

1 Highlights

2 **A stress- and strain-dependent constitutive modelling of the large-**
3 **scale in situ PRACLAY heater test**

4 Hangbiao Song, Arnaud Dizier, Séverine Levasseur, Suresh Seetharam, Frédéric
5 Collin

6 • A large-scale in situ PRACLAY heater test to investigate the thermal
7 pressurization in the near field and to verify the far field performance.

8 • An advanced constitutive model integrating both the stress and strain
9 dependency of the intrinsic permeability and clay stiffness.

10 • Triaxial test modelling from the in situ extraction of the sample to the
11 laboratory test to validate the capability of the advanced constitutive
12 model.

13 A stress- and strain-dependent constitutive modelling of
14 the large-scale in situ PRACLAY heater test

15 Hangbiao Song^a, Arnaud Dizier^b, Séverine Levasseur^c, Suresh Seetharam^b,
16 Frédéric Collin^a

^a*Urban and Environmental Engineering Research Unit, Université de Liège, 9 Allée de la
Découverte, Liège, 4000, Belgium*

^b*European Underground Research Infrastructure for Disposal of Nuclear Waste in Clay
Environment, EURIDICE, 200 Boeretang, Mol, 2400, Belgium*

^c*ONDRAF/NIRAS, Avenue des Arts 14, Bruxelles, 1210, Belgium*

17 **Abstract**

18 In Belgium, Boom Clay is considered as a potential geological formation for
19 the disposal of radioactive waste in deep geological layer. The design and the
20 long term safety of such underground facilities require the in situ thermo-
21 hydro-mechanical (THM) characterization of the host geological formation.
22 In particular, the potential impact of temperature elevation both on the exca-
23 vation damage zone (EDZ, near field) and on the intact rock/clay formation
24 (far field) has to be studied. The laboratory tests and small scale in situ
25 heater tests on Boom Clay showed the strong THM coupling behavior but
26 these experiments suffered the inevitable disturbance and low accuracy due
27 to the small scale. The large-scale in situ PRACLAY heater test, conducted
28 in the HADES underground research laboratories (URL) (Mol, Belgium),
29 aims at filling this gap by heating the Boom Clay at large scale to reproduce
30 the thermal impacts in the EDZ (or the near field) and to verify at large scale
31 the far field performance. A 2D benchmark exercise within the framework of
32 the European Joint programme EURAD HITEC has been proposed to model
33 the PRACLAY heater test with fully coupled THM finite element code and
34 to investigate the in situ behavior of the host clay formation. The thermal
35 pressurization due to the discrepancy of thermal expansion between the fluid
36 and solid skeleton is well predicted. To well reproduce the evolution of pore
37 water pressure, the strain dependency of the intrinsic permeability and the
38 stress dependency of the Young's modulus are considered in the advanced
39 modelling. The small strain stiffness theory of the HSsmall model is also
40 taken into account. The constitutive model is used to reproduce the sam-

41 ple extraction from the host medium and then the triaxial test. The results
42 evidence the capability of the model to predict Young's modulus measured
43 in the laboratory. Finally, a good agreement is observed between the in situ
44 measurements and the numerical results. The benchmark provides valuable
45 insights into the THM impact on the host rock/clay formation and reliable
46 indications on the model capacity.

47 *Keywords:* PRACLAY heater test, Boom Clay, THM modelling, clay
48 stiffness, permeability

49 1. Introduction

50 In every nuclear power-producing country, the long-term management of
51 high-level and heat-emitting radioactive wastes is an important environmental
52 concern (IAEA, 2022). Deep geological disposal is widely considered as
53 one of the most sustainable solutions for isolating radioactive waste from the
54 biosphere and ensuring its long-term management (Bredehoeft, 1978; IAEA,
55 2003). The general idea of geological disposal in clay (or clayrock) forma-
56 tion is to dispose the radioactive waste inside a geological formation with
57 favorable properties such as its low permeability, self-sealing properties, and
58 capacity of retention of radionuclides at the surface of the clay materials
59 (Félix et al., 1996; Neerdael and Boyazis, 1997; Croisé et al., 2004; Bernier
60 et al., 2007).

61 However, high-level radioactive waste emits a significant amount of heat,
62 which leads to elevated temperature over 70 °C in the geological host for-
63 mation (Collin et al., 2002; Gens Solé et al., 2020; Dizier et al., 2021; Li
64 et al., 2023a). Thus, it is important to study the perturbation resulting from
65 the thermal effects and the potential impact on the favorable characteristics,
66 such as its transport capabilities, of the host rock/clay formation (Bossart
67 et al., 2002). In addition, when the pore water expands thermally, excess
68 pore pressure may cause the formation of new fractures or the reactivation
69 and propagation of old ones in the near field, altering the permeability (Gens
70 et al., 2011). Tensile or shear failure could be induced at the halfway zone
71 between two adjacent cells in the far field, where the thermal load is applied
72 to the host rock/clay formation from both sides (Braun et al., 2022). Old
73 fractures/faults could be also reactivated based on the distance between two
74 neighboring cells and the thermal load intensity (Plúa et al., 2021). Under-
75 standing the thermo-hydro-mechanical (THM) behavior of the host rock/clay

76 formation is thus an important input for the design of a geological radioactive
77 waste disposal, to prevent the formation of the above fractures and failures.
78 Some underground research laboratories (URL) have already developed in
79 situ heater tests to examine how temperature affects the THM behavior of
80 host rock/clay formation. Examples of these tests include the HE-D test
81 and the FE experiment in Switzerland conducted in the Mont Terri URL
82 (Garitte et al., 2017; Müller et al., 2018), the TED, CRQ, EPT, ALC1604
83 and ALC1605 tests in France conducted in the Meuse/Haute-Marne URL
84 (Armand et al., 2017; Seyedi et al., 2021; Conil et al., 2020; Bumbieler et al.,
85 2021).

86 In Belgium, a poorly indurated clay named Boom Clay is considered as a
87 potential host clay formation thanks to its low intrinsic permeability, its ex-
88 cellent self-sealing property, and its capability of adsorption of radionuclides
89 (Bernier et al., 2007; Sultan et al., 2010). As a marine Oligocene deposit,
90 Boom Clay is mostly located in northern Belgium and has a moderate dip
91 (around 1°) towards the north and east. It has an average thickness of 100
92 meters in the Mol region (Mertens et al., 2004). In 1974, the Belgian Nuclear
93 Research Center (SCK-CEN) initiated a research, development, and demon-
94 stration programme (RD&D) for the underground disposal of radioactive
95 waste (Li et al., 2023b). The HADES URL was constructed in the 1980s,
96 at a depth of 190 to 290 meters beneath the surface of SCK-CEN, near the
97 center of the Boom Clay formation. RD&D programme has been conducted
98 for more than 40 years, to evaluate how temperature affects the characteris-
99 tics and behavior of Boom Clay. Laboratory tests (Baldi et al., 1988; Sultan
100 et al., 2002; Delage et al., 2000; Cui et al., 2000, 2009; Li et al., 2023a) and in
101 situ small scale heater tests (BACCHUS, CACTUS, CERBERUS, and AT-
102 LAS experiments) realized in the HADES URL already showed the strong
103 THM coupled behavior of Boom Clay (De Bruyn and Labat, 2002; Chen
104 et al., 2011; Bernier and Neerdael, 1996; Dao et al., 2015; Li et al., 2023a).
105 However, on the one hand, the relatively limited size of these tests suffers
106 from the inevitable mechanical disturbance induced by the installation of
107 the heater and a lower accuracy in reproducing the thermal pressurization
108 in the excavation damaged zone (EDZ) (Chen et al., 2021a). On the other
109 hand, the distance between the monitoring points and the heater setup is
110 believed to be sufficiently large for the clay to be assumed undisturbed at
111 the location of the sensors. This only allows the characterization of the far-
112 field Boom Clay THM behavior. To fully understand the Boom Clay THM
113 behavior in near-field galleries, these interpretative heater tests are therefore

114 not sufficient.

115 To address this knowledge gap and provide insight into how temperature
116 affects the EDZ in the Boom Clay, a large-scale in situ PRACLAY heater test
117 has been built and is currently being conducted in the HADES URL (Li et al.,
118 2010). The large-scale PRACLAY heater test intends to investigate the com-
119 bined effect of the large-scale thermal load caused by the high-level radioac-
120 tive waste decay in deep Boom Clay formation and the hydro-mechanical
121 disturbances resulting from the excavation of the gallery. It will allow to test
122 whether or not the clay can withstand temperature increases in the near field
123 (or in the EDZ), and in the far field without losing any of its advantageous
124 properties for the radioactive waste geological disposal.

125 The ongoing large-scale PRACLAY heater test started in November 2014,
126 further information regarding its design, experimental setup, and first obser-
127 vation derived from the monitoring system can be obtained in Dizier et al.
128 (2021). This study focuses on the in situ characterization of THM behavior
129 of Boom Clay at full scale, to verify the accuracy and capability of our numer-
130 ical modelling. After a short description of the experimental test in section
131 2, a benchmark exercise on the PRACLAY heater test is introduced with
132 the constitutive model and material properties. The preliminary numerical
133 prediction of the benchmark is displayed in section 3, where the overpressure
134 induced by thermal pressurization is theoretically analyzed. To better repro-
135 duce the experimental observations, an advanced constitutive modelling is
136 introduced by integrating the dependency of both the intrinsic permeability
137 and the clay stiffness on the mean effective stress and shear strain in section
138 4. A triaxial test modelling is proposed to model the sample extraction from
139 the in situ to the laboratory test, to verify the capability of the model. Fi-
140 nally, a good agreement is observed between the in situ measurements and
141 the numerical results.

142 2. Large-scale in situ PRACLAY heater test

143 2.1. Introduction to the large-scale in situ PRACLAY heater test

144 A large-scale in situ PRACLAY heater test is being carried out by EU-
145 RIDICE in the HADES URL in Mol within the framework of RD&D pro-
146 gramme on radioactive waste geological disposal in Belgium. The main goal
147 of the experiment is to study the combined effect of the thermal loading and
148 the hydro-mechanical disturbances induced by the gallery excavation. An-
149 other objective is to validate the large-scale thermal characteristics of Boom

150 Clay, based on previous estimates from the small-scale in situ ATLAS experiment
151 (Chen et al., 2011; De Bruyn and Labat, 2002; Li et al., 2023a).

152 The HADES URL was built at a depth of approximately 225 m in the
153 Boom Clay Formation and its construction was realized in different steps
154 starting from the beginning of the eighties to the construction of the PRA-
155 CLAY gallery (PG) in 2007 (Li et al., 2023b) (Fig. 1).

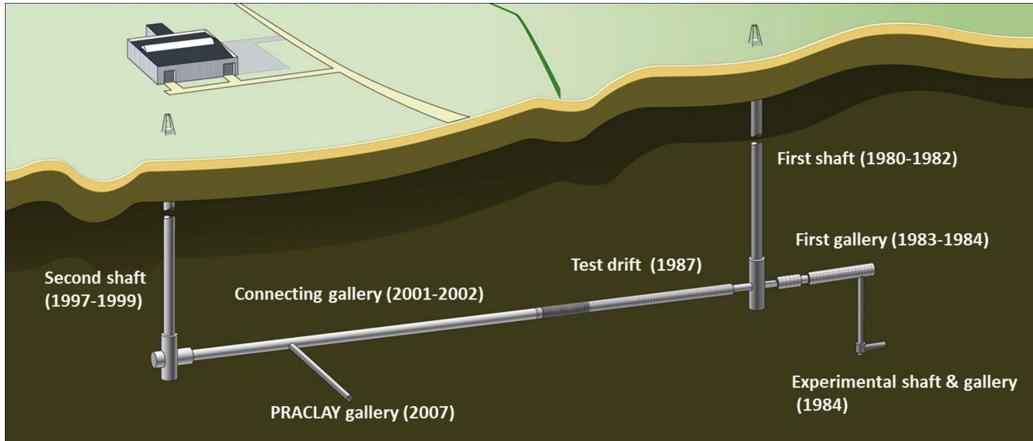


Figure 1: Layout of the underground laboratory at Mol, Belgium (EURIDICE website, 2018).

156 *2.2. Experimental set-up and main steps of the PRACLAY heater test*

157 The PG was constructed perpendicularly to the Connecting gallery from
158 October 4, 2007 to November 6, 2007. Fig. 2 shows the overview of the
159 experimental setup of the PRACLAY heater test, and a short introduction
160 about the geometry and materials of the test setup is here presented. More
161 information is available in Van Marcke et al. (2013). With a length of 45
162 m and an external diameter of 2.5 m, the gallery is lined by 81 concrete
163 lining rings (Ring 1-Ring 81) with a thickness of 0.3 m and a length of 0.5 m.
164 Most of the rings possess a concrete grade of C80/95. Each ring primarily
165 comprises of 8 regular segments (S1-S8) and a single key segment S9. At the
166 end of the PG, C30/37 concrete was poured over a length of 2 m to form
167 the end plug. The diameter of this plug is slightly larger than the rest of
168 the gallery. The steel structure of the tunneling shield, made in carbon steel,

169 was left in place supporting the 2.5 m-long gallery between the end plug and
 170 the last ring.

