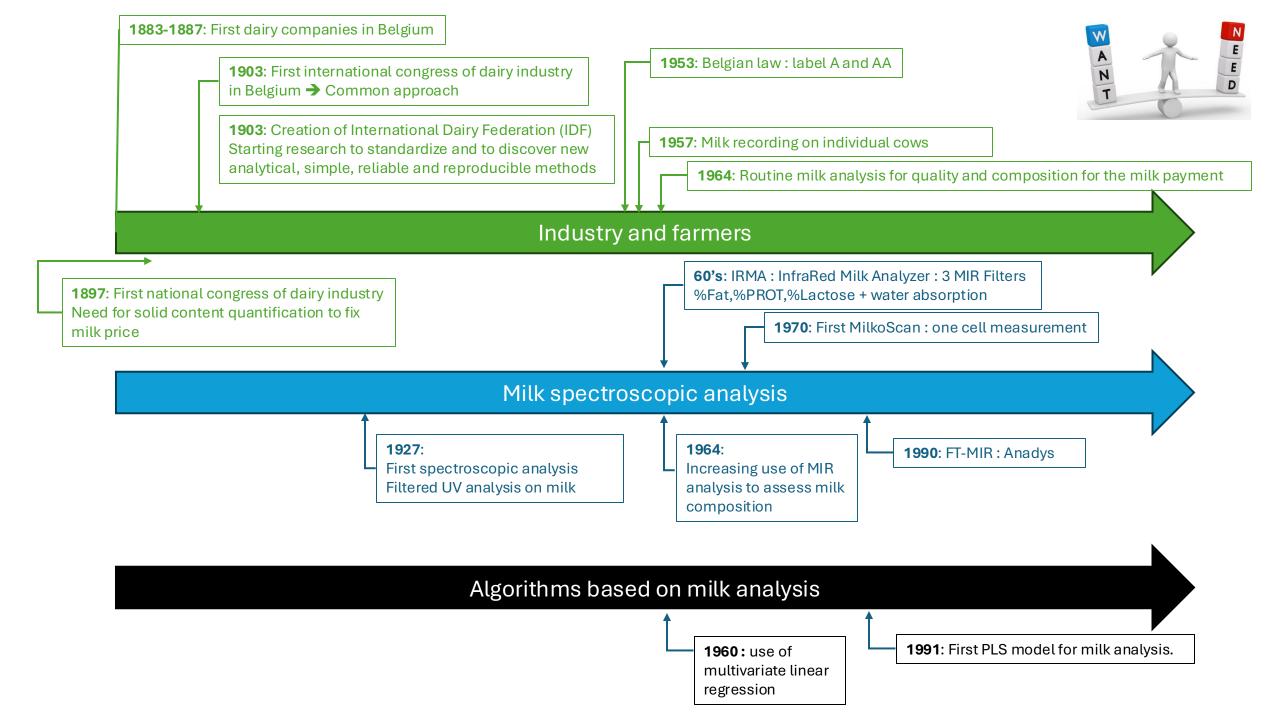
Unraveling the Fascination of Advancing Complexity in Spectrometry Models

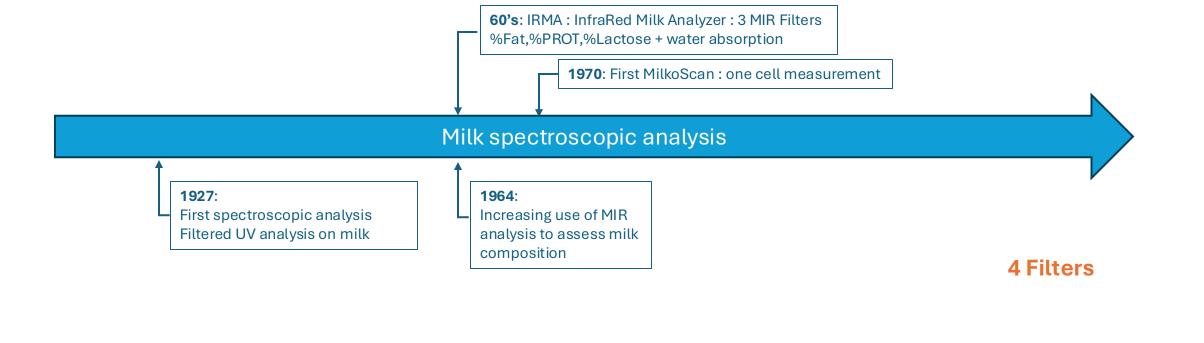
Prof. Hélène Soyeurt



Study-case:

Milk mid-infrared spectrometry





Prior to making a comparison of the two calibration approaches, it will be useful to review the basic principles of infrared milk analvsis. A much more detailed discussion of basic principles of infrared analysis is available elsewhere (3). In general, four filters are used in most infrared analyzers. The following predominant wavelengths are commonly used: 5.723 μm for fat (C=O at the ester linkage), 6.465 μm for protein (N-H bond with the peptide bond). 9.610 µm for lactose (C-OH bond), and 3.48 µm for fat (CH₂ groups). These filters are referred to as fat A, protein, lactose, and fat B. respectively. A separate reference filter (i.e., wavelength) is used in combination with each of these wavelengths in most instruments. Some new instrument models (Multispec Dairy lab) use no reference filter (it uses water reading at the same wavelength) or only uses one separate reference filter wavelength for all channels.

4 Filters

1,747cm⁻¹ for fat (C=0 ester linkage) \rightarrow Fat A

1,547 cm⁻¹ for protein

1,041 cm⁻¹ for lactose

2,873 cm⁻¹ for fat (CH2 groups) → Fat B

SYMPOSIUM: INSTRUMENTAL METHODS FOR MEASURING COMPONENTS OF MILK

Infrared Milk Analysis - Challenges for the Future¹

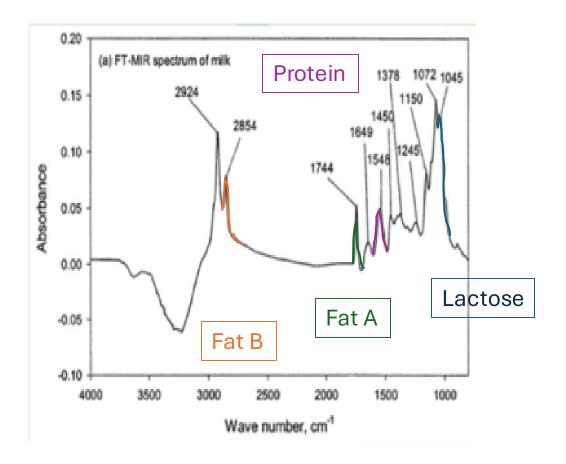
D. M. BARBANO and J. L. CLARK
Department of Food Science
Cornell University
Ithaca. NY 14853

Received August 31, 1988. Accepted November 14, 1988.

¹Mention of any equipment supplier is for scientific accuracy only and does not indicate any product endorsement by the authors or Cornell University.

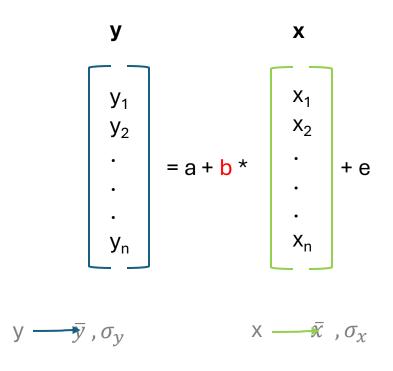
1989 J Dairy Sci 72:1627-1636

7–1636



Linearity between IR absorption and trait

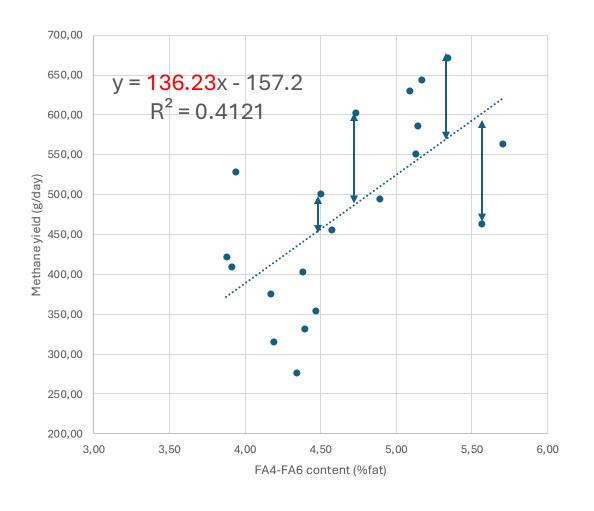
Univariate linear regression

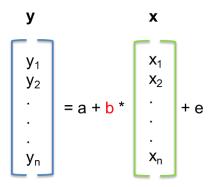


Filters:

- Protein
- Lactose

Univariate linear regression

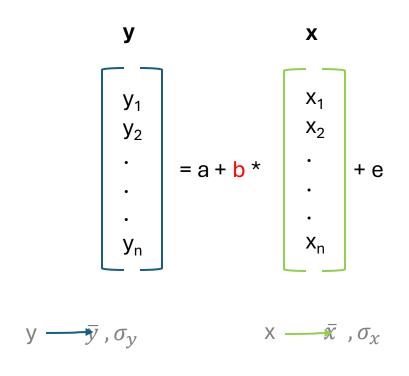




Minimize the distance between the records and the predictions

Linearity between IR absorption and trait

Univariate linear regression

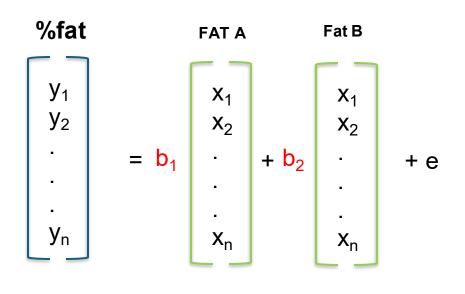


Filters:

