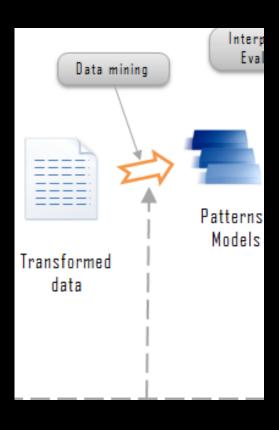
MLP and CNN for dairy farming

Prof. Hélène Soyeurt

SensAlFood – May 2025 – Gembloux, Belgium

WHAT IS THE OBJECTIVE ?



Regression

- Quantitative y values
- Prediction

Classification

- Quantitative y valyes
- Separation into several classes

Clustering

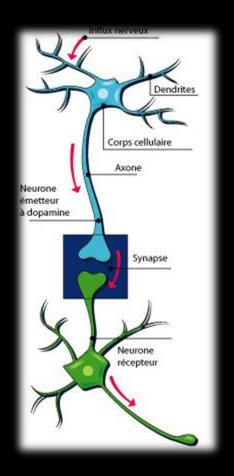
 Creation of sub-groups within the same dataset

Supervised

Not supervised

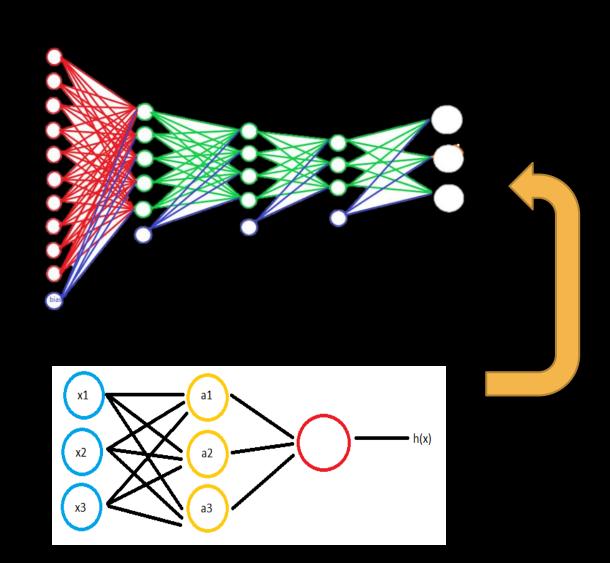
INTRODUCTION

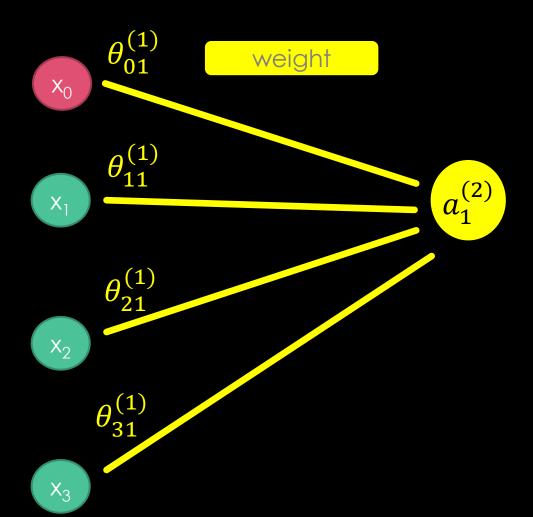
- ARTIFICIAL NEURAL NETWORK (ANN)
- BASIC OF DEEP LEARNING
- MCCULLOCH-PITTS (1943) REPRESENT THE NEURON AS A BINARY TOOL
- GREAT INTEREST IN THE 80'S AND 90'S
- MIMIC THE STRUCTURE OF BRAIN COMPOSED OF NEURONS AND SYNAPSES

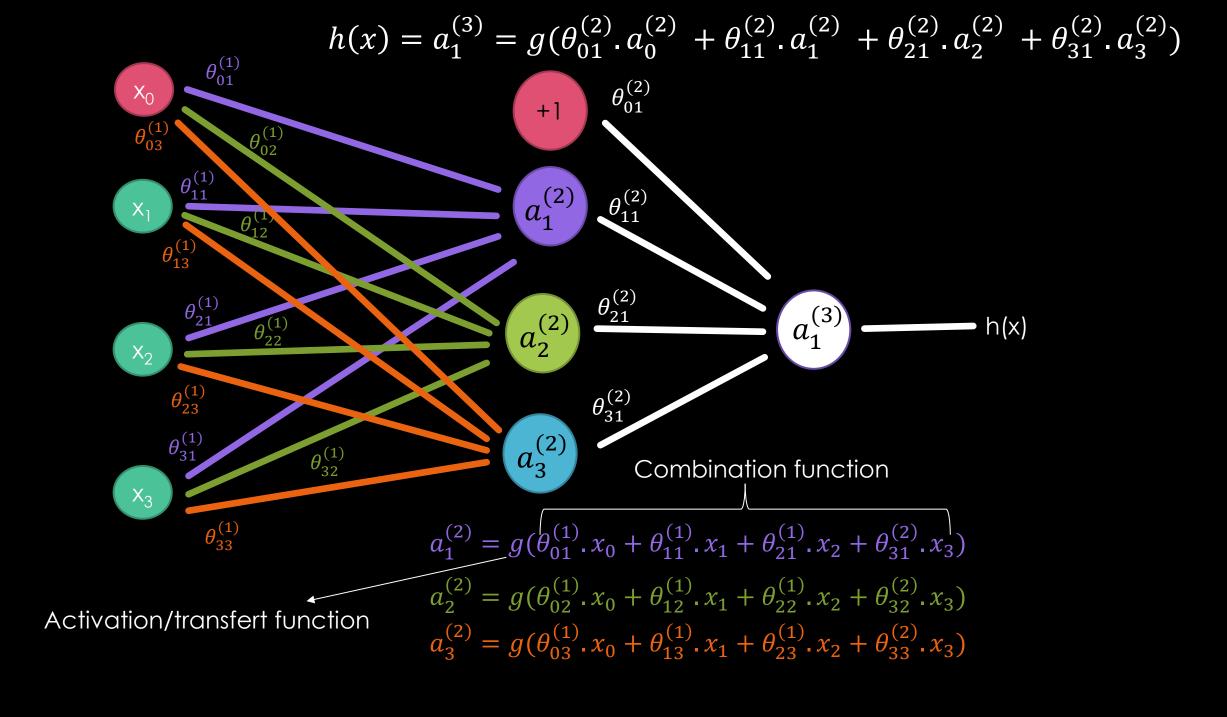


MULTILAYER PERCEPTRON (MLP)

