

Overview

- 1. Walnut
- 2. Wythoff's game
- 3. A variation of Wythoff's game

Walnut

What is Walnut?

Walnut is a free software system originally created by Hamoon Mousavi.

- → extensively used for proving results in combinatorics on words and additive number theory;
- → relies on *Büchi's theorem*: transform first-order logical formulas into finite automata for which decision procedures can be applied.

Hence, if a problem of interest can be expressed in a convenient extension of Presburger arithmetic $(\mathbb{N}, +)$, it can then receive an automatic treatment.

The rules

Wythoff's game is a 2-player impartial game which is a variation of the game of Nim.

- \rightarrow 2 piles of tokens,
- → the players play one after another, they may not pass,
- → the first player unable to play loses.

Allowed moves:

- → removing a positive number of tokens from one pile,
- → removing the same number of tokens from both piles.

A famous result

Recall that any positive integer can be written as a sum of Fibonacci numbers in a "greedy" way → Zeckendorf representation.

Ex: Considering
$$F_0=1, F_1=2$$
 and $F_n=F_{n-1}+F_{n-2}$ for all $n\geq 2$, we have

$$11 = 8 + 3 \rightarrow \text{rep}_F(11) = 10100.$$

A famous result

Recall that any positive integer can be written as a sum of Fibonacci numbers in a "greedy" way → Zeckendorf representation.

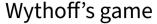
Ex: Considering $F_0 = 1$, $F_1 = 2$ and $F_n = F_{n-1} + F_{n-2}$ for all $n \ge 2$, we have

$$11 = 8 + 3 \rightarrow \text{rep}_F(11) = 10100.$$

Theorem (Fraenkel, 1982)

A pair (a,b) of integers such that $a \le b$ is a \mathcal{P} -position of Wythoff's game if and only if $\operatorname{rep}_F(a)$ ends with an even number of zeroes and $\operatorname{rep}_F(b)$ is a left-shift of $\operatorname{rep}_F(a)$, i.e. $\operatorname{rep}_F(b) = \operatorname{rep}_F(a)0$.

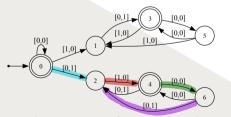
- \rightarrow link with numeration systems
- → could Walnut be used for proving results with combinatorial games?



Fraenkel's theorem using Walnut

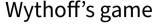
Step 1: Defining the candidate set for \mathcal{P} -positions in Walnut

```
reg end_even_zeros msd_fib "0*(00|0*1)*":
reg left_shift {0,1} {0,1} "([0,0]|([0,1][1,1]*[1,0]))*":
def ppos_asym "?msd_fib $end_even_zeros(a) & $left_shift(a,b)":
def ppos "?msd_fib $ppos_asym(a,b) | $ppos_asym(b,a)":
```



 $\underline{Ex:}$ we can evaluate pos(6,10):

$$rep_F(6) = 01001$$
 $rep_F(10) = 10010$



Fraenkel's theorem using Walnut

Step 2: Verifying that this set is exactly the set of \mathcal{P} -positions

Recall that the sets of \mathcal{P} - and \mathcal{N} -positions of an impartial acyclic game are uniquely determined by the two following properties:

Stability, i.e. there is no move between two \mathcal{P} -positions

```
eval w_stable "?msd_fib Ap,q,r,s

(($ppos(p,q) & $ppos(r,s) & p >= r & q >= s)
=> ((p=r & q=s) | (p>r & q>s & p+s!=q+r)) )":
```

Absorbing, i.e. for each N-position, there exists a move leading to a P-position

```
eval w_absorbing "?msd_fib Ap,q (~$ppos(p,q) => Ex,y
( x<=p & y<=q & $ppos(x,y) & (p+y=q+x | p=x | q=y) )) ":</pre>
```


Fraenkel's theorem using Walnut

Both commands evaluate to TRUE, which proves Fraenkel's theorem!

We were able to use Walnut because:

- \rightarrow we have a "regular" candidate for the set of ${\cal P}$ -positions;
- ightarrow the Fibonacci numeration system is addable.

Other results about Wythoff's game

Thanks to Walnut, we aslo managed to:

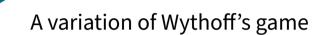
- \rightarrow prove a 15-year-old conjecture describing the set of *forbidden moves* in Wythoff's game (i.e., the set of moves which would allow to play between two \mathcal{P} -positions);
- \rightarrow show that all allowed moves in Wythoff's game are *non-redundant* (a move is said to be *redundant* if removing it from the rule-set does not affect the set of \mathcal{P} -positions).

Other results about Wythoff's game

Thanks to Walnut, we aslo managed to:

- \rightarrow prove a 15-year-old conjecture describing the set of *forbidden moves* in Wythoff's game (i.e., the set of moves which would allow to play between two \mathcal{P} -positions);
- \rightarrow show that all allowed moves in Wythoff's game are *non-redundant* (a move is said to be *redundant* if removing it from the rule-set does not affect the set of \mathcal{P} -positions).

