Discoveries 1 Short title: Arabidopsis halleri HMA4 cis-regulation 2 3 4 Title Cis-regulatory mutations co-opting circadian clock regulation underlie naturally 5 selected extreme trait in Arabidopsis halleri 6 7 8 **Authors** Leonardo Castanedo¹, Justyna Cebula¹, Cécile Nouet², Julien Spielmann^{2,3}, Marc 9 Hanikenne², Ute Krämer^{1,*} 10 11 12 **Affiliations** ¹Chair of Molecular Genetics and Physiology of Plants, Faculty of Biology and 13 Biotechnology, Ruhr University Bochum, D-44801 Bochum, Germany 14 ²InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000 Liège, 15 Belgium 16 ³Present address: Plant Science Research Laboratory (LRSV), UMR5546 17 CNRS/Université Toulouse 3 / Toulouse-INP, Auzeville Tolosane, France 18 *Corresponding author: Ute.Kraemer@ruhr-uni-bochum.de 19 20 21 22 **Corresponding author:** 23 Professor Dr. Ute Krämer 24 Chair of Molecular Genetics and Physiology of Plants 25 Faculty of Biology and Biotechnology 26 Universitätsstraße 150, ND3/30, Box 44 27 **D-44801 Bochum** 28 Germany 29 Tel.: +49 (0)234 32 24291 30 Fax: +49 (0)234 32 14187 31 Email: Ute Kraemer@ruhr-uni-bochum.de 32 ORCID: 0000-0001-7870-4508 33

34

Abstract 35 HEAVY METAL ATPase 4 (HMA4) is required for the naturally selected traits of 36 zinc/cadmium hyperaccumulation and hypertolerance of in Arabidopsis halleri. Cis-37 regulatory alterations and tandem triplication of AhHMA4 result in substantially elevated 38 transcript levels compared to the closely related non-tolerant non-hyperaccumulator 39 Arabidopsis thaliana. Here we identify cis-regulatory Metal Hyperaccumulation Elements 40 (MHEs) necessary for AhHMA4 promoter activity, employing sequence comparisons and 41 motif elicitation analyses combined with progressive deletions and site-directed 42 mutagenesis of promoter-reporter constructs. We report that the promoters of all 43 AhHMA4 gene copies share a distal MHE1 (consensus TGTAAC), and a proximal pair 44 of MHE2s identical or highly similar to the Evening Element (AAAATATCT). Evening 45 elements are known binding sites of Arabidopsis CIRCADIAN CLOCK-ASSOCIATED 1 46 47 (CCA1), a phytochrome-regulated transcription factor in the core circadian clock. We show that the promoter of each AhHMA4 gene copy, but not of AtHMA4, mediates 48 enhanced transcript levels of the reporter and their diel rhythmicity. These functional 49 characteristics are CCA1-dependent and recapitulated by a synthetic reporter construct 50 51 placing the MHE2 pair into the AtHMA4-promoter sequence context, according to the example of the AhHMA4-1 promoter. Consistent with our observations in transgenic 52 reporter lines, AhHMA4 transcript levels follow a diel rhythm in wild-type A. halleri plants. 53 Different from A. halleri, we identify complex repressive functionalities co-localizing with 54 an upstream IncRNA and an intron in the 5' untranslated region of A. thaliana HMA4. In 55 56 summary, our work exemplifies how *cis*-regulatory mutations contributed to the evolution of extreme physiological traits through the co-option of the circadian clock regulatory 57 network. 58 59 **Key words:** natural selection, metal hyperaccumulation, metal hypertolerance, novelty, extreme physiological trait, *cis*-enhancing elements, *cis*-regulatory divergence, 60 REVEILLE (RVE), MYB family transcription factor, diel dynamic expression patterns, 61 circadian clock. 62

63

Introduction

64

65

66

67

68

69

70

71

72 73

74

75

76

77

78

79

80 81

82

83

84

85

86

87

88

89

90

91

92

93

94

Evolutionary novelties can result from alterations in coding regions affecting the function, amount or stability of a gene product, or alternatively in non-protein-coding DNA sequences in *cis* that alter the regulation of gene expression (Hill et al. 2021). A growing number of studies support that cis-regulatory changes constitute one of the major sources of genetic variation underlying naturally and anthropogenically selected traits in plants and animals (Jacob and Monod 1961; King and Wilson 1975; Stern 1998; Crawford et al. 1999; Wang et al. 1999; Clark et al. 2006; Hanikenne et al. 2008; Hufford et al. 2012; Alonge et al. 2020; Liu et al. 2020; Song et al. 2020). However, studies establishing a mechanistic link between a specific cis-regulatory mutation and the corresponding gene expression phenotype remain scarce (Hill et al. 2021; Schmitz et al. 2022). The naturally selected extreme traits of heavy metal hyperaccumulation and hypertolerance are characteristic of the species *Arabidopsis halleri* and absent in closely related species including Arabidopsis thaliana. Cis-regulatory divergence from the model plant A. thaliana at the HEAVY METAL ATPase 4 (HMA4) locus, which encodes a plasma membrane-localized Zn²⁺- and Cd²⁺-exporting pump, is of decisive importance in these extreme traits of A. halleri (Hanikenne et al. 2008). The objective of this study was to identify the causal *cis*-regulatory sequence polymorphisms and to obtain information on the *trans* factors involved. Arabidopsis halleri is a diploid stoloniferous perennial and obligate outcrosser within the group of sister species of the intensely studied diploid short-lived selfer A. thaliana, from which it diverged between 5 and 10 Mya (Krämer 2010; Novikova et al. 2018). As the only metal hyperaccumulator species within the Arabidopsis genus in lineage I of the Brassicaceae, A. halleri leaves collected in their natural habitat can contain more than 3,000 (and up to 53,900) μq Zn q^{-1} dry leaf biomass and more than 100 (and up to 3,640) µg g⁻¹ Cd, according to the definition of metal hyperaccumulation (Krämer 2010; Stein et al. 2017). Thus, A. halleri is capable of accumulating and tolerating more than 10- and up to around 10,000-fold higher metal levels than ordinary plants. In Europe and East Asia, A. halleri is among the natural colonizers of so-called calamine metalliferous soils containing high, toxic levels of Zn and Cd from geogenic or anthropogenic sources (Ernst 2006). Species-wide Zn and Cd hypertolerance was confirmed on synthetic

96

97

98

99

100

101

102

103

104

105

106

107

108 109

110

111

112

113

114

115

116

117

118119

120

121

122

123

124

125

media under laboratory conditions (Bert et al. 2003; Becher et al. 2004; Meyer et al. 2010). Different from most of the other > 700 metal hyperaccumulator plant species identified to date, A. halleri is a facultative metallophyte (Reeves et al. 2017). Populations on unpolluted soils containing merely background levels of heavy metals are also hyperaccumulating. Modest Zn hyperaccumulation is also known in the allotetraploid A. kamchatica, which arose through the hybridization of A. halleri and A. Iyrata (Paape et al. 2020). According to cross-species transcriptomics, the transcript levels of tens of metal-related genes are elevated in A. halleri compared to A. thaliana, mostly constitutively (Becher et al. 2004; Weber et al. 2004; Talke et al. 2006). Subsequently, a reverse genetic approach pinpointed one of these candidate genes, HMA4, as the key causal locus making the largest known contribution to both metal hyperaccumulation and metal hypertolerance in A. halleri (Hanikenne et al. 2008; Hanikenne et al. 2013). This was supported by the genomic position of HMA4 within QTL regions mapped for the Zn and Cd hypertolerance traits in a segregating population of a cross of A. halleri with A. lyrata (Courbot et al. 2007; Willems et al. 2007). By comparison to the closely related nonhyperaccumulating A. thaliana, tandem triplication of HMA4 combined with cisregulatory divergence leading to enhanced promoter strength of all AhHMA4 gene copies (AhHMA4-1 to AhHMA4-3), resulted in 6- to 50-fold elevated HMA4 transcript levels in A. halleri (Talke et al. 2006; Hanikenne et al. 2008; Hanikenne et al. 2013). Beyond enhanced *HMA4* gene product dosage (Hanikenne et al. 2013), the evidence available to date does not support any predominant role of divergent transcript localization or divergent functions of the encoded proteins among the AhHMA4-1 to AhHMA4-3 gene copies, or compared to AtHMA4 (Krämer 2010; Nouet et al. 2015). Ectopic Gene Conversion, also addressed as Inter-locus Gene Conversion, among AhHMA4-1, AhHMA4-2 and AhHMA4-3 is well-documented and reflected by ≥ 99% coding sequence identity between gene copies, further supporting that their proteincoding sequences undergo concerted evolution (Hanikenne et al. 2008; Hanikenne et al. 2013). Nucleotide polymorphism is consistent with positive selection and a hard selective sweep in the genomic region comprising AhHMA4-1 to AhHMA4-3 (Hanikenne et al. 2013).

Here we identify the divergent *cis*-regulatory sequences required for elevated activity of the promoters of the HMA4 gene copies of A. halleri compared to A. thaliana HMA4. We employ sequence comparisons and analyses, as well as promoter deletion series, promoter mutation and segmental promoter swap constructs. In the promoters of all three AhHMA4 gene copies, we identify the conserved cis-regulatory enhancer elements Metal Hyperaccumulation Element 1 and 2 (MHE1 and MHE2), which contribute to high transcript levels of a downstream reporter gene in the A. thaliana genetic background and are absent in the A. thaliana HMA4 promoter. By contrast, we report that A. thaliana HMA4 is targeted by complex repressive cis-regulatory functionalities, which co-localize with a distal upstream IncRNA, an intron region corresponding to the 5'-untranslated region of the transcript. MHE2 sequences are identical or highly similar to the known evening element, a known binding site for the MYB family transcription factor CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) that mediates light-dependent regulation and forms part of the core oscillator of the Arabidopsis circadian clock (Wang et al. 1997; Wang and Tobin 1998; Alabadí et al. 2002). We show that both elevated levels and diel dynamics of reporter gene transcript levels depend on the combination of the functionalities of CCA1 in trans and MHE2 in cis. Introducing both copies of MHE2 from the AhHMA4-1 promoter into an AtHMA4 promoter context recapitulates strongly elevated reporter gene transcript levels and their diel rhythms. Endogenous HMA4 transcript levels exhibit similar diel dynamics in A. halleri, thus supporting the validity and relevance of our findings. Taken together, our work constitutes a major step forward in our understanding of the mechanistic basis of an extreme trait syndrome in plants and provides an example of how cis-regulatory divergence contributed to the evolution of an extreme physiological trait through the co-option of a core circadian clock transcriptional regulator.

Results

126

127

128

129

130

131

132

133

134

135

136

137

138

139140

141

142143

144

145

146

147148

149

150

151

152

153

- Identification of regions governing functional divergence between the A. halleri
- 154 HMA4-1 and the A. thaliana HMA4 promoter
- Previous research demonstrated that metal hyperaccumulation and the full extent of
- metal hypertolerance in *A. halleri* depend on strongly elevated *HMA4* transcript levels

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

(Talke et al. 2006; Courbot et al. 2007; Hanikenne et al. 2008). This was attributed to cis-acting sequence differences between A. halleri and A. thaliana HMA4 by using constructs of genomic DNA segments fused to the β-GLUCURONIDASE (GUS) reporter gene in the genetic backgrounds of both species, A. halleri and A. thaliana (Hanikenne et al. 2008). In the present study, we aimed to identify the specific *cis*-regulatory sequence alterations in A. halleri HMA4 genes that confer strongly enhanced GUS reporter activities by comparison to the corresponding regions of A. thaliana HMA4 which mediate substantially lower GUS activities (Hanikenne et al. 2008). For this purpose, we generated series of promoter deletion constructs fused to a GUS reporter gene, and we introduced these into A. thaliana, given that HMA4 promoter activities are independent of the A. halleri or A. thaliana genetic backgrounds (Hanikenne et al. 2008). Although generally feasible, transgenic approaches in A. halleri remain highly timeconsuming and laborious to date. Among the promoter regions of the three HMA4 gene copies of A. halleri (accession Lan3.1), AhHMA4-1, AhHMA4-2 and AhHMA4-3, the sequence of AhHMA4-1_P is the most similar to AtHMA4_P (accession Col-0), which facilitated direct comparisons (Supplementary Fig. S1 A-D) (Hanikenne et al. 2008; Hanikenne et al. 2013). Our full-length AhHMA4-1_P construct comprised a genomic fragment of 2,326 bp in length, consisting of 1,602 bp upstream of the transcriptional start site, the 5' UTR including exon 1, an intron, and the beginning of exon 2, followed by the initial 30 bp of the AhHMA4-1 coding sequence (Hanikenne et al. 2008). We designed progressive 5' deletions, with breakpoints guided by the boundaries of segments exhibiting sequence similarity between the promoters of A. halleri HMA4-1 and A. thaliana HMA4 (Fig. 1A, Supplementary Figure S1D). Deletion of the initial 904 bp at the 5'-end of AhHMA4-1_P, addressed here as the distal region (DR), to generate the AhHMA4-1_P Δ 698 construct, caused a strong decrease in both GUS transcript levels and specific GUS enzyme activities of total protein extracts down to residual levels of 37%, 24%, and 35% on average, in shoots, roots, and whole seedlings, respectively (Fig. 1A, "Enhancing Region 1"; Fig. 1B and C, compare full-length (FL) AhHMA4-1_P FL with Δ698; Suppl. Fig. S1E and F, compare Ah-1P FL with Δ DR). Additional progressive deletions of the downstream intermediate region (IR) of 568 bp in length had no or only minor effects (Fig. 1A-C, IR, from $\triangle 438$ to $\triangle 130$). Deletion of the intron in the *AhHMA4-1*_P construct

190

191

192

193

194

195

196

197 198

199

200

201

202

203

204

205206

207

208

209

210

211

212213

214

215

216

217

218

219

had no significant effects by comparison to either the full-length promoter or the truncated promoter lacking both DR and IR (Fig. 1B and C, compare FL with FL∆i and Δ 130 and Δ 130 Δ i, and Suppl. Fig. S1E and F, compare Δ DR with Δ DR to Δ DIR Δ i). The additional deletion of the 44-bp-long proximal region (PR) to generate the AhHMA4-1_P Δ86Δi construct led to decreases in GUS transcript levels down to 2%, 3%, and 1%, of the full-length promoter in seedlings, shoots and roots, respectively (Fig. 1A, "Enhancing Region 2"; Fig. 1B, Δ86Δi; Suppl. Fig. S1E, ΔDIPRΔi). In these lines, residual *GUS* transcript levels and specific GUS activities were very low and indistinguishable from control transformants devoid of a promoter upstream of the GUS reporter gene (Fig. 1B and C, compare $\Delta 86\Delta i$ and ev, Suppl. Fig. 1E and F). The 2,799-bp-long full-length promoter fragment of A. thaliana HMA4 included 2,000 nucleotides upstream of the transcriptional start site (Hanikenne et al. 2008). GUS transcript levels driven by AtHMA4P were 14% in seedlings, 8% in shoots, and 54% in roots, of GUS transcript levels in the lines carrying full-length A. halleri HMA4 promoters (Fig. 1B and D, see also Fig. 2P). GUS enzyme activities directed by AtHMA4P were far below those observed in the AhHMA4P lines and amounted to less than 0.5% (Fig. 1C and E, see also Fig. 2Q), in agreement with previously published results (Hanikenne et al. 2008). In relation to GUS transcript levels, specific GUS reporter enzyme activities in full-length promoter-reporter lines were considerably lower for AtHMA4P than for AhHMA4-1_P (Fig. 1B-E, Suppl. Fig. S2A-D, AhHMA4-1_PFL is among constructs showing slopes of 8.2 in roots and 65 in shoots, contrasting with AtHMA4_PFL among constructs with slopes of 0.09 in roots and 0.07 in shoots). Thus, GUS enzyme activities were in qualitative agreement with GUS transcript levels for AhHMA4-1_P, but not for AtHMA4_P. Compared with the full-length *AtHMA4*_P construct, the combined deletion of both the DR and the intron resulted in about 100-fold increased GUS enzyme activities in total protein extracts of both shoots and roots (Fig. 1E, compare Δ597Δi to FL). In these AtHMA4_P Δ597Δi lines, GUS activity expressed as a function of GUS transcript levels reached similar magnitudes as in full-length AhHMA4-1_P lines (Fig. 1D and E, Suppl. Fig. S2B and D, AtHMA4_P ΔDRΔi among constructs showing slopes of 17 in roots and 84 in shoots. This suggested that both the DR and the intron of AtHMA4P were independently able to strongly repress GUS reporter activity, because the deletion of