- Protein
- Lactose

Use the information coming from 2 filters

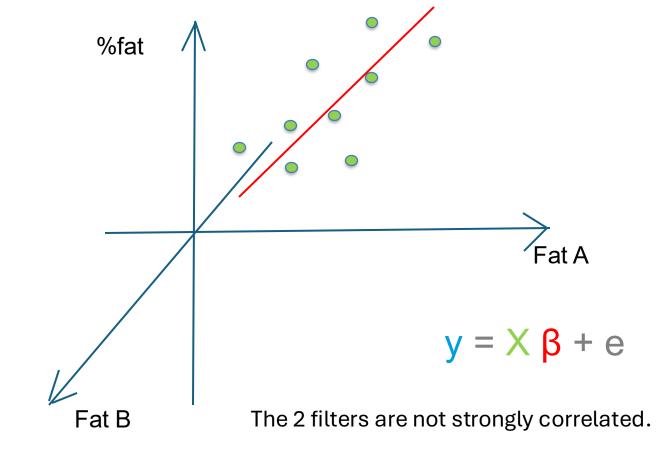
Multivariate linear regression



Variable to be explained

Explaining variables

Regression coefficients



Estimation of regression coefficients

$$y = X \beta + e$$

Ordinary least squares (OLS) estimation

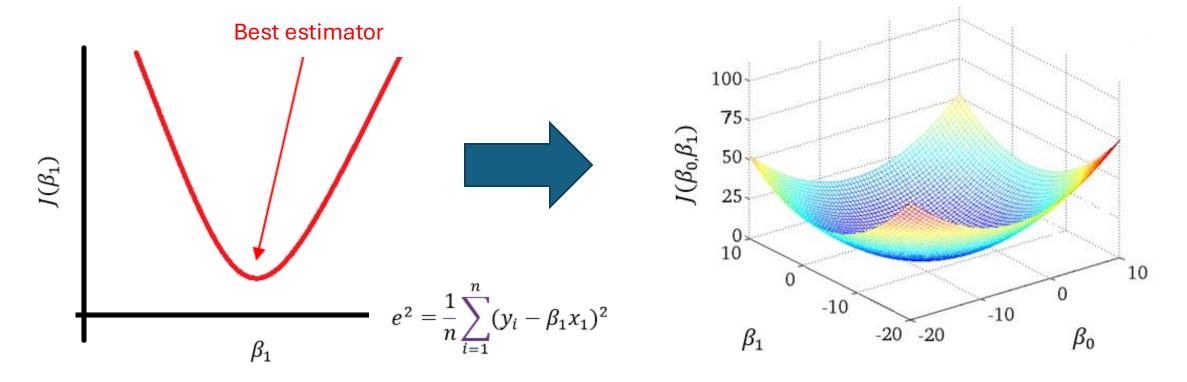
$$\min (e^2 = (y - X \beta)^2)$$

$$\xrightarrow{\partial (y - X \beta)^2} = 0 \qquad \Rightarrow \beta = (X'X)^{-1}X'y$$

The inversion can be sometimes problematic when features are highly correlated.

Estimation of regression coefficients by iteration

min $((y - X \beta)^2) \rightarrow (y - X \beta)^2$ is the cost function $(J(\beta))$



Estimation of regression coefficients by iteration

 $\beta_{1} = \frac{100}{75}$ $\frac{100}{75}$ $\frac{100}{75}$ $\frac{100}{10}$ $\frac{100}{0}$ $\frac{10}{0}$ $\frac{10}{0}$ $\frac{10}{0}$ $\frac{10}{0}$ $\frac{10}{0}$ $\frac{10}{0}$ $\frac{10}{0}$ $\frac{10}{0}$ $\frac{10}{0}$

min $((y - X \beta)^2) \rightarrow (y - X \beta)^2$ is the cost function $(J(\beta))$

β coefficients are estimated from partial derivatives

$$temp0 = \beta_0 - \alpha \frac{\partial}{\partial \beta_0} J(\beta_0, \beta_1)$$

$$temp1 = \beta_1 - \alpha \frac{\partial}{\partial \beta_1} J(\beta_0, \beta_1)$$

$$\beta_0 = temp0$$

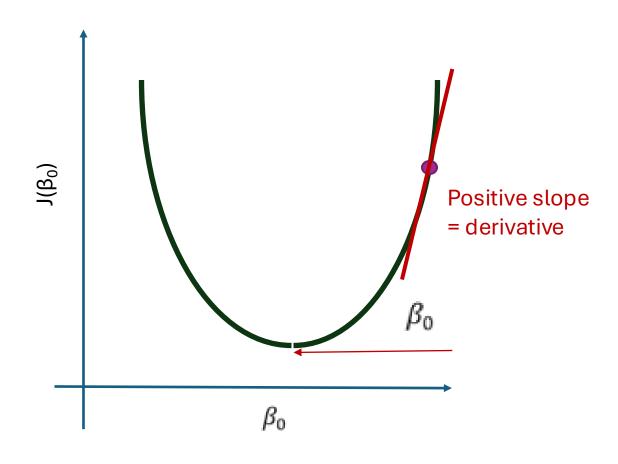
$$\beta_1 = temp1$$

Estimation of regression coefficients by iteration

From univariate regression

$$temp0 = \beta_0 - \alpha \frac{\partial}{\partial \beta_0} J(\beta_0, \beta_1)$$
$$\beta_0 = temp0$$

Farest we are from the best estimator, bigger will be the derivative value (=slope) !!



Estimation of regression coefficients by iteration

From univariate regression

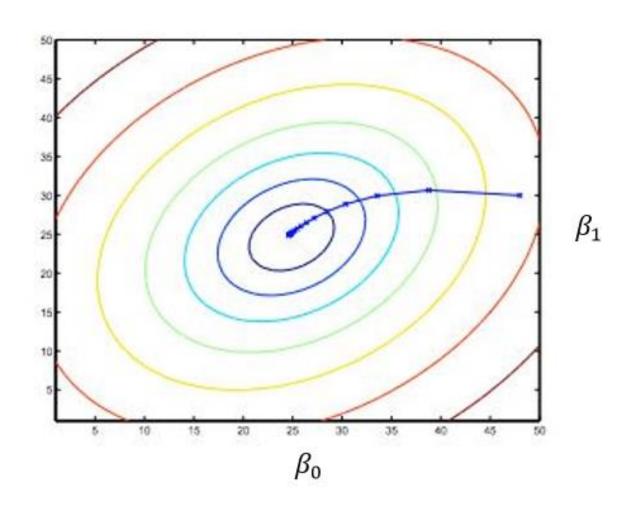
$$temp0 = \beta_0 - \alpha \frac{\partial}{\partial \beta_0} J(\beta_0, \beta_1)$$

$$temp1 = \beta_1 - \alpha \frac{\partial}{\partial \beta_1} J(\beta_0, \beta_1)$$

$$\beta_0 = temp0$$

$$\beta_1 = temp1$$

Gradient descent



Estimation of regression coefficients by iteration

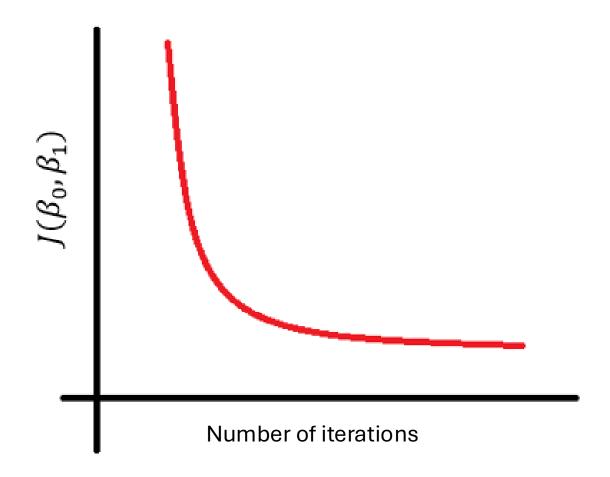
From univariate regression

$$temp0 = \beta_0 - \alpha \frac{\partial}{\partial \beta_0} J(\beta_0, \beta_1)$$

$$temp1 = \beta_1 - \alpha \frac{\partial}{\partial \beta_1} J(\beta_0, \beta_1)$$

$$\beta_0 = temp0$$

$$\beta_1 = temp1$$



Gradient descent

When have we started to machine learning / artificial intelligence?

Tom Mitchell introduces the concept of « Learning by experience »

« A computer program is said to learn from experience E with respect to some task (T) and some performance measure P, if its performance on T, as measured by P, improves with experience E. »

→ When we have started to estimate regression coefficients using interative procedure.

Model complexity

- Structure
 - Number of features or combined features
- Number of parameters
 - Optimized parameters

The complexity of models changes

CAREFUL

- Structure
- Number of parameters

Models already tested in milk spectroscopic analysis

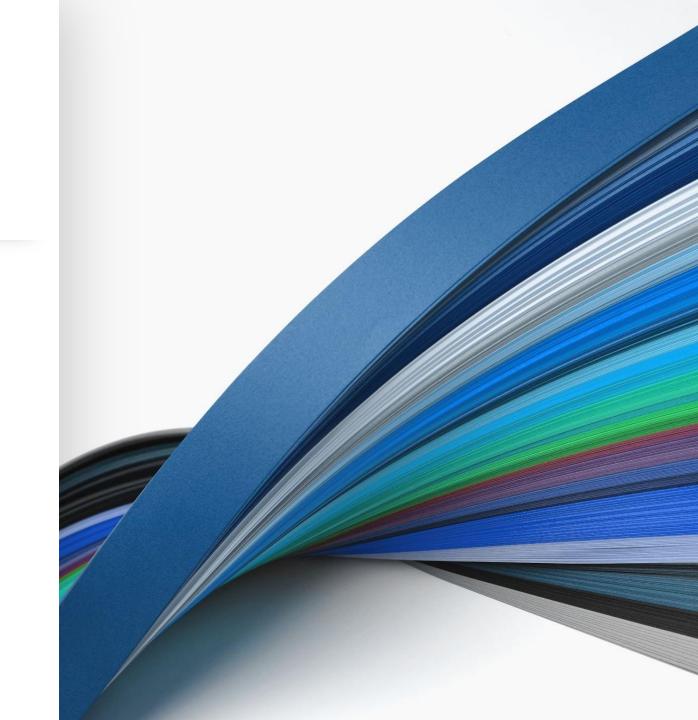
Multivariate linear regression

60's: IRMA: InfraRed Milk Analyzer: 3 MIR Filters %Fat,%PROT,%Lactose + water absorption 1970: First MilkoScan: one cell measurement Milk spectroscopic analysis 1927: 1964: **1990**: FT-MIR : Anadys First spectroscopic analysis Increasing use of MIR Filtered UV analysis on milk analysis to assess milk (a) FT-MIR spectrum of milk composition Higher dimensionality Multivaried linear regression $Y = \mu + b_1 x_1 + b_2 x_2 + e$ Low computational resources 0.6 Need a number of samples 0.4 higher than the number of 0.2 features in the regression Features cannot be highly -0.2 correlated -0.4 -0.6