- Units/nodes/neurons
- FULLY CONNECTED OR NOT
- ONE OR MORE HIDDEN LAYERS







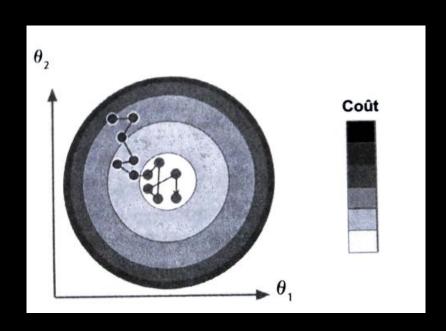
ACTIVATION FUNCTIONS

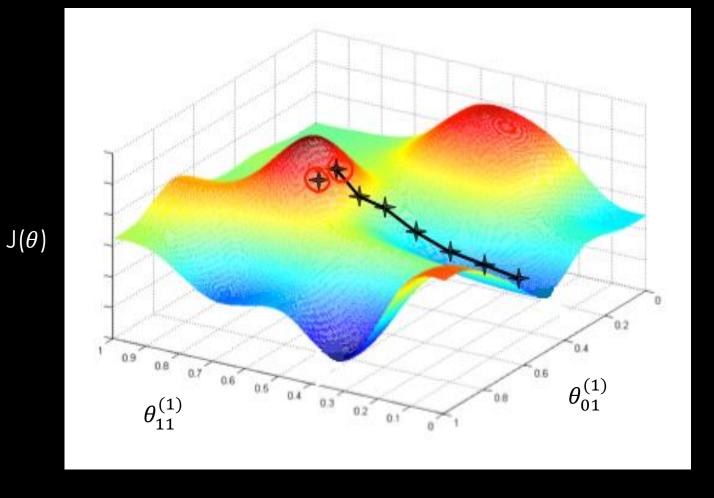
DIFFERENT FUNCTIONS

Logistic, sigmoid, or soft step	$\sigma(x) = \frac{1}{1 + e^{-x}} [1]$	f(x)(1-f(x))	(0,1)
tanh	$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	$1-f(x)^2$	(-1,1)
Rectified linear unit (ReLU) ^[7]	$egin{cases} 0 & ext{if } x \leq 0 \ x & ext{if } x > 0 \ = & \max\{0,x\} = x 1_{x > 0} \end{cases}$	$\left\{egin{array}{ll} 0 & ext{if } x < 0 \ 1 & ext{if } x > 0 \ ext{undefined} & ext{if } x = 0 \end{array} ight.$	$[0,\infty)$

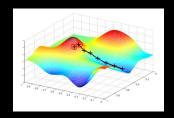
THE SOFTMAX FUNCTION IS RELATED TO THE SIGMOID FUNCTION. IF YOU HAVE 4 CLASSES, THE SOFTMAX FUNCTION WILL CALCULATE A PROBABILITY FOR EACH CLASS AND THE SUM OF THEM WILL BE EQUAL TO 1.

GRADIENT DESCENT

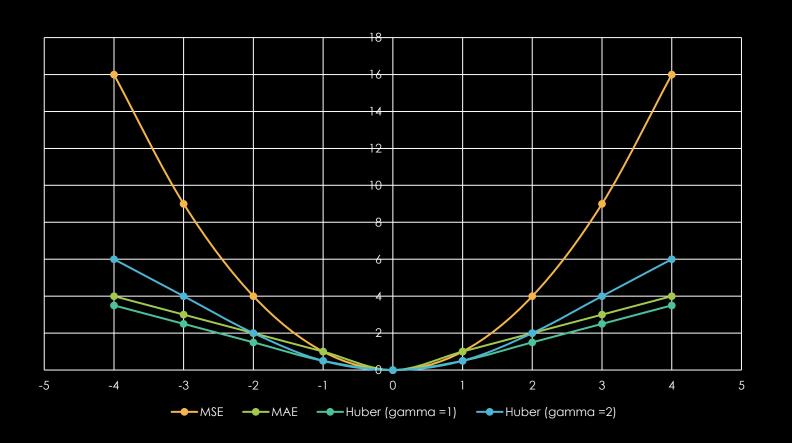




Cost/loss function



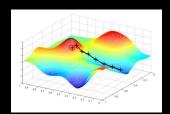
LOSS/COST FUNCTION FOR REGRESSION



$$MAE = \frac{1}{n} \sum_{i=1}^{nsample} |y_{obs} - y_{pred}|$$

$$MSE = \frac{1}{n} \sum_{i=1}^{nsample} (y_{obs} - y_{pred})^{2}$$

$$Huber = \begin{cases} \frac{1}{2}(y_{obs} - y_{pred})^2 & for |y_{obs} - y_{pred}| \le \delta \\ \delta |y_{obs} - y_{pred}| - \frac{1}{2}\delta^2 & otherwise \end{cases}$$



LOSS/COST FUNCTION FOR CLASSIFICATION

Cross-entropy

$$H(p,q) = -\sum_{x} p(x) ln(q(x))$$

p probability distribution

Dataset			
Animal	Human		
0	1		
0	1		
1	0		
1	0		

q probability distribution

Predictions			
Animal	Human		
0.2	8.0		
0.1	0.9		
0.6	0.4		
0.9	0.1		

Average cross-entropy = 0.236

Cross-entropy per sample

Sample

$$-(0*ln(0.2)+1*ln(0.8)) = 0.223$$

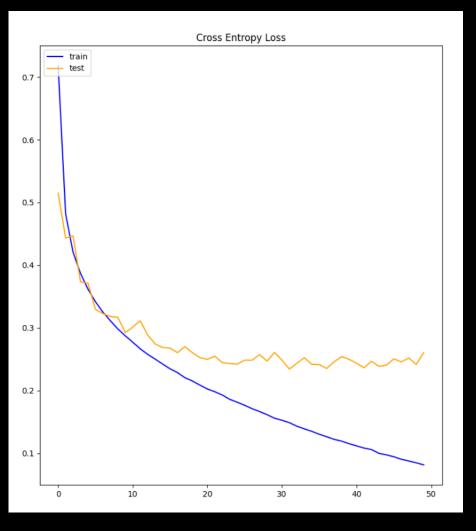
$$-(0*ln(0.1)+1*ln(0.9)) = 0.105$$

$$-(1*ln(0.6)+0*ln(0.4)) = 0.511$$

$$-(1*ln(0.9)+0*ln(0.1)) = 0.105$$

CROSS-ENTROPY

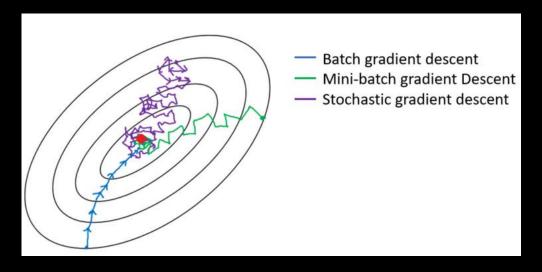
What is your conclusion?