221

222

223

224

225

226

227

228229

230

231

232

233

234

235

236237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

either the DR or the intron individually had no effect on GUS activity, and the deletion of both the DR and the intron in combination was required for increased GUS activity. At the GUS transcript level, deletion of the DR of AtHMA4P resulted in a 7-fold increase in shoots and no significant change in roots (Fig. 1D, compare FL and Δ 597). Moreover, deletion of the intron of full-length AtHMA4P caused an 11-fold increase in GUS transcript levels in shoots and a statistically significant 2-fold increase in roots (Fig. 1A and 1D, compare FL and FL Δ i). Consequently, the DR and the intron of AtHMA4_P each appeared to have repressive effects on GUS transcript levels primarily in shoots. Yet, these effects appeared to be complex, because the simultaneous deletion of both the DR and the intron resulted in GUS transcript levels at similar magnitudes as observed for the full-length *AtHMA4*^P construct. Furthermore, our results suggested that the region of AtHMA4_P between 234 and 129 nucleotides upstream of the transcriptional start site had a 2- to 3-fold enhancing effect on GUS transcript levels in the presence of the intron (Fig. 1D, compare $\Delta 234$ and $\Delta 129$), consistent with similar changes in GUS activity (Fig. 1E). In the absence of the intron, we detected a similar effect only in the roots. In contrast to AhHMA4-1_P, deletion of the PR in AtHMA4_P did not cause any change in GUS transcript levels or GUS activity (Fig. 1D and E, compare $\Delta 129\Delta i$ with $\Delta 88\Delta i$). Taken together, our results are consistent with the presence of *cis*-regulatory elements causing enhanced transcription located in the DR ("Enhancing Region 1", between -1602 and -698) and close to the transcriptional start site in the PR ("Enhancing Region 2", between -130 and -86) of the A. halleri HMA4-1 promoter. For AtHMA4, the analysis of our reporter constructs suggested the presence of complex repressive functionalities involving the DR and an intron in the 5' UTR. These functionalities had by far the strongest effects at the protein level. In brief, our results implicate two enhancing regions in the A. halleri HMA4-1 promoter and two repressive regions upstream of AtHMA4. All three AhHMA4 gene copies share two homologous enhancing cis-regulatory regions Because the promoters of all three paralogous AhHMA4 gene copies of A. halleri are known to confer high levels of specific GUS activity in total protein extracts (Hanikenne et al. 2008), we hypothesized that "Enhancing Region 1" and "Enhancing Region 2" of AhHMA4-1_P are functionally conserved in both AhHMA4-2_P and AhHMA4-3_P (Fig. 2A).

253

254

255256

257

258

259260

261

262

263

264

265

266

267

268269

270

271

272

273274

275276

277

278

279

280

281

282

283

The full-length AhHMA4-3_P construct (total length 2,060 bp) comprised 1,494 bp upstream of the transcriptional start site (Hanikenne et al. 2008; Nouet et al. 2015). By comparison, deletion of the DR (from 1,494 to -310), which was delineated based on synteny with AhHMA4-1, caused reductions in both GUS transcript levels and specifiv GUS activity down to 30% in shoots and seedlings, and 25% in roots, very similar to our observations for AhHMA4-1_P (Fig. 2B, D, E, G, P and Q, and Suppl. Fig. S1E and F, compare FL with \triangle DR for $Ah-1_P$ and $Ah-3_P$). For $AhHMA4-2_P$ (total length 2,293 bp), which included 1,761 bp upstream of the transcriptional start site, deletion of DR (from -1,761 to -515) resulted in only 10% remaining promoter activity according to both GUS transcript levels and GUS activity and irrespective of the analyzed tissue types (Fig. 2C, F, P, and Q, and Suppl. Fig. S1E and F, compare full-length with Δ DR for $Ah-2_P$). Similar to what we observed for AhHMA4-1_P, the additional deletion of PR in constructs lacking DR, IR, and the intron, resulted in very strongly decreased activities of AhHMA4-2_P and - 3_P (Fig. 2H-J, K-M, N-Q, and Suppl. Fig. S1E and F, compare Δ DIR Δ i with Δ DIPR Δ i for Ah-1_P, Ah-2_P, and Ah-3_P). This suggested that both "Enhancing Region 1" and "Enhancing Region 2" are functionally conserved in the promoters of all three HMA4 gene copies of A. halleri. Besides this, a small difference was observed between AhHMA4-2_P and the promoters of the other two A. halleri HMA4 gene copies. Deletion of both IR and the intron in AhHMA4-2P lacking DR led to a small increase in GUS transcript levels up to 3-, 4-, and 2-fold higher levels in seedlings, shoots, and roots, respectively, which was also partly apparent at the level of GUS activity (Fig. 2F, I, P, and Q, and Suppl. Fig. S1E and F, compare Δ DR with Δ DIR Δ i for Ah-2P). Thus, either the IR of the promoter region, or the intron in the 5'-UTR, of AhHMA4-2 may uniquely harbour a moderately repressive element, which we did not analyze further here. Identification of cis-regulatory elements in the A. halleri HMA4 promoters Further dissecting Enhancing Region 1 (ER1) present in A. halleri HMA4 promoters using the next series of deletion constructs of AhHMA4-1_P identified a predominant contribution by the segment between positions -909 and -806 of the DR of AhHMA4-1_P (Fig. 3A, see Suppl. Figs. S3 and S4A). The deletion of this promoter segment resulted in a decrease in both GUS transcript levels and specific GUS activity down to a residual level of about 30% and 37% in shoots and seedlings, and 25% in roots (Fig. 3D-G, P,

and Q, and Suppl. Fig. S4C-J). Within this segment, we identified an approximately 36-284 bp-long region showing an elevated degree of sequence similarity among the A. halleri 285 HMA4 promoters and of shared divergence from AtHMA4_P (ER1+, -895 to -860 in 286 AhHMA4-1_P, Fig. 3B, Suppl. Figs. S1D, S3 and S4B). By using multiple sequence 287 alignments and motif elicitation analysis across ER1+ of the promoters of all three 288 AhHMA4 gene copies from a diverse set of A. halleri populations, we identified a 289 conserved putative cis-regulatory element of 12 bp in length (-895 CTT TGT AAC CAT -290 884) (Suppl. Fig. 5a, Suppl. Dataset S1). This element contains the 7-bp core motif 291 TGTAACC (-892 to -886), which is not present in A. thaliana (designated Metal 292 293 Hyperaccumulation Element 1, MHE1; Suppl. Fig. S4B, see Methods). We designated this element MHE1a, because a second copy of the MHE1 core motif, MHE1b, appears 294 to be present upstream at positions -914 to -908 of AhHMA4-1_P (Fig. 3B, and Suppl. 295 Figs. S3 and S4B), but not in AhHMA4-2_P and AhHMA4-3_P. Indeed, disruption of 296 MHE1b in the Δ 909 construct led to a subtle, statistically significant decrease in 297 298 promoter activity at the GUS transcript level in roots (Suppl. Fig. S4I, compare Δ1,362 and Δ 909), which we did not detect based on GUS activity or in whole seedlings. 299 however (Fig. 3P and Q, Suppl. Fig. S4J). The AtHMA4_P sequence -684-TGTAATC-678 300 301 corresponding to MHE1b of AhHMA4-1 was highly similar, with a single C-to-T exchange at the penultimate position, whereas MHE1a was absent in AtHMA4_P (Fig. 3B, 302 Suppl. Figs. S3, S4B, and S5A). 303 A multiple sequence alignment of the PR, which corresponds to Enhancing Region 2 304 (ER2) of promoters of the three A. halleri HMA4 gene copies, indicated sequence 305 306 similarities among only small segments therein (Fig. 3C, Suppl. Fig. S6A). We identified two copies of an 8-bp-long motif -124-CACTATCT-117 nt (Suppl. Fig. S6A, Suppl. 307 308 Dataset S2), with the core motif TATC(T/A), which we designated MHE2 (Metal Hyperaccumulation Element 2) (Fig. 3C). None of these two copies of MHE2 were 309 present in the PR of AtHMA4P, and only one of them, MHE2a, was present in in 310 AlHMA4_P (Suppl. Fig. S6A). In conclusion, MHE1a, MHE2a and MHE2b were present in 311 the promoters of all three AhHMA4 gene copies (see Suppl. Figs. S3, S5A and S6A). 312 Next we tested whether the putative cis-regulatory elements MHE1 and MHE2 of 313 AhHMA4-1_P are necessary for its promoter activity. We replaced the characteristic 314 nucleotides by converting MHE1 and MHE2 into the sequences of the corresponding 315

positions of AtHMA4_P using site-directed mutagenesis (Fig. 3A-C). Compared to full-316 length wild-type AhHMA4-1P, a mutated AhHMA4-1P carrying five single-nucleotide 317 replacements to alter both copies of the MHE1 motif conferred only about 25% residual 318 GUS activity (Fig. 3D, H, P and Q, compare MHE1_{mut} with FL for *AhHMA4-1_P*). Residual 319 GUS activity of the mutated AhHMA4-1_P was comparable to that for constructs in which 320 the MHE1-containing region or the entire DR was deleted (Fig. 3G to I, P and Q, 321 compare MHE1_{mut} with $\Delta 805$ and $\Delta 698$). Similarly, upon converting the two MHE2 motifs 322 of full-length *AhHMA4-1*_P into the corresponding sequence of *AtHMA4*_P through four 323 single-nucleotide replacements, we observed only about 25% residual GUS activity. 324 325 indistiguishable from the residual activity observed for a construct in which only the PR corresponding to ER2 was deleted in an otherwise full-length AhHMA4-1_P Fig. 3C and 326 D, J-K, P and Q, compare MHE2_{mut} with FL and FL ΔER2). Site-directed mutagenesis of 327 both MHE1 and MHE2 in combination led to a substantial reduction in GUS activity 328 down to only about 10% of that observed for the full-length AhHMA4-1_P construct (Fig. 329 330 3B-D, L, M, P, and Q, compare MHE1/2_{mut} with Δ 86 and FL). In summary, these results supported the hypothesis that the two MHE1 motifs in the DR and the two MHE2 motifs 331 in the PR comprise *cis*-regulatory elements that are necessary for the full, strongly 332 elevated promoter activity of *AhHMA4-1_P*, by comparison to *AtHMA4_P*. 333 We also examined whether MHE1 and MHE2 of AhHMA4-1P, when introduced into 334 335 AtHMA4_P, are sufficient to confer enhanced promoter strength to AtHMA4_P. We used site-directed mutagenesis to introduce MHE1 and MHE2 of AhHMA4-1_P into AtHMA4_P 336 Δ754Δi, which lacks the intron and comprises a shortened DR of only 157 bp of its 3' 337 338 end (Fig. 4A). AtHMA4_P Δ754Δi comprises both the sequence segment (-665 to -621) of AtHMA4_P showing microsynteny to ER1⁺ in AhHMA4-1_P (-895 to -860; see Fig. 3B) and 339 340 the PR corresponding to ER2 in AhHMA4-1_P (Fig. 3C). Functionally, AtHMA4_P Δ754Δi was equivalent to full-length AtHMA4P with respect to GUS transcript levels and GUS 341 activity (Fig. 4B, G, L and M). For a mutated AtHMA4_P Δ754Δi harboring MHE1a and 342 MHE1b, we observed no significant change in GUS transcript levels or GUS activity (Fig. 343 4G, H, L, and M, compare >MHE1 with $\Delta 754\Delta i$). The additional introduction of point 344 mutations to generate both copies of MHE2 of AhHMA4-1_P in AtHMA4_P Δ 754 Δ i led to a 345 4-fold increase in relative GUS transcript levels (Fig. 3C; Fig. 4F-H, J, and L, compare 346 >MHE1&2 with >MHE1 and Δ 754 Δ i). A similar effect was obtained by introducing the 347

two copies of MHE2 alone into AtHMA4_P Δ754Δi (Fig. 4F, G, I, J, and L, compare 348 >MHE2 with >MHE1&2 and Δ 754 Δ i). GUS enzyme activity, however, remained low 349 unless the DR was fully deleted (Fig. 4B-M, compare MHE2 > Δ 597 Δ i and > Δ 597 Δ i with 350 >MHE2 and Δ 754 Δ i), consistent with other observations (see Fig. 1F, note the complex 351 effects of the DR of AtHMA4P on GUS enzyme activity). These data support the 352 353 enhancing effect of MHE2 on transcript levels in the sequence context of the A. thaliana promoter. Other resident *cis*-regulatory functionalities present in *AtHMA4*_P Δ754Δi may 354 have interfered with the functioning of A. halleri MHE1 cis-regulatory elements in this 355 sequence context. 356 357 AhHMA4-1 promoter-dependent transcript levels require CCA1 358 We compared MHE1 and MHE2 against databases containing plant transcription factor 359 binding sites using the automated Motif Comparison Tool Tomtom within the MEME 360 suite (Gupta et al. 2007; Bailey et al. 2009). Accordingly, proteins containing MYB and 361 362 MYB-related domains are the most likely direct interactors of both the MHE1 and the MHE2 cis-regulatory elements (InterPro IPR006447; Suppl. Figs. S5B-D and S6B-D, 363 Suppl. Datasets S3 and S4). MHE1 retrieved MYB superfamily proteins of the R2R3 364 family, comprising two MYB repeats, and of the 3R-MYB family harboring three MYB 365 repeats, as well as transcription factors of the trihelix family that share a domain with 366 367 some similarity to a single MYB repeat (Kaplan-Levy et al. 2012) (Suppl. Fig. S5C, Suppl. Dataset S3). MHE2 retrieved MYB-related R1R2-subgroup transcription factors 368 that harbor a single R1/R2-type of MYB repeat (Dubos et al. 2010) (Suppl. Fig. S6C, 369 370 Suppl. Dataset S4). Among the specific transcription factor proteins identified here, the top-scoring 371 372 transcription factor proteins predicted to bind MHE2 were in the REVEILLE subamily of circadian clock regulator proteins (Rawat et al. 2009). Target genes of these 373 transcription factors typically show circadian and often also diel oscillations of transcript 374 levels. To test whether AhHMA4 promoter activities change in a time-of-day-dependent 375 manner, we quantified relative GUS transcript levels in our reporter lines over a diel 376 cycle. Relative GUS transcript levels driven by AhHMA4-1p to -3p reached a diel 377 maximum around Zeitgeber Time 9 (ZT9), i.e. 9 h after subjective dawn in the subjective 378 afternoon, at about 1.7- to 2-fold the minimum transcript levels at ZT1 or ZT5, in the A. 379