--0.8

Different possibilities

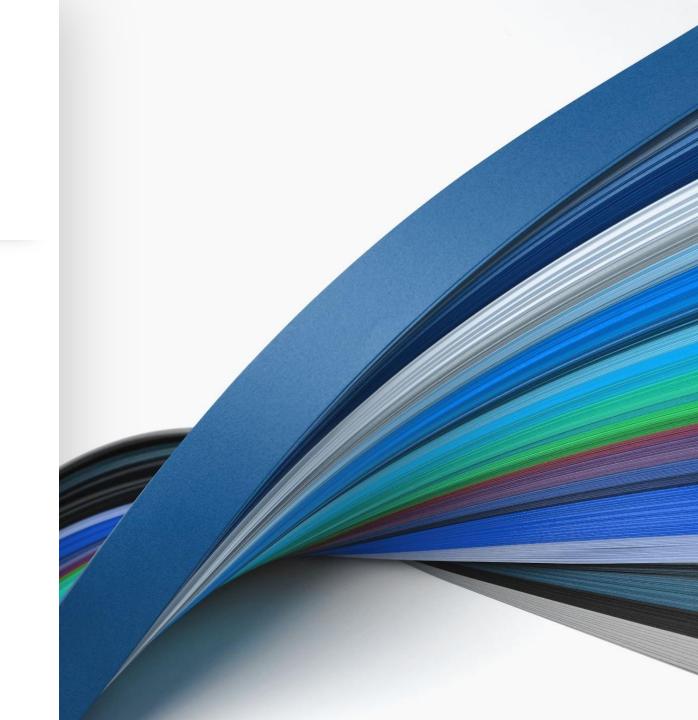
- (1) Make a **selection** of features
- (2) Force to **share** the informations between correlated features
- (3) Create **new less correlated features** based on linear combination



Different possibilities

Penalized regression

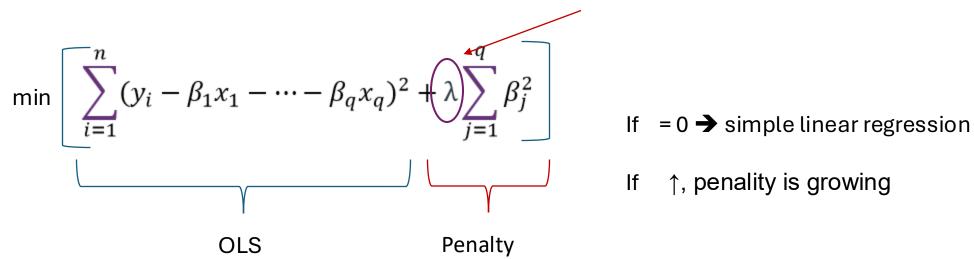
- (1) Make a **selection** of features
- (2) Force to **share** the informations between correlated features
- (3) Create **new less correlated features** based on linear combination



Penalized Regression

Ridge

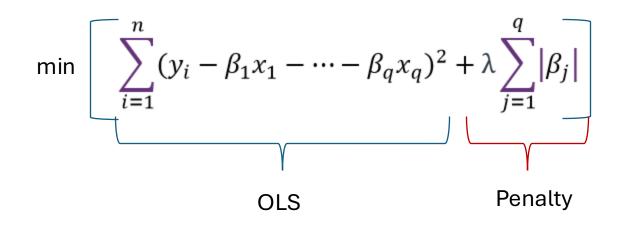
▶ Solve the colinearity problem by reducing the value of b coefficients

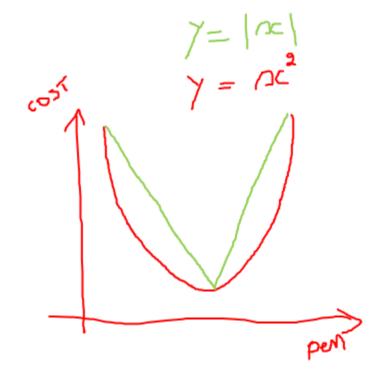


Penalized Regression

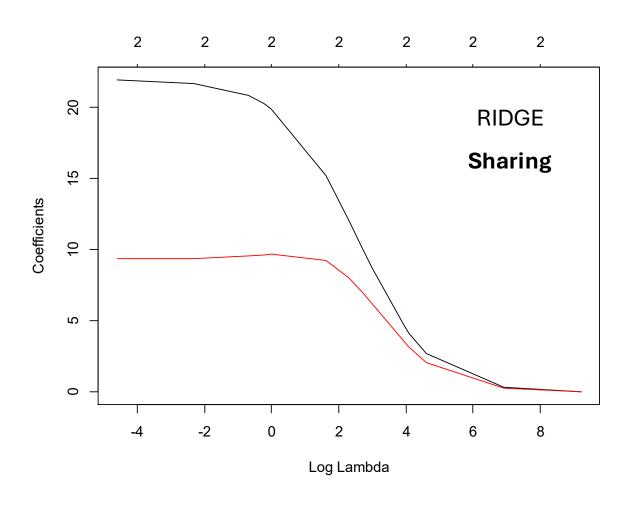
Lasso

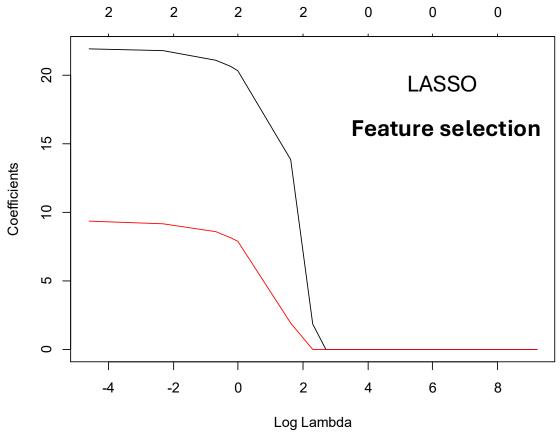
► Lasso (Least Absolute Shrinkage and Selection Operator)





Ridge vs. Lasso regressions





Penalized Regression

ElasticNet

► Combination between Ridge and Lasso

$$\sum_{i=1}^{n} (y_i - \beta_1 x_1 - \dots - \beta_q x_q)^2 + \lambda_2 \sum_{j=1}^{q} \beta_j^2 + \lambda_1 \sum_{j=1}^{q} |\beta_j|$$
OLS
Penalty

But, the complexity of models changes

CAREFUL

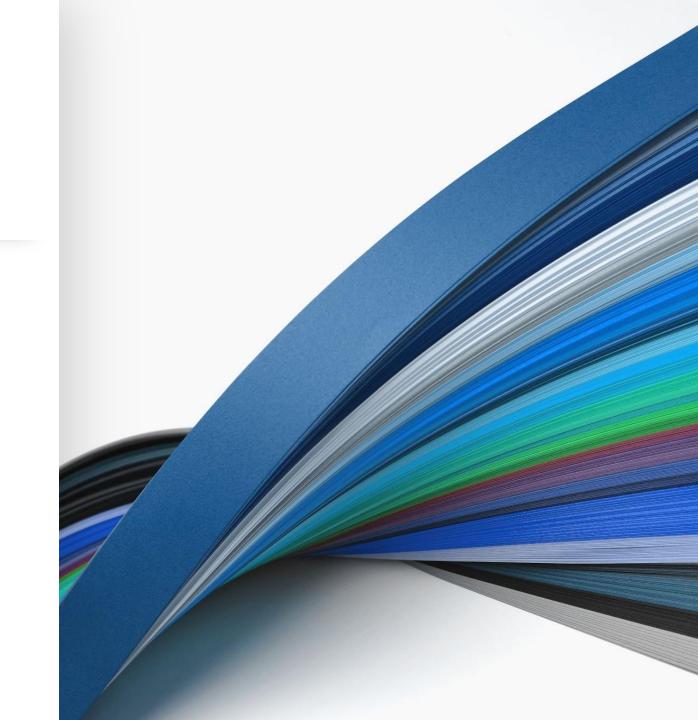
- Structure
- Number of parameters

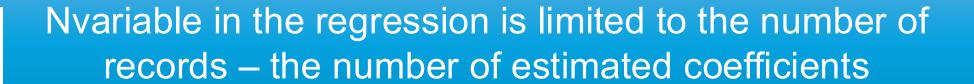
Models already tested in milk spectroscopic analysis

Multivaried linear regression Penalized linear Regression (Ridge, Lasso, Elastic)

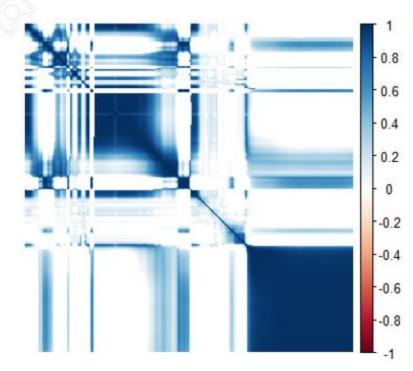
Different possibilities

- (1) Make a **selection** of features
- (2) Force to **share** the informations between correlated features
- (3) Create **new less correlated features** based on linear combination

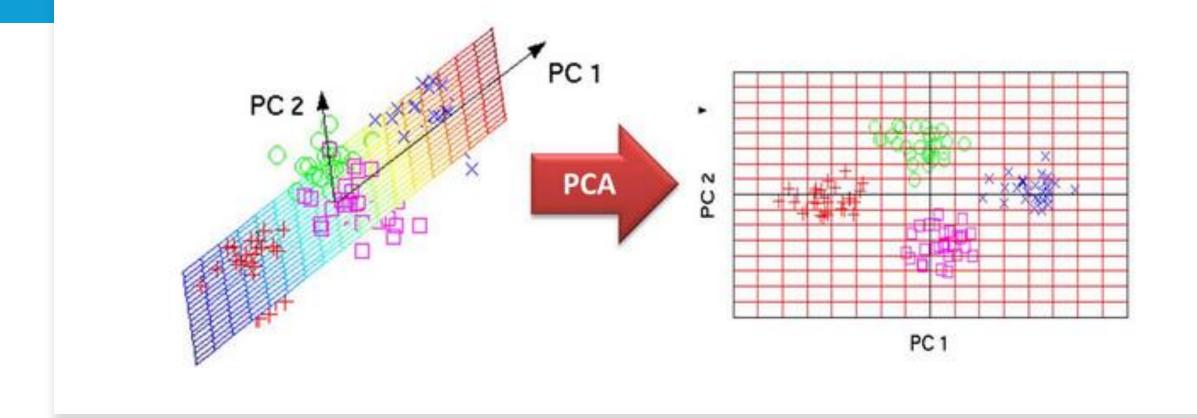




Spectral variables (X variables) are correlated between them → colinearity



What can we do?