What more can we do with this software?



A new game

Same rules as Wythoff's game, but a player may now remove k>0 tokens from one heap and $\ell>0$ from the other, provided that $|k-\ell|< m$ for a fixed integer $m\geq 1$. Note that $m=1 \rightsquigarrow$ Wythoff's game.

A new game

Same rules as Wythoff's game, but a player may now remove k>0 tokens from one heap and $\ell>0$ from the other, provided that $|k-\ell|< m$ for a fixed integer $m\geq 1$. Note that $m=1 \rightsquigarrow$ Wythoff's game.

Here, we make use of Ostrowski numeration systems: consider the quadratic irrational

$$[1,\overline{m}]=\frac{2-m+\sqrt{m^2+4}}{2}$$

 \rightarrow the convergents give two numeration systems: the *p*-system (using numerators) and the *q*-system (using denominators).

Rem.: for m=1, $[1, \overline{m}]=\varphi$ the golden ratio \leadsto Fibonacci numeration system.

A new game

We get the same result as the one for Wythoff's game, but with the associated Ostrowski numeration system:

Theorem (Fraenkel, 1982)

A pair (a,b) of integers such that $a \le b$ is a \mathcal{P} -position of m-Wythoff's game if and only if $\operatorname{rep}_p(a)$ ends with an even number of zeroes and $\operatorname{rep}_p(b)$ is a left-shift of $\operatorname{rep}_p(a)$, i.e. $\operatorname{rep}_p(b) = \operatorname{rep}_p(a)$ 0, where $\operatorname{rep}_p(x)$ is the representation of x in the p-system associated to $[1, \overline{m}]$.

→ we can handle such systems with Walnut, and thus prove results automatically!

Using Walnut to find a new conjecture

Again here, we can ask what are the redundant moves of m-Wythoff's game. Using Walnut, we get the following conjecture:

Conjecture (Mignoty, R., Rigo, Whiteland, 2025+)

Let $m \geq 2$. The set of redundant moves of the variation of Wythoff's game where one is allowed to remove k > 0 and $\ell > 0$ provided that $|k - \ell| < m$ is

$$\bigcup_{1 \le i < m} \{(n, n+i), (n+i, n) \mid n \ge m-i+2\}.$$

- \rightarrow proved for m = 2, 3, 4, 5;
- \rightarrow for m = 5, we quickly run out of memory \rightsquigarrow use Walnut differently.

Thank you for your attention!

Same rules as Wythoff's game, but a player may now remove k>0 tokens from one heap and $\ell>0$ from the other, provided that $0< k\leq \ell < sk+m$ for two positive integers m,s. For $s=1 \rightsquigarrow m$ -Wythoff's game.

For $m = s = 1 \rightsquigarrow Wythoff's game$.

Same rules as Wythoff's game, but a player may now remove k>0 tokens from one heap and $\ell>0$ from the other, provided that $0< k\leq \ell < sk+m$ for two positive integers m,s. For $s=1 \rightsquigarrow m$ -Wythoff's game.

For $m = s = 1 \rightsquigarrow Wythoff's game$.

We do get the same result:

Theorem (Fraenkel, 1998)

A pair (a,b) of integers such that $a \le b$ is a \mathcal{P} -position of the generalized Wythoff's game with parameters (s,m) if and only if $\operatorname{rep}_U(a)$ ends with an even number of zeroes and $\operatorname{rep}_U(b)$ is a left-shift of $\operatorname{rep}_U(a)$, where U is the numeration system defined hereinafter.

Here, we use the following numeration system: we define the linear recurrence sequence $(U_i)_{i\geq 0}$ by

$$U_0 = 1$$
, $U_1 = s + m$ and $U_i = (s + m - 1)U_{i-1} + sU_{i-2} \ \forall i \ge 2$.

We then have that each integer n>0 has a unique representation $d_\ell\cdots d_0$ such that

$$n=\sum_{i=0}^\ell d_i U_i, \quad ext{with } d_\ell
eq 0.$$

Here, we use the following numeration system: we define the linear recurrence sequence $(U_i)_{i\geq 0}$ by

$$U_0 = 1$$
, $U_1 = s + m$ and $U_i = (s + m - 1)U_{i-1} + sU_{i-2} \ \forall i \ge 2$.

We then have that each integer n>0 has a unique representation $d_\ell\cdots d_0$ such that

$$n=\sum_{i=0}^\ell d_i U_i,\quad ext{with } d_\ell
eq 0.$$

We are in the **Pisot** case, which means

- → we have a regular candidate,
- \rightarrow we have an addable system.

So, in principle, we can use Walnut!