381

382

383

384

385

386

387

388 389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

thaliana genetic background (Fig. 5A, and Suppl. Fig. S7A). Transcript levels of CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1), which encodes a central component of the circadian clock in the REVEILLE subfamily of R1/R2 MYB transcription factors, were maximal in seedlings at approximately at ZT1 (Fig. 5B). By contrast, GUS transcript levels were much lower and constant over the day in AtHMA4_P reporter lines, and also in lines in which both copies of MHE2 of AhHMA4-1_P were mutated to the corresponding sequence AtHMA4P (Fig. 5A and Suppl. Fig. S7A, compare AhHMA4-1P to -3P with MHE2_{mut} and $AtHMA4_P$, see Fig. 3). These results indicated that $AhHMA4-1_P$ to -3_P confer not only strongly elevated transcript levels but also their diel dynamics, both of which depend on MHE2 at least for AhHMA4-1_P, in contrast to AtHMA4_P that lacks MHE2. Of the transcription factors predicted in silico to bind to MHE2 (see Suppl. Fig. S6B to D, Suppl. Dataset S4), we previously observed that CCA1 transcript levels were 20-fold higher in A. halleri than in A. thaliana (Becher et al. 2004). We therefore tested whether CCA1 is necessary for elevated promoter strength of AhHMA4 promoters and the observed diel oscillations in their activity. We crossed two independent reporter lines of each full-length AhHMA4-1_P and AtHMA4_P with a cca1 mutant line and with a CCA1 overexpressor line, both of which were previously characterized (Wang and Tobin 1998; Hall et al. 2003) (note that other available and previously characterized lines are not in the Col-0 genetic background). Compared to AhHMA4-1_P reporter lines in the wild-type genetic background, GUS transcript levels and enzyme activity were reduced to about 55% and 60%, respectively, in cca1 (Fig. 5C and D). Diel time courses based on RNA extracted from shoots (Suppl. Fig. S7B and C) and roots (Suppl. Fig. S7D and E) further supported a strong CCA1-dependence of both the elevated magnitude and the diel changes of transcript levels. By contrast, there was no CCA1-dependence of GUS expression in AtHMA4P reporter lines (Fig. 5C and D, Suppl. Fig. S7B-E). Diel dynamics in transcript levels of GUS under the control of AhHMA4-1_P were also eliminated in a CCA1 overexpressor background, with little or no change in magnitude (Suppl. Fig. S7F and G). Together, these results suggested that the cis-regulatory element MHE2 and CCA1, a transcription factor predicted in silico to bind to MHE2, are necessary for both the enhancement and the diel regulation of AhHMA4-1_P promoter activity in the A. thaliana genetic background. We also noted that constitutively increased CCA1

413414

415

416

417

418

419

420 421

422

423

424

425

426

427

428 429

430

431

432

433 434

435

436

437

438

439

440

441442

expression alone is not sufficient for further enhancing AhHMA4-1_P promoter activity, which may suggest that the activating role of CCA1 additionally requires one or several other proteins. Strong diel dependence of *HMA4* transcript levels in *A. halleri* Based on our observations in transgenic A. thaliana reorter lines, we would expect that HMA4 trancript levels undergo diel cycles in A. halleri. A diurnal time course of HMA4 transcript levels in shoots and roots confirmed this expectation (Fig. 5E and G. Suppl. Fig. S8A and C). We observed maxima of *HMA4* transcript levels at ZT9 and ZT13 in shoots and roots of *A. halleri*, respectively. As expected, *AtHMA4* transcript levels were low and constant in A. thaliana, with AhHMA4 transcript levels at least 61-fold and up to 1,200-fold higher in roots and at least 43-fold and up to 77-fold higher in shoots of A. halleri, depending on the time of day. In shoots, maximum CCA1 transcript levels were ca. 3-fold higher in A. halleri than in A. thaliana, in qualitative agreement with the microarray hybridization-based observations of Becher et al. (2004) (Fig. 5F and Suppl. Fig. S8B). Overall, CCA1 transcript levels were unaffected in an A. halleri HMA4 RNAi line, in which *HMA4* transcript levels were strongly suppressed in both shoots and roots compared to the wild type, at least around ZT9 to ZT13, in agreement with Hanikenne et al. (2008). These data demonstrated that HMA4 transcript levels are under diel regulation in A. halleri but not in A. thaliana, consistent with our promoter analyses in the A. thaliana genetic background. Given our finding that high AhHMA4-1_P activity is CCA1-dependent in A. thaliana, elevated endogenous expression levels of AhCCA1 in shoots at in the subjective late night and morning (ZT21, 25, 1 and 5) may contribute to enhanced transcript levels of AhHMA4 and their diel dynamics in A. halleri. **Discussion** The cis-regulatory changes in HMA4 during the evolution of metal hyperaccumulation in *A. halleri* Compared to AtHMA4, the promoter activities of the three tandem AhHMA4 gene copies present in A. halleri are enhanced, thus resulting in strongly elevated transcript levels of AhHMA4, the key locus making the largest contribution to metal hyperaccumulation and

444445

446

447

448

449

450 451

452

453

454

455456

457

458

459

460

461

462

463

464 465

466 467

468

469

470

471

472

473

474

hypertolerance in A. halleri (Talke et al. 2006; Courbot et al. 2007; Hanikenne et al. 2008). Here we identify the causal cis-regulatory sequence differences contributing to AhHMA4 promoter activity, namely the enhancer elements MHE1 and MHE2 which are predicted to bind R2R3 MYB and R1R2 MYB-related transcription factors, respectively (Figs. 1-4, Suppl. Figs. S1 to S6). Deleting or mutating the MHE1 and MHE2 elements in AhHMA4-1_P either alone or in combination was consistent with their additive effects on the transcription of the downstream gene (Figs. 1 and 3). With no exceptions, the MHE1a, MHE2a and MHE2b elements were present in microsyntenic promoter regions of the three HMA4 gene copies of all A. halleri accessions for which data are presently available (Hanikenne et al. 2013) (Suppl. Figs. S5 and S6). Upon introduction of these cis-regulatory elements into an AtHMA4 promoter context by site-directed mutagenesis, our results suggested that MHE2 is sufficient for enhancing transcript levels (Fig. 4). It is possible that we were unable to detect the enhancing effect of MHE1 introduced into AtHMA4P because of a specific repressive context therein. We detected repressive functions in the DR of the AtHMA4 promoter, and the combination of both MHE1 and MHE2 within AtHMA4P did not confer as high levels of reporter gene transcripts as did full-length AhHMA4-1_P (Fig. 4). Alternatively, it could be that MHE1 has no functional relevance for the differences in promoter activity between the A. halleri and A. thaliana HMA4 promoters despite functioning as an enhancing cis-regulatory element in AhHMA4-1_P. Support for this alternative hypothesis may be drawn from the fact that when both MHE1 and MHE2 were mutated in AhHMA4-1_P, reporter gene transcript levels were well below those observed in AtHMA4P lines (Fig. 3). Our results suggested that MHE2 in the PR of the AhHMA4-1_P region is both necessary and sufficient for elevated levels of promoter activity above those of unmodified AtHMA4_P (Figs. 3-5). Thus, we conclude that MHE2 binds a transcription factor which mediates the activation of transcription of the downstream gene either directly or indirectly. In all individuals of A. halleri, we identified two copies of MHE2 (8 bp) in the PR of each of the three HMA4 gene copies, spaced by 17 (AhHMA4-1_P), 18 (AhHMA4- 3_P), or 27 to 30 bp ($AhHMA4-2_P$) (Suppl. Fig. S6). The conservation of both MHE2 elements and identical diel rhythmicity of AhHMA4-2p- and AhHMA4-3p-directed promoter activity suggested that these findings are valid for the promoters of all three HMA4 gene copies in A. halleri (Fig. 5, Suppl. Figs S7 and S8). There was some degree

of sequence variation between the two copies of MHE2 in the PR of each HMA4 gene 475 and among the three HMA4 gene copies of each genotype. By contrast, there was 476 hardly any polymorphism between A. halleri individuals originating from Europe, 477 consistent with the earlier analysis of broader promoter regions (Hanikenne et al. 2013). 478 Three out of four alleles of an AhHMA4-3-like promoter sequence of A. halleri from the 479 480 Tada mine (Japan) carried point mutations in MHE2b, which could be related to local selection pressure for nutrient balancing and deserves further study (Hanikenne et al. 481 2013; Stein et al. 2017; Krämer 2024). 482 483 484 MHE2 directs both elevated and rhythmic AhHMA4 promoter activity in dependence on CCA1 485 The consensus MHE2 motif (CACTATCT) was reminiscent of the evening element (EE, 486 consensus AAATATCT). EEs confer circadian clock-regulated gene expression and are 487 well-known as target sites for CCA1 binding (Wang et al. 1997; Nagel et al. 2015; 488 489 Kamioka et al. 2016). EEs can also interact with other clock oscillator proteins such as LHY and RVE8, all of which are members of the same REVEILLE family of MYB-related 490 R1/R2-type proteins in A. thaliana (Rawat et al. 2009). In the AhHMA4-1_P sequences of 491 492 all European A. halleri accesions, MHE2a was identical to the consensus EE, whereas the sequence of MHE2b was TAATATCA. 493 In a cca1 mutant, AhHMA4-1_P-driven reporter transcript levels were no higher than 494 AtHMA4_P-driven reporter transcript levels (Fig. 5), and their diel rhythmicity was lost 495 (Suppl. Fig. 7), very similar to the effects of mutating the MHE2 elements in AhHMA4-1_P. 496 This supported the CCA1-dependence of the difference between A. halleri and A. 497 thaliana HMA4 promoter strengths and provided circumstantial evidence for MHE2 as a 498 499 target *cis*-regulatory element for CCA1-dependent transcriptional activation. Moreover, the similarity between MHE2 and the EE is consistent with a model of direct binding of 500 CCA1 to MHE2 for causing or participating in the activation of transcription of the 501 downstream reporter gene or AhHMA4. 502 Earlier microarray-based cross-species transcriptomics identified CCA1 as a 503 constitutively more highly expressed gene in shoots of A. halleri by comparison to A. 504 thaliana (Becher et al. 2004). These findings are confirmed here (Fig. 5F), thus providing 505 some additional circumstantial support for the proposed regulatory role of CCA1 in the 506

508

509

510

511

512

513

514

515516

517

518

519

520

521

522

523

524

525

526

527

528529

530

531

532

533

534

535

536

537

538

expression of *HMA4* in *A. halleri*. The literature addresses CCA1 as both an activator and a repressor of transcription, with reports of the latter function being more widespread and known particularly for the regulation of genes encoding components of the evening loop in the core circadian oscillator of A. thaliana (Wang et al. 1997; Wang and Tobin 1998; Alabadí et al. 2001; Farré et al. 2005; Lu et al. 2009; Dong et al. 2011; Dong et al. 2011; Nagel et al. 2015; Kamioka et al. 2016). Consequently, CCA1, which contains no characterized activation or repression domains, is considered to possess alternative activating or repressing functionalities dependent on the regulatory context including its interacting proteins, but the mechanistic basis of this remains poorly understood (Nagel et al. 2015; Kamioka et al. 2016). CCA1 and LHY often act as heterodimers (Lu et al. 2009), but these are apparently not required for normal clock functioning (Kamioka et al. 2016). The *cca1* mutant has only mild phenotypes, including a shortened circadian period with respect to the transcript levels of core circadian oscillator genes, as well as early flowering (Green and Tobin 1999; Mizoguchi et al. 2002). By comparison, the strongly lowered AhHMA4-1_P-driven reporter gene expression in the cca1 mutant observed in this study (Fig. 5C) supports a role for CCA1, but not for LHY at this point, in AhHMA4-1_P-regulated reporter gene transcript levels. In this study, CCA1 transcript levels peaked around ZT1, whereas AhHMA4p-directed reporter gene transcript levels in A. thaliana and HMA4 transcript levels in A. halleri peaked considerably later, at ZT9, in shoots (Fig. 5E and 5F). Transcript levels of previously proposed direct target genes of CCA1-dependent transcriptional activation were reported to peak in the late morning to afternoon under diel light-dark cycling conditions (Wang and Tobin 1998; Farré et al. 2005). Accordingly, transcript levels of LHCB1.1/CAB2 are maximal around ZT4 and remain high until ZT8, although CCA1 protein was detectable only between ZT22 and ZT4 and no longer at ZT8 (Wang and Tobin 1998). Transcript levels of direct CCA1 targets PSEUDO-RESPONSE REGULATOR 9 and 7 encoding circadian clock transcription factors peaked around ZT4 (PRR9) and ZT8 (PRR7) under diel cycling conditions (Farré et al. 2005). CCA1 binds to the PRR5 promoter, and whereas CCA1-FLAG protein levels were detectable between ZT0 and ZT6, PRR5 transcript levels peak around ZT9 under diel cycling conditions (Kamioka et al. 2016). The authors noted that this delay may reflect the required time for

the *PRR5* transcript to accumulate, or alternatively suggest that CCA1 represses *PRR5* transcription in the morning. Since *PRR5*, *PRR7* and *PRR9* form part of the complex interacting regulatory loops of the circadian clock, changes in their transcript levels in circadian clock mutants are generally difficult to interpret. Transient assay systems suggested that CCA1 alone has at least an immediate repressive effect on their transcript levels (Kamioka et al. 2016). Finally, CCA1-mediated indirect regulation of target genes could occur *via* effects on chromatin structure, as was proposed for the repressive effects of CCA1 (Perales and Más 2007).

Comparison with HMA4 promoters of other Zn/Cd hyperaccumulator and non-

accumulator Brassicaceae species

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555556

557

558

559

560 561

562563

564

565

566

567

568

569

570

Our results suggest that two EE-related cis-regulatory elements (MHE2) present in the promoter of each of the three A. halleri HMA4 gene copies confer their regulation through the pre-existing circadian clock transcriptional network, different from A. thaliana HMA4 that lacks MHE2 elements. A single MHE2 copy resembling the EE is present in the PR of the HMA4 promoter of the non-hyperaccumulator species A. lyrata, of which leaves contain 2-fold higher HMA4 transcript levels compared to A. thaliana (Hanikenne et al. 2013) (Suppl. Fig. S6). Similar to the presence of MHE2 elements in the PR of AhHMA4 promoters, we also identified in silico predicted MHE2 elements in the promoters of the four HMA4 gene copies in the Zn/Cd hyperaccumulator Noccaea caerulescens, NcHMA4-1 to 4-4 (Suppl. Datasets S5 and S6). N. caerulescens is in the phylogenetically distant lineage II of the Brassicaceae family that diverged from the Arabidopsis species in lineage I more than 20 Mya (Clauss and Koch 2006). Thus, in addition to convergent HMA4 gene copy number expansion, convergent promoter mutations may have occurred in this species to result in elevated *HMA4* transcript levels (Lochlainn et al. 2011). The HMA4 promoter region of A. lyrata also harbors an MHE1 element in a microsyntenic position (Suppl. Fig. S5, Suppl. Dataset S5). We additionally observed MHE1 elements in the distal promoter regions of all four HMA4 gene copies of N. caerulescens (Suppl. Fig. S5) (Lochlainn et al. 2011). By contrast, all A. thaliana accessions and Capsella rubella in lineage I, as well as Brassica rapa and Arabis alpina in lineage II, lack a precisely identical copy of MHE1, or MHE2 copies in their proximal promoter regions entirely (Suppl. Datasets S5 and S6).