Principal Components Analysis

- Reducing the dimensionality of the X matrix
- Principal components are independent
 - Correlations between them = 0

Principal Components Analysis

Records (n x p)

- n = number of observations
- p = number of variables (e.g., 1,060)

Standardization of each j explaining variable

$$x'_{ij} = \frac{(x_{ij} - \bar{x}_j)}{\widehat{\sigma}_i}$$

(1)
$$z_{ji} = u_{1j}x_{i1} + u_{2j}x_{i2} + \dots + u_{pj}x_{ip}$$

(2)
$$u_{1j}^2 + u_{2j}^2 + \dots + u_{pj}^2 = 1$$

(1)
$$z_{ji} = u_{1j}x_{i1} + u_{2j}x_{i2} + \dots + u_{pj}x_{ip}$$

(2) $u_{1j}^2 + u_{2j}^2 + \dots + u_{pj}^2 = 1$
(3) $u_{1j}u_{1k} + u_{2j}u_{2k} + \dots + u_{pj}u_{pk} = 0; \forall j \neq k$
(4) Maximum variance for z_j

Principal Components Regression (PCR)

$$y = X \beta + e$$

$$\downarrow$$

$$y = X_{PCA} \beta + e$$

PCA allows to maximize the X variability and reduce the number of considered x variables if they are correlated between them.

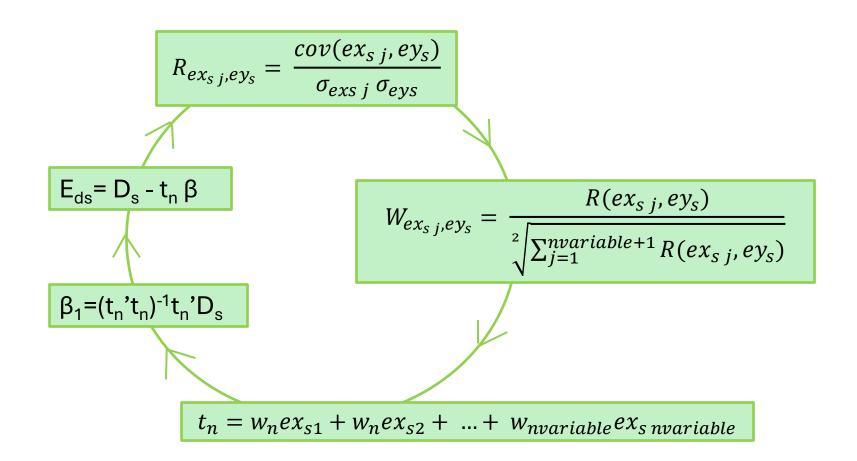
Similar to multivariate linear regression but now the features are not correlated.

Partial Least Squares Regression (PLS)

- Advantages of multivariate regression without inconvenients
 - ► No colinearity problem
 - ► No problem to model with a large dataset
 - ► No problem to interpret

► Take into account simultaneously X and y variabilities

PLS method – NIPALS algorithm



But, the complexity of models changes

CAREFUL

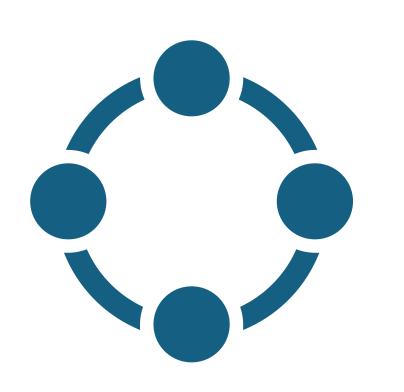
- Structure
- Number of parameters

Models already tested in milk spectroscopic analysis

Multivaried linear regression Penalized linear Regression (Ridge, Lasso, Elastic)

Principal Component regression

Partial Least Squares Regression



Why other kinds of model?

Difficulty to consider no linear relationships

• Use polynomials

A discriminant modelling method

SVM

Support Vector Machines

V.N. Vapnik (The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995)

SVM

Notations

- \Rightarrow Consider a learning data set $\{(x^1, y^1), ..., (x^m, y^m)\}$ where y_i is the class label of vector x_i
- \Rightarrow Spectra lie in X whereas labels lie in $y = \{-1,1\}$

Aim

 \Rightarrow build a decision function f(x) able to assign a label from the observation of a certain number of input-output pairs $\{(x^i, y^i) \mid i=1, ...m\}$

$$f(x): X \longrightarrow \{+1,-1\}$$

SVM

Hyperplane classifier

⇒ We assume here that a linear classifier can be implemented



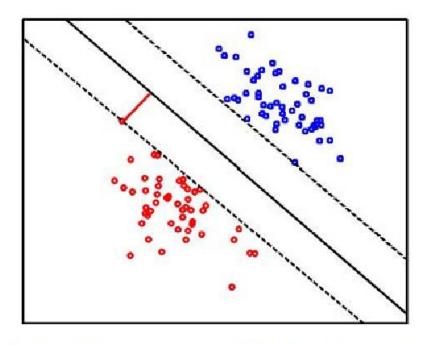
Quantification \rightarrow distance from the hyperplane

(Source: Manuel Davy, CNRS (Equipe ADTS) October 11, 2003, Nantes, France)

SVM

Suggestion

⇒ The one that maximises the margin within the learning data set



C optimizer.

Classifier that maximises the margin \rightarrow Optimal sparating hyperplane

→ better generalization is expected

© Juan Fernandez Pierna, 2024

SVM

$$\Rightarrow \text{ The decision function is } \left| f(x) = sign\left(\sum_{i=1}^{m} y_i \alpha_i < x, x_i > +b \right) \right|$$

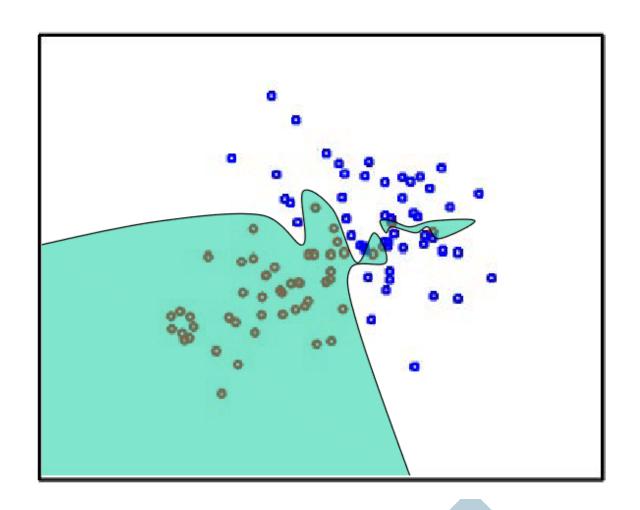
 $\Rightarrow \alpha_i$'s are nonzero only for a small number of learning

vectors, samples at the margin

called Support Vectors

 \Rightarrow Then, one only considers support vectors (sparse solution)

$$f(x) = sign\left(\sum_{i=1}^{SV} y_i \alpha_i < x, x_i^{sv} > +b\right)$$



But, the complexity of models changes

CAREFUL

- Structure
- Number of parameters

Models already tested in milk spectroscopic analysis

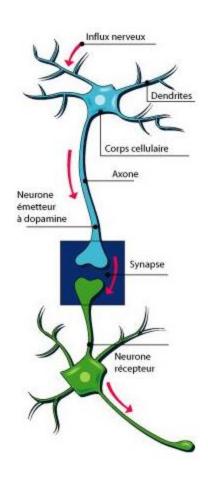
Multivaried linear regression Penalized linear Regression (Ridge, Lasso, Elastic)

Principal Component regression

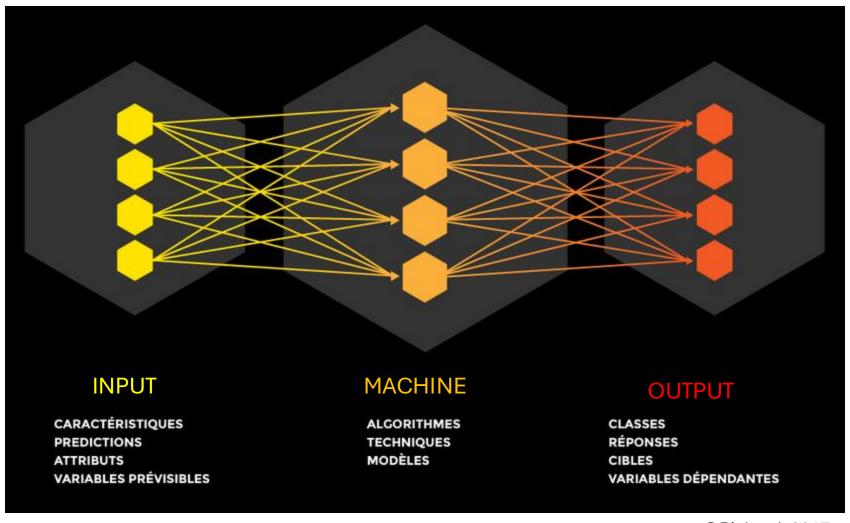
Partial Least Squares Regression Support vector machine

Neural network

- Artificial neural network (ANN)
- Basic of deep learning
- McCulloch-Pitts (1943) represents the neuron as a binary tool
- Great interest in the 80's and 90's
- Mimic the structure of brain composed of neurons and synapses



First idea

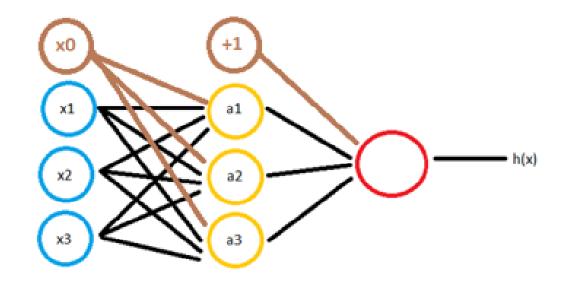


Artificial neural network

Combination function calculate the value of a node from the other connected nodes and their corresponding weights

Transfer function define the output value

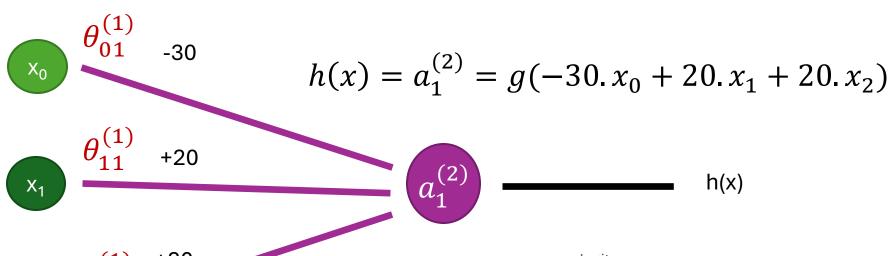
- E.g., sigmoid or logistic function
 - Linear behavior near to 0 and not linear at the extremities
 - Model linear and not linear phenomena