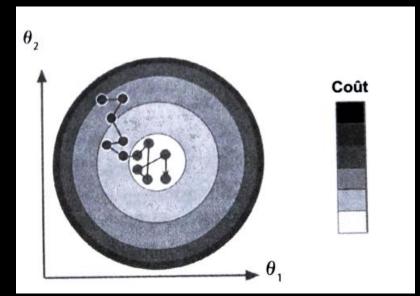


Epochs = iteration

OPTIMIZER

- ORDINARY/BATCH GRADIENT DESCENT
 - SEEN IN THE LAST COURSE
 - ALL RECORDS
- STOCHASTIC GRADIENT DESCENT
 - RANDOM SELECTED RECORD
- MINI-BATCH GRADIENT DESCENT
 - BATCH OF USUALLY 32 RECORDS

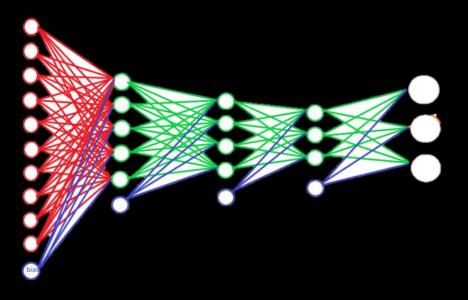




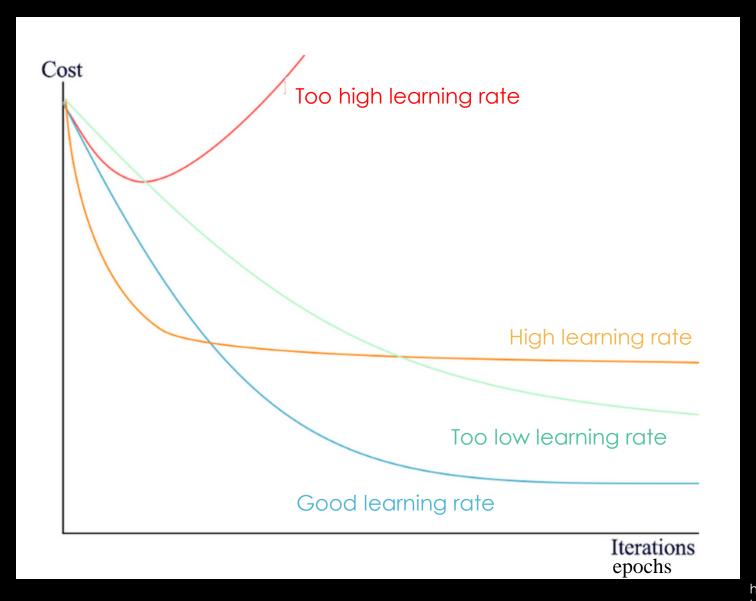
Do not reach the optimal value but are close

MULTILAYER PERCEPTRON

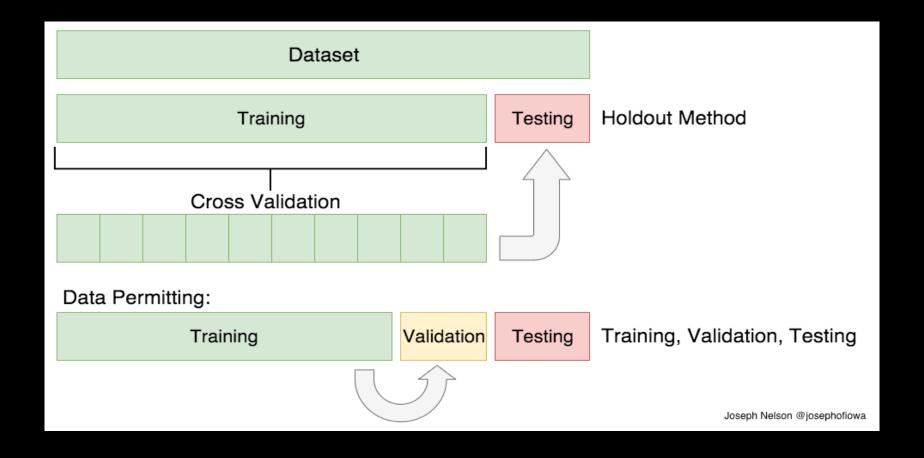
- HIGHER NEURONS → ↑ COMPLEXITY
- HIGHER HIDDEN LAYERS → ↑ COMPLEXITY
- ≠ RESULTS IF OTHER ACTIVATION FUNCTION
- ≠ RESULTS IF OTHER OPTIMIZER (MORE OR LESS IMPACTED BY LOCAL MINIMA)
- ≠ RESULTS IF OTHER LOSS FUNCTION
- ≠ RESULTS IF THE LEARNING RATE IS DIFFERENT
- YOU CAN ALSO ADD A REGULARISATION (L2 OR L1 NORM)