572573

574

575

576

577

578

579580

581

582

583 584

585

586

587

588

589 590

591

592 593

594

595

596

597

598 599

600

601

602

According to our reporter lines, complex repressive functionalities in the DR of *AtHMA4*_P and in the intron in the 5' untranslated region of *AtHMA4* appear to act not only at the transcript level, but possibly additionally at the protein level (Fig. 1, Suppl. Fig. S3). The DR contains an annotated IncRNA (-859 to -621; Suppl. Fig. S3). The sequence features and molecular mechanisms involved in the *cis*-repression of *AtHMA4* will require further study in the future. Our analysis did not detect any evidence for these repressive functionalities acting on any *A. halleri HMA4* gene copies. Either *A. halleri* lost these repressive functionalities through mutations, or *A. thaliana* acquired these repressive functionallities only recently, after the split of the *A. thaliana* and *A. halleri* lineages. All in all, our data suggest that the former is more likely than the latter (Suppl. Fig. S3, Suppl. Datasets S5 and S6). Irrespective of this, we cannot exclude the possibility that some degree of *cis*-activation of *HMA4* may have been the ancestral state in lineages I and II of the Brassicaceae.

Co-option of gene regulatory networks through cis-regulatory mutations in HMA4 Gene regulatory network co-option is often exclusively conceptualized as involving *trans* regulatory change, following the rationale that one such mutation can alter the expression of multiple target genes downstream in the regulatory hierarchy (True and Carroll 2002; Eden McQueen and Rebeiz 2020). By comparison, cis-regulatory mutations at multiple loci in the genome would be required to achieve an equivalent alteration in overall gene expression, which is far less likely to occur as a result of evolutionary processes. Yet, there are examples of cis-regulatory mutation-based cooption in evolutionary novelties, although the underlying seguence elements have largely remained elusive. Indeed, cis-regulatory change could be largely equivalent to changes in *trans* in cases where a *cis*-regulatory mutation adds a new expression domain for an existing transcription factor, for example. Past research and theoretical considerations have almost exclusively considered morphological novelty and developmental contexts, however, whereas this present study addresses physiological novelty. Here, cis-regulatory change change results in the co-option of a regulatory network upstream in the hierarchy to enhance product dosage of the HMA4 gene encoding a pump which exports heavy metal cations, primarily Zn²⁺ and Cd²⁺, from specific cell types. This has the known fitness benefits of affording elemental defence

against herbivory and enhanced heavy metal tolerancee and thus fitness on soils containing high, toxic levels of Zn and Cd. It remains to be invistigated whether the diel rhythmicity of *HMA4* transcript abundance is mirrored at the HMA4 protein level. Although membrane transport proteins are no classical trans regulators, altered expression of HMA4 can affect the expression of other genes in trans, as was demonstrated in both A. halleri and A. thaliana (Hanikenne et al. 2008; Sinclair et al. 2018). In A. halleri HMA4 RNAi lines, for example, transcriptional Zn deficiency responses were suppressed through the Zn homeostasis network as a result of locally increased intracellular Zn levels (Sinclair and Krämer 2012; Krämer 2018). The affected genes are among the candidates thought to contribute to the metal hyperaccumulation syndrome in A. halleri wild-type plants, based on their strongly elevated transcript levels compared to A. thaliana. Thus, the cis-regulatory change of AhHMA4 acts homeostatically in trans to additionally co-opt the Zn homeostasis gene regulatory network. While the co-option of components within the metal homeostasis network might restrict the flexibility of the system, several factors — such as the homeostatic nature, and generally network redundancy, modularity, and the partial nature of co-option — can reduce the likelihood of detrimental effects on metal homeostasis (Eden McQueen and Rebeiz 2020). Notably, *HMA4* transcript levels are not Zn-deficiency responsive in either A. halleri or A. thaliana (Talke et al. 2006). Thus, the Zn homeostasis network can maintain its core functions while still allowing for evolutionary innovation through its cooption. Homeostatically generated gene expression changes governed by *HMA4* gene product dosage allow for continued plasticity in the extreme physiological traits of metal hyperaccumulation and associated hypertolerance, possibly differing from the co-option of transcription factors implementing specific developmental modules.

Conclusions

603

604 605

606

607

608

609

610

611612

613

614

615616

617

618

619620

621

622

623

624

625

626 627

628

629

630

631

632

633

In conclusion, our results suggest that *cis*-regulatory mutations generating two tandem copies of MHE2 were necessary and sufficient for enhanced activity of the *AhHMA4-1* promoter. The same *cis*-regulatory elements are likely to be effective in the other two *HMA4* gene copies as a result of gene duplication events in *A. halleri*. *CCA1* is necessary for both elevated levels and diel cycling of *AhHMA4-1*_P-regulated transcript

levels. By contrast, there is no diel or *CCA1*-dependent regulation of the generally low *AtHMA4* promoter activity. Instead, our results suggest that *AtHMA4* expression undergoes complex repressive regulation, thus contributing to the *cis*-regulatory divergence between *HMA4* genes of *A. halleri* and *A. thaliana*.

Methods

634

635

636

637

638

639

640

Plant material and growth conditions

Seeds of the A. thaliana wild type (Col-0) were from were obtained from Lehle seeds 641 (Round Rock, TX, USA). Seeds of A. thaliana cca1-1 (N67781, cca1-1 mutant N67780 642 in the Ws background was backgrossed six times with Col-0 to generate this stock) 643 644 carrying a T-DNA insertion in the fourth intron of CCA1 (Krysan et al. 1996; Green and Tobin 1999; Yakir et al. 2009) and of a transgenic line expressing CCA1 (CCA1-OX o38, 645 N67794 in the Col-0 background) under the control of the Cauliflower Mosaic Virus 35S 646 Promoter (Wang and Tobin 1998) were purchased from the Nottingham Arabidopsis 647 Stock Centre (NASC). After obtaining them from NASC, homozygous lines were 648 confirmed through late flowering (CCA1-OX o38) (Wang and Tobin 1998), and PCR-649 based genotyping following DNA extraction (Edwards et al. 1991) (cca1-1) (Suppl. Table 650 S1 for details about primer pairs used for the genotyping of the *cca1-1* mutant lines). 651 Transgenic A. thaliana GUS reporter lines for full-length HMA4 promoters of A. halleri 652 653 and A. thaliana (L. Heynhold, accession Col-0) were from Hanikenne et al. (2009) and Nouet et al. (2015) (HMA4-2 and 4-3). The AtHMA4_P construct comprised a genomic 654 fragment of 2,799 bp in length that included the initial 204 bp of AtHMA4 coding 655 sequence, corresponding to 68 amino acids (aa) predicted to be cytosolic, with the first 656 out of a total of 8 conserved transmembrane helices predicted to include amino acids 95 657 to 115; TmConsens, https://aramemnon.botanik.uni-koeln.de/). Arabidopsis halleri (L. 658 O'Kane and Al-Shehbaz) ssp. halleri, population Langelsheim, accesssion Lan3.1, was 659 collected in the field and maintained in the greenhouse on soil (Minitray soil, Balster 660 Einheitserdewerk, Fröndenberg) through vegetative propagation (Becher et al. 2004). A 661 previously charcaterized AhHMA4 RNA interference (RNAi) line (4.2.1) was used here 662 (Hanikenne et al. 2008). 663

665

666

667

668

669

670

671

672673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692693

694

For propagation of homozygous lines and/or genotyping, A. thaliana were grown on soil after stratification (at 4°C for 3 days) in square pots (5 x 5 x 5 cm) in a glasshouse (16-hday at 20 to 22°C, with daylight supplemented by sodium vapour lamps to an intensity of 120-150 µmol m⁻² s⁻¹ when necessary, night 18 to 20°C). For sterile cultivation, seeds were sterilized in 70% (v/v) ethanol for 5 min, followed by 10 min in 0.65 to 0.78% (w/v) NaOCI containing 0.05% (v/v) Tween 20 in ultrapure water, followed by 4 washes in sterile ultrapure water. Initial screening in the T1 generation was done by sowing 50 mg sterilized seeds (approximately 2,500 seeds) per line on Type M agar-solidified (0.8% w/v) 0.5x MS medium supplemented with 30 µg ml⁻¹ of Hygromycin B (Hyg) from Duchefa (catalog no. H0192, Haarlem, NL) alongside a negative (Col-0) and a positive T3 homozygous control. For the characterization of promoter-reporter lines, sterilized seeds were positioned along a horizontal line at 2.0 cm distance from the upper edge across a 120 mm × 120 mm square polystyrene Petri plate (Greiner Bio-One GmbH, Frickenhausen, Germany) onto 50 ml of an agar-solidified (0.8% (w/v), Type M, Sigma-Aldrich, Steinheim, Germany) modified Hoagland solution (see below) supplemented with 1% (w/v) sucrose. Plates were stratified in darkness at 4°C for 48 to 72 h, followed by transfer into growth chambers (CFL Plant Climatics, Wertingen, Germany) for cultivation in vertical orientation (with the line positioned horizontally across the upper end) in a 12-h day (120 µmol m⁻² s⁻¹, 22°C) / 12-h night (18°C) regime. For RNA and protein isolation, whole seedlings, or root and shoot tissues separated with a scalpel, were harvested at ZT1 on day 21, tissues were pooled from four replicate plates (80 plant individuals in total) per line, frozen in liquid nitrogen and stored in 50-mL screw-cap polypropylene tubes at -80°C until further processing. For diel time course experiments of *A. thaliana* lines seedlings were harvested at ZT1 on day 21 and until of ZT25 of day 22, and processed as described above. For diel time course experiments including Arabidopsis halleri, we used accession Lan3.1 as the wild type, and AhHMA4 RNAi line 4.2.1 (Hanikenne et al. 2008). Vegetative cuttings of a minimum of 7 cm in length were prepared from mother plants cultivated on soil (Minitray soil mixed with 5% (v/v) soil from Langelsheim field site; Stein et al. 2017) in 2-I pots, and transferred into a 50-ml polypropylene tube containing

modified Hoagland solution (see below) for rooting and pre-cultivation. *A. thaliana* Col-0 seedlings were pre-cultivated in sterile conditons as described above. For hydrophonic cultivation, 21-d-old *A. thaliana* seedlings and 17-d-old *Arabidopsis halleri* clones were transfered into 400-ml vessels containing modified Hoagland solution (0.28 mM KH₂PO₄, 1.25 mM KNO₃, 1.5 mM Ca(NO₃)₂, 0.75 mM MgSO₄, 5 μM of a complex of Fe(III) and N,N'-di-(2-hydroxybenzoyl)-ethylenediamine-N,N'-diacetate (HBED), 25 μM H₃BO₃, 5 μM MnSO₄, 5 μM ZnSO₄, 0.5 μM CuSO₄, 50 μM KCl, and 0.1 μM Na₂MoO₄, buffered to pH 5.7 with 3 mM 2-(N-morpholino)ethanesulfonate) in ultrapure water. Roots and shoots were harvested every 4 h through a 24-h cycle beginning at ZT1 on day 21 and until ZT25 of day 22 of cultivation.

DNA cloning

695

696

697

698 699

700

701

702

703

704

705

706

Promoter deletion constructs were made in groups according to the procedures 707 described next (designated 1 to 3; Suppl. Table S1, Suppl. Table S2). (1) The first set of 708 promoter deletion constructs were initially generated in the pBluescript II KS+ (pBKS) 709 vector backbone (X52327.1, NCBI) for the transient transfection of A. thaliana 710 711 protoplasts. Prior to this, the GW-GUS-tNOS cassette of the pMDC163 destination vector (4,124 bp) (Curtis and Grossniklaus 2003), which contains a gateway (GW) 712 713 recombination cassette, the *uidA* (*GUS*) reporter gene, and a nopaline synthase 714 terminator (tNOS), was amplified by PCR using primers containing added 5' Xhol restriction sites, followed by its cloning into the corresponding site in the pBKS plasmid. 715 Second, full-length AtHMA4_P or AhHMA4-1_P to AhHMA4-3_P fragments (Hanikenne et al. 716 2008) were recombined from pENTR-D/TOPO entry clones into the pBKS-GW-GUS-717 tNOS vector using the Gateway® LR Clonase™ II enzyme mix kit from Invitrogen. Third, 718 the deletions were introduced in the full-length promoter constructs using PCR-based 719 site-directed mutagenesis (Wang and Malcolm 1999). Deletion primers were designed to 720 flank the 5' and/or 3' extremities of the deleted segments, respectively (Suppl. Table S2) 721 722 and used for linear PCR amplification of the pBKS-HMA4p-GW-GUS-tNOS vectors (14 to 18 cycles of 95 °C for 30 sec, 55 °C for 60 sec, 68 °C for 16 min), followed by 723 digestion of the parent DNA with *DpnI*, and subsequent transformation of *E. coli*. All 724 725 PCR reactions were performed using a proofreading polymerase (Pfu Turbo, from Stratagene), and verified by Sanger sequencing. In GUS assays following transient 726

