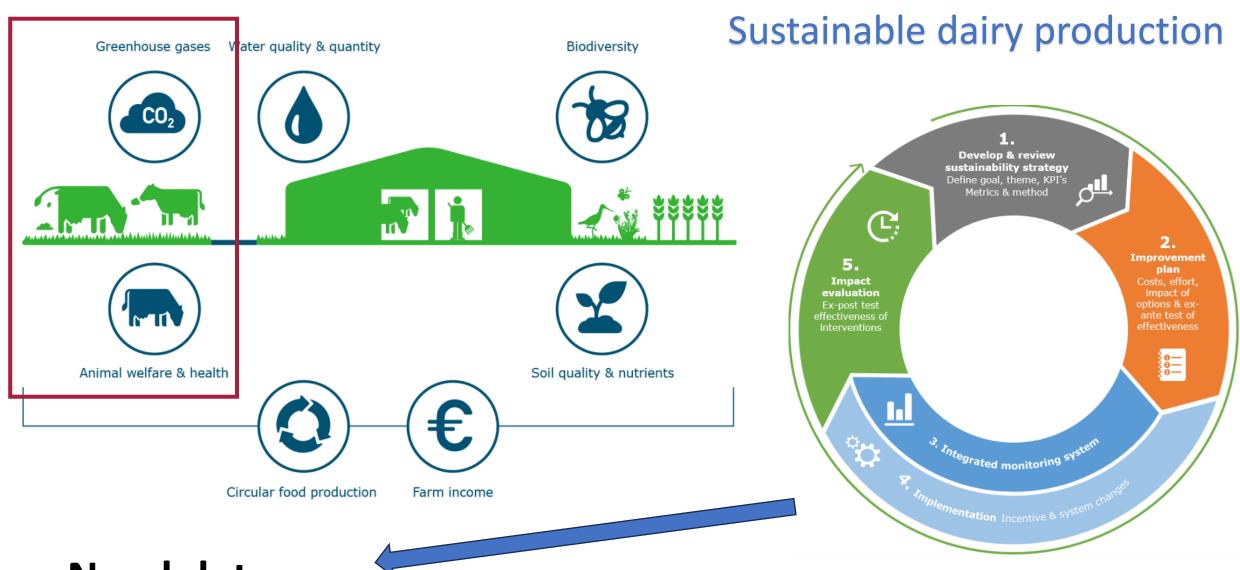


Potentials of milk Mid-infrared Spectrometry:


Where are we? What are the next steps?

Prof. Hélène Soyeurt

hsoyeurt@uliege.be

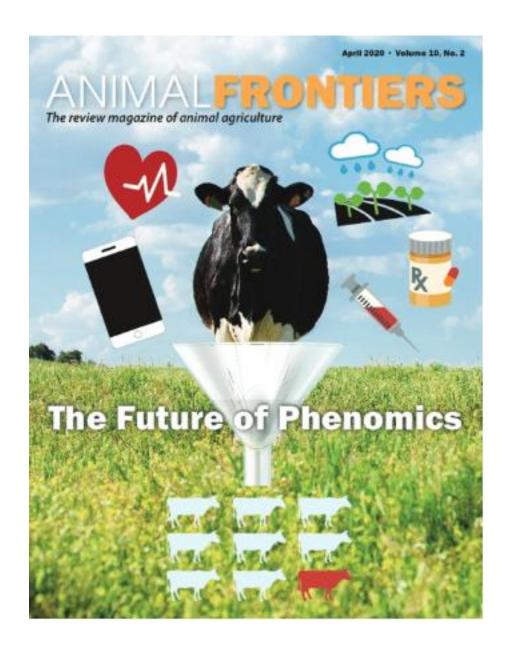
Rinderzucht Austria – Wien – Austria – June 2025

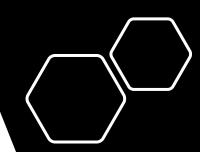
Need data ...

vet

Need Phenotypes

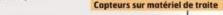
genetics


Decision tools



advicers

Everything is connected - Access to data is easy



Détection du vêlage

La sonde vaginale (Vel-Box de Gènes Diffusion, Vel'Phone de Médria) avertit de l'imminence d'un vélage. Elle est expulsée du vagin lors du vêlage et une alerte est transmise par téléphone ou sur l'ordinateur. La société New Deal a breveté un capteur (Happy Foaling) qui est implanté dans le vagin de la vache par chirurgie, avec une durée de vie de cinq ans.

Les compteurs à lait en salle de traite et robots de traite apportent

des informations en temps réel sur la production et la conductivité. purnisseurs: Lely, GEA, Boumatic, milk, Delaval, SAC, Insentec. ogiciel DLM de Lely adapte matiquement la quantité de ntré au robot à la réponse en lait.

du lait

boratoire Herd

e Delaval analyse nt des échantillons ortant sur estérone, vrate (BHB le), de l'urée nase maire).

Détection du vélage

La ceinture abdominale Agrimonitor de Databel détecte les contractions abdominales et utérines précédant le vélage. L'alerte est transmise vers le réseau téléphonique via un module de contrôle. selon deux modalités : vélage normal ou difficile.

Identification électron

Les boucles électroniques

officielles (puces RFID) peuvent se substituer aux différents dispos. d'identification (collier, bracelet, box pour faire fonctionner les automates à la ferme : Dal, Dac, robots, portes de tri, compteur à lait...

Ci-contre, le système Cowmanager de Select Sires comprend une puce pour l'identification, la prise de température et un accéléromètre pour la détection des chaleurs.

Ingestion, rumination

Le licol RumiWatch de Itin + Hoch mesure le nombre de bouchées, le temps d'ingestion, de rumination et d'abreuvement.

A l'instar des auges individuelles avec peson intégré, cet équipement s'inscrit dans la logique d'une alimentation individuelle de précision.

Activité physique

Les colliers équipés

d'un accéléromètre servent à la détection des chaleurs et permettent, grâce à la détection des mouvements de tête couplés au bruit de la rumination captée par microphone, d'analyser le comportement alimentaire (ingestion, rumination).

Fournisseurs: Nedap, Médria, Evolution, Gènes Diffusion, Lely, Dairy Master, Milkline.

Température et pH du rumen

Le bolus Smaxtec de Sanders mesure en continu la température et le pH du rumen, et le Thermobolus de Médria, la température. La mesure du pH consiste à équiper des vaches sentinelles dans le troupeau pour contrôler le risque d'acidose.

Activité physique et position

Le bracelet à la patte sert à mesurer l'activité pour détect les chaleurs. Il permet l'identi/ au Dac, en salle de traite or Fournisseurs: Afimilk, Full Nedap, GEA, Boumatic

https://www.eleveurlaitier.fr/dossier/descapteurs-au-service-de-lelevage-de-precision-1.0.549358506.html

Quantité et composition du lait

VELBOX

Alim. Santé Repro.