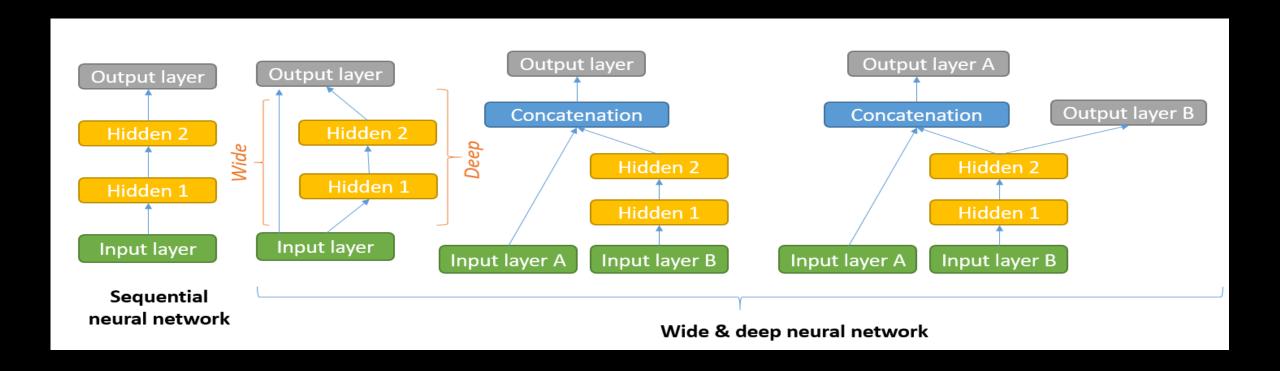
Take care to the overfitting



HYPERPARAMETERS OPTIMIZATION



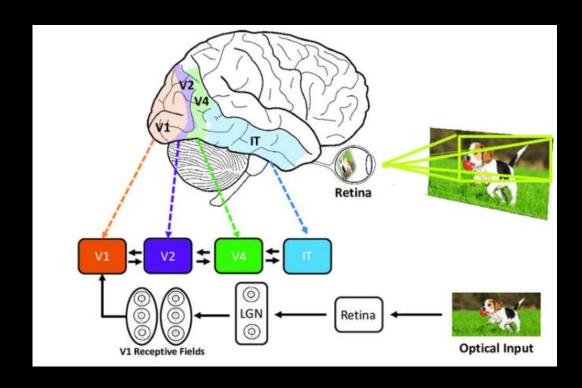
WIDE & DEEP NEURAL NETWORK



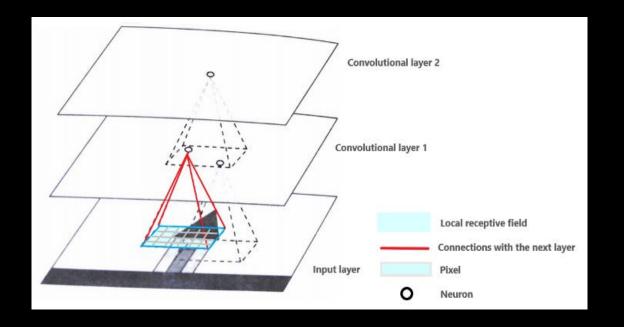
CONVOLUTIONAL NEURAL NETWORK (CANN)

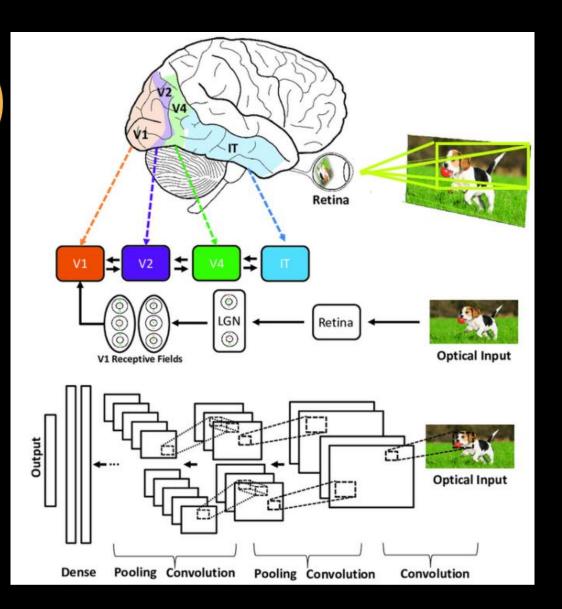
DAVID H. HUBEL AND TORSTEN WIESEL IN THE 50'S OBSERVED THAT SEVERAL NEURONS IN THE VISUAL CORTEX OF CATS IN THE BRAIN FOCUS ON A RESTRICTED REGION OF THE VISUAL FIELD AND INTERACT ONLY IF A VISUAL STIMULI OCCURRED IN THIS REGION.

- → No interest to link all neurons
 - → Local receptive field (LRF)

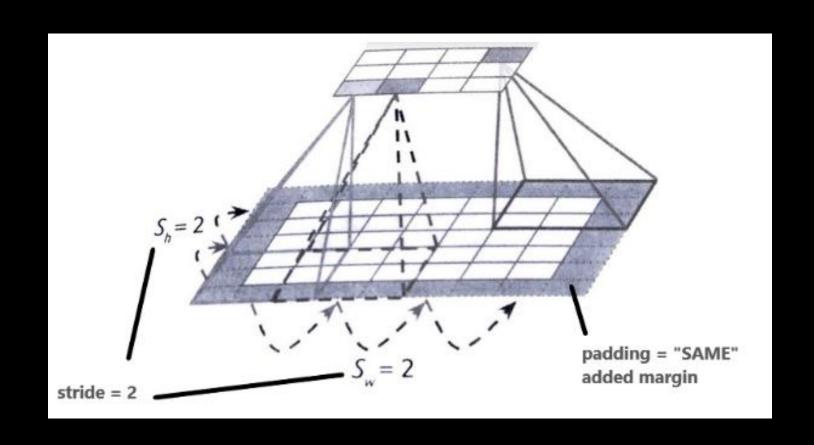


LOCAL RECEPTIVE FIELD (LRF)

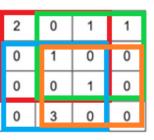




PADDING AND STRIDE



FILTER



1	0	1
0	0	0
0	1	0

Input image Padding = valid (no margin)

Stride = 1

Filter (3x3)

Output image with stride = 1

 $\begin{bmatrix} (2x1)+(0*0)+(1*1) \\ +(0*0)+(1*0)+(0*0) \\ +(0*0)+(0*1)+(1*0) \\ = 3 \end{bmatrix}$