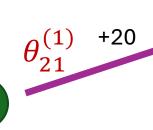


$$g(x) = \frac{1}{1 + \exp(-x)}$$

$$h(x) = a_{1}^{(3)} = g(\theta_{01}^{(2)}.a_{0}^{(2)} + \theta_{11}^{(2)}.a_{1}^{(2)} + \theta_{21}^{(2)}.a_{2}^{(2)} + \theta_{31}^{(2)}.a_{3}^{(2)})$$

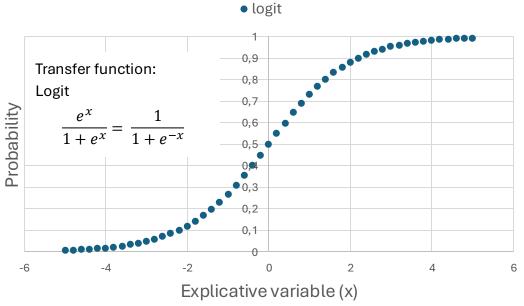
Concrete example





 X_2

x0	x1	x2	h(x)
+1	0	0	g(-30)
+1	1	1	g(10)



Weight estimation

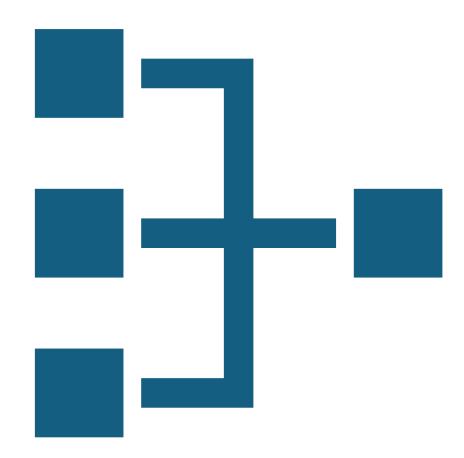
Back-propagation of error gradient

- The oldest algorithm
- Minimize the prediction error similarly to the ordinary least squares
- Iterative estimation
 - Start: attribution of random value to all weights → first prediction → error
 - The values will be modified at each iteration
 - Higher will be the error, stronger will be the change of the weight value.

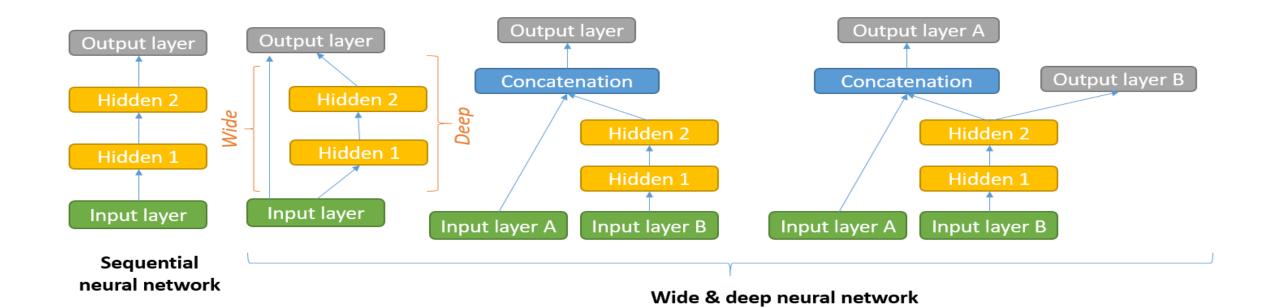
N = number of samples K = number of nodes
$$e^2 = \sum_{i=1}^n \sum_{j=1}^k (\hat{y}_{ij} - y_{ij})^2$$

Optimization

- Complex process to optimize the architecture of the neural network
 - Number of nodes/ units on the hidden layer (size)
 - Number of layers (often one hidden layer)
 - Penalty (decay)
 - Number of iterations
- Need the cross-validation to assess the model quality
- Each run can give different cross-validation results due to the random initialisation → fix the seed
- For a first approach:
 - High number of iterations
 - Grid to test the best number of nodes and decay value



Wide & deep neural network



Decrease the weights

- Feature selection
 - Lasso
 - Random Forest
 - •
- PCR components
 - PCAnet
- PLS components

But, the complexity of models changes

CAREFUL

- Structure
- Number of parameters

Models already tested in milk spectroscopic analysis

Multivaried linear regression Penalized linear Regression (Ridge, Lasso, Elastic)

Principal Component regression

Partial Least Squares Regression Support vector machine

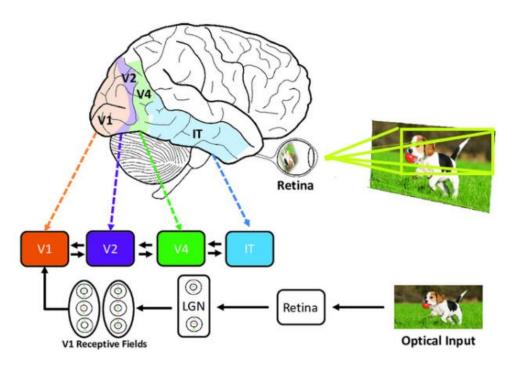
Neural Network – Multilayer perceptron

Convolutional neural network (cANN)

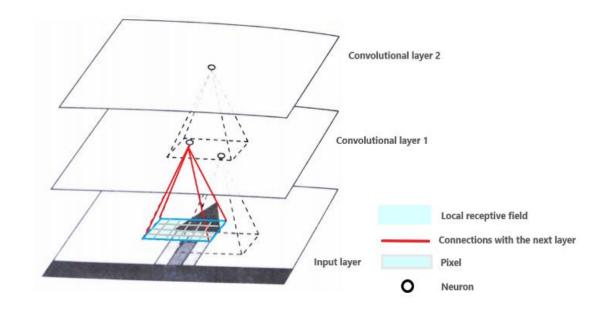
David H. Hubel and Torsten Wiesel in the 50's observed that several neurons in the visual cortex of cats in the brain focus on a restrict region of the visual field and interact only if visual stimuli occurred in this region.

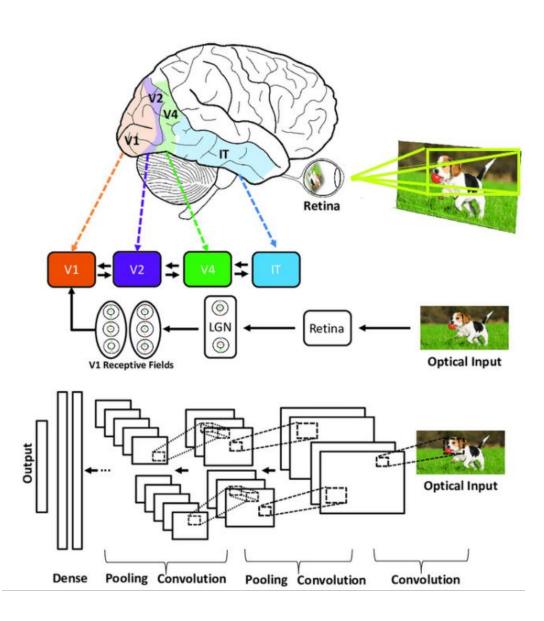
No interest to link all neurons

→ Local receptive field (LRF)

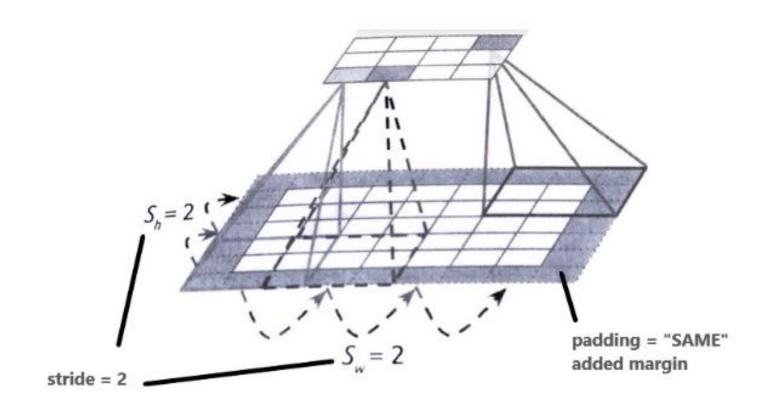


Local receptive field (LRF)

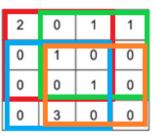




Padding and stride



filter



1	0	1	
0	0	0	
0	1	0	

Input image

Padding = valid (no margin)

Stride = 1

Filter (3x3)