728

729

730

731

732

733

734

735736

737

738

739

740

741

742

743

744

745

746

747

748

749

750 751

752

753

754

755

756

757

758

transfection with the pBKS constructs in various systems, we observed that GUS enzyme activities were poorly reproducible across technical replicates and independent experiments. Consequently, all constructs were then subcloned into the binary plasmid pMDC163 (Curtis and Grossniklaus 2003) for the stable transformation in A. thaliana (see 2 below). (2) Another set of deletion constructs was made within the pBKS-HMA4_P-GW-GUS-tNOS plasmid (Suppl. Table S2). Plasmids generated according to (1) above in the pBKS backbone were either linearized by an Ascl/Pacl double digestion or by PCR amplification (Herculase II Fusion DNA Polymerase, Agilent). In parallel, appropriate primers were used to PCR-amplify promoter fragments and produce overlapping ends with the pBKS backbone (Herculase II; Suppl. Table S2). Following gel purification, plasmid and promoter fragments were fused (In-Fusion, Clontech) following the manufacturer's instructions. Finally, the HMA4_P-GW-GUS cassettes were excised from the pBKS vector using Pacl/Sacl digestion and cloned into the corresponding sites of the pMDC163 vector, generating the final constructs. (3) Promoter-deletion and mutated versions were generated by either (a) standard PCR-mediated amplification, (b) overlap extension PCR (Heckman and Pease 2007), or (c) quick change site-directed mutagenesis (Zheng 2004), employing non-linearized plasmids containing full-length AtHMA4-P or AhHMA4-1P, AhHMA4-2P or AhHMA4-3P fragments (Hanikenne et al. 2008) using the Q5^R high fidelity DNA polymerase from New England BioLabs_{INC} (NEB, product M0515S, Ipswich, Massachusetts, United States) (Suppl. Table S2). For (c), in which GATEWAY destination vectors pMDC163 were used to introduce the desired mutatios, resulting constructs were introduced into Agrobacterium tumefaciens GV3101 (see below). For (a) and (b) the resulting promoter fragments were cloned into pENTR/D TOPO (Invitrogen[™] product K240020), and One Shot[™] TOP10 Chemically Competent E. coli cells (ThermoFisher Scientific) were transformed by heat-shock (42°C for 30 s) and selected on LB medium containing 50 µg ml⁻¹ kanamycin following manufacturer's instructions. Plasmid DNA prepared from these entry clones was used for site-directed recombination into the GATEWAY destination vector pMDC163 (Curtis and Grossniklaus 2003), which contains the *uidA* (GUS) reporter gene using the the Gateway® LR Clonase™ II enzyme mix kit from Invitrogen (Catalog number: 11791020, Carlsbad, CA USA) following manufacturer's instructions, with the following modifications. After terminating the LR reactions by the addition of proteinase K, 2.5

units of the Hpal restriction enzyme (NEB, Catalog no. R0105S) were pipetted in each of the LR reactions, following by incubation at 37°C for 3 h. This step was performed to eliminate unrecombined and contaminating pENTR-D/TOPO vector that contains the same bacterial resistance marker as the pMDC163 vector (i.e. Kan). Inactivation of the Hpal enzyme was done at 65°C for 20 min. Of these reactions, 1 µl was used to transform One Shot™ TOP10 *E. coli* cells as described above. For entry and destination plasmids, screening of up to 20 colonies was done by colony PCR (Bergkessel and Guthrie 2013) in a total volume of 20 µl using the ThermoScientific DreamTag Green PCR Master Mix (2x) per colony in combination with 1 µl primer mix of 10 µM forward M13 (5'- GTAAAACGACGCCAG-3') and reverse M13 (5'- CAGGAAACAGCTATGAC-3') using the following PCR program: 95°C for 10 min, 35 cycles of 95°C for 30 s, 55°C for 30 s, 72°C for 1 min per kb, and a final extension at 72°C for 10 min. For colonies yielding PCR products of the correct size, we verified plasmid DNA restriction patterns and finally conducted Sanger sequencing using the forward and reverse M13 universal primers for each entry and each final destination plasmids. pMDC163 plasmids carrying the correct promoter fragments were introduced into Agrobacterium tumefaciens GV3101 by electroporation using a MicroPulser electroporator from Bio-Rad (Xu and Qingshun 2008).

Plant transformation and selection of homozygous lines

759

760

761

762

763

764

765

766

767768

769

770

771

772

773

774

775

776

777

778

779

780

781

782 783

784

785

786

787

788

789

Stable transformation of *A. thaliana* was performed using the floral dip method (Clough and Bent 1998). Per construct, we transferred twenty T1 plants onto soil and collected the T2 seeds of each plant individually. At least 120 to 250 T2 seeds for each line were sterilized, stratified and sown on selective medium, as described above. Segregation ratios were determined by counting Hyg-resistant transgenic and sensitive wild-type seedlings. For each line exhibiting a segregation ratio consistent with T-DNA insertion at a single locus (75% Hyg-resistant seedlings) according to a *X*² test, we transferred twelve tolerant seedlings onto soil and collected seeds from each plant. Segregation ratios and *X*² tests were repeated in subsequent generations (typically T3) until obtaining homozygous lines (100% Hyg resistance).

Crossing and selection of homozygous lines

A. thaliana homozygous cca1-1 mutant and CCA1-OX o38 transgenic plants were used as pollen acceptors for crossing with two independent GUS reporter lines for each AtHMA4_P and AhHMA4-1_P (pollen donor), as well as AhHMA4-2_P and AhHMA4-3_P (for CCA1-OX o38 only) (Weigel and Glazebrook 2006). Five to ten inflorescences were pollinated, marked with colored threads, and siliques were harvested individually 21 d later. F1 seeds were germinated on 50 μg ml⁻¹ Kan, and resistant plants were transferred to 30 μg/mL of Hyg after 14 d alongside wild-type Col-0 plants, of the same age, as controls. Plants resistant to both antibiotics were transferred to soil, and their F2 seeds were harvested, sown, and segregation ratios were quantified separately on either 50 μg ml⁻¹ Kan or 30 μg ml⁻¹ Hyg, confirming single T-DNA insertions, until obtaining lines homozygous for both markers (see above). In addition to this, the presence of the cca1-1 mutant allele, and of the GUS transgene were verfied by PCR (see Suppl. Table S1).

RNA extraction, cDNA synthesis, and real-time quantitative PCR

Frozen plant tissues were homogenized in 50-ml polypropylene tubes (Avantor Performance Materials GmbH, Griesheim, Germany, Catalog no. 734-0453) pre-chilled in liquid N_2 , each containing a commercial glass marble, using a vortex (Vortex-Genie 2, Scientific Industries, Inc., Bohemia, New York, USA) at maximal speed for 10 s, with three to four cycles of grinding and chilling in liquid N_2 . RNA was isolated from aliquots of frozen homogenized tissue using the $Trizol^{TM}$ reagent from Invitrogen M (Catalog no. 15596018, Dreieich, Germany). One hundred mg of plant tissue was transferred into a 2-ml polypropylene reaction vial, and 1 mL of $Trizol^{TM}$ was added to each sample, followed by vortexing at maximal speed for 30 s and incubation at root temperature (RT) for 5 min. Samples were centrifuged in a fixed-angle, pre-cooled (4°C), rotor at 18,500 xg for 10 min. The supernatant (1 ml) was transferred to new 1.5-ml reaction vial containing 200 μ l chloroform (molecular biology grade), and vortexed at maximum speed for 15 s, followed by centrifugation at 4°C at 18,500 x g for 15 min. This step was repeated once in a fresh 1.5-ml reaction vial containing 200 μ l of chloroform. Following centrifugation, 450 μ l of the supernatant were transferred into a 1.5-ml reaction vial

containing 500 µl 2-Propanol (≥99.5%, for molecular biology, Fisher BioReagents™,

Darmstadt, Germany, Catalog no. 19516-1L) pre-cooled on ice. Samples were mixed by inverting 5 times, followed by incubation at RT for 10 min. Samples were then centrifuged at 4°C 18,500 x g for 15 min. The supernatant was carefully decanted, and pellets were washed twice in ice-cooled 1 ml of 75% (v/v) ethanol (99% absolute ethanol, Extra Pure, SLR, Fisher Chemical™, Dreieich, Germany) diluted in milli-Q water pre-treated with diethylpyrocarbonate at a final concentration of 0.1% (v/v) followed by vortexing at maximal speed for 30 s. After the final wash, the supernatant was carefully pipetted off, and the pellet was air-dried under the fume hood on a paper towel for 10 min. The RNA was resuspended in 50 µl of nuclease-free water containing 0.1 mM EDTA (pH = 7.2) based on the manufacturer's recommendations for TRIzol™, followed by incubation on ice for 30 min. RNAs were stored at -80°C until use. Prior to cDNA synthesis, quality and quantity of RNA were visually assessed by denaturing gel electrophoresis (Mansour and Pestov 2013) and by photometric analysis (A₂₆₀ and A₂₈₀) (Nanodrop 2000/2000c, ThermoScientific[™], Dreieich, Germany). Accordingly, based on manufacturer's instructions 10 µg of RNA per sample were used for the digestion of contaminating genomic DNA using 3 units of the DNase I (RNasefree) from NEB (product M0303L) in a 150 µl final volume reaction and incubate at 37°C for 30 minutes. Following this step, samples were treated with phenol-chloroform based RNA purification using the Aqua-Phenol reagent (Carl Roth®, Karlsruhe, Germany, Catalog no. A980.3). Samples were then processed as described for the Trizol™ protocol above, with air-drying for 5 min and a resuspension in a final volume of 30 µl nucleasefree water. RNA yield was quantified spectrophotometrically using a NanoDrop™ 2000/2000c by measuring three replicate 2-µl aliquots of each sample and calculating the average. cDNA was synthesized from 1 µg total RNA in a total volume of 20 µl using the RevertAid First Strand cDNA Synthesis Kit following supplier's instructions (Thermo Scientific™, Dreieich, Germany, Catalog no. K1622), primed by oligo(dT)₁₈. Prior to the storage of cDNA samples at a -20 °C, aliquots consisting of 1-µl of cDNA and 99-µl of nuclease-free water (pH 7) were prepared and used for RT-qPCR (see below).

RT-qPCR

822

823824

825

826

827

828

829

830 831

832

833

834

835836

837

838

839

840

841

842

843844

845846

847

848

849 850

851

852

853

Primer design for RT-qPCR was done using the LightCycler Probe Design Software version 2.0 (1.0.R.36) (Roche, Mannheim, Germany) with default options (Suppl. Table

S1). Real-time PCR reactions were performed in 384-well plates using the PROMEGA 854 GoTag® qPCR Master Mix (Walldorf, Germany, Catalog no. A6002) on a 855 LightCycler480 (Roche, Mannheim, Germany) to monitor cDNA amplification as 856 described (Quintana et al. 2022). Unless specified in figure legends, every cDNA sample 857 was run in triplicate on a single plate and three independent replicate plates were run for 858 each sample. Reaction efficiencies (E) for each PCR reaction were automatically 859 determined using the LinRegPCR program, version 2016.0 (Ruijter et al. 2009). 860 Transcript level (TL) of both the constitutively expressed reference and the target genes 861 were calculated as $TL = E^{-Ct}$, where C_t represents the cycle threshold. Per replicate 862 plate, RTL was calculated by dividing mean (of the triplicate reactions run in a single 863 864 plate) TL of a given target gene by mean (same as for the target gene) TL of the reference gene. RTL of GUS driven by various HMA4 promoter fragments were 865 independently normalized to each of four of the most stable constitutively expressed 866 reference genes in A. thaliana, ACT2, EF1α, GAPC2, and UBQ10 (Czechowski et al. 867 2005). Reaction efficiencies and independent Ct values calculated for each reference 868 gene and the GUS reporter gene (Suppl. Dataset S7). The mean PCR reaction 869 efficiency of *UBQ10* were the most consistent across all 429 qPCR reactions, and the 870 average Ct values for UBQ10 were the most consistent compared to the other three 871 housekeeping genes. Furthermore, across 106 independent A. thaliana transformants 872 873 there was a positive correlation of specific GUS enzyme activity to relative GUS transcript levels normalized to UBQ10 ($R^2 = 0.74$) with the highest correlation 874 coefficients (Suppl. Dataset S7). Consequently, we selected *UBQ10* as the reference 875 gene for the calculation of relative GUS transcript levels at single time points in A. 876 thaliana. In Suppl. Fig. S1E, data are shown normalized to the geometric mean of ACT2, 877 EF1α, GAPC2, and UBQ10 (Vandesompele et al. 2002). This normalization approach 878 performed acceptably for whole seedlings, but not when roots and shoots were analyzed 879 880 separately. Data are shown as the geometric mean here (Fig. S1E), because, unlike the arithmetic mean, which can be skewed by extreme outliers, the geometric mean better 881 reflects the central tendency of multiplicative data, reducing the impact of high or low 882 values. For the diel time course experiments using A. thaliana, GAPC2 was the most 883 consistent reference gene across all tissues and time-points (Suppl. Dataset S8). In A. 884

halleri, EF1a was the most consistently expressed reference gene across tissues and throughout diel experiments (Suppl. Dataset S9).

Histochemical staining and imaging

Ten freshly harvested 10-d-old seedlings cultivated on agar plates containing modified Hoagland solution, from each of seven independent homozygous lines per construct, were immersed in 1 ml of GUS staining buffer in a 2-ml polypropylene reaction vial (Zhang et al. 2022). The tubes were vacuum-infiltrated for 1 minute and then incubated in the dark at 37°C for 4 hours. The GUS staining buffer was pipetted off, and samples were cleared in 1 ml 75% (v/v) ethanol on a rocking shaker at 20 cycles per minute and RT, for 2 h, 4 times and once overnight. Seedlings were kept in 1 mL 75% (v/v) ethanol and either directly mounted on microscope slides for imaging with a light microscope (Olympus, Hamburg, Germany, Catalog no. VS120) or stored in the dark. Images shown are representative of all stained seedlings and independently transformed lines.

Protein extraction, quantification, and β-glucuronidase activity assays

Aliquots of 100 mg frozen homogenized plant tissues were added to 200 μl of ice-cold protein extraction buffer (PEB) containing 50 mM sodium phosphate buffer (pH 7.4), 10 mM β-mercaptoethanol, 10 mM EDTA, 0.1% (v/v) SDS, and 0.1% (v/v) Triton X-100, followed by intervals of vortexing at 3,200 to 3,500 rpm for 10 s and resting on ice for 30 s until fully thawed. After centrifugation in a microcentrifuge at 4°C and 18,500×g for 20 minutes, the supernatant was sub-divided into several aliquots and stored at -80°C until use. Total protein quantification was performed with the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, Rüsselsheim am Main, Germany) using Bovine Serum Albumin (BSA) as a standard. Twenty μl of 1:10 dilutions of protein extract in a dilution buffer (50 mM sodium phosphate pH 7.4, 10 mM EDTA) were mixed with 180 μl of Bradford solution in the wells of a 96-well microtiter plate. After 10 min at RT, absorbance was measured at 595 nm in a BioTek Synergy HTX Multimode Reader plate reader (Biotek instruments, Winooski, Vermont, USA), and protein concentrations in the samples were calculated based on the standard curve. Quantification of β-glucuronidase activity was conducted as described (Jefferson et al. 1987; Gallagher 1992).