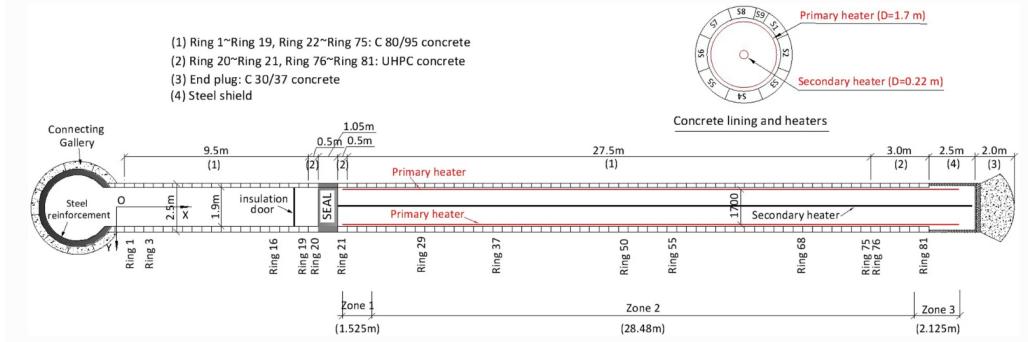


Figure 2: Overview of the PG and experimental setup (Chen et al., 2021a).

171 A 1.05 m-long hydraulic bentonite-based seal was installed between Ring
 172 20 and Ring 21 to create a hydraulic cut-off between the heated and the non-
 173 heated part of the PG. It was installed from January 18, 2010 to February 11,
 174 2010. The hydraulic seal is constructed of massive stainless steel (downstream
 175 flange, upstream flange, steel cylinder, closing steel frame) and compacted
 176 MX-80 bentonite blocks placed against Boom Clay in external annular rings.

177 The heater system is composed of two main systems. The first one, the
 178 primary heater consists of electric cables placed 100 mm from the gallery
 179 intrados. The second one, which is a back-up one, was placed at the center
 180 of the gallery and will work only if the primary system fails. To achieve the
 181 expected boundary conditions and to maximize the heat transfer from the
 182 heater elements to the concrete lining, backfilling with M34 Mol sand was
 183 done in the heated section of the PG in 2011. This operation was realized by
 184 blowing it into the gallery in a dry state and was then artificially pressurized.
 185 From January to May 2012, a total volume of about 43 m³ was injected into
 186 this section of the gallery, and a five-step artificial increase in pore water
 187 pressure, as seen in Fig. 3, was carried out. A natural saturation of the
 188 backfilled gallery was achieved by the water flowing into it from the adjacent
 189 Boom Clay. At the commencement of heating experiment, the pore water
 190 pressure pointed to 1 MPa. The pressure in the experiment naturally changes
 191 during the heating period without human intervention (adding or removing
 192 water).

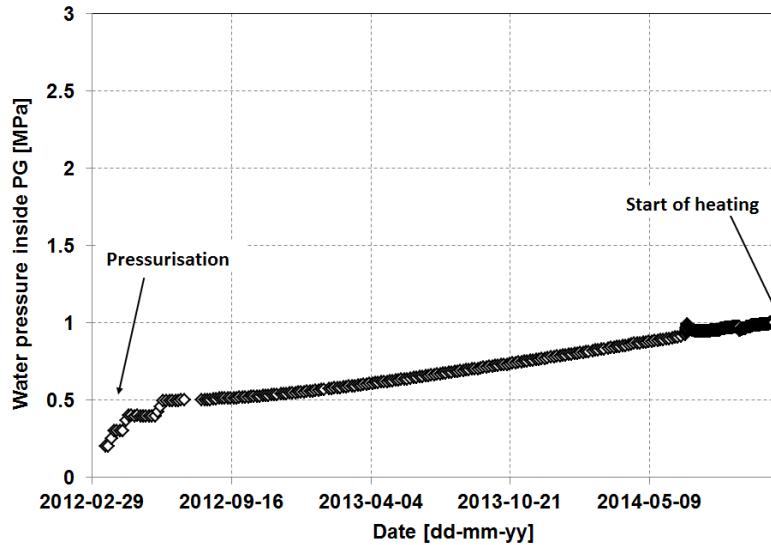


Figure 3: Evolution of the pore water pressure inside the backfilled part of the PG before the switch-on of the heater (Dizier et al., 2016).

193 On November 3, 2014, upon activation of the primary heater, the power of
 194 the heater was stepwise increased until the temperature of the lining extrados
 195 pointed to 80 °C. The first phase is called the start-up heating phase (Dizier
 196 et al., 2016). Thereafter, the heater power was reduced step by step to keep
 197 the temperature of the lining extrados at 80 °C. This phase is called the
 198 stationary heating phase lasting 10 years from August 2015 to August 2025
 199 (Dizier et al., 2016). In March 2015, a door was installed in front of the
 200 seal to provide insulation to limit as much as possible the dissipation of heat
 201 through the non-heated section.

202 A large instrumentation network with approximately 1100 sensors was
 203 installed around the PG to monitor and follow up the responses in the test
 204 setup and the Boom Clay formation. Boreholes drilled from Connecting
 205 Gallery (CG boreholes) and PG (PG boreholes) were equipped with multi-
 206 filter piezometers complemented with thermocouples. Fig. 4 presents the 3D
 207 view of the monitoring boreholes surrounding the PG. However, the exper-
 208 imental results discussed herein are limited to the vertical borehole PG50D
 209 and the horizontal boreholes CG35E, CG38E, CG42E and CG49E. The CG
 210 boreholes are positioned in the horizontal plane, which contains both the PG
 211 and the Connecting Gallery, while the PG50D borehole is oriented in the

212 vertical direction, perpendicular to this horizontal plane. The locations of
213 the sensors in the horizontal and vertical directions of a plane located at the
214 middle of the heated section are illustrated in Tab. 1. The X and Y axes
215 correspond to the coordinate system shown in Fig. 5 in section 3.1, with the
216 origin defined at point O.

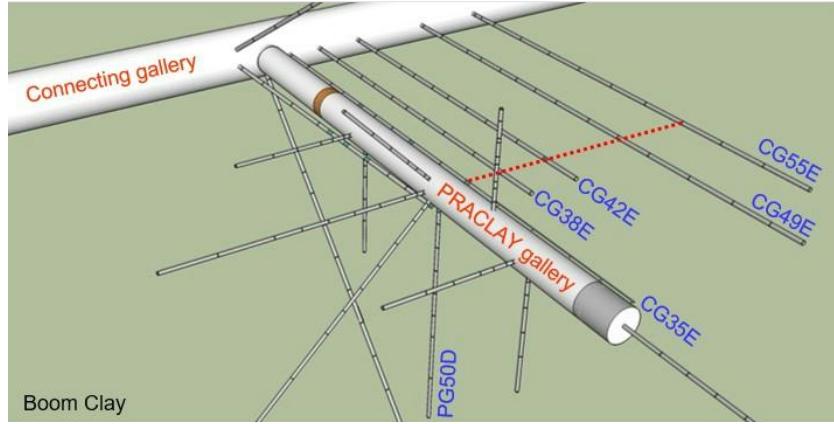


Figure 4: 3D view of the monitoring boreholes surrounding the PG (Chen et al., 2021a).

Table 1: Locations of the sensors in the horizontal plane and the vertical direction (Dizier et al., 2016).

	Sensors	Coordinates (X, Y)
Horizontal plane	Interface "B"	(1.31, 0)
	CG35E-6	(2.23, 0.14)
	CG38E-2	(4.69, 0.24)
	CG42E-2	(8.97, 0.04)
	CG49E-5	(16.14, 0.32)
Vertical direction	Interface "F"	(0, 1.31)
	PG50D-10	(0.03, 1.49)
	PG50D-9	(0.03, 1.99)
	PG50D-8	(0.03, 2.99)
	PG50D-7	(0.03, 4.99)
	PG50D-6	(0.03, 6.99)
	PG50D-5	(0.03, 8.99)
	PG50D-4	(0.02, 10.99)
	PG50D-3	(0.02, 12.99)
	PG50D-2	(0.02, 16.99)
	PG50D-1	(0.02, 20.99)

217 **3. A benchmark exercise with PRACLAY heater test**

218 *3.1. Geometry and mesh*

219 A two-dimensional (2D) plane strain benchmark within the framework
220 of the European Joint programme (EURAD-HITEC, 2019), is proposed to
221 model the PRACLAY heater test with fully coupled THM finite element
222 code and to investigate the in situ behavior of the host clay formation. Two
223 principal modelling cases are proposed in this exercise. The first one consists
224 of an “academic version” of the PRACLAY heater test, where the main goal
225 is to calibrate the numerical codes among different teams with relatively basic
226 mechanical models. The second case corresponds to a “free version”, where
227 the modelling teams are free to choose the constitutive law. In all cases, it is
228 proposed to model the experiment from the beginning of the excavation to the
229 on-going running heater test. It is worth mentioning that, this paper mainly
230 focuses on the free case to better reproduce the experimental observations
231 from the in situ test.

232 The numerical prediction is carried out with the FEM code Lagamine
233 developed at the University of Liège ([Charlier, 1987](#)). This model represents
234 the midplane (around Ring 50) of the PRACLAY heater Test (which is per-
235 pendicular to the PG axis) in a middle cross-section of the heated gallery.
236 Only a quarter of the full cross section is modelled due to the symmetry of
237 the problem, and the simulated area is 100 m wide in both directions (Fig.
238 [5](#)). Due to the cross-anisotropy characteristic of Boom Clay, the horizontal
239 direction is defined as parallel to the bedding plane for numerical simplifica-
240 tion, while the vertical direction corresponds to the normal to the bedding.
241 The discretized mesh consists of 18543 nodes and 6120 elements. Each el-
242 ement is a 2D isoparametric element with eight nodes, where displacement
243 fields, fluid pressure, and temperature are interpolated. As shown in Fig. [5](#),
244 the numerical model incorporates two materials: Boom Clay and concrete
245 lining. The segmental concrete lining is modelled through a monolithic ring
246 where the joints are not represented. The concrete lining has an inner radius
247 of 0.95 m and an outer radius of 1.25 m, respectively. The excavation radius
248 is estimated to be 1.31 m, with a 6 cm over-excavation being considered. It
249 is worth noting that the backfilled sand is not considered in any modelling
250 for simplification.

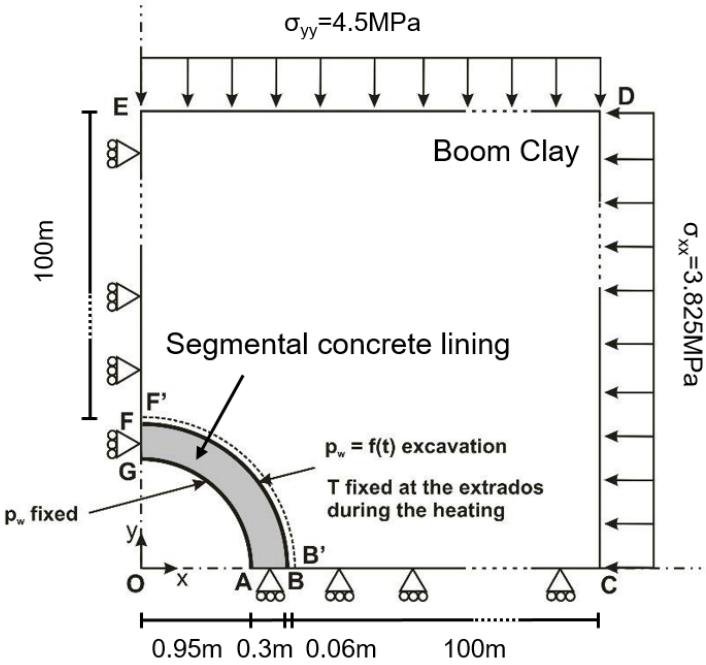


Figure 5: Geometry (not at scale) and materials for the PRACLAY heater test within the 2D plane strain coupled THM model.

251 The initial conditions for Boom Clay are presented in Tab. 2. These val-
 252 ues come from the in situ measurements at the level of the URL and previous
 253 studies on Boom Clay (Bernier et al., 2007; Chen et al., 2011). A constant
 254 temperature of 16.5 °C is defined for all the materials initially. The initial
 255 pore pressure in the Boom Clay is 2.25 MPa, while an initial pore pressure of
 256 0.1 MPa is assumed in the concrete. There is no initial stress defined for the
 257 lining. At the external boundary (CD and DE), constant total stress, pore
 258 pressure, and temperature are imposed during the full computation. Due to
 259 the symmetry conditions, the water and thermal flow along the symmetry
 260 axes are prevented by the introduction of an adiabatic and an impervious
 261 boundary. The normal displacements are fixed.

Table 2: Initial conditions for Boom Clay.