Output image with stride = 1

$$\begin{bmatrix} \frac{1}{2} & \frac{$$

1	0	1	
0	0	0	=
0	1	0	

3	

2	0	1	1
0	1	0	0
0	0	1	0
0	3	0	0

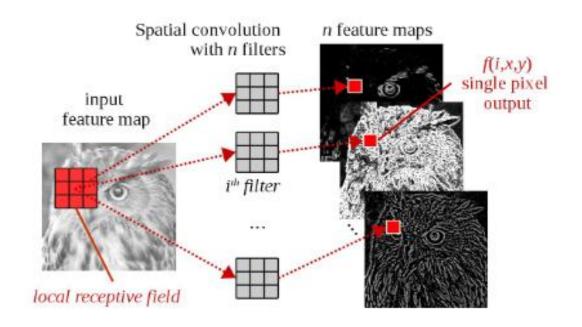
1	0	1	
0	0	0	
0	1	0	

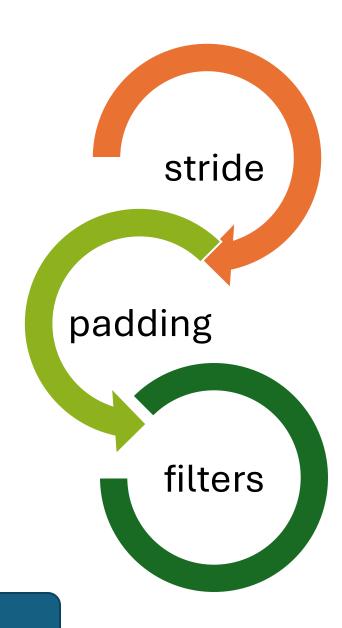
=

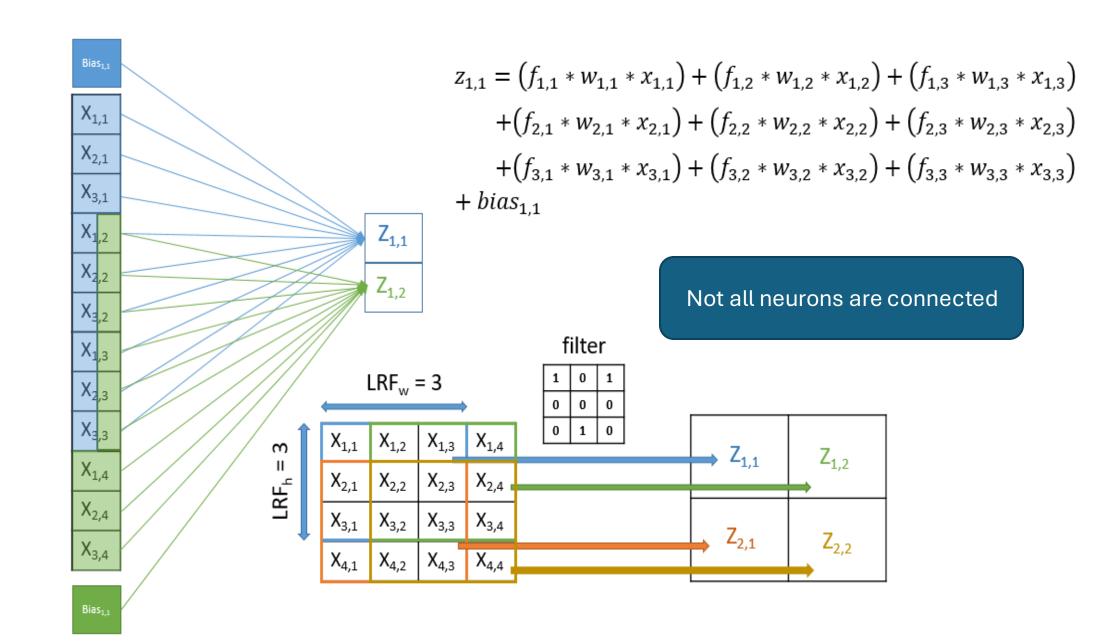
3	2
3	1

Final output image

Feature maps

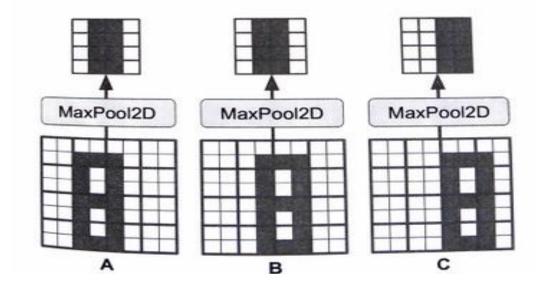




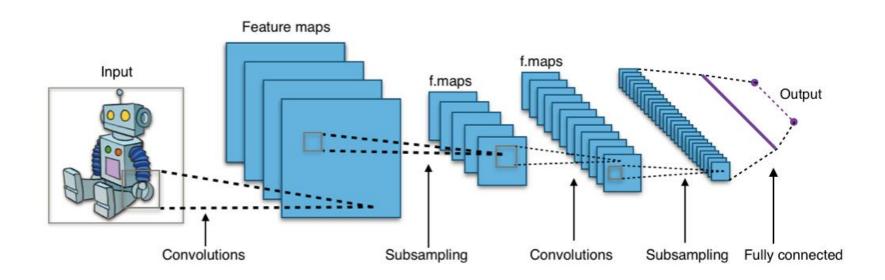


Pooling layer

- decrease the dimensionality of the layer by sub-setting the image
- 2*2 is preferred
- Max or mean is used



cANN



Need to treat the spectrum as an image.

But, the complexity of models changes

CAREFUL

- Structure
- Number of parameters

Models already tested in milk spectroscopic analysis

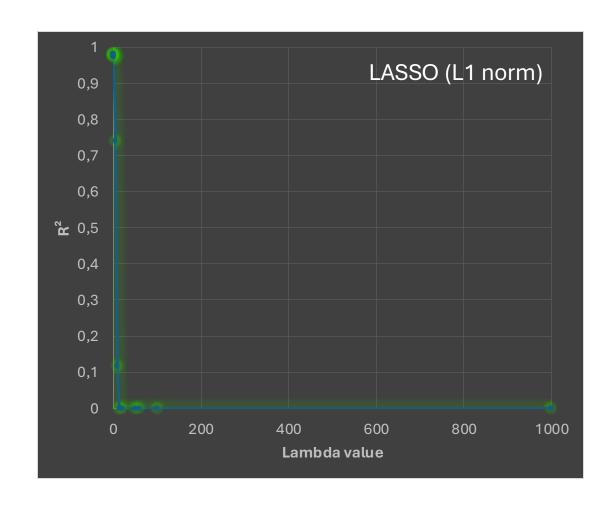
Multivaried linear regression Penalized linear Regression (Ridge, Lasso, Elastic) Principal Component regression

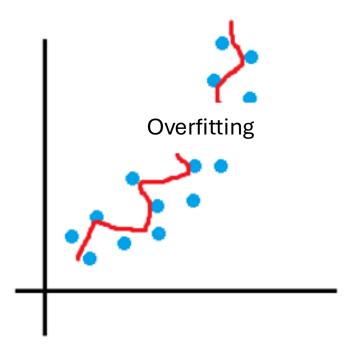
Partial Least Squares Regression Support vector machine

Neural Network – Multilayer perceptron Convolutional neural network

Linear until non-linear relationships

But the complexity of models changes





Higher features, higher train R²

Impact of validation

- External validation:
 - Independent datasets
 - Take care to the hidden dependencies
- Internal validation:
 - Simple: Random splitting of the dataset
 - 2/3 calibration and 1/3 validation
 - Cross-validation
 - Bootstrapping ...

Following the validation, the results will be different

But, the complexity of models changes

CAREFUL

- Structure
- Number of parameters

Models already tested in milk spectroscopic analysis

Multivaried linear regression Penalized linear Regression (Ridge, Lasso, Elastic)

Principal Component regression

Partial Least Squares Regression Support vector machine

Neural Network – Multilayer perceptron Convolutional neural network

Linear until non-linear relationships

Higher computational resources

Example with saturated fatty acids

Method N		Parameters	RMS	RMSEcv		cv		Validation			
			Mean	SD	Mean	SD	N	RMSE_v	R²v		
ridge	1500	1.00E-04	0.10	0.01	0.98	0.00	500	0.10	0.99		
lasso	1500	0.1	0.39	0.05	0.79	0.06	500	0.23	0.93		
enet	1500	0.525_1e-04	0.09	0.01	0.99	0.00	500	0.10	0.99		
pls	1500	28	0.09	0.01	0.99	0.00	500	0.10	0.99		
pcr	1500	29	0.12	0.02	0.97	0.01	500	0.13	0.98		
rf	1500	289	0.17	0.01	0.95	0.00	500	0.20	0.94		
RRF	1500	145_0.01_1	0.17	0.02	0.95	0.00	500	0.19	0.95		
pcaNNet	1500	5 0.001	1.84	0.03	0.19	0.23	500	1.88	0.47		

There is not only one interesting model ...

Table 1. The 10-fold cross-validation and external-validation performances for predicting lactoferrin content in milk using 4 different machine learning algorithms¹

		PLSR	PLS + Linear SVR	PLS + Polynomial SVR	PLS + ANN
Selection function		oneSE	oneSE	best	best = oneSE ²
Calibration (n = 5,541)	Parameters	nLV ³ =	C ⁴ = 5	degree = 3; scale = 0.01; C = 1	size = 4; decay = 0.5
	R ² c	0.53	0.53	0.64	0.60
	RMSEc	140.94	144.32	125.89	130.59
Cross-validation	R ² cv	0.51	0.53	0.56	0.55
	R ² cv SD	0.03	0.03	0.03	0.03
	RMSEcv	144.31	144.60	138.40	139.01
	RMSEcv SD	5.77	5.61	8.08	5.05
	RPD	1.43	1.42	1.49	1.48
External validation (n	R ² v	0.61	0.63	0.62	0.60
= 836)	RMSEv	163.76	174.92	166.75	162.17

Soyeurt et al., JDS 2020

Journal of Dairy Science Volume 103, Issue 12, December 2020, Pages 11585-11596

esearch

A comparison of 4 different machine learning algorithms to predict lactoferrin content in bovine milk from mid-infrared spectra

H. Soyeurt ¹ A M. Coffey ⁵, A. Tedde ¹, P. Delhez ¹ ⁶, F. Dehareng ², N. Gengler ¹

Example: Lactoferrin

Mean: 260 mg/L

|Difference| PLS_{VSANN} : 1.59 mg/L \rightarrow 0.61%

|Difference| _{PLS vs LSVM}: 11.16 mg/L → 4.29%

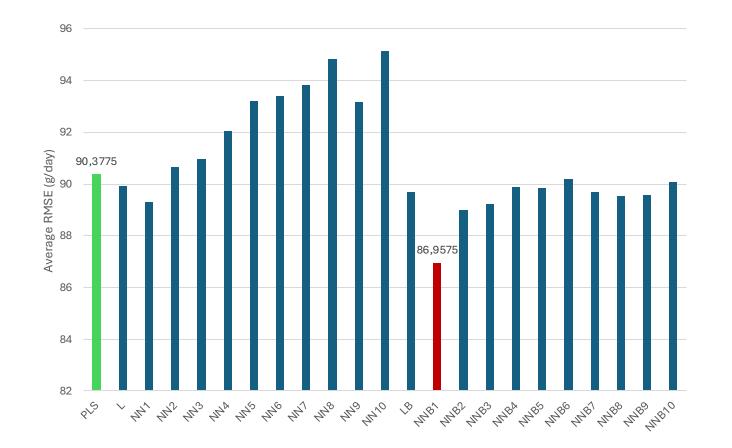
|Difference| _{PLS vs PSVM}: 2.99 mg/L → 1.15%

|Difference_{| ANN vs LSVM}: 12.75 mg/L → 4.90%

|Difference_{| ANN vs PSVM}: 4.58 mg/L → 1.76%

|Difference_{| PSVM vs LSVM}: 8.17 mg/L→ 3.14%

Small differences!



Journal of Dairy Science Volume 105, Issue 10, October 2022, Pages 8272-8285

esearch

Predicting methane emission in Canadian Holstein dairy cattle using milk midinfrared reflectance spectroscopy and other commonly available predictors via artificial neural networks

Saeed Shadpour¹, Tatiane C.S. Chud¹, Dagnachew Hailemariam², Graham Plastow², Hinayah R. Oliveira¹, Paul Stothard², Jan Lassen³, Filippo Miglior¹, Christine F. Baes¹, Dan Tulpan¹, Flavio S. Schenkel¹ Q.