917

918

919 920

921

922

923

924 925

926

927

928

929

930

931

932

933

934

935

936

937 938

939 940

941

942

943 944

945

946

947

5' rapid amplification of cDNA ends (RACE)-PCR For 5'RACE analyses of of AhHMA4-1 to AhHMA4-3, total RNA was extracted using Trizol from root tissues of a pool of 3 individual plants of a cross between the A. halleri Lan3.1 and Lan5 accessions. mRNA was then purified from total RNA using the PolyATract isolation kit (Promega, Mannheim, Germany). 5'RACE was then conducted using the purified mRNA and the SMART RACE cDNA amplification kit following the manufacturer's instructions (Clontech, Takara Bio Europe, Saint-Germain-en-Laye, France). The PCRs were conducted using a proofreading polymerase (Strategene, Agilent Research Laboratories, Santa Clara, California, USA). The PCR products were cloned into the pGEM-T easy (Promega) and up to 10 individual clones were verified by Sanger sequencing. Identification and analysis of homologous promoter regions, sequence alignments, and phylogenetic analyses Homologous segments among *HMA4* promoter regions were identified based on percentages of nucleotide identity according to Multiple Sequence Alignments of fulllength promoter regions in Clustal Omega (Sievers et al. 2011). Identification and alignment of microsyntenic segments of promoter regions was done by pairwise alignment using the oline tool LALIGN and PLALIGN (https://fastademo.bioch.virginia.edu/fasta_www2/fasta_www.cgi?rm=lplalign) (Huang and Miller 1991; Madeira et al. 2019). Further processing of aligned sequences (e.g. realignment of misaligned positions by visual inspection, visualization, and export of highquality images) was done in BioEdit version 5.0.9 (Hall et al. 2011). Phylogenetic analyses of promoters of AtHMA4 and AhHMA4-1, -2 and -3 (fragments designated here full-length) were done using the Maximum Likelihood method and the Tamura-Nei model with no rate variation among sites (i.e. uniform rates) and default parameters using MEGA version 11 (Tamura and Nei 1993; Tamura et al. 2021), and bootstrapping using default parameters (Felsenstein 1985). Motif discovery, motif enrichment analysis, and motif comparisons We searched for the five best motifs of between 5 and 12 nt in length with the highest

the AhHMA4-1, -2 and -3 promoters (as shown in Suppl. Figs. S5 and S6, Suppl. Table 948 S3) using default options in Multiple Expectation-Maximization for Motif Elicitation 949 (MEME) (Bailey et al. 2009; Hanikenne et al. 2013) (see Suppl. Dataset S1 and S2). 950 Next, we carried out multiple sequence alignments using the microsyntenic ER1+ and 951 ER2 promoter segments described above. Based on MEME analyses and multiple 952 953 sequence alignments, sequence motifs coinciding with MHE1 and MHE2 were identified 954 as conserved between promoters of AhHMA4 gene copies and across A. halleri accessions (Suppl. Table S3). Motif logos were generated automatically using the 955 Download Option in the MEME suite (Bailey et al. 2009). 956 957 Next, we used the automated Motif Comparison Tool Tomtom within the MEME suite to identify transcription factor binding sites resembling MHE1 or MHE2 motifs (Gupta et al. 958 2007). We compared MHE1 and MHE2 motifs against three databases for plant 959 transcription factor binding sites within the MEME suite, 960 JASPAR2018 CORE plants non-redundant v2.meme (Castro-Mondragon et al. 2022), 961 962 ArabidopsisDAPv1.meme (O'Malley et al. 2016), and ArabidopsisPBM_20140210.meme(Franco-Zorrilla et al. 2014), using default parameters 963 and the three comparison functions available in TomTom (i.e. Pearson correlation 964 965 coefficient, Euclidean distance, and Sandelin-Wasserman similarity), recording each protein hit (Suppl. Dataset S3 and S4). To calculate percentages, we summed up the 966 protein hits for each transcription factor family and divided by the total number of 967 transcription factor protein hits. Similarly, we summed each transcription factor protein 968 hit and divided by the total number of protein hits for that family. To assess individual 969 occurrences of MHE1 and MHE2 motifs, and of the evening element (EE) (Harmer et al. 970 2000), across HMA4 promoter regions, we used the FIMO (Find Individual Motif 971 972 Occurrences) tool within the MEME suite with a p-value cut-off of $< 10^{-4}$ (Grant et al. 2011) (Suppl. Dataset S5 and S6). 973 974

Data and resource availability

975

- Designation and sequences of the AtHMA4 (LR782543.1, NCBI), AlHMA4 (HE995966.1,
- 977 NCBI), *AhHMA4-1* to *AhHMA4-3* (HE995813 to HE996227, EBI), the full-length promoter
- 978 fragments employed (NCBI, submission id. 2881448), and NcHMA4-1 to -4

(HM043791.1, HM043793.1, HM043793.2, HM043793.4, NCBI) promoters are publicly available (Hanikenne et al. 2008; Lochlainn et al. 2011; Hanikenne et al. 2013). The consensus sequence of the entire NcHMA4 genomic locus (101,480 bp) was taken from (Lochlainn et al. 2011). The AtHMA4 promoter regions of 1,135 A. thaliana accessions were extracted using the 1001 A. thaliana genome tools (Alonso-Blanco et al. 2016) accessed via the Pseudogenomes Download option by specifying the chromosomal region of interest (i.e. Chr2:8276875..8279477; https://1001genomes.org/). Megablast searches (Boratyn et al. 2013) using full-length AtHMA4P, AlHMA4P, and AhHMA4-1P, 4-2_P and 4-3_P sequences as queries were used for retrieving similar HMA4 promoter sequences from other land plant species (taxid: 3193). We selected the blast hits with a query coverage of ≥ 25% and obtained *HMA4* promoter sequences from *Arabis alpina* (LT669790.1, NCBI), Arabidopsis arenosa (LR999453.1, NCBI), Capsella bursa-pastoris (CP144185.1, NCBI), Camelina sativa (CP146050.1, NCBI), Brassica napus (CP151901.1, NCBI), B. oleracea (LR031876.1, NCBI), B. rapa (LR031574.1, NCBI), Raphanus sativus (LR778310.1, NCBI), and Thlaspi arvense (OU466859.2, NCBI). Further data underlying this article are available in the article and in its online supplementary material. Any other data and materials will be shared upon reasonable request to the corresponding author.

Author contributions

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000 1001

1002

1003

1004

1005

1006

1007

1008

1009

LC, MH and UK conceived the project; LC and UK designed research; all shown experiments were conducted by LC; MH, JC, CN, and JS generated constructs for the initial deletion series. LC and JC generated all follow-up constructs based on *AhHMA4-1_P* and *AtHMA4_P*. LC and UK analyzed data; LC and UK wrote the manuscript. All authors read and edited the manuscript.

Acknowledgments

We are grateful to Andreas Aufermann and Martin Pullack for technical assistance in plant cultivation and all lab members of the Ruhr University Bochum, Germany, for comments. We also thank Dr. Hassan Ahmadi for technical assistance in hydrophonic cultivation of *A. halleri* and *A. thaliana* plants. This work was funded by the German

1010 Research Foundation (Deutsche Forschungsgemeinschaft, DFG) grant 1967/3-3 to U.K., by the National Council of Humanities, Sciences and Technologies (Consejo 1011 Nacional de Humanidades, Ciencias y Tecnologías, CONACYT) scholarship no. 1012 438349, by ERC-AdG 788380 "LEAP EXTREME" to U.K., by Ruhr University Bochum, 1013 Bochum, Germany, as well as "Fonds de la Recherche Scientifique-FNRS" (FRFC-1014 2.4583.08 and PDR-T.0206.13, to M.H.), the University of Liège (SFRD-12/03) (M.H.), 1015 and the Belgian Program on Interuniversity Attraction Poles (IAP no. P7/44) (M.H.). 1016 1017 **Conflict of Interest Statement** 1018 1019 The authors declare no conflict of interest. References 1020 1021 Alabadí D, Oyama T, Yanovsky MJ, Harmon FG, Más P, Kay SA. 2001. Reciprocal regulation between TOC1 1022 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883. Alabadí D, Yanovsky MJ, Más P, Harmer SL, Kay SA. 2002. Critical role for CCA1 and LHY in maintaining 1023 1024 circadian rhythmicity in Arabidopsis. Current Biology 12:757–761. 1025 Alonge M, Wang X, Benoit M, Soyk S, Pereira L, Zhang L, Suresh H, Ramakrishnan S, Maumus F, Ciren D, 1026 et al. 2020. Major impacts of widespread structural variation on gene expression and crop 1027 improvement in Tomato. Cell 182:145-161.e23. 1028 Alonso-Blanco C, Andrade J, Becker C, Bemm F, Bergelson J, Borgwardt KMM, Cao J, Chae E, Dezwaan TMM, Ding W, et al. 2016. 1,135 Genomes reveal the global pattern of polymorphism in 1029 1030 Arabidopsis thaliana. Cell 166:481-491. 1031 Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. 2009. MEME Suite: 1032 Tools for motif discovery and searching. Nucleic Acids Research 37:202–208. 1033 Becher M, Talke IN, Krall L, Krämer U. 2004. Cross-species microarray transcript profiling reveals high 1034 constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator 1035 Arabidopsis halleri. Plant Journal 37:251-268. 1036 Bergkessel M, Guthrie C. 2013. Colony PCR. In: Methods in Enzymology. Vol. 529. Elsevier. p. 299–309. 1037 Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780124186873000252 1038 Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W, Verbruggen N. 2003. Genetic basis of Cd 1039 tolerance and hyperaccumulation in Arabidopsis halleri. Plant and Soil 249:9–18. 1040 Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, Madden TL, Matten WT, McGinnis SD, 1041 Merezhuk Y, et al. 2013. BLAST: a more efficient report with usability improvements. Nucleic 1042 Acids Research 41:29–33.

1043 Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, Berhanu Lemma R, Turchi L, Blanc-Mathieu R, 1044 Lucas J, Boddie P, Khan A, Perez NM, et al. 2022. JASPAR 2022: The 9th release of the open-1045 access database of transcription factor binding profiles. Nucleic Acids Research 50:D165-D173. 1046 Clark RM, Wagler TN, Quijada P, Doebley J. 2006. A distant upstream enhancer at the maize 1047 domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nature 1048 Genetics 38:594-597. 1049 Clauss MJ, Koch MA. 2006. Poorly known relatives of Arabidopsis thaliana. Trends in Plant Science 1050 11:449-459. 1051 Clough JS, Bent FA. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of 1052 Arabidopsis thaliana. The Plant Journal 16:735-743. 1053 Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N. 2007. A 1054 major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4 1055 , a gene encoding a Heavy Metal ATPase. Plant Physiology 144:1052–1065. Crawford DL, Segal JA, Barnett JL. 1999. Evolutionary analysis of TATA-less proximal promoter function. 1056 1057 Molecular Biology and Evolution 16:194–207. 1058 Curtis MD, Grossniklaus U. 2003. A Gateway cloning vector set for high-throughput functional analysis of 1059 genes in planta. Plant Physiology 133:462-469. 1060 Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR. 2005. Genome-wide identification and 1061 testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology 1062 139:5-17. Dong MA, Farré EM, Thomashow MF. 2011. CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED 1063 1064 HYPOCOTYL regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. 1065 Proceedings of the National Academy of Sciences of the United States of America 108:7241— 1066 7246. 1067 Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. 2010. MYB transcription factors in 1068 Arabidopsis. Trends in Plant Science 15:573-581. 1069 Eden McQueen, Rebeiz M. 2020. Chapter Twelve - On the specificity of gene regulatory networks: How 1070 does network co-option affect subsequent evolution? Current topics in developmental biology 1071 139:375-405. 1072 Edwards K, Johnstone C, Thompson C. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research 19:1349-1349. 1073 1074 Ernst WHO. 2006. Evolution of metal tolerance in higher plants. Forest Snow and Landscape Research 80:251-274. 1075 1076 Farré EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA. 2005. Overlapping and distinct roles of PRR7 and 1077 PRR9 in the Arabidopsis circadian clock. Current Biology 15:47–54.

1078 Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the Bootstrap. Evolution 1079 39:783-791. 1080 Franco-Zorrilla JM, López-Vidriero I, Carrasco JL, Godoy M, Vera P, Solano R. 2014. DNA-binding 1081 specificities of plant transcription factors and their potential to define target genes. Proceedings of the National Academy of Sciences of the United States of America 111:2367–2372. 1082 1083 Gallagher RS. 1992. 3 - Quantitation of GUS Activity by Fluorometry. In: Gus Protocols. p. 47–59. 1084 Available from: https://doi.org/10.1016/B978-0-12-274010-7.50009-4 1085 Grant CE, Bailey TL, Noble WS. 2011. FIMO: Scanning for occurrences of a given motif. Bioinformatics 1086 27:1017-1018. 1087 Green RM, Tobin EM. 1999. Loss of the circadian clock-associated protein 1 in Arabidopsis results in 1088 altered clock-regulated gene expression. Proceedings of the National Academy of Sciences 1089 96:4176-4179. 1090 Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS. 2007. Quantifying similarity between motifs. 1091 Genome Biology 8:R24. 1092 Hall A, Bastow RM, Davis SJ, Hanano S, McWatters HG, Hibberd V, Doyle MR, Sung S, Halliday KJ, 1093 Amasino RM, et al. 2003. The TIME FOR COFFEE Gene Maintains the Amplitude and Timing of 1094 Arabidopsis Circadian Clocks[W]. The Plant Cell 15:2719–2729. 1095 Hall T, Hall T, Alzohairy DAM. 2011. BioEdit: An important software for molecular biology. 2:60–61. 1096 Hanikenne M, Kroymann J, Trampczynska A, Bernal M, Motte P, Clemens S, Krämer U. 2013. Hard selective sweep and ectopic gene conversion in a gene cluster affording environmental 1097 1098 adaptation. PLoS Genetics 9:e1003707. 1099 Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U. 2008. 1100 Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. 1101 *Nature* 453:391–395. 1102 Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA. 2000. 1103 Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110-2113. 1104 1105 Heckman KL, Pease LR. 2007. Gene splicing and mutagenesis by PCR-driven overlap extension. Nature 1106 Protocols 2:924-932. 1107 Hill MS, Vande Zande P, Wittkopp PJ. 2021. Molecular and evolutionary processes generating variation in 1108 gene expression. Nature Reviews Genetics 22:203-215. 1109 Huang X, Miller W. 1991. A time-efficient, linear-space local similarity algorithm. Advances in Applied 1110 *Mathematics* 12:337–357. 1111 Hufford MB, Xu X, Van Heerwaarden J, Pyhäjärvi T, Chia JM, Cartwright RA, Elshire RJ, Glaubitz JC, Guill 1112 KE, Kaeppler SM, et al. 2012. Comparative population genomics of maize domestication and 1113 improvement. Nature Genetics 44:808-811.

1114 Jacob F, Monod J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. Journal of 1115 Molecular Biology 3:318-356. 1116 Jefferson RA, Kavanagh TA, Bevan MW. 1987. GUS fusions: beta-glucuronidase as a sensitive and 1117 versatile gene fusion marker in higher plants. The EMBO Journal 6:3901–3907. 1118 Kamioka M, Takao S, Suzuki T, Taki K, Higashiyam T, Kinoshita T, Nakamichi N. 2016. Direct repression of 1119 evening genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis circadian clock. Plant Cell 1120 28:696-711. 1121 Kaplan-Levy RN, Brewer PB, Quon T, Smyth DR. 2012. The trihelix family of transcription factors – light, 1122 stress and development. Trends in Plant Science 17:163–171. 1123 King MC, Wilson AC. 1975. Evolution at two levels in humans and chimpanzees. Science 188:107–116. 1124 Krämer U. 2010. Metal hyperaccumulation in plants. Annual Review of Plant Biology 61:517–534. 1125 Krämer U. 2018. Conceptualizing plant systems evolution. Current Opinion in Plant Biology 42:66–75. 1126 Krämer U. 2024. Metal homeostasis in land plants: A perpetual balancing act beyond the fulfilment of 1127 metalloproteome cofactor demands. Annual Review of Plant Biology 75:27-65. 1128 Krysan PJ, Young JC, Sussman MR. 1996. T-DNA as an Insertional Mutagen in Arabidopsis. The Plant Cell 1129 11:2283-2290. 1130 Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou GA, Zhang H, Liu Z, Shi M, et al. 2020. Pan-genome of wild 1131 and cultivated soybeans. Cell 182:162-176.e13. 1132 Lochlainn S, Bowen HC, Fray RG, Hammond JP, King GJ, White PJ, Graham NS, Broadley MR. 2011. 1133 Tandem guadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea 1134 caerulescens. PLoS ONE 6:e17814. 1135 Lu SX, Knowles SM, Andronis C, Ong MS, Tobin EM. 2009. CIRCADIAN CLOCK ASSOCIATED1 and LATE 1136 ELONGATED HYPOCOTYL function synergistically in the circadian clock of Arabidopsis. Plant 1137 Physiology 150:834-843. 1138 Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, 1139 et al. 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids 1140 Research 47:W636-W641. 1141 Mansour FH, Pestov DG. 2013. Separation of long RNA by agarose-formaldehyde gel electrophoresis. 1142 Analytical Biochemistry 441:18–20. 1143 Meyer C, Kostecka AA, Saumitou-Laprade P, Créach A, Castric V, Pauwels M, Frérot H. 2010. Variability of 1144 zinc tolerance among and within populations of the pseudometallophyte species Arabidopsis 1145 halleri and possible role of directional selection. New Phytologist 185:130–142. 1146 Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song HR, Carré IA, Coupland G. 2002. LHY 1147 and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. 1148 Developmental Cell 2:629-641.