ALE innovenor

Poids vif

Balance / tapis de logette

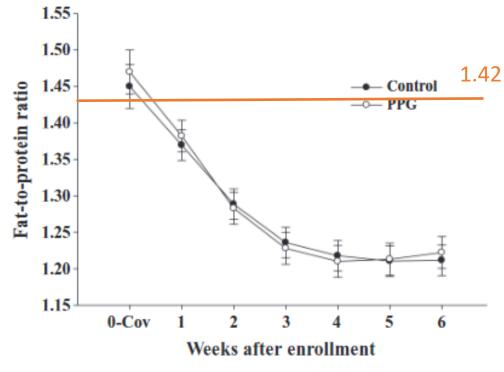
La balance automatique est proposée par de nombreux constructeurs d'installation de traite (GEA, Afimilk, Lely). Ces pesées régulières croisées avec les variations d'état corporel, la baisse de la rumination et la composition du lait offrent des éléments de pilotage du bilan énergétique.

1

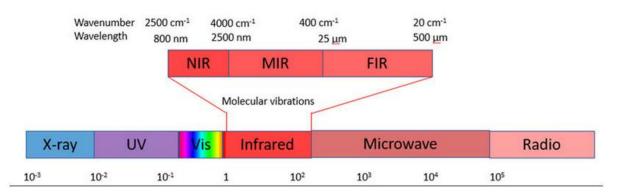
Posture

Les capteurs de pression équipent la plate-forme StepMetrix de Boumatic pour détecter les boiteries. Le dispositif, fixé dans un couloir de retour de salle de traite, transmet les données à l'ordinateur.

Les capteurs du matelas Smart Vibra Mat de Bioret indiquent si chaque vache fréquente normalement sa logette et les éventuelles variations de poids.

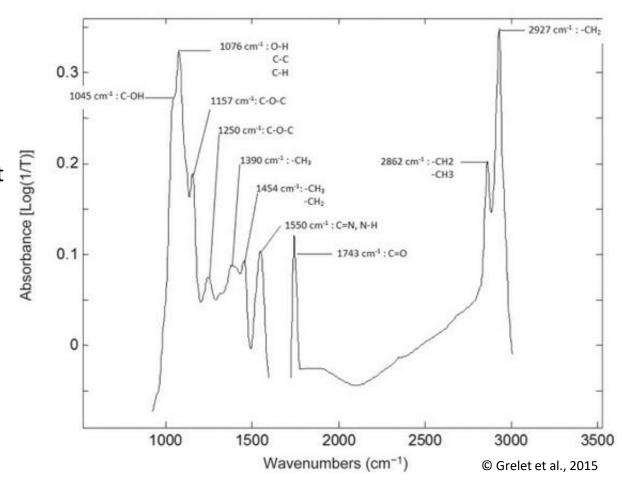


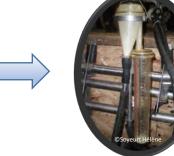
One of the most consumed food

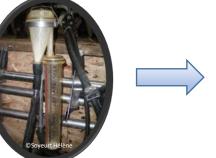

An important source of nutritive elements for humans

Its composition is the mirror of the animal and its changes reflect its health status

Knowing its composition is therefore of interest

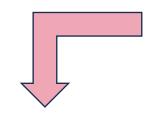



Milk MIR spectrum


Absorption of infrared ray at frequencies related to the vibrations of specific chemical bounds in milk

Milk samples

Milk FT-MIR


Milk payment: 1-3 days (Bulk tank milk)
Milk recording: 4-6 weeks (individual

cow milk)

But we used the same spectral information, could we go further?

Usually,
Fat and Protein
contents

0.3 - 1076 cm⁻¹: C-H₂ C-C C-H 1157 cm⁻¹: C-O-C 1250 cm⁻¹: C-H₃ 12862 cm⁻¹: C-H₃

© Grelet et al., 2015

Predictive model = Equation

Consumption index, nitrogen efficiency ...

Sustainability

Fat, protein, lactose, fatty acids, Ca, lactoferrin,...

Technol

Technological properties

Cheese yield, yoghurt yield, butter yield, spreadability ...

Methane, P, urea ...

Environmental fingerprint

Animal Health

Na, lactoferrin, Energy balance, body weight, dry matter intake, acetone, BHB, citrate ...

Abnormal milk samples

Methods

Volume 186, February 2021, Pages 97-111

Large-scale phenotyping in dairy sector using milk MIR spectra: Key factors affecting the quality of predictions

 $\frac{\text{C. Grelet} \circ \boxtimes, \text{ P. Dardenne} \circ \boxtimes, \text{ H. Soyeurt} \circ \boxtimes, \text{ J.A. Fernandez} \circ \boxtimes, \text{ A. Vanlierde} \circ \boxtimes, \text{ F. Stevens} \circ \boxtimes, \text{ N. Gengler} \circ \boxtimes, \text{ F. Dehareng} \circ \boxtimes, \text{ Dehareng} \circ \boxtimes, \text{ A. Vanlierde} \circ \boxtimes, \text{ Stevens} \circ \boxtimes, \text{ N. Gengler} \circ \boxtimes, \text{ Stevens} \circ \boxtimes, \text{ N. Gengler} \circ \boxtimes, \text{ Stevens} \circ \boxtimes, \text{ Stevens} \circ \boxtimes, \text{ N. Gengler} \circ \boxtimes, \text{ Stevens} \circ \square, \text{ Steve$

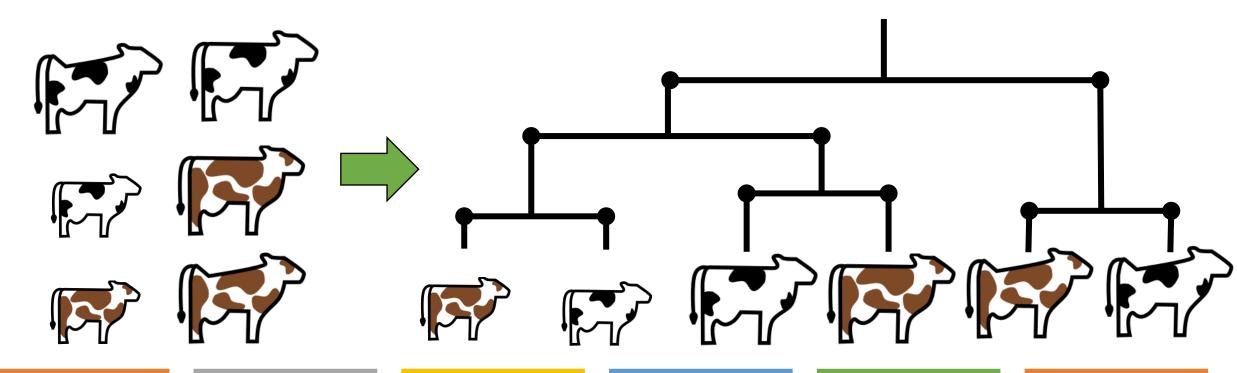
Cluster	RPDcv	Relative RMSEcv	R ² cv	Interpretation for application
1	> 6	<5%	> 0.97	Any application
2	4.2-6	<10%	0.94– 0.97	Quality control
3	3-4.2	<10%	0.89- 0.94	Quantitative screening
4	2-3	<25%	0.74- 0.89	Rough screening
5	1.5-2	<25%	0.55- 0.74	Allows to compare groups, discriminate high or low values
6	1.5-2	>25%	0.55- 0.74	Highly imprecise, can be used to detect extreme values
7	< 1.5	_	< 0.55	Not recommended

From our experience ...