Parameters	Components	Boom Clay
Total stress	σ_{yy}	4.5
	σ_{xx}	3.825
	σ_{zz}	3.825
Pore pressure	P_0	2.25
Temperature	T_0	16.5

262 The proposed model is conducted by adapting the boundary conditions
 263 of the gallery wall and concrete lining (Fig. 5). The main time points of
 264 the PRACLAY heater test are presented in Tab. 3, where t_0 denotes the
 265 start of excavation. For the mechanical boundary conditions, a stress release
 266 technique combined with contact elements is used to model the progressive
 267 contact between Boom Clay and concrete lining during gallery excavation.
 268 The total stress at the gallery wall is reduced to 0.1 MPa within 24 hours
 269 (t_0+1 day), after which it remains constant. In terms of the hydraulic bound-
 270 ary conditions, the pore pressure is reduced to 0.1 MPa during excavation
 271 (t_0+1 day). The model is allowed to stabilize before artificial pressurization,
 272 during which the pore pressure inside the gallery wall equals the atmospheric
 273 pressure (between t_0+1 day and t_0+1609 days). From the start of the arti-
 274 ficial pressurization in the backfill sand up to the end of the heating phase
 275 (t_0+6522 days), the pore water pressure at the intrados of the lining (bound-
 276 ary GA) follows the in situ measurements, as shown in Fig. 6. Regarding
 277 thermal boundary conditions, the lining extrados is set with a temperature
 278 boundary condition derived from the in situ measurements, as depicted in
 279 Fig. 7. A stepwise heating phase with different heat power is described. The
 280 heater was switched on November 3, 2014 (t_0+2582 days), and a tempera-
 281 ture of 80 °C was reached at the lining extrados on August 17, 2015 (t_0+2829
 282 days). Hereafter the temperature was maintained at 80 °C for 10 years until
 283 August 17, 2025 (t_0+6522 days).

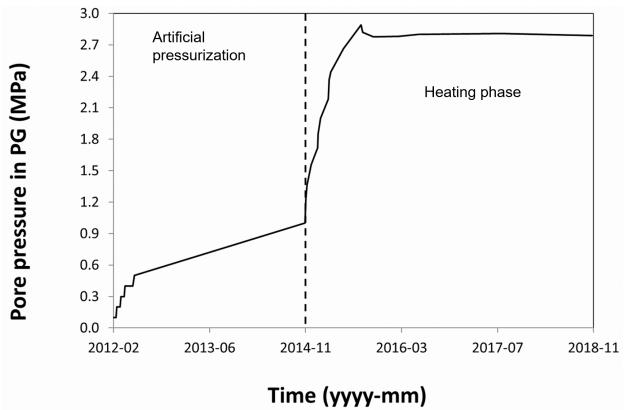


Figure 6: Pore pressure boundary condition in the PG after pressurization used in the 2D plain strain model, modified from [Dizier et al. \(2021\)](#).

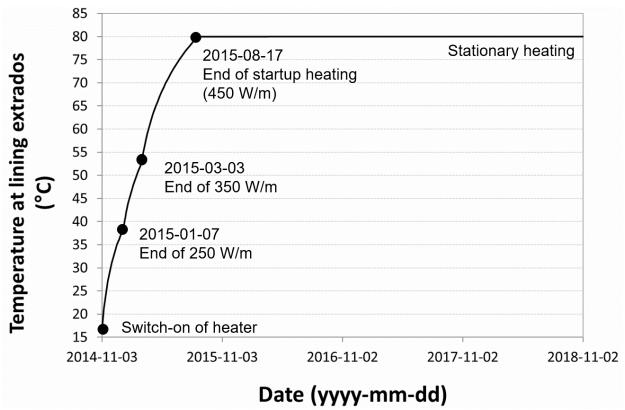


Figure 7: Temperature boundary condition at the lining extrados, modified from [Dizier et al. \(2021\)](#).

Table 3: Main time slots of the PRACLAY heater test.

Test phases	Date	Days (t_0+days)
End of excavation	2007-10-10	t_0+1
Before pressurization	2012-03-05	t_0+1609
Before switch-on of heater	2014-11-03	t_0+2582
End of 250 W/m	2015-01-07	t_0+2647
End of 350 W/m	2015-03-03	t_0+2702
End of startup heating	2015-08-17	t_0+2869
3 years heating	2018-08-17	t_0+3965
10 years heating	2025-08-17	t_0+6522

284 *3.2. Balance equations*

285 To numerically investigate the coupled THM problem in the PRACLAY
 286 heater test, it is essential to establish the governing balance equations. A
 287 fully saturated condition is assumed in the modelling. This assumption is
 288 supported by several factors. First, the excavation of the PG was carried out
 289 rapidly, followed by the immediate installation of the concrete liner. Hence
 290 the ventilation between the PG and the Connecting Gallery was limited.
 291 Second, the PG was backfilled with sand and subsequently subjected to arti-
 292 ficial pressurization, which led to a rise in pore pressure, as shown in Fig. 3.
 293 Over time, the inflow of water from the surrounding Boom Clay resulted in
 294 the natural saturation of the backfilled gallery. As a result, the Boom Clay
 295 was considered fully saturated prior to the initiation of the heating phase.
 296 Consequently, any variations in saturation during excavation and heating are
 297 not accounted for in this study. Under these conditions, the porous medium
 298 is treated as a continuous mixture composed of a solid phase and a water
 299 phase. Some studies further classify the water phase into free and bound wa-
 300 ter components. The dehydration of bound water at elevated temperatures
 301 can contribute to pore pressure generation (Sojoudi and Li, 2023; Sojoudi
 302 et al., 2024). However, for the sake of simplicity, this effect is not considered
 303 in the present study. The governing equations for momentum, mass, and
 304 energy balance are established, with further details available in Song et al.
 305 (2023) and Simo et al. (2025).

306 The momentum balance equation accounts for both the effective stresses
 307 within the solid matrix and the external body forces acting on it and is

308 expressed as follows:

$$\frac{\partial \sigma_{ij}}{\partial x_j} + G_i = 0 \quad (1)$$

309 where σ_{ij} is the total Cauchy stress tensor, x_j denotes the Cartesian co-
310 ordinates. G_i is the body force per unit volume, typically associated with
311 gravity.

312 The mass balance equations for the solid and water phases are formulated
313 within the framework of classical poromechanics. The conservation of solid
314 mass is expressed in its time derivative form as:

$$\dot{M}_s = \frac{\partial}{\partial t} \left(\rho_s (1 - \phi) \Omega \right) = 0 \quad (2)$$

315 where ρ_s denotes the density of the solid phase, and $\phi = \Omega_v/\Omega$ is the porosity,
316 defined as the ratio of pore volume Ω_v to the total material volume Ω .

317 The water mass balance equation is given by:

$$\frac{\partial f_{w,i}}{\partial x_i} + \dot{M}_w - Q_w = 0 \quad (3)$$

318 where \dot{M}_w is the time derivative of the water mass, Q_w is a water source/sink
319 term, and $f_{w,i}$ represents the water flux, governed by Darcy's law. Under fully
320 saturated conditions, the mass of fluid in a representative elementary volume
321 Ω is:

$$M_w = \rho_w \phi \Omega \quad (4)$$

322 where ρ_w denotes the fluid density. Taking the time derivative of the fluid
323 mass per unit mixture volume yields:

$$\dot{M}_w = \rho_w \left(\left(\frac{\dot{p}_w}{K_w} - \alpha_w \dot{T} \right) \phi - (1 - \phi) \alpha_d \dot{T} + \frac{\dot{\Omega}}{\Omega} \right) \quad (5)$$

324 where K_w is the bulk modulus of the fluid phase. α_d is the drained vol-
325 umetric thermal expansion coefficient of the porous medium, and α_w is
326 the temperature-dependent thermal expansion coefficient of the fluid (Kell,
327 1975). For a homogeneous, isotropic porous medium, α_d is typically taken as
328 equal to the thermal expansion coefficient of the solid skeleton, $3\alpha_s$ (Ghabe-
329 zloo et al., 2009).

330 The fluid flow is obtained by using the Darcy's law:

$$f_{w,i} = -\rho_w \frac{k_{ij}}{\mu_w} \left(\frac{\partial p_w}{\partial x_j} + \rho_w g_j \right) \quad (6)$$

331 where k_{ij} is the intrinsic permeability tensor, g_j is the gravity acceleration
 332 vector, and μ_w is the fluid viscosity which is considered temperature-
 333 dependent (Rumble, 2019).

334 The energy balance equation is achieved using classic poromechanics the-
 335 ory and written for a unit mixture volume:

$$\frac{\partial f_{T,i}}{\partial x_i} + \dot{S}_T - Q_T = 0 \quad (7)$$

336 where \dot{S}_T is the time derivative of the enthalpy, $f_{T,i}$ is the thermal flow,
 337 and Q_T is the heat source/sink term. The total enthalpy S_T of the system
 338 is expressed as the sum of the contributions from both the fluid and solid
 339 phases:

$$S_T = \left(\phi \rho_w c_{p,w} + (1 - \phi) \rho_s c_{p,s} \right) (T - T_0) \Omega \quad (8)$$

340 where $c_{p,w}$ and $c_{p,s}$ are the specific heat capacities of the fluid and solid phases,
 341 respectively, T_0 is the initial reference temperature. The time derivative of
 342 the enthalpy for a unit volume of the porous medium, which represents the
 343 rate of heat storage, can be written as:

$$\begin{aligned} \dot{S}_T = & c_{p,w} \rho_w \left(1 - \phi \right) \left(\frac{\dot{\Omega}}{\Omega} - \alpha_d \dot{T} \right) (T - T_0) + c_{p,w} \rho_w \phi \left(\frac{\dot{p}_w}{K_w} - \alpha_w \dot{T} \right) (T - T_0) \\ & + c_{p,w} \rho_w \phi \dot{T} + c_{p,w} \rho_w \phi (T - T_0) \frac{\dot{\Omega}}{\Omega} + c_{p,s} \rho_s (1 - \phi) \dot{T} \end{aligned} \quad (9)$$

344 The thermal flow $f_{T,i}$ is characterized by two effects: conduction and
 345 convection by the fluid phase, as expressed by the following equations:

$$f_{T,i} = -\lambda_{ij} \nabla_j T + c_{p,w} f_{w,i} (T - T_0) \quad (10)$$

346 where λ_{ij} is the mixture conductivity, and it depends on the thermal proper-
 347 ties of the components. Notably, the convection of the solid phase is implicitly
 348 incorporated in the modelling through the updated Lagrangian formulation
 349 implemented in the LAGAMINE code (Charlier, 1987).

350 3.3. Constitutive law and material parameters

351 The classical Hooke's law is used to describe the linear elastic behaviour
 352 of Boom Clay, accounting for its transverse isotropy. For the plastic response,

353 it is proposed to use an internal friction angle criterion such as a Drucker-
 354 Prager model (Drucker and Prager, 1952). For defining the onset of plastic
 355 yielding, the following yield criterion is adopted, which can be written as
 356 (positive in compression) (Desai and Siriwardane, 1984):

$$f \equiv \sqrt{II_{\hat{\sigma}}} - \frac{2 \sin \phi}{\sqrt{3}(3 - \sin \phi)} \left(I_{\sigma} + \frac{3c}{\tan \phi} \right) = 0 \quad (11)$$

357 where I_{σ} is the first stress tensor invariant defined by $I_{\sigma} = \sigma_{ii}$; $II_{\hat{\sigma}}$ is the
 358 second deviatoric stress tensor invariant defined by $II_{\hat{\sigma}} = \frac{1}{2}\hat{\sigma}_{ij}\hat{\sigma}_{ij}$ with $\hat{\sigma}_{ij} =$
 359 $\sigma_{ij} - \frac{I_{\sigma}}{3}\delta_{ij}$; ϕ and c are the internal friction angle and the cohesion.

360 A non-associated plastic flow rule is assumed with the plastic potential g
 361 corresponding to the function:

$$g \equiv \sqrt{II_{\hat{\sigma}}} - \frac{2 \sin \psi}{\sqrt{3}(3 - \sin \psi)} \left(I_{\sigma} + \frac{3c}{\tan \psi} \right) = 0 \quad (12)$$

362 where ψ is the dilatancy angle.