1149 Nagel DH, Doherty CJ, Pruneda-Paz JL, Schmitz RJ, Ecker JR, Kay SA. 2015. Genome-wide identification of 1150 CCA1 targets uncovers an expanded clock network in Arabidopsis. Proceedings of the National 1151 Academy of Sciences of the United States of America 112:E4802–E4810. 1152 Nouet C, Charlier JB, Carnol M, Bosman B, Farnir F, Motte P, Hanikenne M. 2015. Functional analysis of 1153 the three HMA4 copies of the metal hyperaccumulator Arabidopsis halleri. Journal of 1154 Experimental Botany 66:5783-5795. 1155 Novikova PY, Hohmann N, Van De Peer Y. 2018. Polyploid Arabidopsis species originated around recent 1156 glaciation maxima. Current Opinion in Plant Biology 42:8-15. 1157 O'Malley RC, Huang SSC, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti A, Ecker JR. 2016. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165:1280-1292. 1158 1159 Paape T, Akiyama R, Cereghetti T, Onda Y, Hirao AS, Kenta T, Shimizu KK. 2020. Experimental and field 1160 data support range expansion in an allopolyploid Arabidopsis owing to parental legacy of heavy 1161 metal hyperaccumulation. Frontiers in Genetics 11:565854. 1162 Perales M, Más P. 2007. A functional link between rhythmic changes in chromatin structure and the 1163 Arabidopsis biological clock. *The Plant Cell* 19:2111–2123. 1164 Quintana J, Bernal M, Scholle M, Holländer-Czytko H, Nguyen NT, Piotrowski M, Mendoza-Cózatl DG, Haydon MJ, Krämer U. 2022. Root-to-shoot iron partitioning in Arabidopsis requires IRON-1165 REGULATED TRANSPORTER1 (IRT1) protein but not its iron(II) transport function. The Plant 1166 1167 Journal 109:992-1013. 1168 Rawat R, Schwartz J, Jones MA, Sairanen I, Cheng Y, Andersson CR, Zhao Y, Ljung K, Harmer SL. 2009. 1169 REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. 1170 Proceedings of the National Academy of Sciences 106:16883–16888. 1171 Reeves RD, van der Ent A, Baker AJM. 2017. Agromining: farming for metals. In: Global distribution and 1172 ecology of hyperaccumulator plants. Springer International Publishing. p. 75–92. Available from: http://dx.doi.org/10.1007/978-3-030-58904-2 7 1173 1174 Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, Van Den Hoff MJB, Moorman AFM. 2009. 1175 Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic 1176 Acids Research 37:e45-e45. 1177 Schmitz RJ, Grotewold E, Stam M. 2022. Cis-regulatory sequences in plants: Their importance, discovery, 1178 and future challenges. Plant Cell 34:718-741. 1179 Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, et 1180 al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using 1181 Clustal Omega. Molecular Systems Biology 7:539. 1182 Sinclair SA, Krämer U. 2012. The zinc homeostasis network of land plants. Biochimica et Biophysica Acta -1183 Molecular Cell Research 1823:1553-1567.

1184 Sinclair SA, Senger T, Talke IN, Cobbett CS, Haydon MJ, Krämer U. 2018. Systemic upregulation of MTP2-1185 and HMA2-mediated Zn partitioning to the shoot supplements local Zn deficiency responses. 1186 Plant Cell 30:2463-2479. 1187 Song JM, Guan Z, Hu J, Guo C, Yang Z, Wang S, Liu D, Wang B, Lu S, Zhou R, et al. 2020. Eight high-quality 1188 genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nature 1189 Plants 6:34-45. 1190 Stein RJ, Höreth S, De Melo JRF, Syllwasschy L, Lee G, Garbin ML, Clemens S, Krämer U. 2017. 1191 Relationships between soil and leaf mineral composition are element-specific, environment-1192 dependent and geographically structured in the emerging model Arabidopsis halleri. New 1193 Phytologist 213:1274-1286. 1194 Stern DL. 1998. A role of *Ultrabithorax* in morphological differences between *Drosophila* species. *Nature* 1195 396:463-466. 1196 Talke IN, Hanikenne M, Krämer U. 2006. Zinc-dependent global transcriptional control, transcriptional 1197 deregulation, and higher gene copy number for genes in metal homeostasis of the 1198 hyperaccumulator Arabidopsis halleri. Plant Physiology 142:148–167. 1199 Tamura K, Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of 1200 mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10:512-526. 1201 Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. 1202 Molecular Biology and Evolution 38:3022–3027. 1203 True JR, Carroll SB. 2002. Gene co-option in physiological and morphological evolution. Annual Review of 1204 Cell and Developmental Biology 18:53-80. 1205 Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 2002. Accurate 1206 normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal 1207 control genes. Genome Biology 3:research0034.1. 1208 Wang RL, Stec A, Hey J, Lukens L, Doebley J. 1999. The limits of selection during maize domestication. 1209 Nature 398:236-239. 1210 Wang W, Malcolm BA. 1999. Two-stage PCR protocol allowing introduction of multiple mutations, 1211 deletions and insertions using QuikChange TM site-directed mutagenesis. BioTechniques 26:680-1212 1213 Wang ZY, Kenigsbuch D, Sun L, Harel E, Ong MS, Tobin EM. 1997. A Myb-related transcription factor is 1214 involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell 9:491-507. 1215 Wang ZY, Tobin EM. 1998. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene 1216 disrupts circadian rhythms and suppresses its own expression. Cell 93:1207–1217. 1217 Weber M, Harada E, Vess C, Roepenack-Lahaye EV, Clemens S. 2004. Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP 1218 1219 transporter and other genes as potential metal hyperaccumulation factors. The Plant Journal 1220 37:269-281.

Weigel D, Glazebrook J. 2006. Setting Up Arabidopsis Crosses. Cold Spring Harbor Protocols 5:pdb.prot4623. Willems G, Dräger DB, Courbot M, Godé C, Verbruggen N, Saumitou-Laprade P. 2007. The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri (Brassicaceae): An analysis of quantitative trait loci. Genetics 176:659-674. Xu R, Qingshun LQ. 2008. Protocol: Streamline cloning of genes into binary vectors in Agrobacterium via the Gateway® TOPO vector system. Plant Methods 4:4. Yakir E, Hilman D, Kron I, Hassidim M, Melamed-Book N, Green RM. 2009. Posttranslational Regulation of CIRCADIAN CLOCK ASSOCIATED1 in the Circadian Oscillator of Arabidopsis. Plant Physiology 150:844-857. Zhang H, Quintana J, Ütkür K, Adrian L, Hawer H, Mayer K, Gong X, Castanedo L, Schulten A, Janina N, et al. 2022. Translational fidelity and growth of Arabidopsis require stress-sensitive diphthamide biosynthesis. Nat Commun 13:4009. Zheng L. 2004. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Research 32:e115-e115.

Main Figure legends AhHMA4 manuscript

 Figure 1. Analysis of deletion series of *AtHMA4* and *AhHMA4-1* promoter regions in transgenic reporter lines of *A. thaliana*. (A) *GUS* reporter constructs for *AtHMA4P* and *AhHMA4-1P*. Numbers indicate distances in bp from the transcriptional start site (+1) for each of the breakpoints implemented in the promoter deletion series of reporter constructs introduced into *A. thaliana*. Positions of putative CAAT/TATA boxes are marked by magenta/cyan vertical lines. 5'UTR, 5' untranslated region; *,translational start site (vertically aligned between promoters); FL, full-length. (**B-E**) Relative *GUS* transcript levels (B and D) and specific GUS enzyme activities (C and E) for full-length *AhHMA4-1P* (B and C), *AtHMA4P* (D and E), and their respective deletion series in transgenic *A. thaliana GUS* reporter lines. Bars show mean ± SD (n = 3 to 14) of independent transgenic lines, with each datapoint representing the mean of three replicate multi-well plates of qPCR reactions (B, D) or enzyme assays (C, E). Data are from one representative experiment out of a total of two independent experiments. Different characters indicate statistically significant differences based on one-way non-parametric ANOVA with Dunn's multiple comparison test (P < 0.05). Δi, deletion of the intron (see A); ev, transformants with a construct lacking any promoter fragment upstream of the *GUS* gene (see Materials and Methods); MU, 4-methylumbelliferone.

Figure 2. Identification of two enhancing regions in homologous positions of the promoters of all three *A. halleri HMA4* gene copies. (A) *GUS* reporter constructs for *AtHMA4*, *AhHMA4-1*, *AhHMA4-2*, and *AhHMA4-3* promoters. See also Fig. 1A. (B-O) Histochemical detection of GUS activity in rosettes (left) and the root hair zone of roots (right) of representative transgenic *A. thaliana GUS* reporter lines. Size bars: 2 mm for rosettes, 0.2 mm for roots. (P and Q) Relative *GUS* transcript levels and specific GUS enzyme activities in transgenic *A. thaliana* reporter lines. Bars show the mean ± SD (*n* = 3 to 7) of independent transgenic lines, with each datapoint representing the mean of three technical replicates (see Fig. 1). *Ah-1*, *AhHMA4-1*; *Ah-2*, *AhHMA4-2*; *Ah-3*, *AhHMA4-3*; ΔDIR, deletion of both the distal and the intermediate regions, ΔDIPR, deletion of the distal, intermediate, and proximal regions (see also Fig. 1B-E).

Figure 3. Cis-regulatory enhancer elements MHE1 and MHE2 are reguired for activity of the AhHMA4-1 promoter. (A-C) Scheme of AhHMA4-1p constructs (A), as well as alignments of the ER1⁺ region (B) and the ER2 region (C) of AhHMA4-1P with the homologous regions of AtHMA4P (left) and core MHE2 motif (right; see Suppl. Fig. S6). The sequences of the putative cis-regulatory elements in the effective subregion of ER1, ER1+ (red cross symbol in A, red bar in B), are boxed: Metal Hyperaccumulation Element 1a (MHE1a) and a second identical copy upstream (MHE1b, B), as well as MHE2a and MHE2b in ER2 (light red bar, C). Between-species differences are shown on a red background, and they also indicate the mutations introduced into AhHMA4-1_P (conversion to the corresponding AtHMA4P sequence) to disrupt MHE1a/b and/or MHE2a/b (B and C). See also Fig. 1A. The sequence logo of the core MHE2 motif shared by the promoters of all three AhHMA4 gene copies in A. halleri is shown. (D-O) Histochemical detection of GUS activity in rosettes (left) and the root hair zone of roots (right) of representative transgenic A. thaliana GUS reporter lines. Size bars: 1 mm (rosettes), 0.2 mm (roots). (P and Q) Relative GUS transcript levels (P) and specific GUS enzyme activities (Q) in whole seedlings of transgenic A. thaliana GUS reporter lines. Bars show mean \pm SD (n = 3 to 15) independent transgenic lines. Each datapoint represents the mean of three technical replicates (see Fig. 1). Different characters indicate statistically significant differences based on one-way non-parametric ANOVA, followed by a Dunn's multiple comparison test (P < 0.05). Δ ER2, deletion of ER2 (see C) in a full-length promoter; mut, mutated (see B, C); MHE1/2_{mut}, MHE1 and MHE2 mutated. See also Fig. 1.

Figure 4. Introduction of two *cis*-regulatory enhancer MHE2 elements is sufficient for conferring enhanced activity to the *AtHMA4* promoter. (A) *AtHMA4*_P constructs employed for the introduction of *cis*-regulatory elements MHE1 and MHE2 from *AhHMA4-1*_P. A shortened *AtHMA4*_P construct (Δ 754 Δ i) that lacks both the intron and 1,246 bp at the 5' end (corresponding to part of the DR) was used for introducing two copies of MHE1 or of MHE2 by site-directed mutagenesis in positions equivalent to those in *AhHMA4-1*_P (flag symbols mark the positions). See also Fig. 3B and C. (B-K) Histochemical detection of GUS activity in rosettes (left) and the root hair zone of roots (right) in transgenic *A. thaliana GUS* reporter lines. Size bars: 1 mm (E, F, K), 0.5 mm (all other rosette images), 0.2 mm (root images). (L and M) Relative *GUS* transcript levels (L) and specific GUS enzyme activities (M) in seedlings of transgenic *A. thaliana GUS* reporter lines. Bars show mean ± SD (n = 3 to 24) of independent transgenic lines. Each

1308

1309

1310

1311

1312

1313

1314

1315 1316

1317 1318

1319 1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

datapoint represents the mean of three technical replicates (see Fig. 1). Different characters indicate statistically significant differences based on one-way non-parametric ANOVA followed by a Dunn's multiple comparison test (P < 0.05). >, introduction of MHE1 or MHE2, or of both (MHE1&2) into the Δ754Δi or another construct, as specified. See also Fig. 1B-E. Figure 5 Elevated levels and diel dynamics of AhHMA4-1_P-mediated GUS reporter transcript levels depend on both MHE2 and CCA1 in A. thaliana, and diel dynamics of HMA4 transcript levels in A. halleri. (A-D) Relative GUS (A) and CCA1 (B) transcript levels, measured through a diurnal cycle, in seedlings of transgenic A. thaliana GUS reporter lines for various HMA4 promoters. Relative GUS transcript levels (C) and specific GUS enzyme activities (D) shown plotted against CCA1 transcript levels for full-length AhHMA4-1_P and AtHMA4_P GUS reporter constructs introduced into either wild-type A. thaliana plants or into a cca1-1 loss-of-function mutant (Col-0). Two independent transgenic lines (1, 2) are shown per construct (A-D). Plants were cultivated on agar plates and harvested on day 21 at ZT1 (see also Suppl. Fig. 7). (E-H) Diel time course of relative HMA4 and CCA1 transcript levels in shoots (E and F) and roots (G and H) of A. halleri wild-type plants and one HMA4 RNAi line, as well as in A. thaliana. Plants were cultivated in hydroponics and harvested on day 21 (E-H, see also Suppl. Fig. 8). Datapoints are mean \pm SD (n = 3) of technical replicates from one representative experiment of a total of two independent experiments. Horizontal bar: white fill, day; black fill, night (A, B, E-H). Datapoints (A-H) are mean \pm SD (n = 3) of technical replicates from one representative experiment of a total of two independent experiments.