Table 1
Datasets used in the study.

Traits	N records	N cows	N countries	Sampling years	References
Milk Fatty acids, 30 models	1822	1822	7	2005-2015	Soyeurt et al. [39,40]
Milk Minerals, 5 models	1340	1340	4	2005-2015	Soyeurt et al. [41]
Milk Lactoferrin	3906	3906	3	2005-2009	Soyeurt et al. [42]
Methane emitted (CH4)	1089	299	7	2010–2019	Dehareng et al. [43] and Vanlierde et al. [18]
Milk Fresh Cheese Yield (FCY), Coagulation time r, Time when the curd is firm enough for cutting (k20)	283	283	1	2011–2014	Colinet et al. [44]
Milk Casein	996	*	1	2011-2014	Not published
Milk Acetone, β-hydroxybutyrate (BHB) and Citrate	566	346	3	2013-2014	Grelet et al. [45]
Blood BHB, Non-Esterified Fatty Acids (NEFA), Insulin Growth Factor I (IGF-I), Glucose	387	241	6	2014–2016	Grelet et al. [6]
Nitrogen efficiency (NUE), Nitrogen losses, Dry matter intake (DMI), Body weight	1034	129	3	2014-2015	Grelet et al. [14]
Milk Glucose free, Glucose-6-phosphate, Uric acid, Iso-citrate, Progesterone	2175	241	6	2014-2016	Not published

^{*}The casein model was constituted by 790 samples from individual cows and 206 samples from bulk tank.


pplication										
appli	Phenotype	Min	Max	Mean	SD	R ² cv	Relative RMSEcv	RPDcv	Cluster	
Any	Milk SAT FA(g/dL)	0.31	6.97	2.70	0.75	0.99	3%	10.22	1	
	Milk C18_1cis9 (g/dL)	0.08	2.69	0.76	0.29	0.95	8%	4.35		
tro	Milk Casein (g/100 g)	1.61	4.05	2.66	0.34	0.95	3%	4.46		
control	Milk LCFA (g/dL)	0.19	4.79	1.59	0.52	0.95	7%	4.52		
	Milk MCFA (g/dL)	0.22	5.48	2.00	0.60	0.97	5%	5.53		
Quality	Milk MONO FA (g/dL)	0.12	3.42	1.08	0.35	0.97	5%	5.83	2	
Qu	Milk Tot18_1cis (g/dL)	0.09	2.77	0.82	0.31	0.95	8%	4.58		
	Milk Total_C18_1 (g/dL)	0.10	2.98	0.94	0.33	0.96	7%	5.18		
	Milk UNSAT (g/dL)	0.14	3.86	1.25	0.39	0.97	5%	5.75		
۵۵	Milk C10 (g/dL)	0.02	0.32	0.11	0.04	0.91	9%	3.37		
screening	Milk C12 (g/dL)	0.02	0.41	0.13	0.04	0.92	9%	3.62	3	
eel	Milk C14 (g/dL)	0.05	1.20	0.45	0.13	0.93	7%	3.88		
SCr	Milk C16 (g/dL)	0.12	3.32	1.20	0.40	0.94	8%	4.18		
\ \	Milk C4 (g/dL)	0.01	0.23	0.10	0.03	0.93	8%	3.67		
tati	Milk C6 (g/dL)	0.01	0.16	0.07	0.02	0.91	9%	3.32		
Quantitative	Milk C8 (g/dL)	0.01	0.11	0.05	0.01	0.91	9%	3.29		
(ua	Milk Citrates (mmol/L)	3.88	16.12	9.04	2.21	0.89	8%	3.04		
	Milk SCFA (g/dL)	0.05	0.80	0.35	0.10	0.93	7%	3.88		
	Milk C17 (g/dL)	0.00	0.09	0.03	0.01	0.80	13%	2.24		
ng	Milk C18 (g/dL)	0.05	1.32	0.40	0.15	0.84	14%	2.51		
screening	Milk Calcium (mg/kg)	593	1743	1149	135	0.82	5%	2.34		
cre	Milk Odd fatty acids (g/dL)	0.03	0.50	0.16	0.04	0.83	10%	2.41	4	
h S(Milk PUFA (g/dL)	0.02	0.53	0.16	0.05	0.77	13%	2.10		
Rough	Milk Total_Trans (g/dL)	0.02	0.75	0.16	0.08	0.80	19%	2.26		
8	Tot18_1trans (g/dL)	0.01	0.57	0.13	0.06	0.79	21%	2.17		
RC	Tot18_1trans (g/dL)	0.01	0.57	0.13	0.06	0.79	21%	2.17		

	Phenotype	Min	Max	Mean	SD	R ² cv	Relative RMSEcv	RPDcv	Cluster
	Cheese process r (s)	319	1653	906	231	0.58	16%	1.54	
	Dry matter intake (kg/d)	8.8	36.2	19.9	4.5	0.71	12%	1.83	
	Fresh cheese yield (g curd/100 g milk)	7.40	47.93	26.76	6.45	0.73	12%	1.91	
	Methane emitted (g/d)	180	786	413	102	0.68	14%	1.79	
	Milk C14_1 (g/dL)	0.00	0.15	0.04	0.02	0.68	21%	1.78	
values	Milk C16_1c (g/dL)	0.01	0.24	0.07	0.03	0.73	20%	1.91	
/alt	Milk C18_2c9c12 (g/dL)	0.00	0.17	0.06	0.02	0.72	19%	1.91	
≥	Milk C18_3c9c12c15 (g/dL)	0.00	0.09	0.02	0.01	0.68	22%	1.77	
P	Milk isoanteiso FA (g/dL)	0.02	0.28	0.09	0.03	0.75	14%	2.00	_
and	Milk Magnesium (mg/kg)	61	157	100	13	0.72	7%	1.88	5
	Milk omega3 (g/dL)	0.00	0.11	0.03	0.01	0.66	22%	1.73	
High	Milk omega6 (g/dL)	0.01	0.33	0.10	0.03	0.72	14%	1.89	
	Milk Phosphorus (mg/kg)	509	1447	999	124	0.75	6%	1.99	
	Milk Potassium (mg/kg)	819	1985	1524	147	0.55	6%	1.48	
	Milk Tot18_2 (g/dL)	0.01	0.32	0.10	0.03	0.69	15%	1.79	
	N efficiency (%)	9.8	81.7	36.9	10.3	0.71	15%	1.87	
	N losses (kg/d)	0.04	0.81	0.31	0.11	0.65	20%	1.69	
	Weight of cows(kg)	448	832	617	73	0.70	6%	1.83	
les	Blood BHB (mmol/L)	0.19	3.46	0.77	0.48	0.70	35%	1.81	
eme v	Blood IGF-I (mg/L)	13	436	107	71	0.61	42%	1.59	
	Lactoferrin (mg/L)	7	1248	299	222	0.66	44%	1.71	6
	Milk BHB (mmol/L)	0.05	1.60	0.22	0.17	0.75	46%	1.97	
	Milk C18_2c9t11 (g/dL)	0.00	0.14	0.03	0.02	0.74	37%	1.95	