	2	0	1	1
)	0	1	0	0
)	0	0	1	0
	0	3	0	0

\		/
/	^	\

	1	0	1
=	0	0	0
	0	1	0

3	

2	2 0		1	
0	1	0	0	
0	0	1	0	
0	3	0	0	

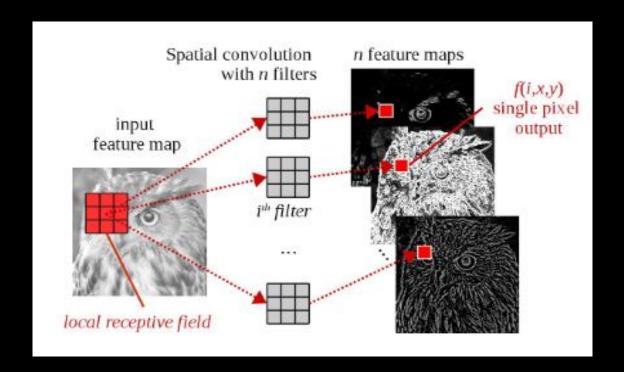
1	0	1
0	0	0
0	1	0

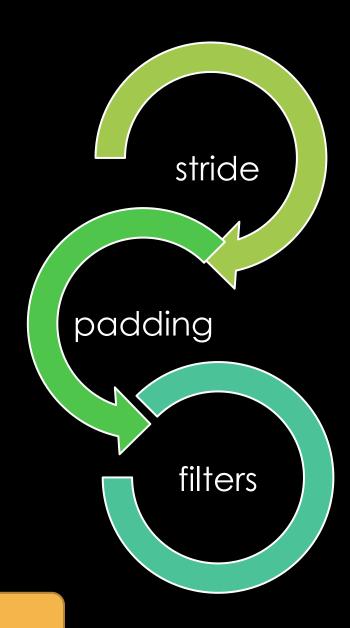
=

3	2
3	1

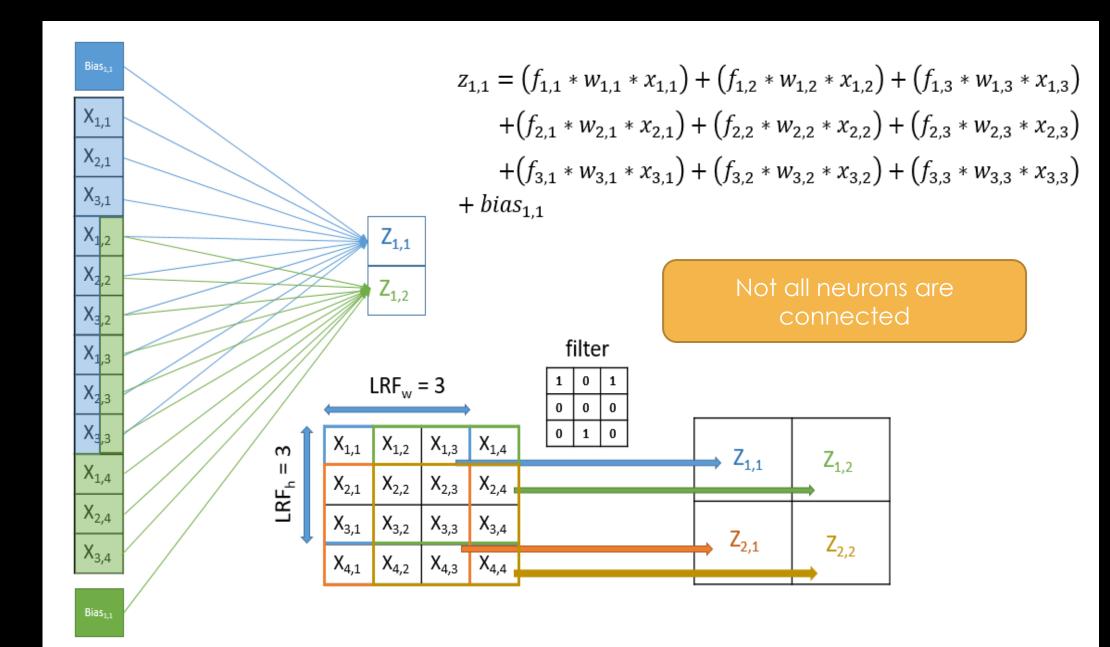
Final output image

FEATURE MAPS

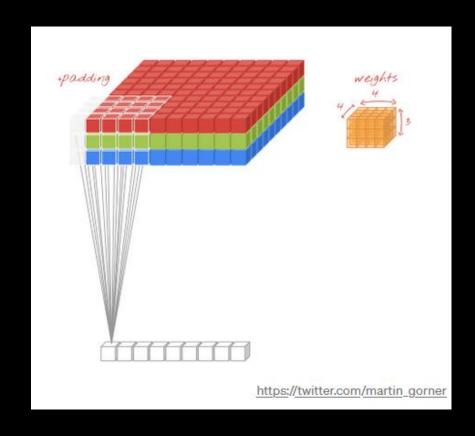


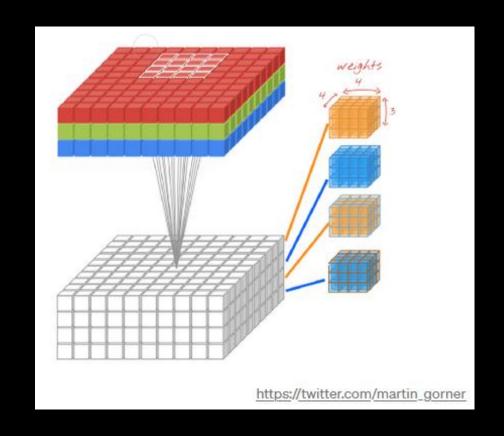


Where are the weights?



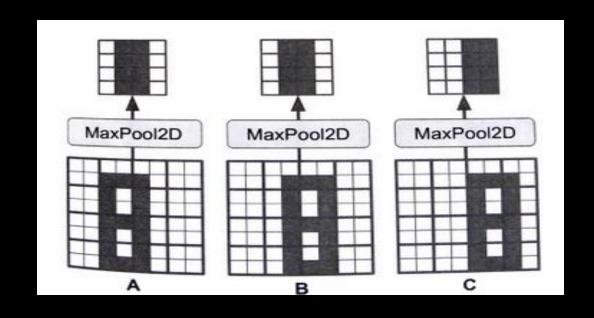
2D AND 3D CANN → FEATURE MAPS



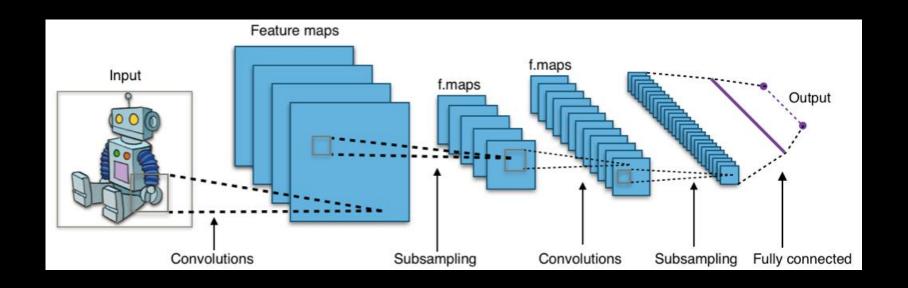


POOLING LAYER

- DECREASE THE DIMENSIONALITY OF THE LAYER
 BY SUB-SETTING THE IMAGE
- 2*2 IS PREFERRED
- MAX OR MEAN IS USED



CANN



CURRENT CONCLUSIONS FOR DAIRY FARMING

CAREFUL

- Structure
- Number of parameters

Models already tested in milk spectroscopic analysis

Ordinary multivariate regression Penalized linear Regression (Ridge, Lasso, Elastic) Principal Component regression Partial Least Squares Regression Random Forest

Support vector machine

Neural Network

– Multilayer
perceptron

Convolutional neural network

Linear until non-linear relationships

Higher computational resources

Table 1. The 10-fold cross-validation and external-validation performances for predicting lactoferrin content in milk using 4 different machine learning algorithms¹

		PLSR	PLS + Linear SVR	PLS + Polynomial SVR	PLS + ANN
Selection function		oneSE	oneSE	best	best = oneSE ²
Calibration (n = 5,541)	Parameters	nLV ³ =	C ⁴ = 5	degree = 3; scale = 0.01; C = 1	size = 4; decay = 0.5
	R ² c	0.53	0.53	0.64	0.60
	RMSEc	140.94	144.32	125.89	130.59
Cross-validation	R ² cv	0.51	0.53	0.56	0.55
	R ² cv SD	0.03	0.03	0.03	0.03
	RMSEcv	144.31	144.60	138.40	139.01
	RMSEcv SD	5.77	5.61	8.08	5.05
	RPD	1.43	1.42	1.49	1.48
External validation (n	R ² v	0.61	0.63	0.62	0.60
= 836)	RMSEv	163.76	174.92	166.75	162.17

Soyeurt et al., JDS 2020

Journal of Dairy Science

Volume 103, Issue 12, December 2020, Pages 11585-11596

esearch

A comparison of 4 different machine learning algorithms to predict lactoferrin content in bovine milk from mid-infrared spectra