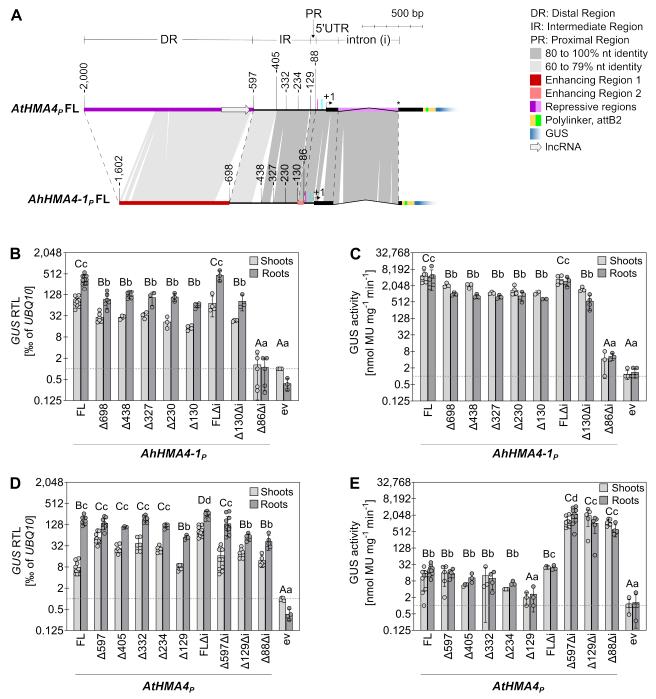


Figure 1. Analysis of deletion series of AtHMA4 and AhHMA4-1 promoter regions in transgenic reporter lines of A. thaliana. (A) GUS reporter constructs for $AtHMA4_P$ and $AhHMA4-1_P$. Numbers indicate distances in bp from the transcriptional start site (+1) for each of the breakpoints implemented in the promoter deletion series of reporter constructs introduced into A. thaliana. Positions of putative CAAT/TATA boxes are marked by magenta/cyan vertical lines. 5'UTR, 5' untranslated region; *,translational start site (vertically aligned between promoters); FL, full-length. (B-E) Relative GUS transcript levels (B and D) and specific GUS enzyme activities (C and E) for full-length $AhHMA4-1_P$ (B and C), $AtHMA4_P$ (D and E), and their respective deletion series in transgenic A. thaliana GUS reporter lines. Bars show mean \pm SD (n = 3 to 14) of independent transgenic lines, with each datapoint representing the mean of three replicate multi-well plates of qPCR reactions (B, D) or enzyme assays (C, E). Data are from one representative experiment out of a total of two independent experiments. Different characters indicate statistically significant differences based on one-way non-parametric ANOVA with Dunn's multiple comparison test (P < 0.05). Δ i, deletion of the intron (see A); ev, transformants with a construct lacking any promoter fragment upstream of the GUS gene (see Materials and Methods); MU, 4-methylumbelliferone.

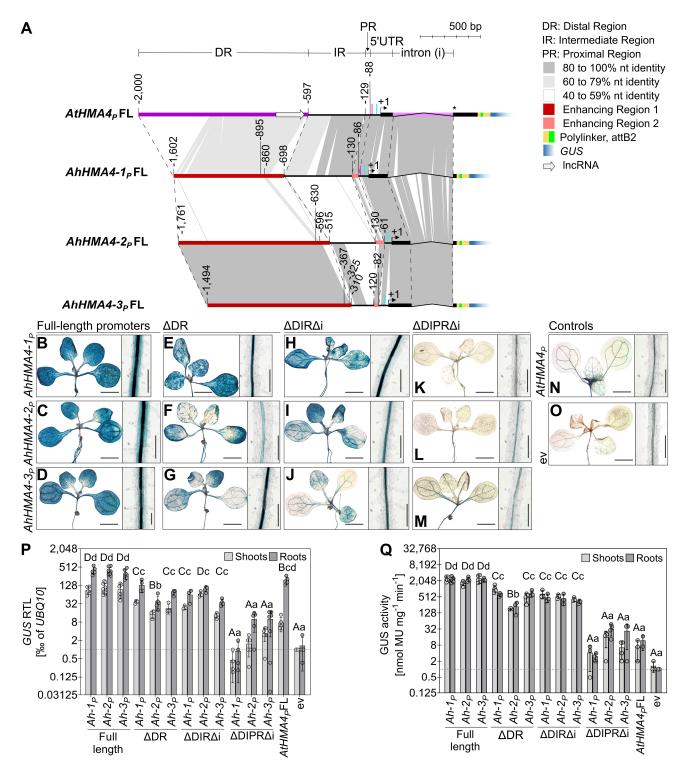


Figure 2. Identification of two enhancing regions in homologous positions of the promoters of all three A. halleri HMA4 gene copies. (A) GUS reporter constructs for *AtHMA4*, *AhHMA4-1*, *AhHMA4-2*, and *AhHMA4-3* promoters. See also Fig. 1A. (B-O) Histochemical detection of GUS activity in rosettes (left) and the root hair zone of roots (right) of representative transgenic *A. thaliana GUS* reporter lines. Size bars: 2 mm for rosettes, 0.2 mm for roots. (P and Q) Relative *GUS* transcript levels and specific GUS enzyme activities in transgenic *A. thaliana* reporter lines. Bars show the mean ± SD (*n* = 3 to 7) of independent transgenic lines, with each datapoint representing the mean of three technical replicates (see Fig. 1). *Ah-1*, *AhHMA4-1*; *Ah-2*, *AhHMA4-2*; *Ah-3*, *AhHMA4-3*; ΔDIR, deletion of both the distal and the intermediate regions, ΔDIPR, deletion of the distal, intermediate, and proximal regions (see also Fig. 1B-E).

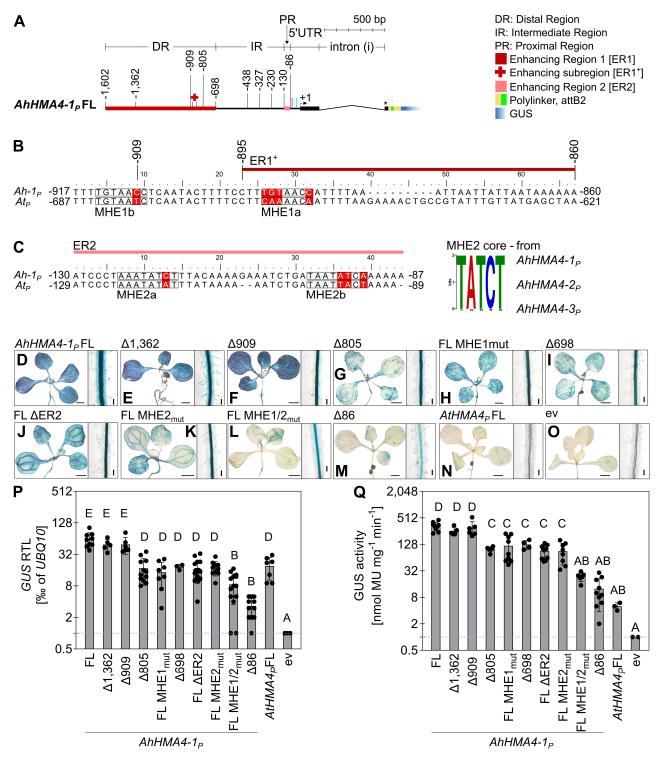


Figure 3. *Cis*-regulatory enhancer elements MHE1 and MHE2 are required for activity of the *AhHMA4-1* promoter. (A-C) Scheme of *AhHMA4-1*_P constructs (A), as well as alignments of the ER1⁺ region (B) and the ER2 region (C) of *AhHMA4-1*_P with the homologous regions of *AtHMA4*_P (left) and core MHE2 motif (right; see Suppl. Fig. S6). The sequences of the putative *cis*-regulatory elements in the effective subregion of ER1, ER1⁺ (red cross symbol in A, red bar in B), are boxed: Metal Hyperaccumulation Element 1a (MHE1a) and a second identical copy upstream (MHE1b, B), as well as MHE2a and MHE2b in ER2 (light red bar, C). Between-species differences are shown on a red background, and they also indicate the mutations introduced into *AhHMA4-1*_P (conversion to the corresponding *AtHMA4*_P sequence) to disrupt MHE1a/b and/or MHE2a/b (B and C). See also Fig. 1A. The sequence logo of the core MHE2 motif shared by the promoters of all three *AhHMA4* gene copies in *A. halleri* is shown. (D-O) Histochemical detection of GUS activity in rosettes (left) and the root hair zone of roots (right) of representative transgenic *A. thaliana GUS* reporter lines. Size bars: 1 mm (rosettes), 0.2 mm (roots). (P and Q) Relative *GUS* transcript levels (P) and specific GUS enzyme activities (Q) in whole seedlings of transgenic *A. thaliana GUS* reporter lines. Bars show mean ±SD (*n* = 3 to 15) independent transgenic lines. Each datapoint represents the mean of three technical replicates (see Fig. 1). Different characters indicate statistically significant differences based on one-way non-parametric ANOVA, followed by a Dunn's multiple comparison test (*P* < 0.05). ΔER2, deletion of ER2 (see C) in a full-length promoter; mut, mutated (see B, C); MHE1/2_{mut}, MHE1 and MHE2 mutated. See also Fig. 1.

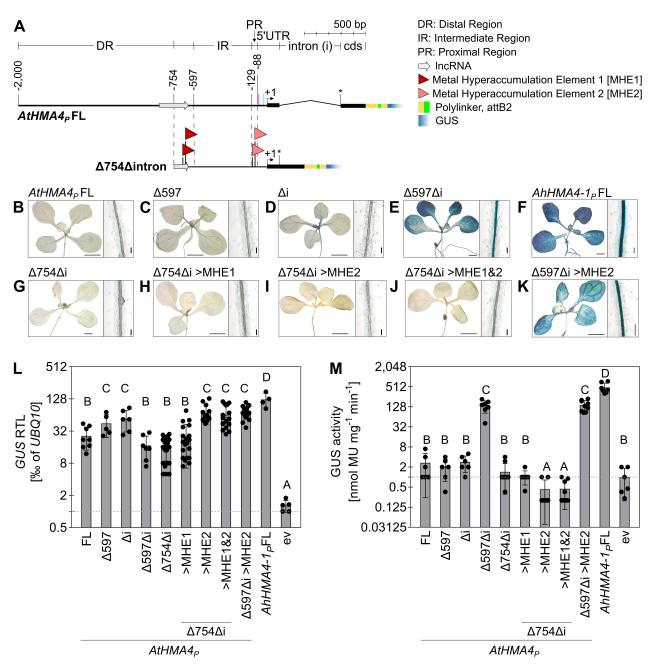


Figure 4. Introduction of two cis-regulatory enhancer MHE2 elements is sufficient for conferring enhanced activity to the *AtHMA4* promoter. (A) $AtHMA4_P$ constructs employed for the introduction of *cis*-regulatory elements MHE1 and MHE2 from $AhHMA4-1_P$. A shortened $AtHMA4_P$ construct (Δ754Δi) that lacks both the intron and 1,246 bp at the 5' end (corresponding to part of the DR) was used for introducing two copies of MHE1 or of MHE2 by site-directed mutagenesis in positions equivalent to those in $AhHMA4-1_P$ (flag symbols mark the positions). See also Fig. 3B and C. (**B-K**) Histochemical detection of GUS activity in rosettes (left) and the root hair zone of roots (right) in transgenic *A. thaliana GUS* reporter lines. Size bars: 1 mm (E, F, K), 0.5 mm (all other rosette images), 0.2 mm (root images). (**L and M**) Relative *GUS* transcript levels (**L**) and specific GUS enzyme activities (M) in seedlings of transgenic *A. thaliana GUS* reporter lines. Bars show mean ± SD (n = 3 to 24) of independent transgenic lines. Each datapoint represents the mean of three technical replicates (see Fig. 1). Different characters indicate statistically significant differences based on one-way non-parametric ANOVA followed by a Dunn's multiple comparison test (P < 0.05). >, introduction of MHE1 or MHE2, or of both (MHE1&2) into the Δ754Δi or another construct, as specified. See also Fig. 1B-E.

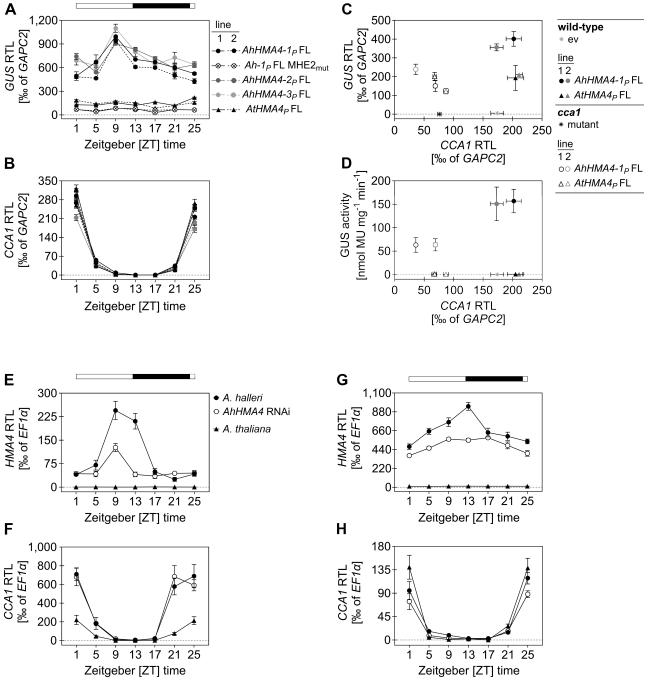


Figure 5 Elevated levels and diel dynamics of *AhHMA4-1*_p-mediated *GUS* reporter transcript levels depend on both MHE2 and *CCA1* in *A. thaliana*, and diel dynamics of *HMA4* transcript levels in *A. halleri*. (A-D) Relative *GUS* (A) and *CCA1* (B) transcript levels, measured through a diurnal cycle, in seedlings of transgenic *A. thaliana GUS* reporter lines for various HMA4 promoters. Relative *GUS* transcript levels (C) and specific GUS enzyme activities (D) shown plotted against CCA1 transcript levels for full-length $AhHMA4-1_p$ and $AtHMA4_p$ *GUS* reporter constructs introduced into either wild-type *A. thaliana* plants or into a cca1-1 loss-of-function mutant (CoI-0). Two independent transgenic lines (1, 2) are shown per construct (A-D). Plants were cultivated on agar plates and harvested on day 21 at ZT1 (see also Suppl. Fig. 7). (E-H) Diel time course of relative HMA4 and CCA1 transcript levels in shoots (E and F) and roots (G and H) of *A. halleri* wild-type plants and one HMA4 RNAi line, as well as in *A. thaliana*. Plants were cultivated in hydroponics and harvested on day 21 (E-H, see also Suppl. Fig. 8). Datapoints are mean \pm SD (n = 3) of technical replicates from one representative experiment of a total of two independent experiments. Horizontal bar: white fill, day; black fill, night (A, B, E-H). Datapoints (A-H) are mean \pm SD (n = 3) of technical replicates from one representative experiment of a total of two independent experiments.