

EDITORIAL COMMENT

TAVR for Stenotic Bicuspid Aortic Valve

Feasible, Continuously Improving Results With Another Red Flag*

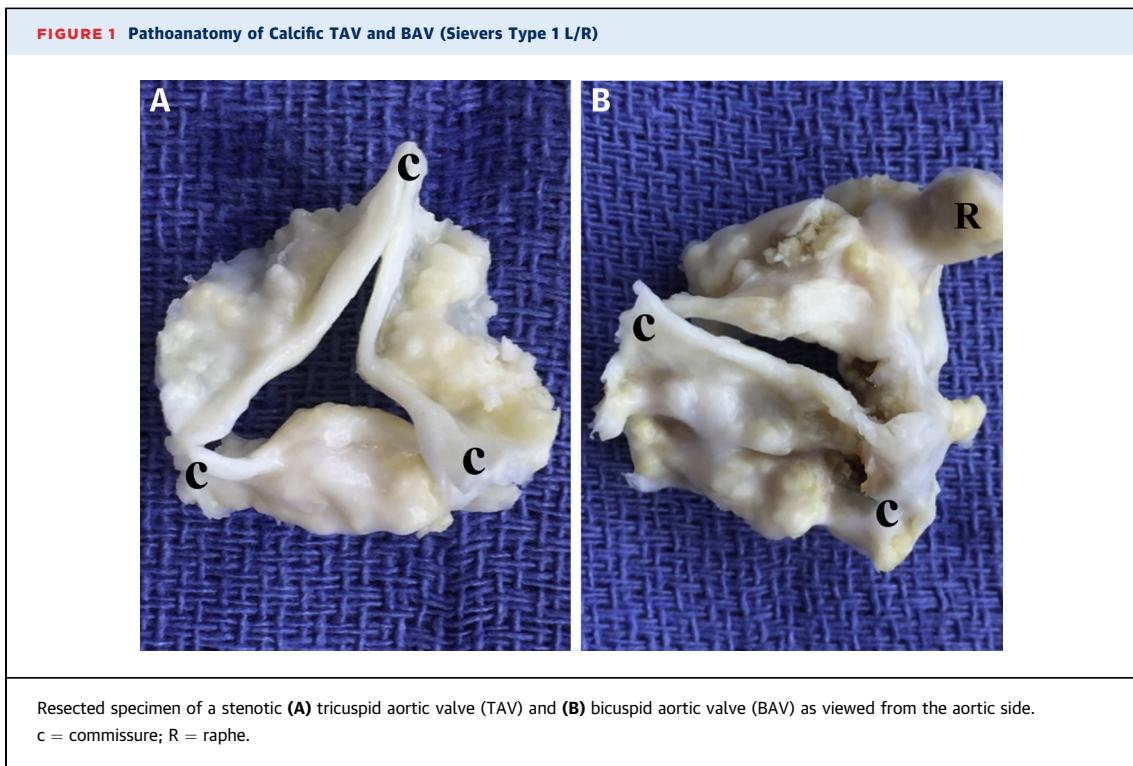
Marc A. Radermecker, MD, PhD^{a,b} Muriel Sprynger, MD,^c Gregory Hans, MD, PhD^d

Bicuspid aortic valves (BAVs) were systematically excluded from randomized studies that established the noninferiority of the percutaneous approach (transcatheter aortic valve replacement [TAVR]) in comparison with conventional surgical aortic valve replacement (SAVR) for the treatment of severe aortic stenosis (AS) (1,2). This initial precaution was clearly appropriate given the characteristics and known prevalence of BAV in clinical practice.

Indeed, BAV is a specific entity with its own developmental and pathophysiological mechanisms, morphologic features, and outcomes. BAV results from a congenital malformation of the embryonic outflow of the primitive heart tube. Neural crest cells from rhombomeres migrate early through the pharyngeal arches toward the outflow of the heart tube. They organize the formation of normal sigmoid arterial valves, participate in the arterialization of the distal outflow from which the intrapericardial arterial and pulmonary trunks derive, and contribute to the ventriculoarterial junction (3). Failure of this developmental process may account for a malformation complex of variable severity where, for our purpose, the abnormally formed aortic valve is pivotal.

The complex morphology of these valves was first accurately described by Anderson with reference to tricuspid aortic valves (TAVs), as reported by Sutton et al. (4). These valves were subsequently categorized into different types according to the number of leaflets and raphe (5). At the stage of severe calcific AS, the shape of the orifice and the amount of calcification of BAVs strikingly differ from TAV stenosis (Figure 1). From these (nearly trivial) observations emerge the true challenges of TAVR in patients with BAVs.