Example: Methane

Mean: +/- 400g/jour

|Difference| _{PLS vs NN}: 3g/day → 0.75%

Madead	Door di execu			Statistic									
Method	Predictor	Bias	RMSE	r	b	RPIQ	Method		Bias	RMSE	r	b	RPIQ
	Previous							Previous					
Practial least squares	a.m.	-0.23 (8.97)	43.04 (2.36)	0.64 (0.03)	0.94 (0.11)	1.76 (0.16)		a.m.	0.12 (8.66)	42.50 (1.64)	0.64 (0.02)	0.90 (0.11)	1.76 (0.16)
	p.m.	0.03 (9.49)	43.73 (2.48)	0.63 (0.03)	0.93 (0.11)	1.74 (0.16)		p.m.	-0.11 (10.00)	43.15 (2.04)	0.64 (0.03)	0.87 (0.10)	1.73 (0.18)
	a.m. and p.m.	-0.01 (8.89)	42.15 (1.52)	0.65 (0.03)	0.94 (0.10)	1.77 (0.17)		a.m. and p.m.	-0.42 (8.26)	41.14 (1.86)	0.67 (0.02)	0.90 (0.09)	1.81 (0.16)
	Average a.m. and p.m.	-0.09 (8.81)	41.76 (1.98)	0.66 (0.03)	0.95 (0.11)	1.79 (0.18)		Average a.m. and p.m.	-0.42 (7.96)	41.45 (1.45)	0.66 (0.03)	0.91 (0.12)	1.80 (0.15)
	Following							Following					
	a.m.	-0.49 (9.34)	44.62 (1.46)	0.61 (0.02)	0.95 (0.09)	1.71 (0.11)		a.m.	-0.73 (8.93)	43.59 (1.42)	0.64 (0.02)	0.92 (0.11)	1.75 (0.11)
	p.m.	-0.06 (9.93)	45.23 (0.90)	0.60 (0.04)	0.93 (0.12)	1.69 (0.12)	ī	p.m.	-0.36 (9.08)	44.36 (0.37)	0.62 (0.03)	0.89 (0.07)	1.72 (0.11)
	a.m. and p.m.	-0.20 (9.14)	44.14 (0.76)	0.62 (0.03)	0.94 (0.10)	1.73 (0.11)	Neural networks	a.m. and p.m.	-0.96 (8.84)	42.48 (1.02)	0.66 (0.03)	0.89 (0.08)	1.80 (0.13)
	Average a.m. and p.m.	-0.56 (9.43)	44.00 (1.40)	0.63 (0.03)	0.95 (0.10)	1.74 (0.11)		Average a.m. and p.m.	-0.46 (8.23)	42.33 (1.38)	0.66 (0.03)	0.92 (0.09)	1.81 (0.13)
	Flanking							Flanking					
	a.m.	-0.42 (9.08)	38.09 (1.87)	0.68 (0.03)	0.95 (0.11)	1.87 (0.17)		a.m.	0.16 (8.97)	38.23 (1.50)	0.68 (0.03)	0.92 (0.12)	1.86 (0.17)
	p.m.	-0.11 (9.71)	39.25 (1.57)	0.66 (0.03)	0.93 (0.12)	1.81 (0.15)		p.m.	-0.46 (9.27)	39.16 (0.94)	0.66 (0.02)	0.87 (0.07)	1.82 (0.14)
	a.m. and p.m.		37.98 (1.36)		0.95 (0.11)	1.87 (0.16)		a.m. and p.m.	-0.77 (8.43)	37.17 (1.53)	0.70 (0.02)	0.91 (0.09)	1.91 (0.15)
	Average a.m. and p.m.	-0.25 (8.92)	37.56 (2.00)	0.69 (0.03)	0.96 (0.11)	1.90 (0.16)		Average a.m. and p.m.	-0.33 (7.95)	37.46 (4.01)	0.71 (0.03)	0.92 (0.11)	1.95 (0.16)

Journal of Dairy Science Volume 107, Issue 2, February 2024, Pages 978-991

Decearch

Predicting methane emissions of individual grazing dairy cows from spectral analyses of their milk samples

S. McParland, M. Frizzarin, B. Lahart, M. Kennedy, L. Shalloo, M. Egan, K. Starsmore, D.P. Berry. △

Example: Methane

Also low differences

Identifying Health Status in Grazing Dairy Cows from Milk Mid-Infrared Spectroscopy by Using Machine Learning Methods

by Brenda Contla Hernández ^{1 ⊠}. Nicolas Lopez-Villalobos ^{2 ⊠} ond Matthieu Vignes ^{1,*} ⊠

- 1 School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
- ² School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
- * Author to whom correspondence should be addressed.

Animals 2021, 11(8), 2154; https://doi.org/10.3390/ani11082154

More nuanced in classification

Table 2. Performance of classification models obtained in 10 Monte Carlo cross-validation for classifying any health problem and healthy cows during lactation (early, mid and lactation) at two dairy farms during the 2016 production season ¹.

Models ²	Sensitivity	Specificity	Ассигасу	PPV	NPV	AUC	MCC
PLS-DA	65.60 ± 5.97	79.59 ± 2.36	78.85 ± 2.23	15.25 ± 3.07	97.66 ± 0.5	72.59 ± 3.27	0.24 ± 0.04
RF	46.22 ± 8.62	79.26 ± 2.15	77.51 ± 1.75	10.94 ± 1.88	96.38 ± 0.73	62.74 ± 3.78	0.14 ± 0.04
SVM	66.39 ± 6.80	76.39 ± 2.92	75.84 ± 2.42	13.48 ± 1.62	97.61 ± 0.61	71.39 ± 2.37	0.22 ± 0.02
NN	61.74 ± 15.99	97.00 ± 2.85	95.16 ± 3.26	59.99 ± 26.20	97.87 ± 0.87	79.37 ± 9.16	0.58 ± 0.22
CNN	57.02 ± 12.70	92.5 ± 5.27	90.63 ± 4.98	33.82 ± 13.41	97.5 ± 0.75	74.76 ± 6.88	0.39 ± 0.13
ESA	57.15 ± 12.38	87.61 ± 6.19	86.02 ± 6.21	24.06 ± 13.07	97.36 ± 0.77	72.38 ± 8.48	0.31 ± 0.16
ESMJ	60.75 ± 5.98	83.57 ± 2.56	82.36 ± 2.27	17.18 ± 3.21	97.46 ± 0.55	72.16 ± 2.9	0.25 ± 0.04
ESWA	56.43 ± 14.56	85.13 ± 7.41	83.61 ± 7.36	21.33 ± 14.18	97.22 ± 0.97	70.78 ± 9.71	0.27 ± 0.17

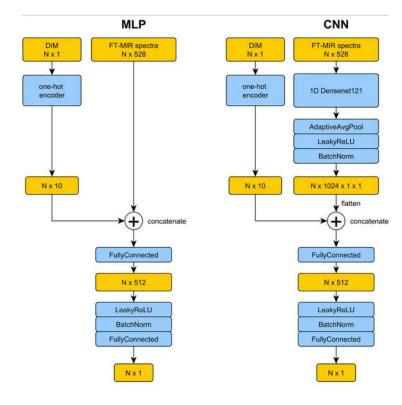
¹ These values correspond to the mean ± SD obtained by 10-fold Monte Carlo cross-validation for classifying any health problem (lameness, mastitis, reproductive disorder, etc.). From the cows' records, the positive cases were cows that had any illness (lameness, mastitis, reproductive disorder, etc.) and negative cases were cows who were healthy (no diagnosed disease); SD = Standard deviation; PPV = positive predicted value; NPV = negative predicted value; AUC = area under the receiver operating characteristic curve; MCC = Matthews correlation coefficient. ² Models used to perform the classification: PLS-DA = partial least squares discriminant analysis, RF = random forest, SVM = support vector machine, NN = neural network, CNN = convolutional neural network, ESA = ensemble stacking average, ESMJ = ensemble stacking major voting and ESWA = ensemble stacking weighted average.

Journal of Dairy Science Volume 105, Issue 4, April 2022, Pages 3615-3632

Research

Pregnancy status predicted using milk midinfrared spectra from dairy cattle

K.M. Tiplady ¹² A M.-H. Trinh ¹, S.R. Davis ¹, R.G. Sherlock ¹, R.J. Spelman ¹, D.J. Garrick ², B.L. Harris ¹



More nuanced in classification

Table 3. Model performance for multilayer perceptron (MLP) and convolutional neural network (CNN) approaches based on strategy 3 data¹: accuracy (Acc), sensitivity (Sens), specificity (Spec), and area under the receiver operating characteristic curve (AUC) values within the training, herd-independent validation (VAL-Test) and pregnancy-associated glycoproteins validation (VAL-PAG) data sets

Deep learning approach ²	Training				Test validation (VAL-Test)				Glycoprotein-based validation (VAL-PAG)			
and model ³	Acc	Sens	Spec	AUC	Acc	Sens	Spec	AUC	Acc	Sens	Spec	AUC
MLP approach												
FT-MIR spectra	0.592	0.574	0.611	0.628	0.586	0.580	0.607	0.632	0.664	0.672	0.569	0.669
FT-MIR spectra + DIM	0.594	0.621	0.566	0.631	0.614	0.629	0.564	0.635	0.692	0.709	0.499	0.647
FT-MIR spectra (pre- adjusted for DIM)	0.559	0.554	0.564	0.583	0.562	0.567	0.547	0.581	0.554	0.547	0.636	0.636
CNN approach												
FT-MIR spectra	0.625	0.625	0.625	0.675	0.611	0.620	0.582	0.641	0.684	0.696	0.554	0.676
FT-MIR spectra + DIM	0.645	0.670	0.620	0.700	0.636	0.659	0.563	0.654	0.723	0.741	0.519	0.685
FT-MIR spectra (pre- adjusted for DIM)	0.982	0.975	0.988	0.998	0.668	0.790	0.273	0.551	0.759	0.805	0.266	0.564