H. Soyeurt ¹ A M. Coffey ⁵, A. Tedde ¹, P. Delhez ¹ ⁶, F. Dehareng ², N. Gengler ¹

Example: Lactoferrin

Mean: 260 mg/L

|Difference| _{PLS vs ANN}: 1.59 mg/L -> 0.61%

Difference | _{PLS vs LSVM}: 11.16 mg/L → 4.29%

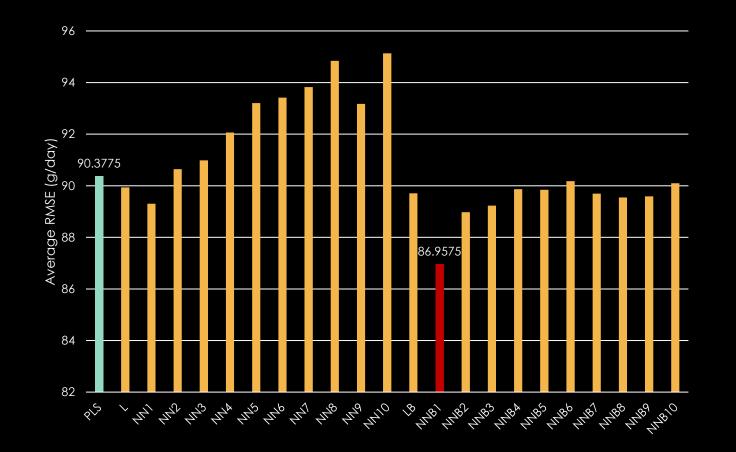
Difference | _{PLS vs PSVM}: 2.99 mg/L → 1.15%

| Difference | ANN vs LSVM : 12.75 mg/L → 4.90%

Difference ANN vs PSVM: 4.58 mg/L → 1.76%

| Difference | PSVM vs LSVM: 8.17 mg/L→ 3.14%

Small differences!



Journal of Dairy Science

Volume 105, Issue 10, October 2022, Pages 8272-8285

esearch

Predicting methane emission in Canadian Holstein dairy cattle using milk midinfrared reflectance spectroscopy and other commonly available predictors via artificial neural networks

Saeed Shadpour ¹, Tatiane C.S. Chud ¹, Dagnachew Hailemariam ², Graham Plastow ², Hinayah R. Oliveira ¹, Paul Stothard ², Jan Lassen ³, Filippo Miglior ¹ ⁴, Christine F. Baes ¹, Dan Tulpan ¹, Flavio S. Schenkel ¹ A

Example: Methane

Mean: +/- 400g/jour

| Difference | _{PLS vs NN}: 3g/day → 0.75%

Method	Predictor			Statistic										
Method	Fredictor	Bias	RMSE	r	b RPIQ		Method		Bias	RMSE	r	b	RPIQ	
	Previous							Previous		42.50 (1.64) 43.15 (2.04) 41.14 (1.86) 41.45 (1.45)				
	a.m.	-0.23 (8.97)	43.04 (2.36) 43.73 (2.48) 42.15 (1.52)	0.64 (0.03)	0.94 (0.11)	1.76 (0.16)	Neural networks	a.m.	0.12 (8.66)		0.64 (0.02)	0.90 (0.11)	1.76 (0.16)	
	p.m.	0.03 (9.49)		0.63 (0.03)	0.93 (0.11)	1.74 (0.16)		p.m.	-0.11 (10.00)		0.64 (0.03)	0.87 (0.10)	1.73 (0.18)	
	a.m. and p.m.	-0.01 (8.89)		0.65 (0.03)	0.94 (0.10)	1.77 (0.17)		a.m. and p.m.	-0.42 (8.26)		0.67 (0.02)	0.90 (0.09)	1.81 (0.16)	
	Average		45.23 (0.90)	0.66 (0.03)	0.95 (0.11)	1.79 (0.18)		Average						
	a.m. and	-0.09 (8.81)						a.m. and	-0.42 (7.96)		0.66 (0.03)	0.91 (0.12)	1.80 (0.15)	
	p.m.							p.m.						
	Following							Following		43.59 (1.42) 44.36 (0.37)				
	a.m.	-0.49 (9.34)		0.61 (0.02)	0.95 (0.09)	1.71 (0.11)		a.m.	-0.73 (8.93)		0.64 (0.02)	0.92 (0.11)	1.75 (0.11)	
Dartiel Isset	p.m.	-0.06 (9.93)		0.60 (0.04)	0.93 (0.12)	1.69 (0.12)		p.m.	-0.36 (9.08)		0.62 (0.03)	0.89 (0.07)	1.72 (0.11)	
Partial least squares	a.m. and p.m.	-0.20 (9.14)		0.62 (0.03)	0.94 (0.10)	1.73 (0.11)		a.m. and p.m.	-0.96 (8.84)	42.48 (1.02)	0.66 (0.03)	0.89 (0.08)	1.80 (0.13)	
,	Average		44.00 (1.40)		0.95 (0.10) 1.7			Average			0.66 (0.03)	0.92 (0.09)		
	a.m. and	-0.56 (9.43)		0.63 (0.03)		1.74 (0.11)		a.m. and	-0.46 (8.23)	42.33 (1.38)			1.81 (0.13)	
	p.m.							p.m.						
	Flanking							Flanking						
	a.m.	-0.42 (9.08)	38.09 (1.87)	0.68 (0.03)	0.95 (0.11)	1.87 (0.17)		a.m.	0.16 (8.97)	38.23 (1.50) 39.16 (0.94)	0.68 (0.03)	0.92 (0.12)	1.86 (0.17)	
	p.m.	-0.11 (9.71)	39.25 (1.57) 37.98 (1.36) 37.56 (2.00)	0.66 (0.03)	0.93 (0.12)	1.81 (0.15)		p.m.	-0.46 (9.27)		0.66 (0.02)	0.87 (0.07)	1.82 (0.14)	
	a.m. and p.m.	-0.10 (8.83)		0.68 (0.03)	0.95 (0.11)	1.87 (0.16)		a.m. and p.m.	-0.77 (8.43)	37.17 (1.53)	0.70 (0.02)	0.91 (0.09)	1.91 (0.15)	
	Average a.m. and	-0.25 (8.92)		0.69 (0.03)	0.96 (0.11)	1.90 (0.16)		Average a.m. and	-0.33 (7.95)	37.46 (4.01)	0.71 (0.03)	0.92 (0.11)	1.95 (0.16)	
	p.m.							p.m.						

Example : **Methane**

Also low differences

Journal of Dairy Science
Volume 107, Issue 2, February 2024, Pages 978-991

December

Predicting methane emissions of individual grazing dairy cows from spectral analyses of their milk samples

Identifying Health Status in Grazing Dairy Cows from Milk Mid-Infrared Spectroscopy by Using Machine Learning Methods

by Brenda Contla Hernández ^{1 ☑}, Nicolas Lopez-Villalobos ^{2 ☑ ©} and Matthieu Vignes ^{1,*} ☑

- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
- * Author to whom correspondence should be addressed.