Phenotype	Min	Max	Mean	SD	R ² cv	Relative RMSEcv	RPDcv	Cluster
Blood Glucose (mmol/L)	1.93	4.51	3.47	0.47	0.44	10%	1.33	
Blood NEFA (µekv/L)	26	1956	672	440	0.39	51%	1.28	
Cheese process k20 (s)	160	386	225	39	0.34	13%	1.24	
Milk Glucose Free (mmol/L)	0.00	0.69	0.24	0.11	0.50	32%	1.41	
Milk Glucose6Phosphate (mmol/L)	0.00	0.93	0.16	0.08	0.49	36%	1.40	7
Milk IsoCitrate (mmol/L)	0.02	2.90	0.17	0.10	0.11	55%	1.06	
Milk Natrium (mg/kg)	234	1273	356	91	0.44	15%	1.34	
Milk Progesterone (ng/ml)	0.50	22.44	5.22	2.74	0.08	50%	1.05	
Milk Uric Acid (µmol/L)	2.4	348.5	158.8	54.6	0.32	28%	1.22	

Bring together predictors even if there are less informative ...

Well-being: The agglomerative hierarchical clustering

Milk

- Milk Yield
- Fat
- Protein
- Lactose
- FPCM

Minerals

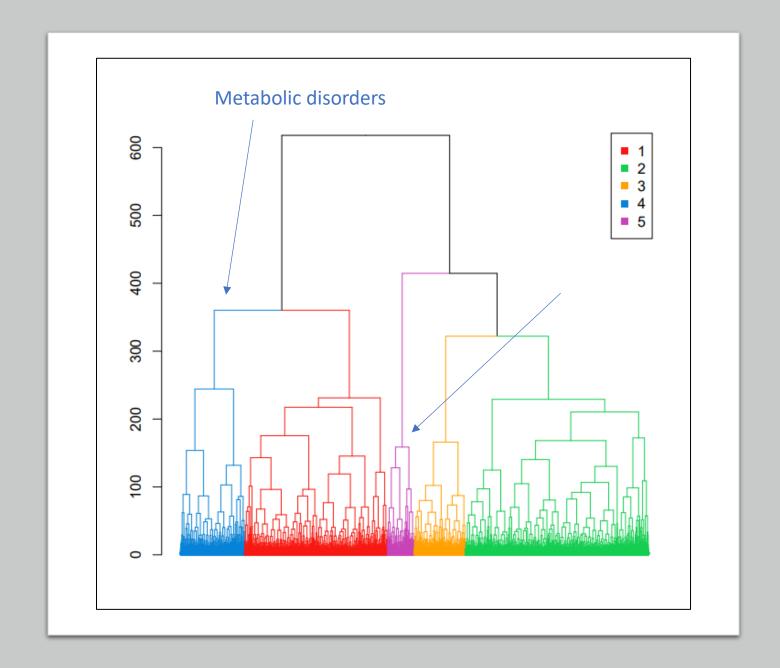
- Sodium
- Calcium
- Magnesium
- Phosphote
- Potassium

Fat

- Saturated FA
- C181 FA
- Monounsaturated
 FA
- Polyunsaturated FA

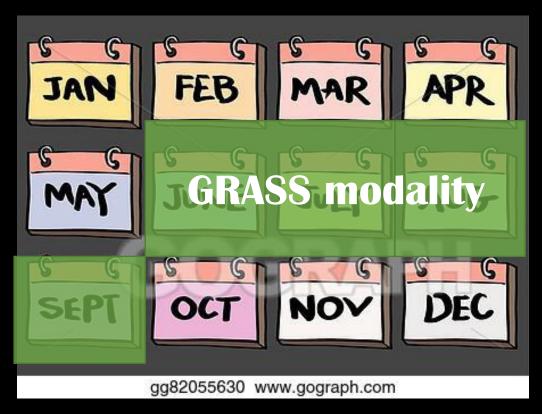
Metabolism

- Methane
- BHB
- Protein Efficiency
- Energy Balance
- acetone

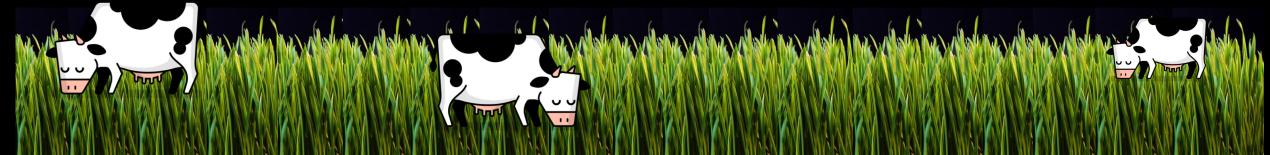

Health

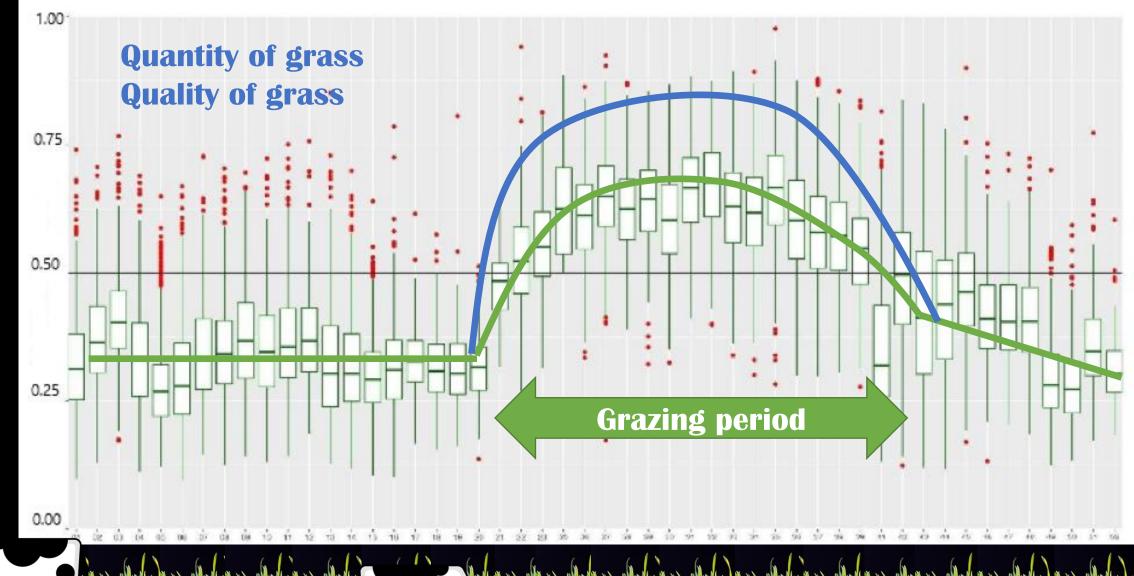
- Somatic Cells Count
- Citrate

Feeding


- Weight
- DMI
- DMI2
- CI
- RFI
- RFI2

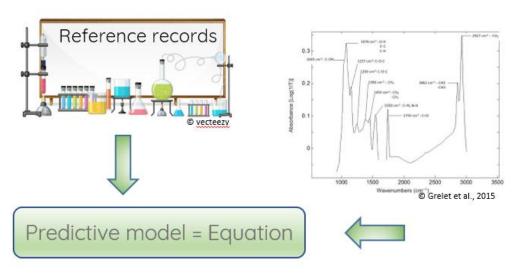
• Detection of cows with abnormal behaviors