363 It is believed that the hardening and softening of the yield surface are
 364 induced by the plastic flow. By using the Von Mises equivalent plastic strain
 365 ϵ_{eq}^p , the variation of the yield surface is described by the hyperbolic evolution
 366 of friction angle and cohesion (Barnichon, 1998):

$$\phi = \phi_0 + \frac{(\phi_f - \phi_0)\epsilon_{eq}^p}{B_{\phi} + \epsilon_{eq}^p} \quad (13)$$

$$c = c_0 + \frac{(c_f - c_0)\epsilon_{eq}^p}{B_c + \epsilon_{eq}^p} \quad (14)$$

367 where ϕ_0 and ϕ_f are the initial and final friction angles, c_0 and c_f are the
 368 initial and final cohesion, and the coefficients B_{ϕ} and B_c are the values of
 369 the equivalent plastic strain where half of the hardening/softening of friction
 370 angle and cohesion are reached. The Von Mises equivalent plastic strain ϵ_{eq}^p
 371 is obtained by integration of the Von Mises equivalent plastic strain rate $\dot{\epsilon}_{eq}^p$
 372 is obtained by integration of the Von Mises equivalent plastic strain rate $\dot{\epsilon}_{eq}^p$
 373 :

$$\dot{\epsilon}_{eq}^p = \sqrt{\frac{2}{3}\dot{\epsilon}_{eq}^p\dot{\epsilon}_{eq}^p} \quad (15)$$

374 As a typical cross-anisotropic material, Boom Clay has higher THM param-
 375 eters parallel to the bedding plane than those perpendicular to it. Tab. 4
 376 defines the anisotropic material properties of Boom Clay which come mainly

377 from [Charlier et al. \(2010\)](#), [Bernier et al. \(2007\)](#), and [Chen et al. \(2011\)](#).
 378 The elastic behavior is introduced by five independent parameters (E_{\parallel} , E_{\perp} ,
 379 $\nu_{\parallel\parallel}$, $\nu_{\parallel\perp}$ and $G_{\parallel\perp}$), where the subscripts \parallel and \perp respectively represent the
 380 directions parallel and perpendicular to the bedding planes. The anisotropy
 381 of plasticity is taken into account through the cohesion, which is a function
 382 of a microstructure fabric tensor:

$$c_0 = \bar{c} \left(1 + A_{\parallel}(1 - 3l_2^2) + b_1 A_{\parallel}^2 (1 - 3l_2^2)^2 + b_2 A_{\parallel}^3 (1 - 3l_2^2)^3 + \dots \right) \quad (16)$$

383 where \bar{c} is the cohesion under isotropic loading, l_2 is the loading vector com-
 384 ponent applied to the facet parallel to the bedding planes. The constants \bar{c} ,
 385 A_{\parallel} , b_1 , ... are obtained from experimental data ([François et al., 2014](#)), and
 386 b_2 is neglected due to higher order terms. It should be noted that the value of
 387 cohesion depends on the loading direction l_2 as well as the fabric parameter
 388 A_{\parallel} . For this reason, a final value of cohesion c_f as one-third of the initial
 389 value c_0 is defined in this study to consider the cohesion softening. More
 390 details about the definition of fabric tensor can be found in [Pietruszczak and](#)
 391 [Mroz \(2000, 2001\)](#) and [Chen et al. \(2010\)](#).

Table 4: THM parameters for Boom Clay.

	Symbol	Name	Value	Unit
Elastic	ρ_s	Solid phase density	2639	kg/m ³
	E_{\parallel}	Young's modulus parallel to bedding	400	MPa
	E_{\perp}	Young's modulus normal to bedding	200	MPa
	$\nu_{\parallel\parallel}$	Poisson's ratio parallel to bedding	0.25	-
	$\nu_{\perp\parallel}$	Poisson's ratio normal to bedding	0.125	-
	G_{\perp}	Shear modulus normal to bedding	80	MPa
Plastic	ψ	Dilatancy angles	0	°
	ϕ_0	Initial friction angle	5	°
	ϕ_f	Final friction angle	18	°
	B_{ϕ}	Friction angle hardening coefficient	0.01	-
	B_c	Cohesion softening coefficient	0.01	-
	\bar{c}	Cohesion for isotropic loading	258.33	kPa
Hydraulic	A_{\parallel}	Cohesion parameter	0.187	-
	b_1	Cohesion parameter	2.580	-
	k_{\parallel}	Intrinsic permeability parallel to bedding	4E-19	m ²
	k_{\perp}	Intrinsic permeability normal to bedding	2E-19	m ²
	ϕ	Porosity	0.39	-
	K_w^{-1}	Water compressibility	4.5E-4	MPa ⁻¹
Thermal	ρ_w	Water density	1000	kg/m ³
	$c_{p,s}$	Solid phase specific heat	769	J/kg/K
	α_s	Linear thermal expansion coefficient	1E-5	K ⁻¹
	$c_{p,w}$	Water specific heat	4180	J/kg/K
	λ_{\parallel}	Thermal conductivity parallel to bedding	1.65	W/m/K
	λ_{\perp}	Thermal conductivity normal to bedding	1.31	W/m/K

392 The concrete of the segmental lining is mainly made of C80/95 concrete.
 393 The concrete is modelled via a linear elastic law. As the ring is modelled
 394 without considering the existence of the joints (longitudinal and circumfer-
 395 ential) between the concrete segments, a greater permeability than the Boom
 396 Clay is chosen as seen in Tab. 5.

Table 5: Concrete main properties.

Name	Symbol	Value	Unit
Solid phase density	ρ_s	2650	kg/m ³
Bulk density	ρ'	2420	kg/m ³
Porosity	n	0.1	
Young's modulus	E	42	GPa
Poisson's ratio	ν	0.2	—
Intrinsic permeability	k	4.5E-18	m ²
Thermal conductivity	λ	2.86	W/mK
Linear thermal expansion coefficient	α_s	1E-5	°C ⁻¹
Solid phase specific heat	C_p	800	J/(kgK)

397 3.4. Numerical modelling results

398 As required by the PRACLAY benchmark exercise, the time evolution
 399 of temperature and pore pressure numerical prediction is compared to ex-
 400 perimental measurement. The solid lines are the numerical results, and the
 401 dotted lines are the experimental measurements in the following plots. Gen-
 402 erally, the reproduction of the temperature profile is almost perfect using
 403 the current modelling in Fig. 8. Ambient temperature is observed before
 404 the heating. As the heating phase is activated, the temperature increases
 405 rapidly, especially for the measurements close to the gallery wall. After the
 406 aimed temperature of 80 °C is reached, it keeps constant at the wall. With
 407 the distance between the wall and the measurements increases, a decrease in
 408 temperature is observed. To well capture the evolution of temperature, the
 409 thermal conductivity of the host clay formation is the most important pa-
 410 rameter. In order to further improve the predictions, the horizontal thermal
 411 conductivity should slightly decrease and the vertical one slightly increase.

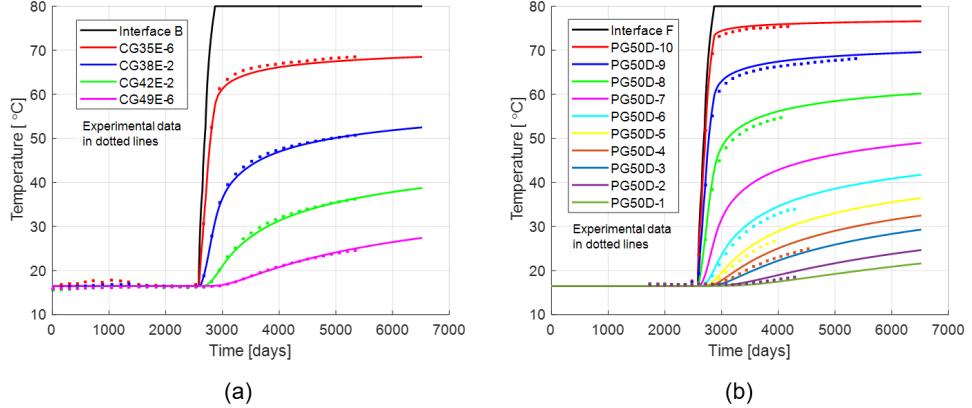


Figure 8: Temperature evolution: (a) in the horizontal, and (b) vertical directions.

In Fig. 9, the temporal evolution of the pore pressure at different sensors is presented. The deviation between the experimental measurements and numerical predictions is pronounced. Before the pressurization, the pore pressure decreases due to the drainage. An overestimation of the numerical prediction is observed in the horizontal direction. During the pressurization, pore pressure rises due to artificial injection. The numerical model consistently overestimates the pressure, and the deviation grows with an increasing distance between the wall and the measurement points. During the heating, pore pressure further increases. The overpressure is observed both in the near and far field due to the thermal pressurization, which is induced by the discrepancy of the thermal expansion between the solid and fluid phases. The numerical response underestimates the thermal pressurization. In the far field, the rock behavior remains elastic. According to the theoretical framework of thermo-poro-elasticity, the pore pressure variation is impacted by the modification of total stress and temperature, and it can be defined as follows considering material anisotropy:

$$dp = \Pi d\sigma + \Lambda dt \quad (17)$$

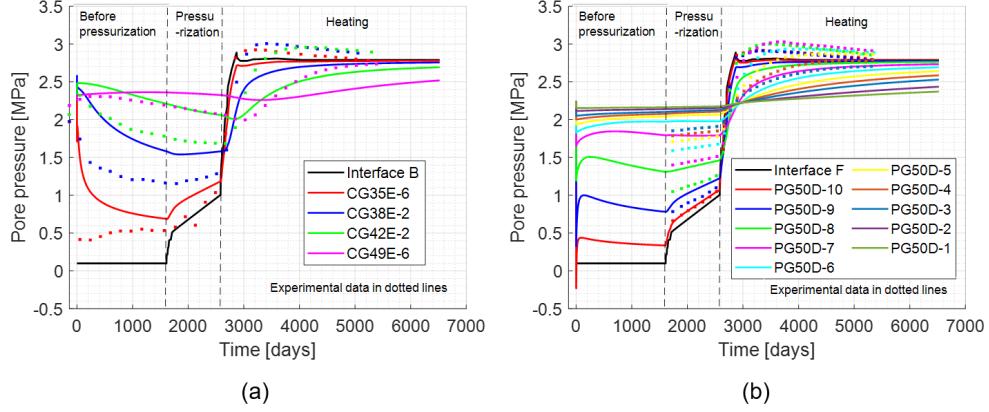


Figure 9: The evolution of pore pressure: (a) in the horizontal, and (b) vertical directions (blank prediction).

428 Where Skempton's coefficient Π and thermal pressurization coefficient Λ
 429 have the following expressions:

$$\Pi = \frac{-\mathbf{B} : \mathbb{C}}{\mathbf{B} : \mathbb{C}\mathbf{B} + \frac{1}{3K_s}(\mathbf{B} - \phi\mathbf{I}) : \mathbf{I} + \frac{\phi}{K_w}}$$

$$\Lambda = \frac{3\phi(\alpha_l - \alpha_s)}{\mathbf{B} : \mathbb{C}\mathbf{B} + \frac{1}{3K_s}(\mathbf{B} - \phi\mathbf{I}) : \mathbf{I} + \frac{\phi}{K_w}} \quad (18)$$

430 Where \mathbf{B} is the Biot's coefficient tensor, \mathbb{C} is the compliance tensor, \mathbf{I} is
 431 the identity vector, K_s is the bulk modulus of the solid constituent, K_w is
 432 the bulk modulus of the fluid, ϕ is the porosity, α_l and α_s are the thermal
 433 expansion coefficients of the fluid phase and solid phase respectively. It is
 434 worth mentioning that the dependency of the thermal dilation coefficient and
 435 viscosity of the water on the temperature is also included in this study (Song
 436 et al., 2023). From the Eq. 18, the thermal pressurization coefficient Λ is not
 437 only affected by the discrepancy of thermal expansion coefficient between the
 438 fluid phase and solid phase but also by the stiffness of the porous medium
 439 (Vu et al., 2020). This is the reason why we propose to improve the elastic
 440 part of the model.

441 **4. Advanced THM coupled modelling**

442 The evolution of temperature was already well captured in section 3.4,
443 herein the reproduction of pore pressure evolution is of particular interest.
444 Pore pressure variations are fundamentally interconnected with the perme-
445 ability characteristics of porous media. During the excavation, an EDZ is
446 created in the near field where strain localization and damage occur. It has
447 been shown that this damage induces the increase of permeability, both at
448 the gallery scale (Mertens et al., 2004) and at the laboratory scale (Labi-
449 ouse et al., 2014). This is why Chen et al. (2021a), Chen et al. (2021b),
450 and Bumbieler et al. (2021) introduced two distinct zones (EDZ and sound
451 layer) to model the in situ PRACLAY and ALC1604 heater tests, where a
452 higher permeability value was employed in the EDZ. Moreover, the evolu-
453 tion of pore pressure is also impacted by the stiffness of porous media due
454 to potential complex hydro-mechanical (HM) coupling effects. On the one
455 hand, the geomaterials such as overconsolidated soil and clay rock exhibit
456 strong non-linearity in the elastic domain (i.e. in the initial range of loading
457 and during unloading and reloading), because the elastic moduli are strongly
458 dependent on the mean effective stress (Hujeux, 1985). On the other hand,
459 the Boom Clay stiffness shows a significant decrease with the deformation
460 during the excavation of the Connecting Gallery, and the tangent stiffness
461 at 0.01% deformation is approximately an order of magnitude larger than
462 that at 1% deformation (Bernier et al., 2007). Thus a smaller clay stiffness
463 was also considered in the EDZ in previous studies. In fact, whether to in-
464 troduce a higher permeability or a lower material stiffness in the EDZ, the
465 definition of the size of the EDZ is always challengeable in the numerical
466 analyses. In this study, an alternative solution with the dependency of both
467 the permeability and the clay stiffness on the mean effective stress and de-
468 formation is employed. The advanced THM model is able to predict both
469 the permeability and elastic property evolution in the near and far field.