Animals 2021, 11(8), 2154; https://doi.org/10.3390/ani11082154

More nuanced in classification

Table 2. Performance of classification models obtained in 10 Monte Carlo cross-validation for classifying any health problem and healthy cows during lactation (early, mid and lactation) at two dairy farms during the 2016 production season ¹.

Models ²	Sensitivity	Specificity	Accuracy	PPV	NPV	AUC	мсс
PLS-DA	65.60 ± 5.97	79.59 ± 2.36	78.85 ± 2.23	15.25 ± 3.07	97.66 ± 0.5	72.59 ± 3.27	0.24 ± 0.04
RF	46.22 ± 8.62	79.26 ± 2.15	77.51 ± 1.75	10.94 ± 1.88	96.38 ± 0.73	62.74 ± 3.78	0.14 ± 0.04
SVM	66.39 ± 6.80	76.39 ± 2.92	75.84 ± 2.42	13.48 ± 1.62	97.61 ± 0.61	71.39 ± 2.37	0.22 ± 0.02
NN	61.74 ± 15.99	97.00 ± 2.85	95.16 ± 3.26	59.99 ± 26.20	97.87 ± 0.87	79.37 ± 9.16	0.58 ± 0.22
CNN	57.02 ± 12.70	92.5 ± 5.27	90.63 ± 4.98	33.82 ± 13.41	97.5 ± 0.75	74.76 ± 6.88	0.39 ± 0.13
ESA	57.15 ± 12.38	87.61 ± 6.19	86.02 ± 6.21	24.06 ± 13.07	97.36 ± 0.77	72.38 ± 8.48	0.31 ± 0.16
ESMJ	60.75 ± 5.98	83.57 ± 2.56	82.36 ± 2.27	17.18 ± 3.21	97.46 ± 0.55	72.16 ± 2.9	0.25 ± 0.04
ESWA	56.43 ± 14.56	85.13 ± 7.41	83.61 ± 7.36	21.33 ± 14.18	97.22 ± 0.97	70.78 ± 9.71	0.27 ± 0.17

¹ These values correspond to the mean ± SD obtained by 10-fold Monte Carlo cross-validation for classifying any health problem (lameness, mastitis, reproductive disorder, etc.). From the cows' records, the positive cases were cows that had any illness (lameness, mastitis, reproductive disorder, etc.) and negative cases were cows who were healthy (no diagnosed disease); SD = Standard deviation; PPV = positive predicted value; NPV = negative predicted value; AUC = area under the receiver operating characteristic curve; MCC = Matthews correlation coefficient. ² Models used to perform the classification: PLS-DA = partial least squares discriminant analysis, RF = random forest, SVM = support vector machine, NN = neural network, CNN = convolutional neural network, ESA = ensemble stacking average, ESMJ = ensemble stacking major voting and ESWA = ensemble stacking weighted average.

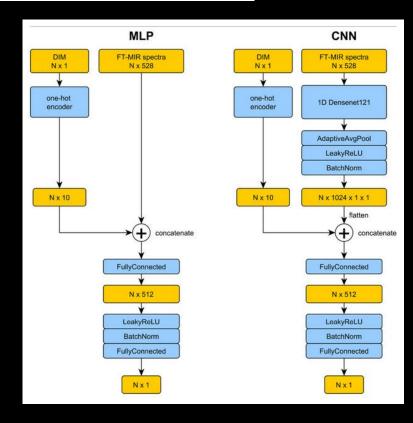
Journal of Dairy Science

Volume 105, Issue 4, April 2022, Pages 3615-3632

Researc

Pregnancy status predicted using milk midinfrared spectra from dairy cattle

 $\begin{array}{lll} & \text{K.M. Tiplady}^{12} \nearrow & \boxtimes, \underline{\text{M.-H. Trinh}}^1, \underline{\text{S.R. Davis}}^1, \underline{\text{R.G. Sherlock}}^1, \underline{\text{R.J. Spelman}}^1, \underline{\text{D.J. Garrick}}^2, \\ & \underline{\text{B.L. Harris}}^1 \end{array}$



More nuanced in classification

Table 3. Model performance for multilayer perceptron (MLP) and convolutional neural network (CNN) approaches based on strategy 3 data¹: accuracy (Acc), sensitivity (Sens), specificity (Spec), and area under the receiver operating characteristic curve (AUC) values within the training, herd-independent validation (VAL-Test) and pregnancy-associated glycoproteins validation (VAL-PAG) data sets

Deep learning		Trai	ning		Test v	alidatio	on (VAI	Test)	Glycoprotein-based validation (VAL-PAG)					
approach ² and model ³	Acc	Sens	Spec	AUC	Acc	Sens	Spec	AUC	Acc	Sens	Spec	AUC		
MLP approach														
FT-MIR spectra	0.592	0.574	0.611	0.628	0.586	0.580	0.607	0.632	0.664	0.672	0.569	0.669		
FT-MIR spectra + DIM	0.594	0.621	0.566	0.631	0.614	0.629	0.564	0.635	0.692	0.709	0.499	0.647		
FT-MIR spectra (pre- adjusted for DIM)	0.559	0.554	0.564	0.583	0.562	0.567	0.547	0.581	0.554	0.547	0.636	0.636		
CNN approach														
FT-MIR spectra	0.625	0.625	0.625	0.675	0.611	0.620	0.582	0.641	0.684	0.696	0.554	0.676		
FT-MIR spectra + DIM	0.645	0.670	0.620	0.700	0.636	0.659	0.563	0.654	0.723	0.741	0.519	0.685		
FT-MIR spectra (pre- adjusted for DIM)	0.982	0.975	0.988	0.998	0.668	0.790	0.273	0.551	0.759	0.805	0.266	0.564		

The variability is bigger within the same model using different sets of features

Journal of Dairy Science

Volume 105, Issue 10, October 2022, Pages 8272-8285

Research

Predicting methane emission in Canadian Holstein dairy cattle using milk midinfrared reflectance spectroscopy and other commonly available predictors via artificial neural networks

Saeed Shadpour ¹, Tatiane C.S. Chud ¹, Dagnachew Hailemariam ², Graham Plastow ², Hinayah R. Oliveira ¹, Paul Stothard ², Jan Lassen ³, Filippo Miglior ¹ ⁴, Christine F. Baes ¹, Dan Tulpan ¹, Flavio S. Schenkel ¹ A