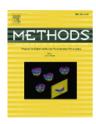

Grass-based prediction

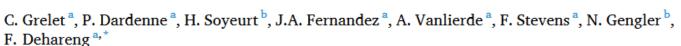


- Calibration accuracy: 88 %
- Validation accuracy: 87%

Coppa et al. (2021) Frizarrin et al. (2021)




© Matthew Henry



Methods 186 (2021) 97-111



Large-scale phenotyping in dairy sector using milk MIR spectra: Key factors affecting the quality of predictions

² Walloon Agricultural Research Center (CRA-W), 24 Chaussée de Namur, 5030 Gembloux, Belgium

b TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium

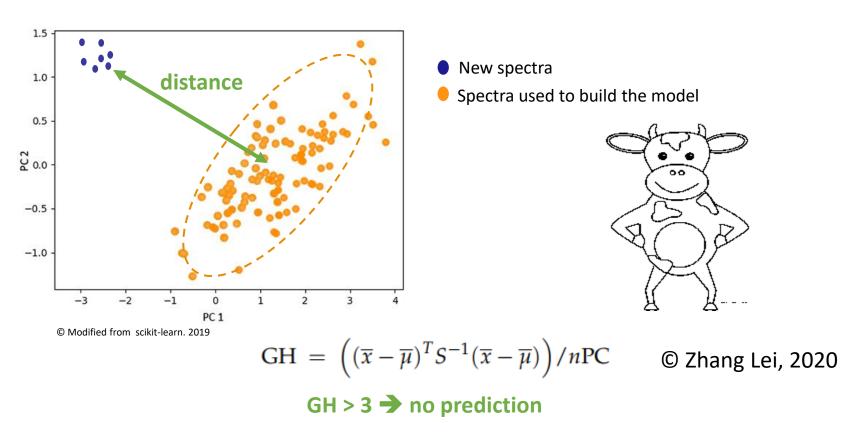
Intrinsic Constraints

Providing a detailed information about the calibration dataset used (records + model)

→ Discussion with spectrometer providers

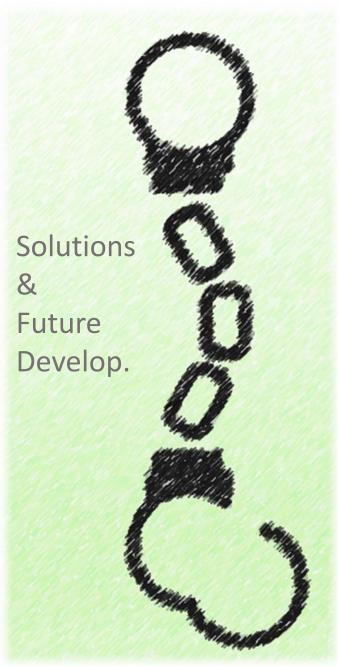
Promoting a large spectral and y variability in the calibration set

→ International collaborations


Limiting the extrapolation by sharing a « outlier » file

→ Distance could be calculated to avoid spectral extrapolation

nspird from @Pivahay



Outlier file

We don't need the calibration set but just few statistical parameters:

- The **averaged spectrum** calculated from the calibration set
- The **matrix of eigenvectors** obtained after applying a Principal Component Analysis on the calibration spectra

Intrinsic Constraints

Providing a detailed information about the calibration dataset used (records + model)

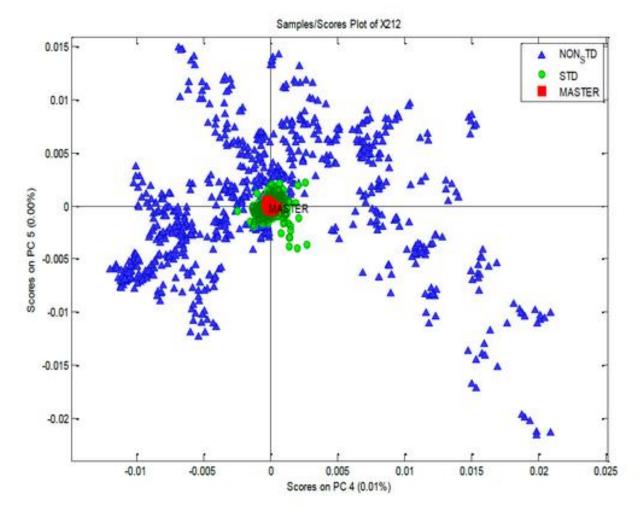
→ Discussion with spectrometer providers

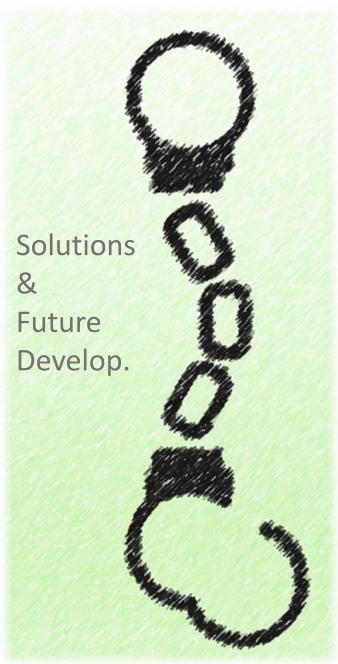
Promoting a large spectral and y variability in the calibration set

→ International collaborations

Limiting the extrapolation by sharing a « outlier » file

→ Distance could be calculated to avoid spectral extrapolation


Use comparable spectral data


→ Spectral standardization

nspird from ©Pixaba

Solutions & Future Develop.

Spectral standardization

Intrinsic Constraints

Providing a detailed information about the calibration dataset used (records + model)

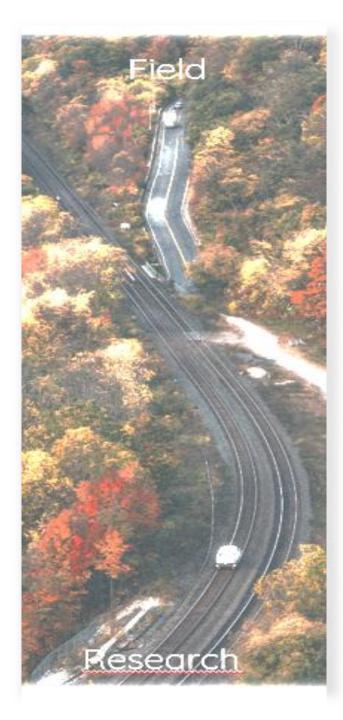
→ Discussion with spectrometer providers