470 *4.1. Theoretical framework*

471 Modelling the mechanical and hydraulic property evolution inside the
472 damage zone is an important concern when considering drainage and thermal
473 pressurization in host rock/clay formation. The modification of permeability
474 due to damage in the host rock/clay formation is related to the distribution
475 of induced cracks, which might serve as preferential flow paths in the host
476 rock/clay formation. The onset, development, accumulation, propagation,

477 and coalescence of microcracks represent the damage caused by the microcracking process, which can be described by the shear strain accumulation in
 478 the numerical simulation. In this section, a strain-dependent isotropic evolution
 479 of the hydraulic permeability tensor is considered using a power (cubic)
 480 formulation (Pardoen et al., 2016), which reads:

$$k_{w,ij} = k_{w,ij,0} (1 + \beta_{per} \langle YI - YI^{thr} \rangle \hat{\varepsilon}_{eq}^3) \quad (19)$$

482 Where $k_{w,ij,0}$ is the initial intrinsic water permeability tensor, β_{per} is an
 483 evolution parameter, $\hat{\varepsilon}_{eq}$ is the Von Mises' equivalent deviatoric strain, YI
 484 is the yield index defined as the reduced second deviatoric stress invariant:
 485 $YI = II_{\hat{\sigma}}/II_{\hat{\sigma}}^p$, where $II_{\hat{\sigma}}^p$ is the second deviatoric stress invariant at plastic
 486 state. YI^{thr} represents the threshold value below which there is no intrinsic
 487 permeability variation. In the elastic state, YI is lower than 1, whereas YI
 488 is equal to 1 on the yield surface. The permeability increase is limited to a
 489 maximum of 1.5 times its initial value, which is back computed by considering
 490 the measurement of permeability of Boom Clay from the laboratory and in-
 491 situ (Bastiaens et al., 2006; Yu et al., 2013; Chen et al., 2021b). Furthermore,
 492 it should be mentioned that the increase in permeability is thought to be
 493 irreversible.

494 A strong non-linearity has been observed during the elastic loading and
 495 unloading processes, in which the clay stiffness plays a role (Callisto and
 496 Rampello, 2002). The dependency of clay stiffness on the stress path was de-
 497 fined by Laloui (1993), where the bulk modulus is characterised as a function
 498 of the mean effective stress $p' = I_{\sigma}/3$. As far as the Poisson's ratio remains
 499 constant in this study, the following expression for the elastic stiffness is
 500 obtained according to:

$$E = E_{ref} \left(\frac{p'}{p'_{ref}} \right)^{n^e} \quad (20)$$

501 Where E_{ref} is the Young's modulus at the referential mean effective stress
 502 p'_{ref} , n^e is the exponent to adapt different material properties. For numerical
 503 issues, the minimum value of p' is limited to 0.01 MPa. For some stiff clays,
 504 the stress-strain response may exhibit behavior closer to linear elasticity,
 505 while soft soils tend to show more logarithmic behavior.

506 Apart from the dependency on the stress path, the clay stiffness degra-
 507 dation is generally observed during underground excavation, where the clay
 508 stiffness is essentially controlled by the shear strain development. Three cat-
 509 egories of strain levels are usually identified by Atkinson (1991): the very

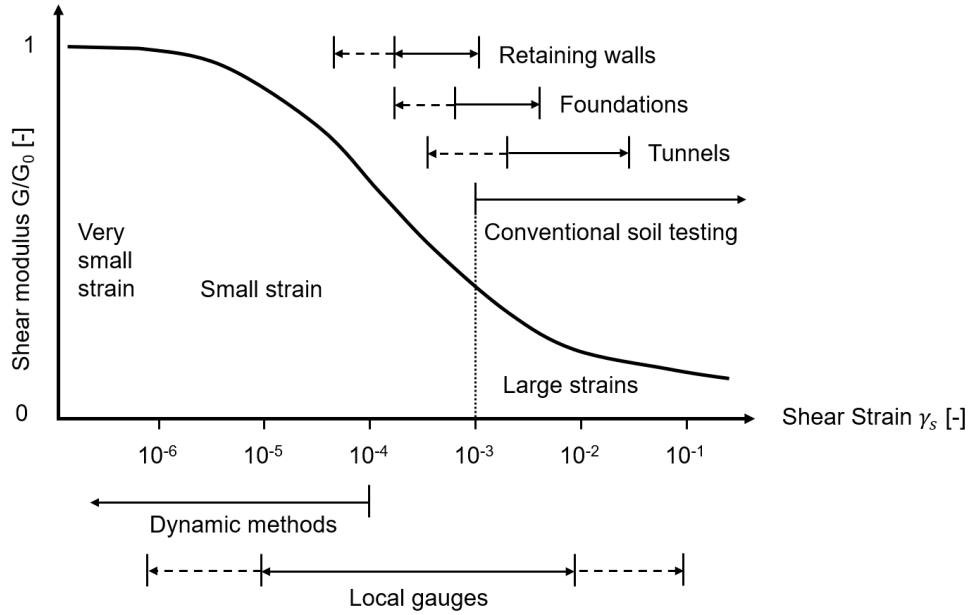


Figure 10: The logarithmic representation of stiffness-strain behavior according to [Atkinson \(1991\)](#).

510 small strain level, where the stiffness modulus remains constant within the
 511 range of elasticity; the small strain level, where the non-linear evolution of
 512 the stiffness modulus with the strain is presented; and the large strain level,
 513 where the soil stiffness is extremely small and the soil is close to failure. The
 514 normalized stiffness degradation curve, as depicted in Fig. 10, is used to
 515 illustrate this theory by comparison with the soil response from in situ con-
 516 struction and the measurement from the laboratory ([Atkinson, 1991](#); [Mair, 1993](#)).
 517

518 In order to introduce the dependency between the clay stiffness and de-
 519 formation, a preliminary exponential model between Young's modulus and
 520 Von Mises strain was introduced in [Chen et al. \(2023\)](#), to model the degra-
 521 dation of clay stiffness from the far field to the near field. This approxima-
 522 tion effectively captures the overall trend of pore pressure evolution. However,
 523 the calibration of multiple parameters introduces inherent inaccuracies, re-
 524 sulting in an underestimation of pore pressure in the near field and an over-
 525 estimation in the far field. In this study, a more well-known constitutive

526 law (HSsmall model) is further used to account for the evolution of stiffness
 527 at different strain levels (Brinkgreve et al., 2007; Benz et al., 2009). A log-
 528 arithmetic function of the shear strain γ , varying from extremely low strain
 529 levels to high strain levels, is used to represent the shear modulus G evo-
 530 lution (Likitlersuang et al., 2013). An empirical equation for tangent shear
 531 modulus depending on the shear strain is defined as (Hardin and Drnevich,
 532 1972; Cudny and Truty, 2020):

$$G_t = \frac{G_0}{(1 + a\gamma_{max}/\gamma_{0.7})^2} \quad (21)$$

533 where G_0 is the small-strain shear modulus, and many experimental results
 534 show its dependency on the void ratio, OCR , and mean stress (Hardin, 1978).
 535 The shear strain $\gamma_{0.7}$ corresponds to the shear strain at which the secant
 536 shear modulus is equal to 70% of G_0 . The shear strain γ_{max} is the maximum
 537 deformation experienced by the sample. a is the evolution parameter. Due to
 538 the constant Poisson's ratio in this study, the evolution of Young's modulus
 539 is consistent with the shear modulus:

$$E_t = \frac{E_0}{(1 + a\gamma_{max}/\gamma_{0.7})^2} \quad (22)$$

540 where E_0 corresponds to Young's modulus for a very small strain, and the
 541 value is very close to the one derived from the in situ wave velocities of seismic
 542 tests carried out in the underground repository (Schuster, 2019). Young's
 543 modulus will thus decrease with the development of shear strain from the
 544 initial E_0 where the sample is intact.

545 In this study, Young's modulus is influenced by the combined effects of
 546 both mean effective stress and shear strain deformation, so the parameters in
 547 Eq. 20 and Eq. 22 need to be calibrated. As shown in Tab. 4, the Young's
 548 moduli of Boom Clay (400/200 MPa in the directions parallel and normal to
 549 the bedding respectively) usually comes from the triaxial test with a refer-
 550 ential confinement pressure of 2.25 MPa (ONDRAF/NIRAS, 2013), which is
 551 close to the in situ stress condition. In fact, the clay specimen is inevitably
 552 disturbed during the in situ sampling and the transportation between the
 553 in situ and the laboratory, thus higher Young's moduli are demonstrated for
 554 the intact clay materials. The in situ wave velocities of seismic tests provide
 555 these high moduli (1490/745 MPa) (Schuster, 2019), which is actually the
 556 E_0 in the Eq. 22 where the shear strain is very small. However, the in situ

Table 6: Parameters for the hydraulic permeability and small strain stiffness.

Symbol	Name	Value	Unit
$k_{w,0\parallel}$	Intrinsic permeability parallel to bedding	4E-19	m^2
$k_{w,0\perp}$	Intrinsic permeability normal to bedding	2E-19	m^2
β_{per}	Evolution parameter	1.5E5	—
YI^{thr}	threshold yield index	0.95	—
$E_{ref\parallel}$	Referential Young's modulus parallel to bedding	1600	MPa
$E_{ref\perp}$	Referential Young's modulus normal to bedding	800	MPa
p'_{ref}	Referential mean effective stress	2.25	MPa
n^e	Evolution parameter	0.4	—
$\gamma_{0.7}$	Evolution parameter	0.012	—
a	Evolution parameter	0.385	—

557 stress condition for Boom Clay is anisotropic, the referential Young's moduli
 558 under 2.25 MPa confinement needs to be back computed using the Eq. 20,
 559 yielding values of 1600/800 MPa. The parameters used in the modelling are
 560 summarized in Tab. 6, and they are also consistent with [Chen et al. \(2023\)](#),
 561 [Pardoen et al. \(2016\)](#), and the EURAD benchmark specification.

562 *4.2. Laboratory test modelling*

563 An advanced THM coupled modelling has been introduced in section 4.1,
 564 where the dependency of Young's modulus on the confining stress and shear
 565 deformation is highlighted. Calibration of numerical models for geomaterials
 566 is typically performed by simulating laboratory triaxial tests, which focuses
 567 primarily on the rock behavior during shear processes. In this study, a more
 568 comprehensive approach is adopted, modelling the entire process from in situ
 569 sample extraction to laboratory testing. The objectives of this modelling are
 570 twofold: first, to verify the reliability of the Young's modulus obtained from
 571 seismic test, which estimates the intact clay properties in the far field; and
 572 secondly, to ensure that the model accurately predicts the Young's modulus
 573 measured in the laboratory.

574 A simplified 2D axisymmetric model with one isoparametric element (sec-
 575 tion 3.1) is introduced to restore the procedure of measuring Young's modulus
 576 in the laboratory. The plastic behavior is governed by the Drucker–Prager
 577 criterion with isotropic hardening/softening. This modelling is composed of

578 three sequential steps: on-site sampling, isotropic confinement, and devia-
579 toric loading, each defined by specific boundary conditions. The release of
580 in situ stress is first modelled to reproduce the extraction of samples from
581 drilling boreholes. Considering the excavation rate, the clay formation far
582 away from the gallery is supposed to be in undrained condition, so only the
583 total stress decreases to zero in the first step. The sample is then delivered to
584 the laboratory in preparation for the triaxial compression test. In the second
585 step, an isotropic confining stress of 4.5 MPa is imposed to restore the in situ
586 stress state of the clay formation, and the pore pressure is set to the in situ
587 value of 2.25 MPa. Finally, the shear process is modelled using the strain-
588 controlled deformation of the sample. The unloading/reloading path is also
589 modelled during the shear process, to highlight the degradation of Young's
590 modulus. The final amount of sample deformation is nearly 5%. The pa-
591 rameters used in this modelling are already provided in Tab. 6. The results
592 confirm the potential perturbations induced by sampling and transportation
593 processes on the evolution of Young's modulus.

594 Fig. 11 shows the comparison of stress-strain relation during the shear
595 process with experimental test from [Baldi et al. \(1991\)](#) and [Monfared \(2011\)](#).
596 When the sample is first loaded, an elastic deformation develops before the
597 plastic deformation. Two unloading/reloading paths are introduced during
598 the shear process, and the value of Young's modulus is deduced from the slope
599 of the unloading path where the material is in elasticity. At the beginning of
600 shear phase, the value of Young's modulus is slightly lower than the initial
601 $E_{ref\perp} = 800$ MPa due to a small amount of shear deformation induced by its
602 inherent anisotropic behavior in the first and second steps. The numerical
603 solution overestimates the Young's modulus compared to the experimental
604 results, which should come from the potential disturbance during sampling
605 and transportation.

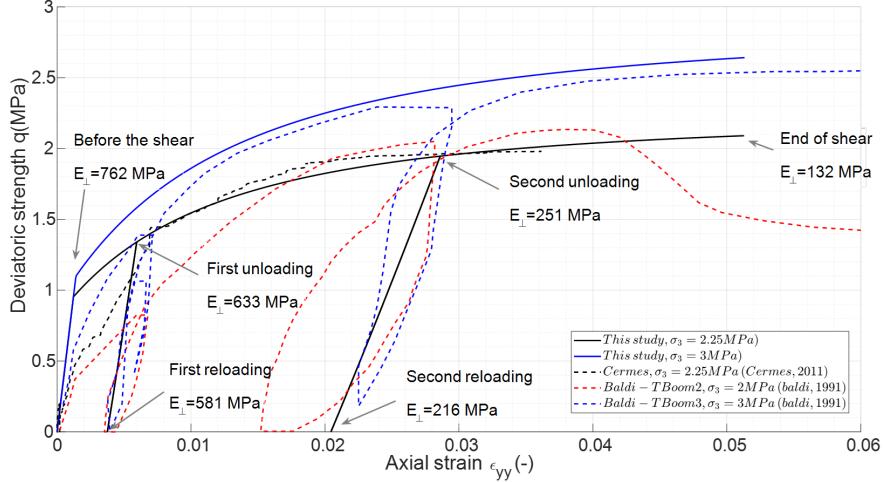


Figure 11: Stress-strain curve during the shear process of the triaxial test.