Features	PLS	L	NN1	NN2	NN3	NN4	NN5	NN6	NN7	NN8	NN9	NN10	LB	NNB1	NNB2	NNB3	NNB4	NNB5	NNB6	NNB7	NNB8	NNB9	NNB10	SD
1	96.47	96.55	93.08	93.16	93.33	94.74	93.98	94.36	97.65	97.65	96.54	99.39	96.26	91.67	93.01	92.59	92.07	92.41	92.2	92.2	92.22	92.08	92.45	2.26
2	95.68	95.29	91.4	93.47	94.64	94.05	95.54	96.11	95.44	98.04	97.66	96.16	95.61	91.93	92.55	93.26	92.89	93.12	93.07	93.06	92.97	92.92	93.1	1.78
3	96.32	96.36	93.58	94.44	93.96	94.55	94.71	97.27	97.69	97.39	95.15	98.47	95.99	92.49	93.19	91.46	91.91	92.35	92.45	92.3	92.31	92.46	92.59	2.13
4	95.84	95.73	93.4	94.18	96.15	93.58	96.82	94.14	96.05	97.44	96.65	96.57	95.59	91.8	93.41	93.14	93.35	92.84	92.66	92.81	93.17	93.22	92.79	1.67
5	96.5	96.72	95.23	94.89	93.41	97.01	98.35	98.94	97.31	99.91	100.94	100.9	96.11	92.6	93.87	93.05	92.82	93.08	92.66	92.98	92.83	92.8	92.83	2.84
6	96.75	96.07	94.41	95.86	96.8	97.44	97.89	101.16	100.12	100.65	98.93	101.93	95.66	92.55	93.46	93.87	93.33	93.07	93.4	93.45	93.34	93.35	93.62	2.94
7	73.7	72.44	77.56	81.19	81.51	85.42	84.69	82.72	84.49	82.27	80.79	84.57	71.61	71.75	76.2	78.96	79.48	81.59	82.58	78.65	80.36	79.33	81.66	4.15
8	71.76	70.31	75.75	77.95	78.08	79.72	83.64	82.61	81.85	85.36	78.72	83.08	70.83	70.87	76.12	77.5	83.09	80.28	82.42	82.1	79.16	80.56	81.71	4.44
SD	10.91	11.48	7.90	6.94	7.08	6.20	5.78	7.02	6.76	6.96	8.48	7.26	11.42	9.67	7.92	6.83	5.41	5.52	4.75	5.84	6.06	5.98	5.20	

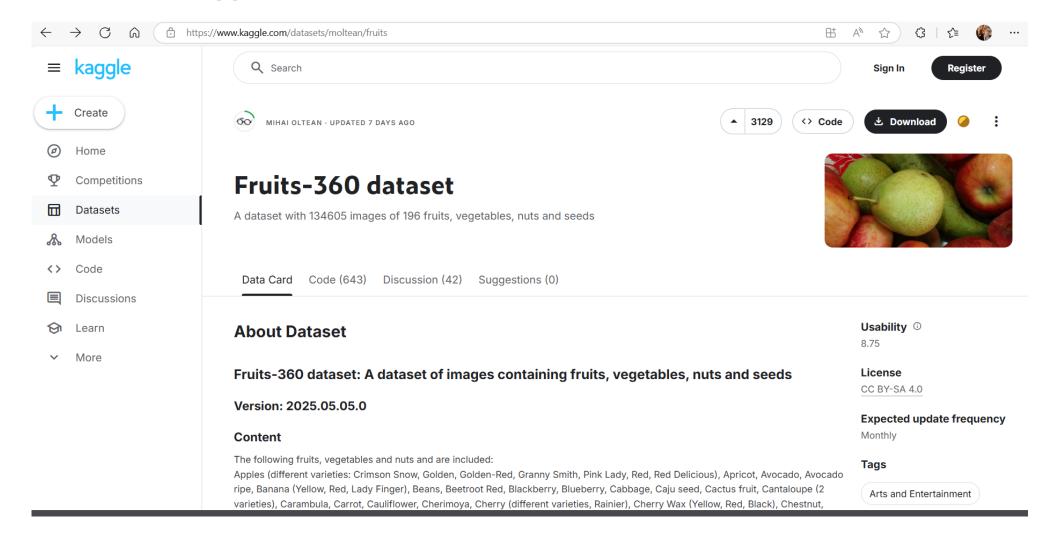
→ Not only focus on the model type

CONCLUSIONS

- A lot of hyperparameters to tune
- Infinite possibility of cANN and MLP structure
- Take care to the reproducibility of the model
- Limited interest for regression but high interest for classification and image processing
- However, transfer learning can solve problems of data sharing or allows to deal with large database

PYTHON SCRIPT EXAMPLE

https://www.kaggle.com/datasets/moltean/fruits



```
#######################
# MLP
ANN1 = tf.keras.Sequential([
    tf.keras.Input(shape=(100, 100, 3)),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(700, activation="relu"),
    tf.keras.layers.Dense(300, activation="relu"),
    tf.keras.layers.Dense(100, activation="relu"),
    tf.keras.layers.Dense(31, activation="softmax")
1)
print("Perceptron with one hidden layer", ANN1.summary())
tf.keras.utils.plot model(ANN1)
# network compilation
ANN1.compile(
    optimizer=tf.keras.optimizers.SGD(learning rate=0.01, momentum=0.9),
    loss='categorical crossentropy',
    metrics=['accuracy']
# Fit the network
history = ANN1. fit (x = xtrain,
          y = ytrain,
          epochs = 50, # 50 epochs
          batch size = 64, # mini-batch gradient descent with 32 samples
          validation split = 0.2,
          callbacks = [tf.keras.callbacks.EarlyStopping(patience=3)]) # patience option is interesting to be sure that the minimum is not a local minimum.
```

```
# model creation : 64 filters - 256 neurons in the last hidden layer
cANN = tf.keras.Sequential([
    tf.keras.Input(shape=(100, 100, 3)), # declare input shape separately
    tf.keras.layers.Conv2D(10, 7, activation="relu", padding="same"),
    tf.keras.layers.MaxPooling2D(2),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(64, activation="relu"),
    tf.keras.layers.Dropout(0.5),
    tf.keras.layers.Dense(64, activation="relu"),
    tf.keras.layers.Dense(31, activation="softmax") # adjust output units to your number of classes
1)
print("Convolutional neural network", cANN. summary())
tf.keras.utils.plot model(cANN)
# network compilation
cANN.compile(tf.keras.optimizers.SGD(learning rate=0.01, momentum=0.9), # optimizer "adam" "sgd"
              loss='categorical crossentropy', #tf.keras.losses.SparseCategoricalCrossentropy(from logits=True),
              metrics=['accuracy'])
# Fit the network
history2 = cANN. fit (x=xtrain,
          y=ytrain,
          batch size=64,
          epochs=50,
          verbose=1,
          validation data=(xtest, ytest),
          callbacks = [tf.keras.callbacks.EarlyStopping(patience=3)]) # patience option is interesting to be sure that the minimum is not a local minimum.
```