Promoting a large spectral and y variability in the calibration set

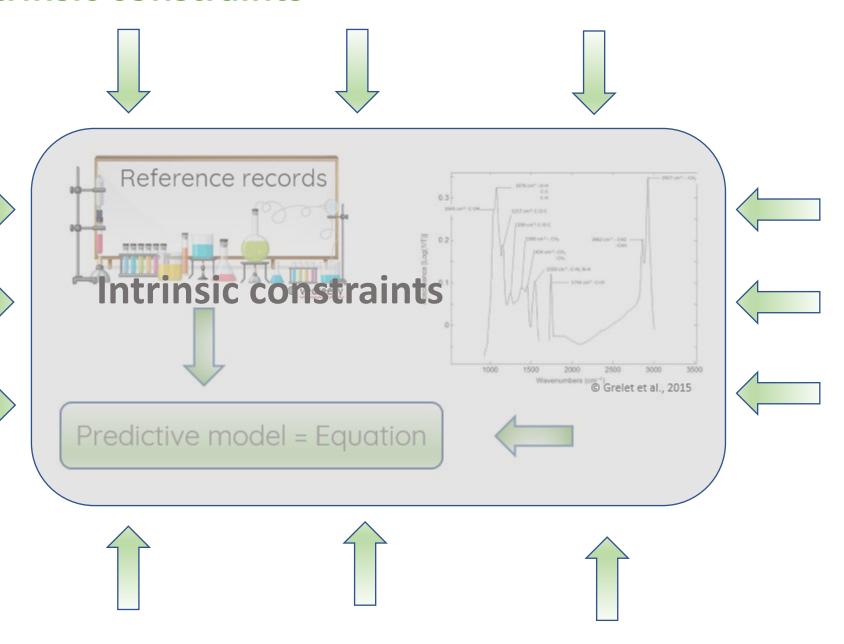
→ International collaborations

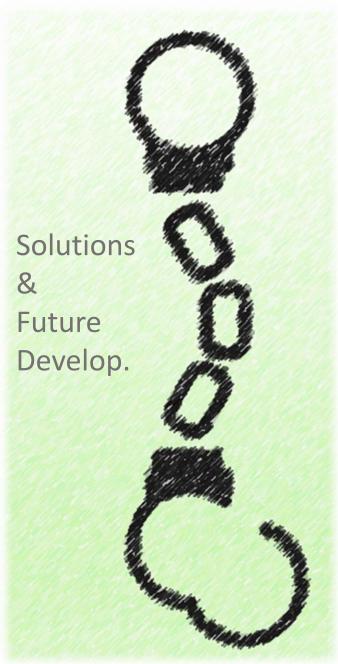
Limiting the extrapolation by sharing a « outlier » file

→ Distance could be calculated to avoid spectral extrapolation


Use comparable spectral data

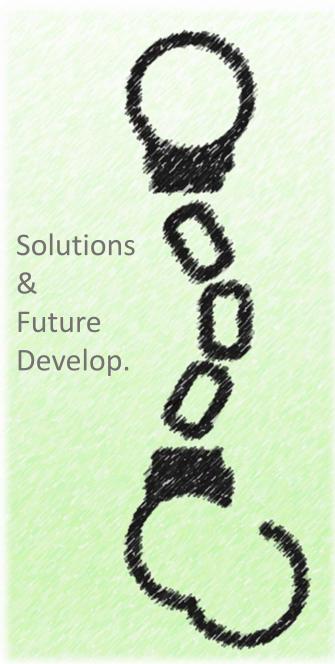
→ Spectral standardization


As multiple equations exist for the same trait, realizing a common validation managed by an independent institution.


→ All metrics of validation will be directly comparable

Inspird from ©Pixaba

Extrinsic constraints



nspird from ©Pixaba

Extrinsic Constraints

Problem of equation access or equation representativeness

- → Promoting a **common effort** in the development of future equations (cost decrease, better representativity)
 - → Creating an appropriate environment in independent structure (IP, data confidentiality, model dissemination and validation ...)

Extrinsic Constraints

Problem of equation access or equation representativeness

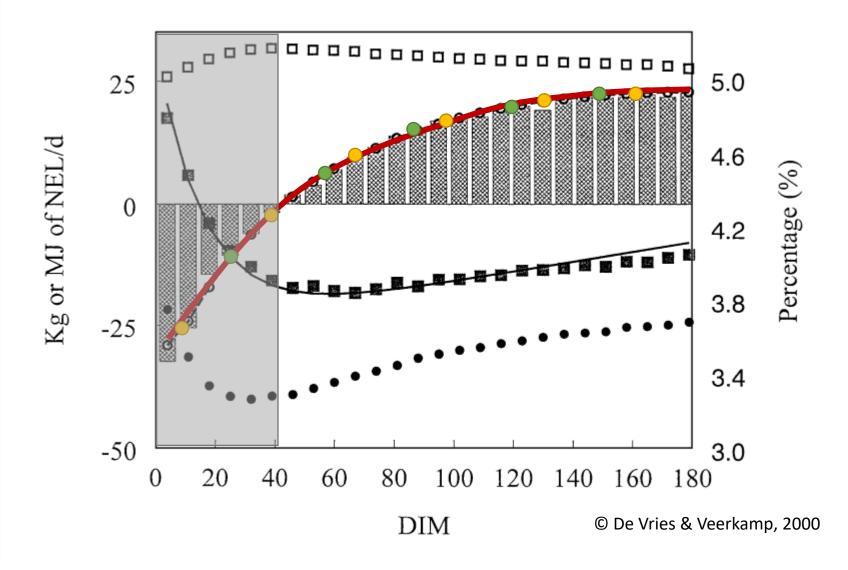
- → Promoting a **common effort** in the development of future equations (cost decrease, better representativity)
 - Treating an appropriate environment in independent structure (IP, data confidentiality, model dissemination and validation ...)

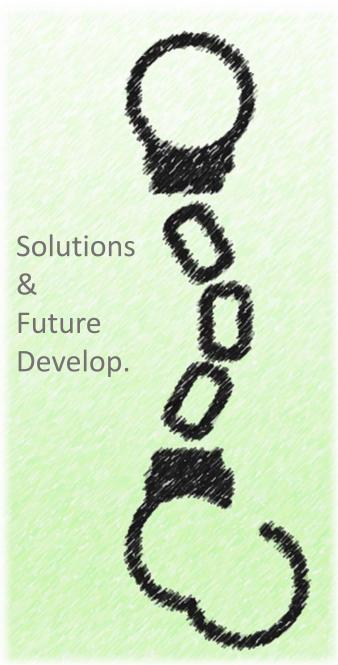
No economic or administrative incentive

- → Don't be afraid to change the rule
- → Improving the **communication** between all stakeholders
- → Sharing the data collected by different stakeholders (herd vs individuals): common data platform ?
 - → What is possible and what is not practically and scientifically?