Journal of Dairy Science

Volume 105, Issue 10, October 2022, Pages 8272-8285

Research

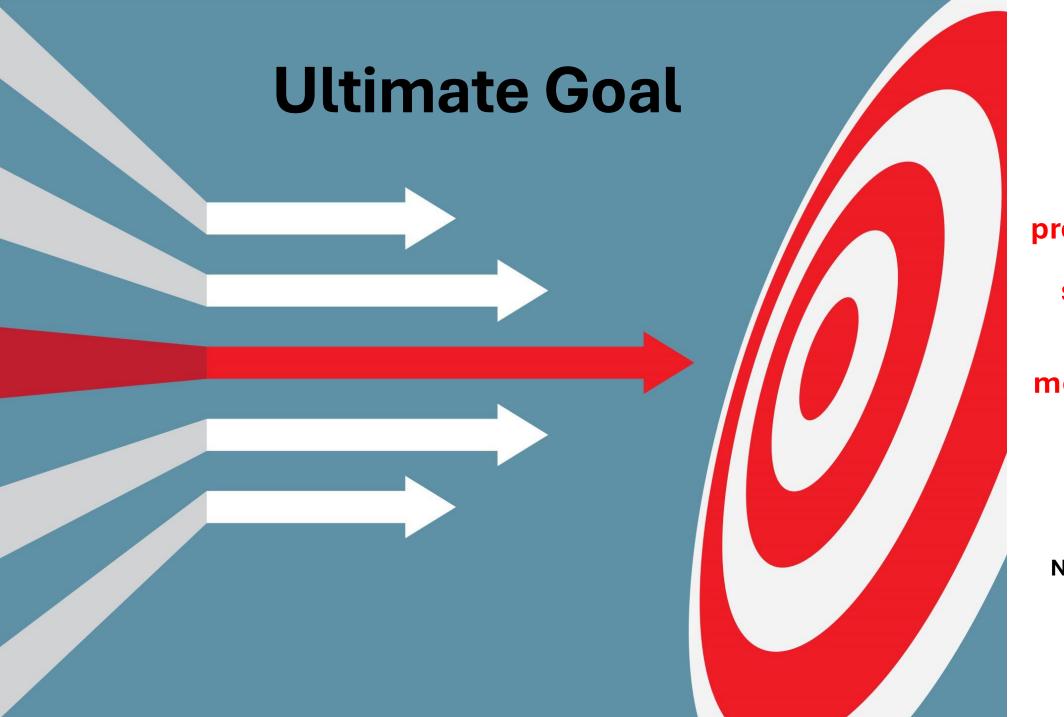
Predicting methane emission in Canadian Holstein dairy cattle using milk midinfrared reflectance spectroscopy and other commonly available predictors via artificial neural networks

Saeed Shadpour¹, Tatiane C.S. Chud¹, Dagnachew Hailemariam², Graham Plastow², Hinayah R. Oliveira¹, Paul Stothard², Jan Lassen³, Filippo Miglior^{1,4}, Christine F. Baes¹, Dan Tulpan¹, Flavio S. Schenkel¹ Q.

The variability is bigger within the same model using different sets of features

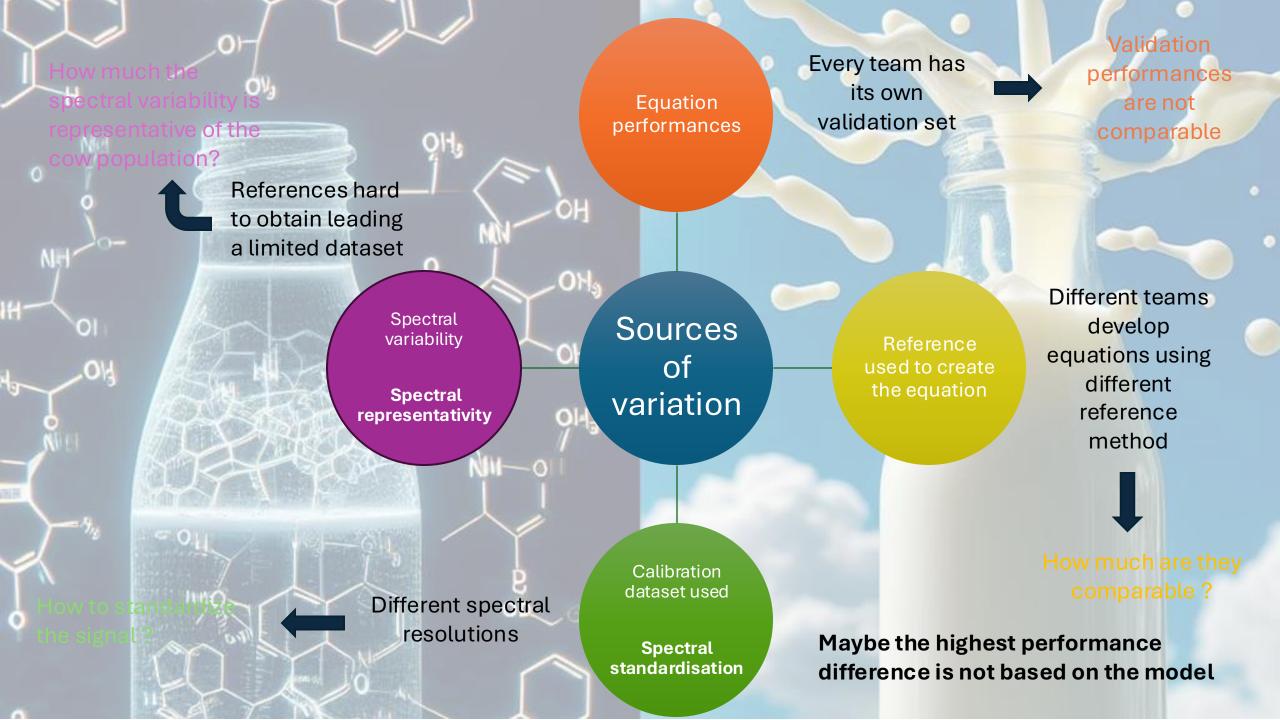
Features	PLS	L	NN1	NN2	NN3	NN4	NN5	NN6	NN7	NN8	NN9	NN10	LB	NNB1	NNB2	NNB3	NNB4	NNB5	NNB6	NNB7	NNB8	NNB9	NNB10	SD
1	96.47	96.55	93.08	93.16	93.33	94.74	93.98	94.36	97.65	97.65	96.54	99.39	96.26	91.67	93.01	92.59	92.07	92.41	92.2	92.2	92.22	92.08	92.45	2.26
2	95.68	95.29	91.4	93.47	94.64	94.05	95.54	96.11	95.44	98.04	97.66	96.16	95.61	91.93	92.55	93.26	92.89	93.12	93.07	93.06	92.97	92.92	93.1	1.78
3	96.32	96.36	93.58	94.44	93.96	94.55	94.71	97.27	97.69	97.39	95.15	98.47	95.99	92.49	93.19	91.46	91.91	92.35	92.45	92.3	92.31	92.46	92.59	2.13
4	95.84	95.73	93.4	94.18	96.15	93.58	96.82	94.14	96.05	97.44	96.65	96.57	95.59	91.8	93.41	93.14	93.35	92.84	92.66	92.81	93.17	93.22	92.79	1.67
5	96.5	96.72	95.23	94.89	93.41	97.01	98.35	98.94	97.31	99.91	100.94	100.9	96.11	92.6	93.87	93.05	92.82	93.08	92.66	92.98	92.83	92.8	92.83	2.84
6	96.75	96.07	94.41	95.86	96.8	97.44	97.89	101.16	100.12	100.65	98.93	101.93	95.66	92.55	93.46	93.87	93.33	93.07	93.4	93.45	93.34	93.35	93.62	2.94
7	73.7	72.44	77.56	81.19	81.51	85.42	84.69	82.72	84.49	82.27	80.79	84.57	71.61	71.75	76.2	78.96	79.48	81.59	82.58	78.65	80.36	79.33	81.66	4.15
8	71.76	70.31	75.75	77.95	78.08	79.72	83.64	82.61	81.85	85.36	78.72	83.08	70.83	70.87	76.12	77.5	83.09	80.28	82.42	82.1	79.16	80.56	81.71	4.44
SD	10.91	11.48	7.90	6.94	7.08	6.20	5.78	7.02	6.76	6.96	8.48	7.26	11.42	9.67	7.92	6.83	5.41	5.52	4.75	5.84	6.06	5.98	5.20	

→ Not only focus on the model type

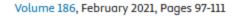


Having the same prediction for the same spectrum if you use a prediction model for the same trait

Not so simple ...



Methods



Large-scale phenotyping in dairy sector using milk MIR spectra: Key factors affecting the quality of predictions

```
C. Grelet <sup>a</sup> ⋈, P. Dardenne <sup>a</sup> ⋈, H. Soyeurt <sup>b</sup> ⋈, J.A. Fernandez <sup>a</sup> ⋈, A. Vanlierde <sup>a</sup> ⋈, F. Stevens <sup>a</sup> ⋈, N. Gengler <sup>b</sup> ⋈, F. Dehareng <sup>a</sup> ⋈
```

For regression mainly ...

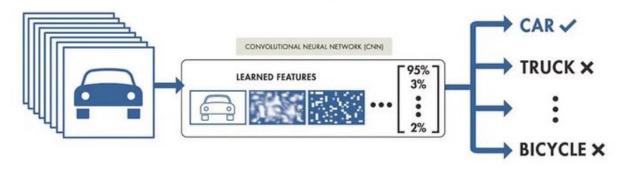
Highlights

- Robustness of models is essential to generate accurate phenotypes at a large scale.
- · Variability in the reference and spectral data is a key element of robustness.
- · In most cases, complexity of models is in contradiction with robustness.
- Models development should consider absorbance reliability of spectral regions.
- Quality assurance methods are necessary to evaluate models and predictions.

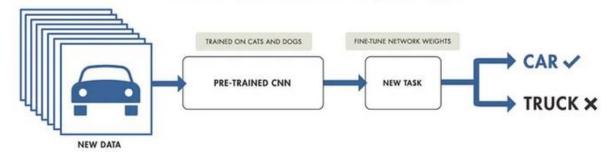
More complex models ...

Transfer learning is interesting

TRAINING FROM SCRATCH



TRANSFER LEARNING



https://iamamadsiddiqui.medium.com/unleashing-the-power-of-transfer-learning-in-artificial-intelligence-e8a9deee62f3

Deeply used with image and video data source

More complex models ...

- Transfer learning is interesting:
 - Large number of data is available
 - Difficulty to share data
 - Save computation time

Take home

message

Maybe due to relatively low training set

All available models are developed from Al

More complex models did not seem to be significantly better for regression purposes

However, in the future in the transfer learning is an interesting approach to build international models

Promotion of neural networks

However, to achieve a good results we need to:

- Standardize the reference method used to estimate/quantify the trait of interest
- Standardize the spectral data

IDF/ICAR guidelines

Unraveling the Fascination of Advancing Complexity in Spectrometry Models

Prof. Hélène Soyeurt