During the shearing process, the degradation of Young's modulus with the shear deformation is highly pronounced, although the mean effective stress has been increasing. The impact of mean effective stress on the evolution of Young's modulus is more clearly observed during unloading and reloading, as the variation of Young's modulus is no longer influenced by shear deformation in these stages. It is worth mentioning that Young's modulus is defined as a function of the maximum shear deformation experienced by the sample, which is consistent with the irreversibility of damage observed in experimental tests. Overall, the degradation of the stiffness of the material is first induced by the inevitable disturbance from the on-site sampling but mostly by the imposed strain amplitude during the triaxial test. The measurement of the Young's modulus in the laboratory is around 200 MPa, which corresponds to the numerical prediction within several percent deformation in Fig. 11. The implemented modelling is able to capture the shear strength obtained from the experimental tests. It should be mentioned that, the shear strength of the sample is not only impacted by the strength parameters but also the confining pressure. Another modelling is conducted with confinement of 3 MPa, where a good agreement is obtained between the numerical and experimental observations.

625 *4.3. Application to PRACLAY heater test*

626 The advanced THM coupled modelling has been successfully calibrated
627 with small scale laboratory test in section 4.2. The degradation of Young's
628 modulus has been accurately reproduced and the modulus in the far field has
629 been confirmed. It is now of particular interest to extend this modelling to
630 the in situ large-scale PRACLAY heater test. Before simulating the evolu-
631 tion of pore pressure, it is essential to examine excavation-induced plasticity
632 as a methodology of further validating the implemented constitutive model.
633 Fig. 12 displays the post-excavation contour plots, illustrating the distri-
634 butions of stress, permeability, and equivalent shear strain. At the end of
635 the excavation (t_0+1 day), contact between the gallery wall and the concrete
636 liner is established nearly everywhere, except in the vertical direction (Fig.
637 12a). Stress redistribution due to excavation is clearly observed in both the
638 horizontal and vertical directions (Figs. 12b and c), where the different con-
639 tact situation between the gallery wall and the liner also plays an important
640 role on the observed stress patterns. A significant increase in permeability
641 is detected within the EDZ (Figs. 12d and e), with maximum values reach-
642 ing approximately 1.5 times the initial permeability. The maximum values
643 of equivalent shear strain are found near the vertical direction (Fig. 12f),
644 corresponding to the region where the contact between the gallery wall and
645 the liner is weakest.

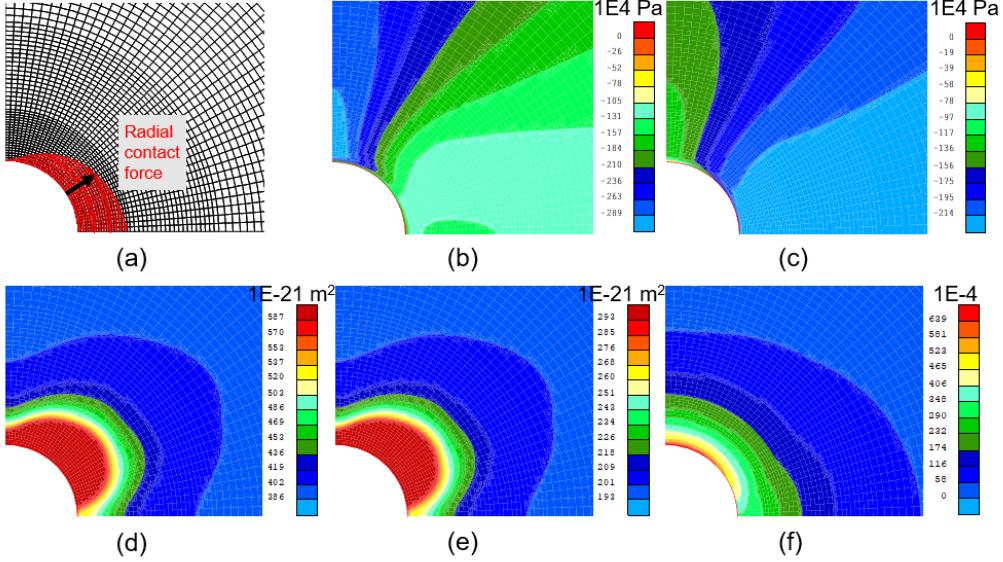


Figure 12: Post-excavation contour at t_0+1 day in $4 \text{ m} \times 4 \text{ m}$ scale: (a) contact force, (b) horizontal stress σ_{xx} , (c) vertical stress σ_{yy} , (d) horizontal permeability k_{xx} , (e) vertical permeability k_{yy} , (f) equivalent shear strain.

646 Fig. 13 shows the pore pressure evolution with the implemented model.
 647 During the drainage and injection phases, the pore pressure is successfully
 648 captured in the near field in both directions. However, the experimental
 649 results are not so well reproduced in the far field during the injection phase,
 650 where the pore pressure is still overestimated at the measurements PG50D-6,
 651 PG50D-5, and PG50D-4. The good prediction of pressure in the near field has
 652 to be related to the evolution of the permeability. The plastic deformation
 653 is much developed due to the excavation, leading to the creation of an EDZ
 654 with higher permeability. Fig. 14 depicts the evolution of permeability in
 655 the horizontal and vertical directions. The estimated impacted zone of the
 656 permeability variation is around 4 m from the gallery axis. The maximum
 657 increase of the permeability is located close to the gallery wall, and it is about
 658 1.5 times than the initial value in the end of heating. The modification of
 659 permeability is more pronounced in the vertical direction, which is consistent
 660 with the distinct development of the equivalent shear strain in Fig. 15. The
 661 deformation inside the EDZ in the vertical direction is greater than that in

662 the horizontal direction, which is consistent with the ‘eye shape’ of EDZ in
 663 [Salehnia et al. \(2015\)](#) and [François et al. \(2014\)](#). The shear strain localization
 664 is preferential to develop in the minor principal stress direction.

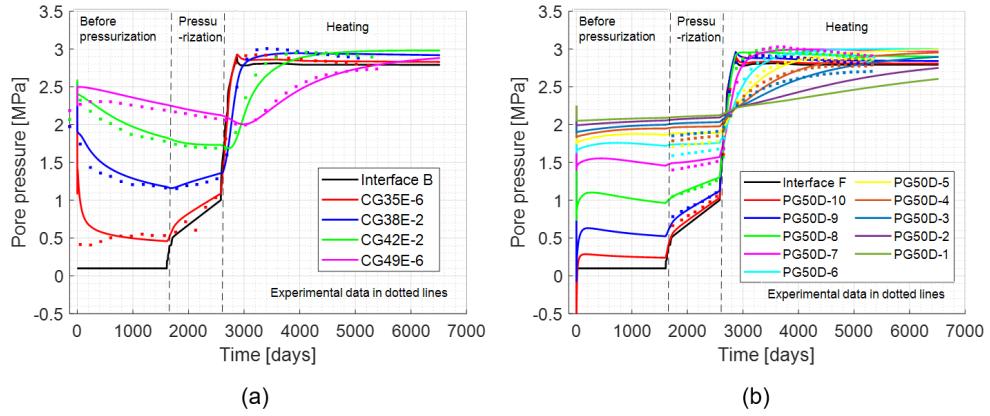


Figure 13: The evolution of pore pressure: (a) in the horizontal, and (b) vertical directions.

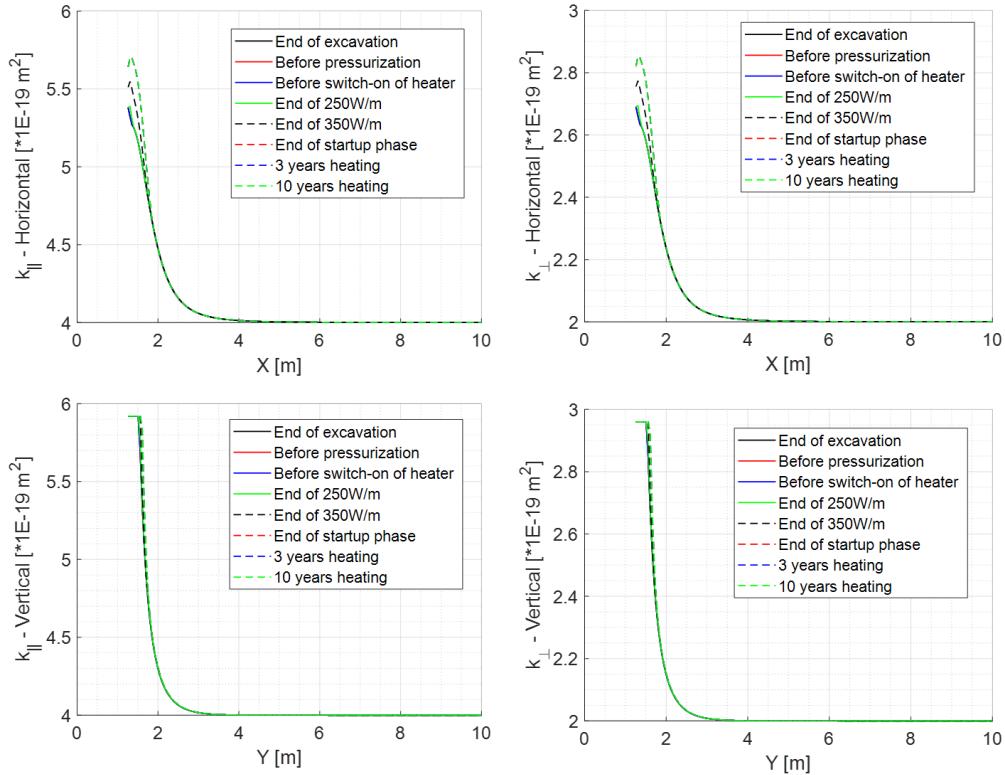


Figure 14: The variation of Permeability in the horizontal and vertical directions.

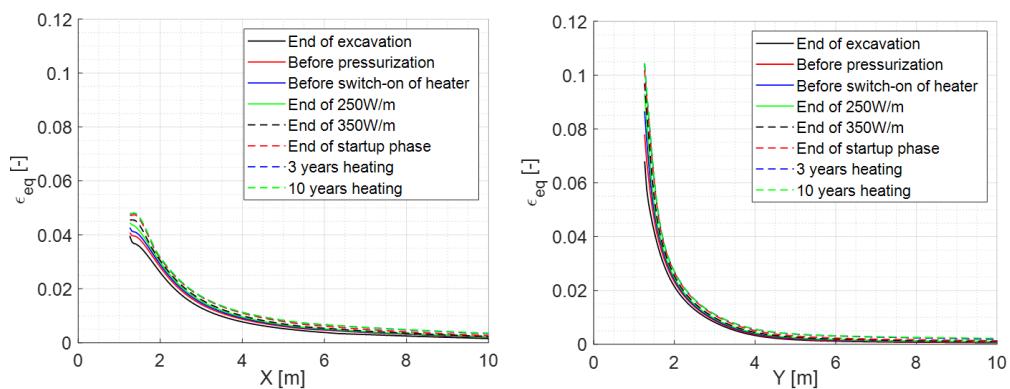


Figure 15: The evolution of equivalent shear strain in the horizontal and vertical directions.

665 The overpressure induced by thermal pressurization is well reproduced
666 both in the near and far field during the heating, where the THM coupling
667 is magnified thanks to the higher clay stiffness. Fig. 16 characterizes the
668 variation of Young's modulus in the horizontal and vertical directions. Glob-
669 ally, a significant decrease of Young's modulus is observed from the far field
670 to the wall, and the minimum values are obtained at the wall in the end of
671 heating. This relates to the fact that deformation plays a dominant role in
672 the evolution of Young's modulus. For the clay formation very close to the
673 wall, the degradation of the clay stiffness is consistent between the excavation
674 and heating phase, because most of the shear deformation is induced by the
675 excavation of the gallery. The Young's modulus remains constant in the far
676 field, where the clay formation is almost intact. In the direction parallel to
677 the bedding, a value higher than the initial modulus is observed in the clay
678 formation slightly further from the wall, reflecting the dependency of clay
679 stiffness on mean effective stress. Fig. 17 displays the evolution of the mean
680 effective stress, where the peak stress in the bedding plane coincide with the
681 peak modulus in Fig. 16, and a larger modulus than the intact one (1490
682 MPa) is observed at a distance of 10 m from the wall. The peak stress in
683 the direction normal to the bedding occurs extremely close to the wall where
684 the minimum modulus is obtained, which again evidences the dominance of
685 deformation in the evolution of Young's modulus in the EDZ.