Inspired from @Pivahay

Problem of equation access or equation representativeness


No economic or administrative incentive


- → Fatty acids: Milk price still defines based on milk fat and protein contents
- → Technological properties of milk
- → Methane or nitrogen efficiency: No real economic interest to take into account the environmental fingerprint

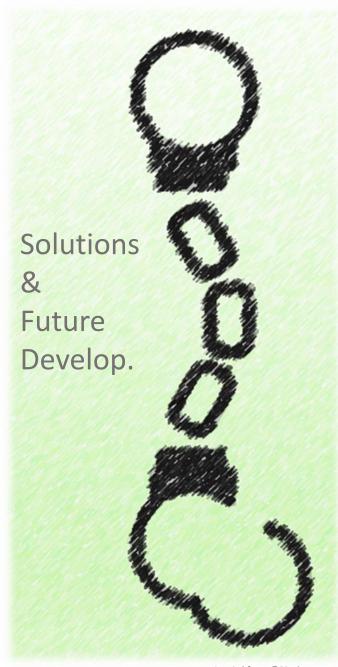
Too low frequency data acquisition

→ Energy balance, body weight, mastitis,

Extrinsic Constraints

Problem of equation access or equation representativeness

- → Promoting a **common effort** in the development of future equations (cost decrease, better representativity)
 - Treating an appropriate environment in independent structure (IP, data confidentiality, model dissemination and validation ...)


No economic or administrative incentive

- → Don't be afraid to change the rule
- → Improving the **communication** between all stakeholders
- → Sharing the data collected by different stakeholders (herd vs individuals): common data platform?
 - → What is possible and what is not practically and scientifically

Too low frequency data acquisition

→ Allowing to the farmers to make additional analysis especially for cows in early lactation

Inspird from ©Pixabay

Inspird from ©Pixaba

Extrinsic Constraints

Problem of equation access or equation representativeness

- → Promoting a **common effort** in the development of future equations (cost decrease, better representativity)
 - Treating an appropriate environment in independent structure (IP, data confidentiality, model dissemination and validation ...)

No economic or administrative incentive

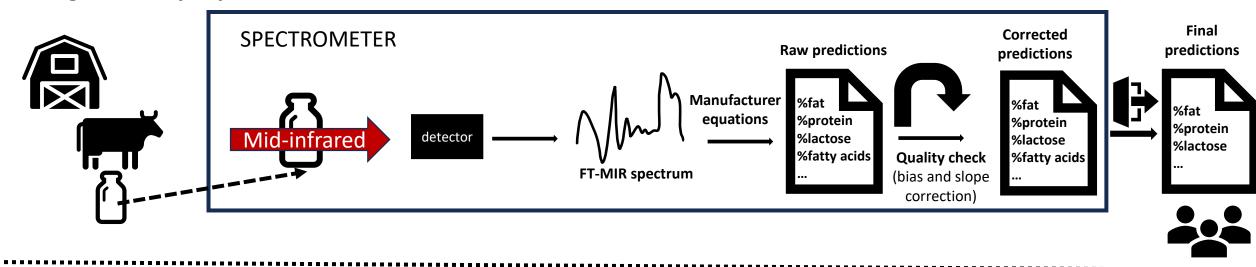
- → Don't be afraid to change the rule
- → Improving the **communication** between all stakeholders
- → Sharing the data collected by different stakeholders (herd vs individuals): common data platform?
 - → What is possible and what is not practically and scientifically

Too low frequency data acquisition

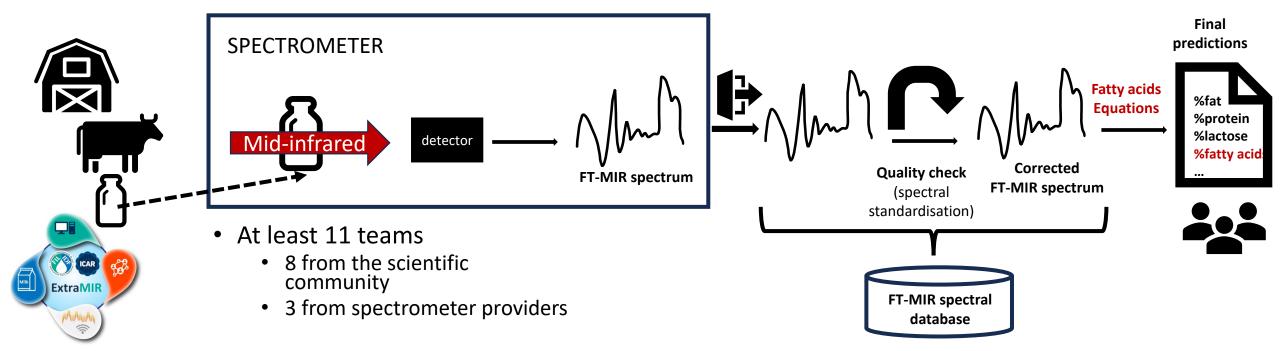
→ Allowing to the farmers to make additional analysis especially for cows in early lactation

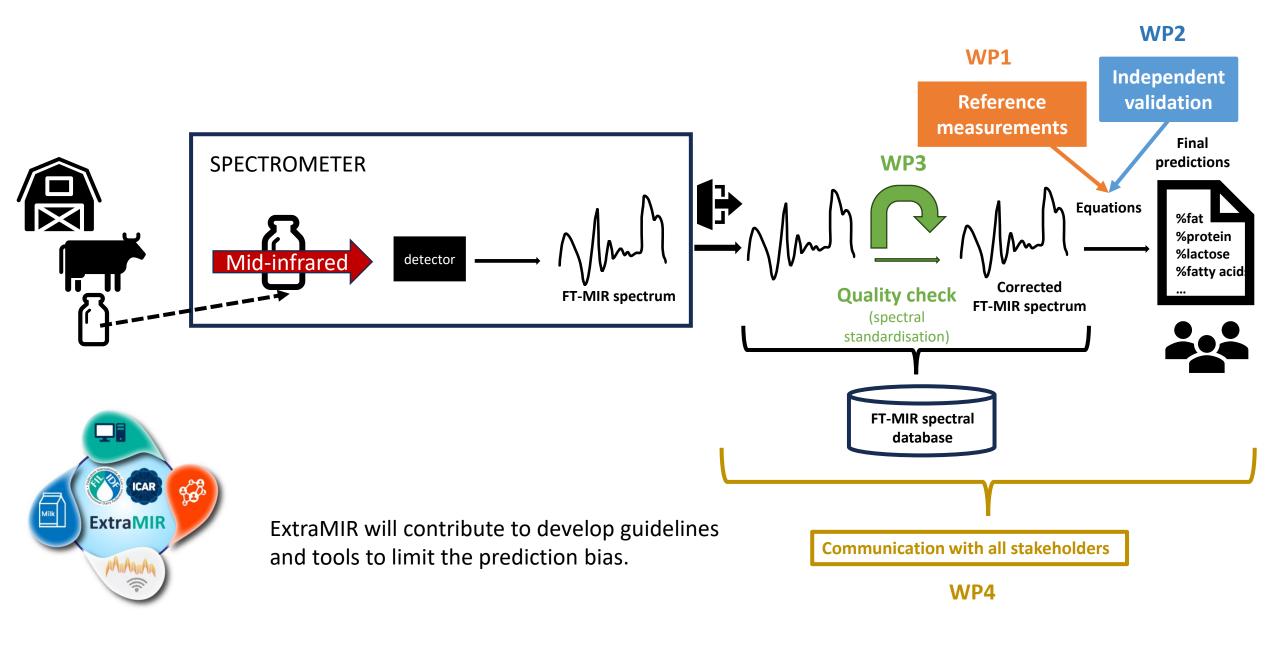
Problem of data visualization and communication

→ Better communication with specialists of data visualization, scientists and farmers