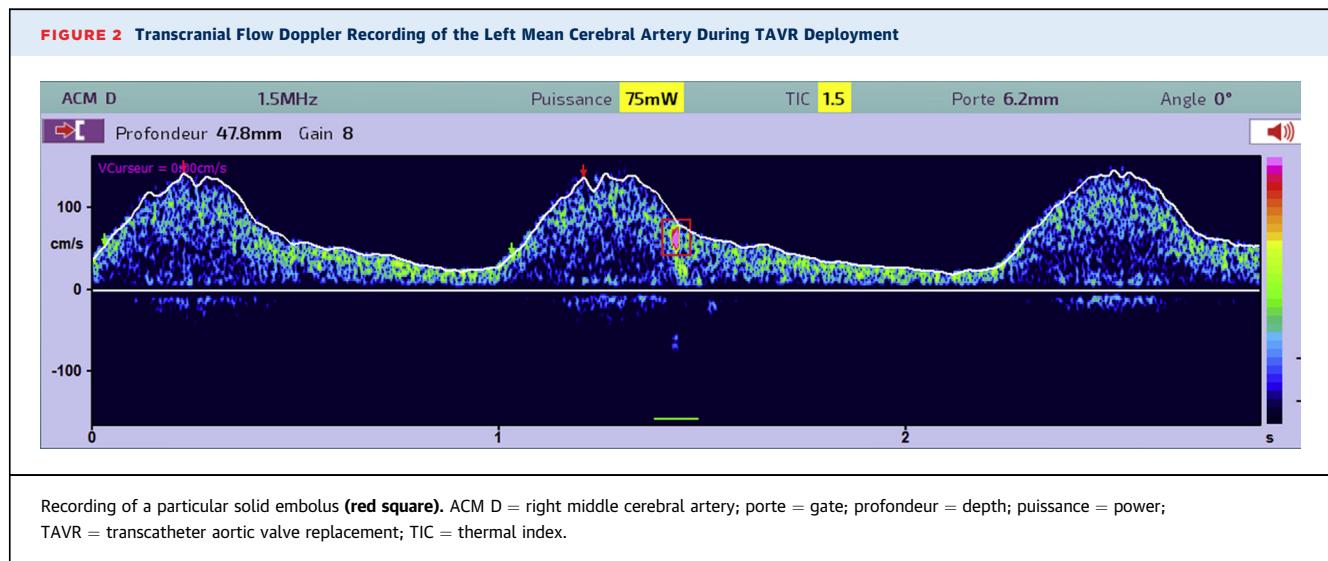
First, the elliptical and asymmetrical (both in shape and depth) residual orifice may impede the deployment of a circular valved device. Second, the huge calcifications that characterize these valves are unevenly distributed (i.e., maximal at the level of the raphe), frequently invade the fibrous and muscular subvalvular left ventricular outflow tract, and may be subjected to “caseous” transformation. As such they may impede valve orifice opening and are of major embolic concern during deployment of a percutaneous valve.


WHAT DO WE KNOW FROM CLINICAL EXPERIENCE?

So far, only short-term data from limited clinical series or registries (6) are available. These data showed that TAVR is feasible in stenotic BAVs. However, TAVR in BAVs appears more demanding and riskier, takes longer, and requires more pre- and post-dilation. Initial results in moderate- to high-risk patients were encouraging, but the high incidence of paravalvular leaks and pacemaker implantation was worrying and negatively affected global outcomes (7,8). In experienced hands and with evolving devices, the paravalvular leaks could be reduced to very low levels, but the pacemaker rate persists in up to

*Editorials published in the *Journal of the American College of Cardiology* reflect the views of the author and do not necessarily represent the views of *JACC* or the American College of Cardiology.

From the ^aDepartment of Cardiovascular and Thoracic Surgery, Sart-Tilman University Hospital Center, Liège Belgium; ^bDepartment of Human Anatomy, University of Liège, Liège, Belgium; ^cDepartment of Cardiology, Sart-Tilman University Hospital Center, Liège Belgium; and the ^dDepartment of Anesthesiology, Sart-Tilman University Hospital Center, Liège Belgium.


The authors attest they are in compliance with human studies committees and animal welfare regulations of the authors' institutions and Food and Drug Administration guidelines, including patient consent where appropriate. For more information, visit the *JACC* author instructions page.

25% of the cases (9). This finding led Guyton and Padala (10) to temper the interventional enthusiasm by further raising the issues of incomplete and asymmetrical valve expansion and the resulting suboptimal hemodynamic features that will certainly affect valve durability.