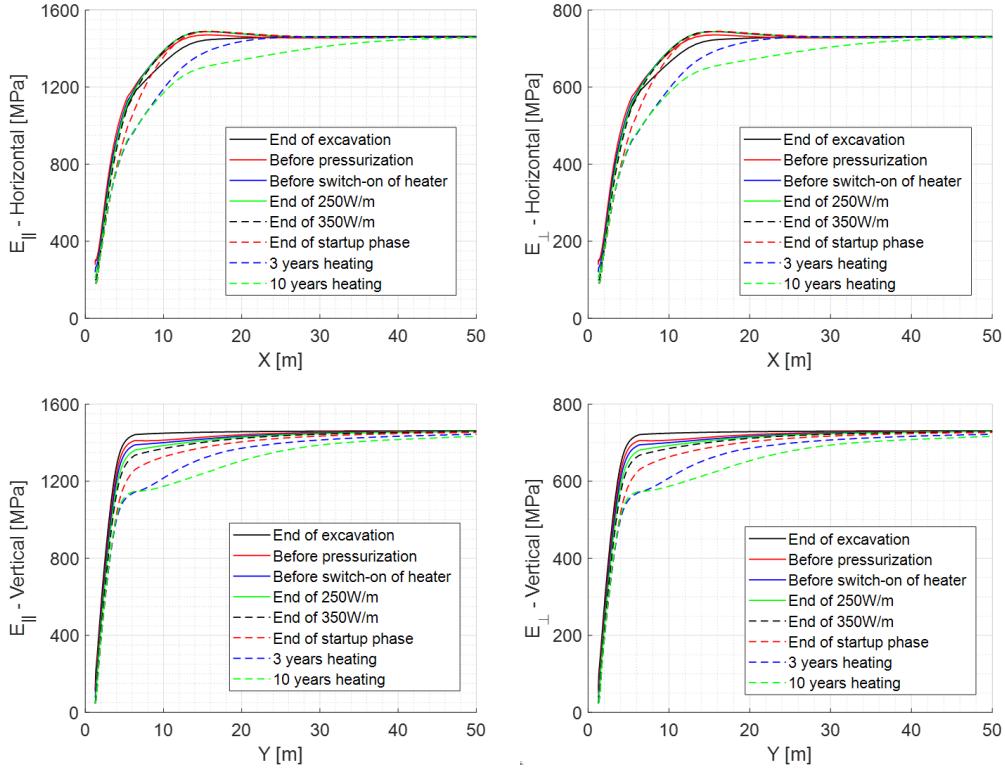


Figure 16: The variation of Young's modulus in the horizontal and vertical directions.

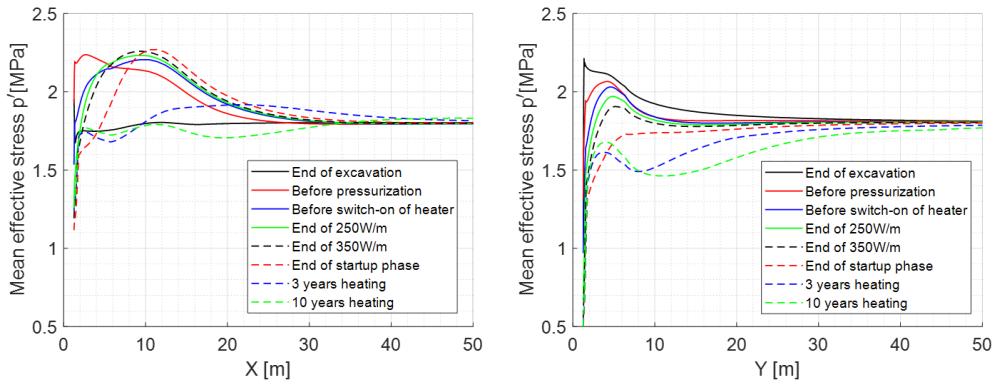


Figure 17: The evolution of mean effective stress in the horizontal and vertical directions.

686 It is worth mentioning that, the numerical prediction is unable to capture
687 the decrease in pore pressure displayed at the end of heating. This deviation
688 is related to the 3D effect in the real repository, which is out of the scope of
689 the 2D modelling problem in this study. The results show that the extent
690 of the zone with permeability changes is much smaller than the zone with
691 clay stiffness modification. The impacted zone of Young's modulus in the
692 horizontal direction is larger than in the vertical direction.

693 5. Conclusion

694 A large-scale in situ PRACLAY heater test is currently being carried out
695 at HADES URL to analyze the thermal impacts in the EDZ (or the near
696 field) and to confirm the far-field response. A 2D benchmark is proposed to
697 represent the PRACLAY heater test using fully coupled THM finite element
698 codes. The thermal pressurization mechanism is recalled in this study, which
699 shows that the excess pore pressure during the heating is not only related to
700 the discrepancy of thermal expansion coefficient between fluid and solid phase
701 but also to the material stiffness. The comparison between the numerical
702 prediction and experimental observation is carried out.

703 The evolution of temperature is well captured compared to the in situ
704 measurement. To reproduce the evolution of pore pressure, an advanced
705 constitutive model is implemented by integrating the strain dependency of
706 the clay stiffness and intrinsic permeability of the host clay formation, and the
707 HSsmall model into the numerical predictions. A laboratory test modelling
708 from the in situ extraction of the sample to the triaxial test is carried out, to
709 verify that the advanced model is able to predict stiffness changes from field
710 to laboratory conditions. The degradation of the clay stiffness is reproduced,
711 and the in situ clay modulus in the far field is confirmed. The degradation
712 of Young's modulus is first induced by the inevitable disturbance from the
713 on-site sampling but mostly by the strain amplitude during the triaxial test.
714 In the end, the implemented modelling is able to capture the shear strength
715 from the experimental tests and the Young's modulus commonly measured
716 in the lab.

717 A good agreement between the numerical prediction and in situ measure-
718 ment is obtained after the application of the advanced model. The increase of
719 intrinsic permeability and the degradation of Young's modulus are strongly
720 dependent on the development of shear strain deformation, which appears
721 mostly during the excavation of the gallery. The pore pressure during the

722 drainage is reproduced thanks to the introduction of permeability increase
723 in the EDZ (near field). The THM coupling during the heating is magnified
724 by the combined effect from the mean effective stress and shear deformation,
725 thus the excess pore pressure is well captured. Specially, the combined effect
726 of the mean effective stress and shear deformation on the Young's modulus
727 is investigated in this study. The shear deformation dominates the develop-
728 ment of the Young's modulus, and the impact from the mean effective stress
729 is evidenced, where the shear deformation is smaller in the direction parallel
730 to the bedding plane. In addition, the impacted zone of the Young's modulus
731 between the horizontal and vertical directions is consistent with the in situ
732 'eye shape' damage zone. The extent of the zone with permeability changes
733 is much smaller than the zone with clay stiffness modification. It is worth
734 mentioning that, the effects of temperature on thermal compaction, creep
735 behavior, and potential strength modification of the rock are not included in
736 this study.

737 **CRediT authorship contribution statement**

738 Hangbiao Song: Conceptualization, investigation, methodology, software,
739 validation, writing - original draft. Arnaud Dizier: Conceptualization, in-
740 vestigation, writing – review and editing. Séverine Levasseur: Conceptu-
741 alization, investigation, writing – review and editing. Suresh Seetharam:
742 Conceptualization, investigation, validation. Frédéric Collin: Conceptual-
743 alization, investigation, methodology, project administration, writing - review
744 and editing.

745 **Declarations**

746 The authors declare that they have no known competing financial inter-
747 ests or personal relationships that could have appeared to influence the work
748 reported in this paper.

749 **Acknowledgments**

750 This project has received funding from the European Union's Horizon
751 2020 research and innovation programme under grant agreement No 847593.
752 The first author also would like to thank the China Scholarship Council
753 (No.201906710096) for their financial support.

754 **Data availability**

755 No data was used for the research described in the article.

756 **References**

757 Armand, G., Bumbieler, F., Conil, N., de La Vaissière, R., Bosgiraud, J.M.,
758 Vu, M.N., 2017. Main outcomes from in situ thermo-hydro-mechanical
759 experiments programme to demonstrate feasibility of radioactive high-level
760 waste disposal in the callovo-oxfordian claystone. *J. Rock Mech. Geotech.*
761 *Eng.* 9, 415–427.

762 Atkinson, J., 1991. Experimental determination of stress-strain-time charac-
763 teristics in laboratory and-in-situ tests. general report, in: Proc. 10th Eur.
764 Conf. Soil Mech. Found. Eng., pp. 915–956.

765 Baldi, G., Hueckel, T., Peano, A., Pellegrini, R., 1991. Developments in
766 modelling of thermohydro-geomechanical behaviour of Boom clay and clay-
767 based buffer materials (volume 2). Technical Report. Commission of the
768 European Communities.

769 Baldi, G., Hueckel, T., Pellegrini, R., 1988. Thermal volume changes of
770 the mineral–water system in low-porosity clay soils. *Can. Geotech. J.* 25,
771 807–825.

772 Barnichon, J.D., 1998. Finite element modelling in structural and petroleum
773 geology. Ph.D. thesis. Universite de Liège.

774 Bastiaens, W., Bernier, F., Li, X., 2006. An overview of long-term hm mea-
775 surements around hades urf, in: Proc. EUROCK, pp. 9–12.

776 Benz, T., Schwab, R., Vermeer, P., 2009. Small-strain stiffness in geotechnical
777 analyses. *Bautechnik* 86, 16–27.

778 Bernier, F., Li, X., Bastiaens, W., 2007. Twenty-five years' geotechnical
779 observation and testing in the tertiary boom clay formation. *Géotechnique*
780 57, 229–237.

781 Bernier, F., Neerdael, B., 1996. Overview of in-situ thermomechanical ex-
782 periments in clay: Concept, results and interpretation. *Eng. Geol.* 41,
783 51–64.

784 Bossart, P., Meier, P.M., Moeri, A., Trick, T., Mayor, J.C., 2002. Geological
785 and hydraulic characterisation of the excavation disturbed zone in the
786 opalinus clay of the mont terri rock laboratory. Eng. Geol. 66, 19–38.

787 Braun, P., Delage, P., Ghabezloo, S., Chabot, B., Conil, N., Vu, M.N., 2022.
788 Inducing tensile failure of claystone through thermal pressurization in a
789 novel triaxial device. Rock Mech. Rock Eng. 55, 3881–3899.

790 Bredehoeft, J.D., 1978. Geologic disposal of high-level radioactive wastes:
791 Earth-science perspectives. volume 779. US Department of the Interior,
792 Geological Survey.

793 Brinkgreve, R., Kappert, M., Bonnier, P., 2007. Hysteretic damping in a
794 small-strain stiffness model. Proc. Num. Mod. Geomech., NUMOG X,
795 Rhodes , 737–742.

796 Bumbieler, F., Plúa, C., Tourchi, S., Vu, M.N., Vaunat, J., Gens, A.,
797 Armand, G., 2021. Feasibility of constructing a full-scale radioactive
798 high-level waste disposal cell and characterization of its thermo-hydro-
799 mechanical behavior. Int. J. Rock Mech. Min. 137, 104555.

800 Callisto, L., Rampello, S., 2002. Shear strength and small-strain stiffness of
801 a natural clay under general stress conditions. Géotechnique 52, 547–560.

802 Charlier, R., 1987. Approche unifiee de quelques problemes non lineaires de
803 mecanique des milieux continus par la methode des elements finis. Ph.D.
804 thesis.

805 Charlier, R., Chambon, R., Collin, F., Dedecker, F., Dizier, A., Fauriel, S.,
806 François, B., Fokkens, J., Garitte, B., Gens, A., et al., 2010. Deliverable
807 d13—simulation of lab and in situ tests. Timodaz Rep. .

808 Chen, G., Dizier, A., Li, X., Verstricht, J., Sillen, X., Levasseur, S., 2021a.
809 Numerical prediction of the large-scale in situ praclay heater test in the
810 boom clay. Rock Mech. Rock Eng. 54, 2197–2218.

811 Chen, G., Dizier, A., Verstricht, J., Li, X., 2021b. Scientific interpretation of
812 the first years of the praclay heater test. EURIDICE Rep. EUR_20-058 .

813 Chen, G., Li, X., Dizier, A., Verstricht, J., Sillen, X., Levasseur, S., 2023.
814 Characterization of boom clay anisotropic thm behaviour based on two

815 heating tests at different scales in the hades url. Geol. Soc., Lond. Spec.
816 Publ. 536, SP536–2022.

817 Chen, G., Sillen, X., Verstricht, J., Li, X., 2011. Atlas iii in situ heating
818 test in boom clay: Field data, observation and interpretation. Comput.
819 Geotech. 38, 683–696.

820 Chen, L., Shao, J.F., Huang, H., 2010. Coupled elastoplastic damage mod-
821 eling of anisotropic rocks. Comput. Geotech. 37, 187–194.

822 Collin, F., Li, X.L., Radu, J.P., Charlier, R., 2002. Thermo-hydro-mechanical
823 coupling in clay barriers. Eng. Geol. 64, 179–193.