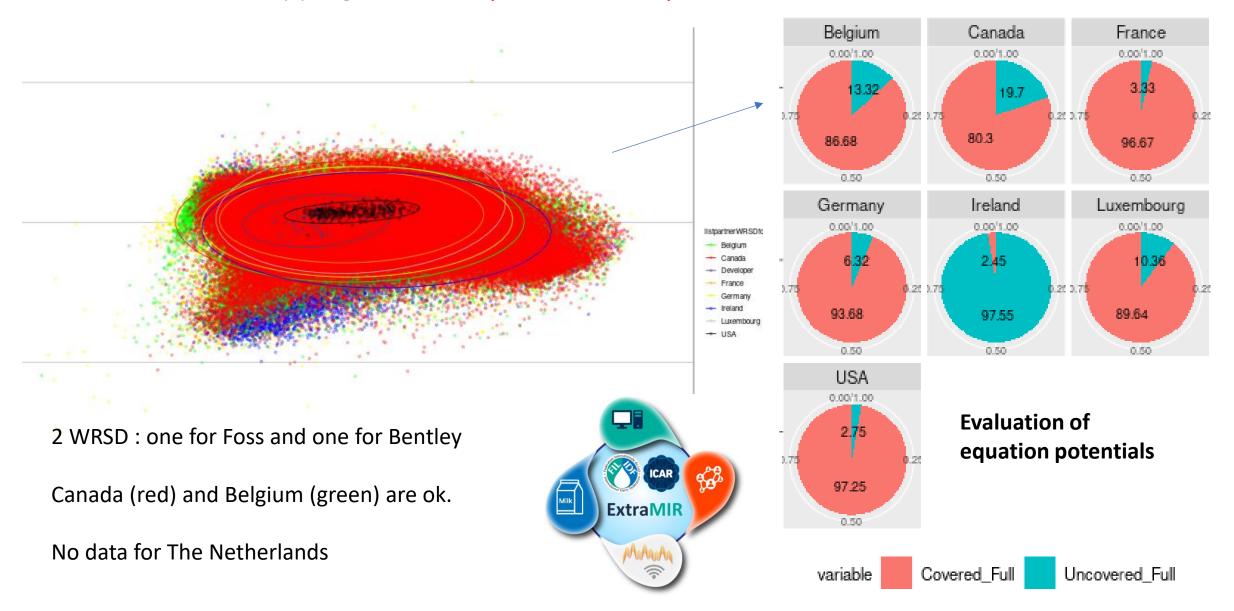
Extra value


from-smart use of

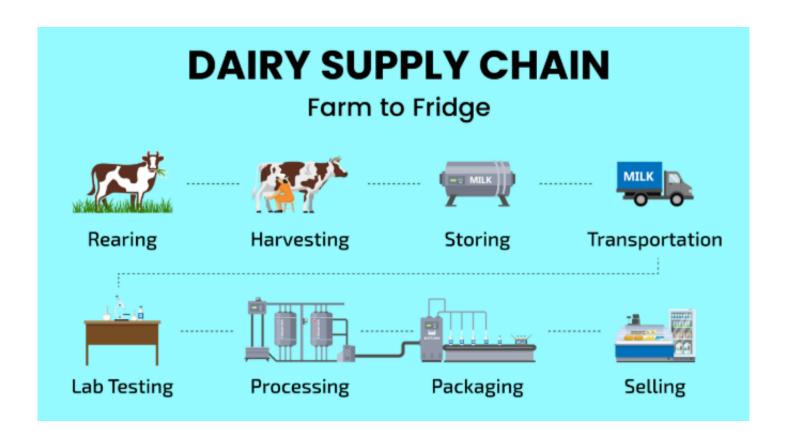

-MIR spectra

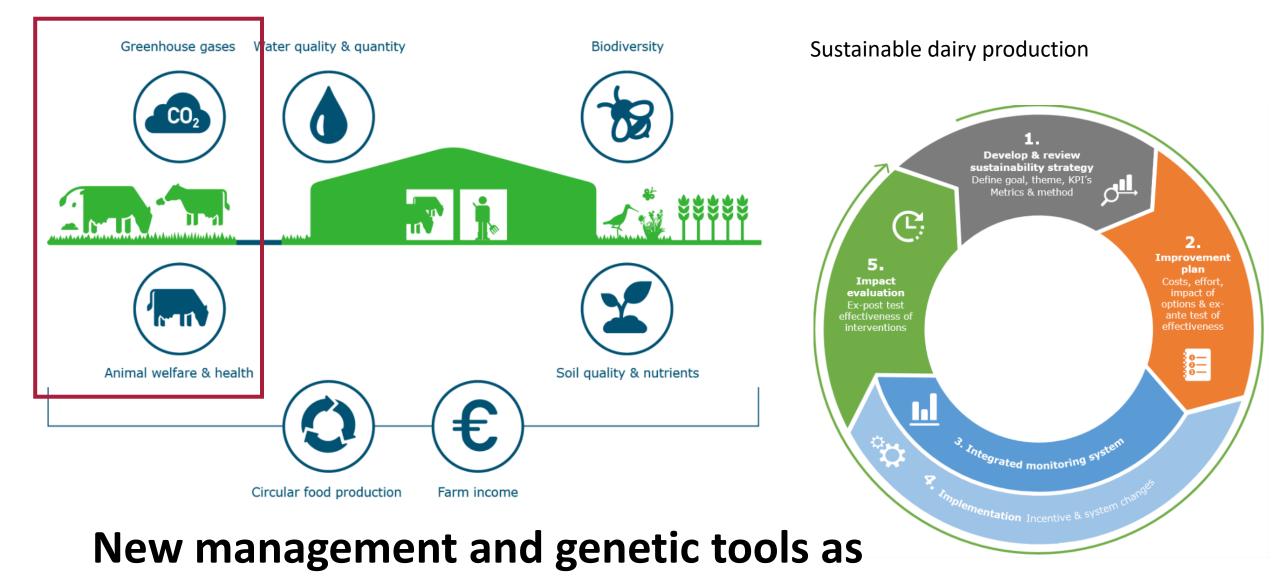
Existing Milk analysis process

Proposal



Can we collaborate to create equations?




ExtraMIR is developping a world representative spectral database ...

Consider the entire dairy chain ...

Having data at each step ...

well as new products

https://www.wur.nl/en/show/working-towards-sustainable-dairy-production.htm

CONCLUSIONS

- MIR spectrometry
 - Largely used on practice
 - Many equations developed by researchers and companies to increase the number of phenotypes available
- Lack of guidelines to use efficiently the spectral data to take the maximum profit of this technology → ExtraMIR + spectral standardisation
- Increase the data acquisition at the beginning of the lactation
- International collaborations to obtain cheaper equations with a larger dissemination
- Communication the potentiality to all stakeholders : bulk vs. Individual milk samples : combining the sources of information
- Take time to develop the most relevant decision tool for dairy farmers and industry in agreement with their expectations/needs

Potentials of milk Mid-infrared Spectrometry:

Where are we? What are the next steps?

Prof. Hélène Soyeurt

hsoyeurt@uliege.be

e.be Rinderzucht Austria – Wien – Austria – June 2025