824 Conil, N., Vitel, M., Plua, C., Vu, M.N., Seyedi, D., Armand, G., 2020. In
825 situ investigation of the thm behavior of the callovo-oxfordian claystone.
826 Rock Mech. Rock Eng. 53, 2747–2769.

827 Croisé, J., Schlickenrieder, L., Marschall, P., Boisson, J., Vogel, P., Ya-
828 mamoto, S., 2004. Hydrogeological investigations in a low permeability
829 claystone formation: the mont terri rock laboratory. Phys. Chem. Earth
830 (Pt AB,C) 29, 3–15.

831 Cudny, M., Truty, A., 2020. Refinement of the hardening soil model within
832 the small strain range. Acta Geotech. 15, 2031–2051.

833 Cui, Y.J., Le, T.T., Tang, A.M., Delage, P., Li, X.L., 2009. Investigating the
834 time-dependent behaviour of boom clay under thermomechanical loading.
835 Géotechnique 59, 319–329.

836 Cui, Y.J., Sultan, N., Delage, P., 2000. A thermomechanical model for sat-
837 urated clays. Can. Geotech. J. 37, 607–620.

838 Dao, L.Q., Cui, Y.J., Tang, A.M., Pereira, J.M., Li, X.L., Sillen, X., 2015.
839 Impact of excavation damage on the thermo-hydro-mechanical properties
840 of natural boom clay. Eng. Geol. 195, 196–205.

841 De Bruyn, D., Labat, S., 2002. The second phase of atlas: the continuation
842 of a running thm test in the hades underground research facility at mol.
843 Eng. Geol. 64, 309–316.

844 Delage, P., Sultan, N., Cui, Y.J., 2000. On the thermal consolidation of
845 boom clay. Can. Geotech. J. 37, 343–354.

846 Desai, C.S., Siriwardane, H.J., 1984. Constitutive laws for engineering ma-
847 terials, with emphasis on geologic materials. Prentice-Hall.

848 Dizier, A., Chen, G., Li, X., Leysen, J., Verstricht, J., Troullinos, I., Rypens,
849 J., 2016. The start-up phase of the praclay heater test. EUR_PH_16_025.
850 Mol, Belgium .

851 Dizier, A., Chen, G., Verstricht, J., Li, X., Sillen, X., Levasseur, S., 2021.
852 The large-scale in situ praclay heater test: first observations on the in situ
853 thermo-hydro-mechanical behaviour of boom clay. *Int. J. Rock Mech. Min.*
854 137, 104558.

855 Drucker, D.C., Prager, W., 1952. Soil mechanics and plastic analysis or limit
856 design. *Q. Appl. Math.* 10, 157–165.

857 EURAD-HITEC, 2019. EURAD WP HITEC Milestone report 49 – Selection
858 of benchmark exercises for task 2.3. Technical Report.

859 Félix, B., Lebon, P., Miguez, R., Plas, F., 1996. A review of the andra's
860 research programmes on the thermo-hydromechanical behavior of clay in
861 connection with the radioactive waste disposal project in deep geological
862 formations. *Eng. Geol.* 41, 35–50.

863 François, B., Labiouse, V., Dizier, A., Marinelli, F., Charlier, R., Collin, F.,
864 2014. Hollow cylinder tests on boom clay: modelling of strain localization
865 in the anisotropic excavation damaged zone. *Rock Mech. Rock Eng.* 47,
866 71–86.

867 Garitte, B., Nguyen, T., Barnichon, J., Graupner, B., Lee, C., Maekawa,
868 K., Manepally, C., Ofoegbu, G., Dasgupta, B., Fedors, R., et al., 2017.
869 Modelling the mont terri he-d experiment for the thermal–hydraulic–
870 mechanical response of a bedded argillaceous formation to heating. *Envi-
871 ron. Earth Sci.* 76, 1–20.

872 Gens, A., Vaunat, J., Garitte, B., Wileveau, Y., 2011. In situ behaviour of
873 a stiff layered clay subject to thermal loading: observations and interpre-
874 tation, in: *Stiff Sedimentary Clays: Genesis and Engineering Behaviour:*
875 *Géotechnique Symposium in Print 2007*, Thomas Telford Ltd. pp. 123–144.

876 Gens Solé, A., Barboza de Vasconcelos, R., Olivella Pastallé, S., 2020. To-
877 wards higher temperatures in nuclear waste repositories, in: E3S Web
878 Conf., EDP Sciences. pp. 1–8.

879 Ghabezloo, S., Sulem, J., Saint-Marc, J., 2009. The effect of undrained
880 heating on a fluid-saturated hardened cement paste. *Cement Concrete*
881 *Res.* 39, 54–64.

882 Hardin, B.O., 1978. The nature of stress-strain behavior for soils, in: From
883 Volume I of Earthquake Engineering and Soil Dynamics—Proceedings of
884 the ASCE Geotechnical Engineering Division Specialty Conference, June
885 19–21, 1978, Pasadena, California. Sponsored by Geotechnical Engineering
886 Division of ASCE in cooperation with:.

887 Hardin, B.O., Drnevich, V.P., 1972. Shear modulus and damping in soils:
888 design equations and curves. *J. Soil Mech. Found. Division* 98, 667–692.

889 Hujeux, J.C., 1985. Une loi de comportement pour le chargement cyclique
890 des sols, in: *Génie parasismique*, pp. 287–302.

891 IAEA, 2003. Scientific and technical basis for the geological disposal of ra-
892 dioactive wastes. Number 413 in *Tech. Rep. Ser.*, International Atomic
893 Energy Agency.

894 IAEA, 2022. Status and trends in spent fuel and radioactive waste manage-
895 ment. Number NW-T-1.14 (Rev. 1) in *Nucl. Energy Ser.*, International
896 Atomic Energy Agency.

897 Kell, G.S., 1975. Density, thermal expansivity, and compressibility of liquid
898 water from 0. deg. to 150. deg.. correlations and tables for atmospheric
899 pressure and saturation reviewed and expressed on 1968 temperature scale.
900 *J. Chem. Eng. Data* 20, 97–105.

901 Labiouse, V., Sauthier, C., You, S., 2014. Hollow cylinder simulation ex-
902 periments of galleries in boom clay formation. *Rock Mech. Rock Eng.* 47,
903 43–55.

904 Laloui, L., 1993. Modélisation du comportement thermo-hydro-mécanique
905 des milieux poreux anélastiques. Ph.D. thesis. Ecole Centrale Paris.

906 Li, X., Bastiaens, W., Van Marcke, P., Verstricht, J., Chen, G., Weetjens,
907 E., Sillen, X., 2010. Design and development of large-scale in-situ praclay
908 heater test and horizontal high-level radioactive waste disposal gallery seal
909 test in belgian hades. *J. Rock Mech. Geotech. Eng.* 2, 103–110.

910 Li, X., Dizier, A., Chen, G., Verstricht, J., Levasseur, S., 2023a. Forty years
911 of investigation into the thermo-hydromechanical behaviour of boom clay
912 in the hades url .

913 Li, X., Neerdael, B., Raymaekers, D., Sillen, X., 2023b. The construction of
914 the hades underground research laboratory and its role in the development
915 of the belgian concept of a deep geological repository. *Geol. Soc., Lond.*
916 *Spec. Publ.* 536, SP536–2022.

917 Likitlersuang, S., Teachavorasinskul, S., Surarak, C., Oh, E., Balasubrama-
918 niam, A., 2013. Small strain stiffness and stiffness degradation curve of
919 bangkok clays. *Soils Found.* 53, 498–509.

920 Mair, R., 1993. Developments in geotechnical engineering research: applica-
921 tion to tunnels and deep excavations, in: *Proc. Inst. Civ. Engrs. Civ. Eng.*,
922 pp. 27–41.

923 Mertens, J., Bastiaens, W., Dehandschutter, B., 2004. Characterisation of
924 induced discontinuities in the boom clay around the underground excava-
925 tions (urf, mol, belgium). *Appl. Clay Sci.* 26, 413–428.

926 Monfared, M., 2011. *Couplages température-endommagement-perméabilité*
927 dans les sols et les roches argileux. Ph.D. thesis. Université Paris-Est.

928 Müller, H.R., Garitte, B., Vogt, T., Köhler, S., Sakaki, T., Weber, H., Spill-
929 mann, T., Hertrich, M., Becker, J.K., Giroud, N., et al., 2018. Imple-
930 mentation of the full-scale emplacement (fe) experiment at the mont terri
931 rock laboratory. *Mont Terri Rock Laboratory, 20 Years: Two Decades of*
932 *Research and Experimentation on Claystones for Geological Disposal of*
933 *Radioactive Waste* , 289–308.

934 Neerdael, B., Boyazis, J., 1997. The belgium underground research facility:
935 Status on the demonstration issues for radioactive waste disposal in clay.
936 *Nucl. Eng. Des.* 176, 89–96.

937 ONDRAF/NIRAS, R.N.T...E., 2013. Development and Demonstration Plan
938 for the geological disposal of high-level and/or long-lived radioactive waste
939 including irradiated fuel if considered as waste, State-of-the-art report as
940 of December 2012. Technical Report.

941 Pardoen, B., Talandier, J., Collin, F., 2016. Permeability evolution and
942 water transfer in the excavation damaged zone of a ventilated gallery. *Int.*
943 *J. Rock Mech. Min.* 85, 192–208.

944 Pietruszczak, S., Mroz, Z., 2000. Formulation of anisotropic failure criteria
945 incorporating a microstructure tensor. *Comput. Geotech.* 26, 105–112.

946 Pietruszczak, S., Mroz, Z., 2001. On failure criteria for anisotropic cohesive-
947 frictional materials. *Int. J. Number. Anal. Met.* 25, 509–524.

948 Plúa, C., Vu, M.N., Seyed, D.M., Armand, G., 2021. Effects of inherent
949 spatial variability of rock properties on the thermo-hydro-mechanical re-
950 spondes of a high-level radioactive waste repository. *Int. J. Rock Mech.*
951 *Min.* 145, 104682.

952 Rumble, J., 2019. Crc handbook of chemistry and physics (100th ed.). boca
953 rotan, fl.

954 Salehnia, F., Collin, F., Li, X.L., Dizier, A., Sillen, X., Charlier, R., 2015.
955 Coupled modeling of excavation damaged zone in boom clay: Strain local-
956 ization in rock and distribution of contact pressure on the gallery's lining.
957 *Comput. Geotech.* 69, 396–410.

958 Schuster, K., 2019. Mini-seismic methods for the in-situ characterization of
959 clay rocks—examples from url meuse/haute-marne (france) and hades urf
960 (belgium). *Geomech. Energy Envir.* 17, 16–28.

961 Seyed, D., Plúa, C., Vitel, M., Armand, G., Rutqvist, J., Birkholzer, J., Xu,
962 H., Guo, R., Thatcher, K., Bond, A., et al., 2021. Upscaling thm modeling
963 from small-scale to full-scale in-situ experiments in the callovo-oxfordian
964 claystone. *Int. J. Rock Mech. Min.* 144, 104582.

965 Simo, E., de Lesquen, C., Leon-Vargas, R.P., Vu, M.n., Raude, S., El Tabbal,
966 G., Dizier, A., Seetharam, S., Narkuniene, A., Collin, F., et al., 2025.
967 Thm-modelling benchmark initiative on the effects of temperature on the

968 disposal of heat-generating radioactive waste in clay formations. *Acta*
969 *Geotech.* , 1–22.

970 Sojoudi, M., Li, B., 2023. A thermodynamic-based model for modeling
971 thermo-elastoplastic behaviors of saturated clayey soils considering bound
972 water dehydration. *J. Rock Mech. Geotech. Eng.* 15, 1535–1546.

973 Sojoudi, M., Li, B., Norouzi, E., 2024. Thermal-hydro-mechanical modeling
974 of short-term ground responses due to the borehole thermal energy storage
975 operations in a canadian subarctic region. *Renew. Energ.* 229, 120753.

976 Song, H., Corman, G., Collin, F., 2023. Thermal impact on the excavation
977 damage zone around a supported drift using the 2nd gradient model. *Rock*
978 *Mech. Rock Eng.* 56, 7575–7598.

979 Sultan, N., Cui, Y.J., Delage, P., 2010. Yielding and plastic behaviour of
980 boom clay. *Géotechnique* 60, 657–666.

981 Sultan, N., Delage, P., Cui, Y., 2002. Temperature effects on the volume
982 change behaviour of boom clay. *Eng. Geol.* 64, 135–145.

983 Van Marcke, P., Li, X., Bastiaens, W., Verstricht, J., Chen, G., Leysen,
984 J., Rypens, J., 2013. The design and installation of the praclay in-situ
985 experiment. *EURIDICE Rep.* , 13–129.

986 Vu, M.N., Armand, G., Plua, C., 2020. Thermal pressurization coefficient of
987 anisotropic elastic porous media. *Rock Mech. Rock Eng.* 53, 2027–2031.

988 Yu, L., Rogiers, B., Gedeon, M., Marivoet, J., De Craen, M., Mallants, D.,
989 2013. A critical review of laboratory and in-situ hydraulic conductivity
990 measurements for the boom clay in belgium. *Appl. Clay Sci.* 75, 1–12.