Inherent in any cardiovascular intervention, the stroke rate in TAVR for TAVs that was initially at 5%

to 10% in very high risk patients is now as low as 0.5% to 0.9% in the latest randomized trials performed in low-risk patients (1,2). Although cerebral embolic protection devices may actually capture debris (e.g., foreign body material, endothelium, calcific debris, myocardial tissue), in 98% of TAVR-treated patients, BAV is associated with a higher risk of dislodging particles $\geq 1,000 \mu\text{m}$ (11). Accordingly, the overt

stroke rate remains higher in BAV compared with TAV (2.5% vs. 1.6%) (12). This is possibly related to the higher calcium load of BAV (13) and to the more challenging placement, deployment, and repositioning of devices known as major sources of any emboli (11). High-intensity transient signals (HITS) recorded by serial transcranial Doppler examination have been proposed as surrogates for cerebral microembolization (14). HITS may correspond to solid or gaseous emboli. In our experience, we have observed (using recognition algorithms) “solid HITS” in 89% of patients predominantly during valve implantation and deployment (Figure 2) (C. Douin, M. Sprynger, P. Lancellotti, unpublished data, June 2020). At the same time, it is increasingly realized that central nervous system (CNS) injuries are under-reported. With the availability of T_2 -diffusion-weighted magnetic resonance imaging (DW-MRI), new silent lesions can be detected in most if not all patients undergoing TAVR for TAV stenosis (15). The tissue-based paradigm for CNS injury assessment therefore raises major concerns with regard to the significance of these so called “silent” or “covert” brain injuries. These areas of CNS white matter infarction are mostly without immediate neurological expression but seem causally linked to at least accelerated cognitive decline (16).

SEE PAGE 2579

WHAT IS NEW?

In this issue of the *Journal*, Fan et al. (17) bring to our attention important DW-MRI data on CNS lesions or injuries in patients with BAVs who have severe AS treated with TAVR. DW-MRI was performed for baseline imaging and within the post-procedure optimal window.

Fan et al. (17) showed that patients with BAVs have an overt stroke rate slightly higher than that of patients with TAVs (2.4% vs. 1.7%) and comparable to already published data (12). In addition, patients with BAVs experienced more new silent brain injuries after TAVR in terms of both number and volume of lesions. This resulted in a nearly 3 times higher incidence of lesions larger than 1 cm^3 in BAVs than in TAVs (28.6% vs. 10.9%). These data were derived from the analysis of a single-institution cohort of 204 consecutive patients, including 83 BAVs (76 years; Society of Thoracic Surgeons score 6.0 ± 3.6) and 121 TAVs (79 years; Society of Thoracic Surgeons score 7.1 ± 4.2).

A higher proportion of patients with BAVs were treated with self-expandable valves.

These results must be interpreted cautiously in the context of a series of older adult Asian patients with BAVs (high prevalence of type 0) who had severe AS, were at intermediate risk, and were selected for TAVR by the heart team without randomization of TAVR devices.

Be that as it may, and before the multiple mechanisms of these lesions and their clinical impact are fully understood, we share the suggestions of Fan et al. (17) that an efficient embolic protection strategy is required. Specific device improvements are also needed, as well as procedure refinements. Finally, we concur as physicians with the cautious indications for TAVR in patients with BAVs as implicitly suggested here. Indeed, at a time when TAVR appears as a new paradigm for the treatment of severe AS in TAV regardless of the risk category (1,2), patients with a BAVs deserve special attention for optimal care. They are much younger than their TAV counterparts and are predominantly at lower risk according to current scoring systems. As such, both their lifestyle and life expectancy expose them to every unresolved issue of TAVR, namely suboptimal valve deployment and possibly accelerated valve failure, a need for pacemakers, and worrying neurological risk.

In this context, the option of modern SAVR, which is not exempt from CNS injury, either (18), but which may guarantee a properly fixed prosthesis and, as required, management of associated disease of the “BAV complex” (e.g., ascending aorta, impeachment of the anterior mitral leaflet, left ventricular outflow tract anomalies), is both efficient and currently performed mini-invasively. These 2 features confer the high value of SAVR in selected patients with BAVs without compromising late outcome.

AUTHOR DISCLOSURES

The authors have reported that they have no relationships relevant to the contents of this paper to disclose.

ADDRESS FOR CORRESPONDENCE: Dr. Marc A. Radermecker, Department of Cardiovascular and Thoracic Surgery, CHU Sart-Tilman, Avenue de l'Hôpital, 1, 4000 Liège, Belgium. E-mail: mradermecker@uliege.be. Twitter: [@UniversiteLiege](https://twitter.com/UniversiteLiege).

REFERENCES

- Popma JJ, Deeb GM, Yakubov SJ, et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. *N Engl J Med* 2019;380:1706-15.
- Mack MJ, Leon MB, Thourani VH, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. *N Engl J Med* 2019;380:1695-705.
- Phillips HM, Mahendran P, Singh E, Anderson RH, Chaudhry B, Henderson DJ. Neural crest cells are required for correct positioning of the developing outflow cushions and pattern the arterial valve leaflets. *Cardiovasc Res* 2013;99:452-60.
- Sutton JP 3rd., Ho SY, Anderson RH. The forgotten interleaflet triangles: a review of the surgical anatomy of the aortic valve. *Ann Thorac Surg* 1995;59:419-27.
- Sievers HH, Schmidke C. A classification system for the bicuspid aortic valve from 304 surgical specimens. *J Thorac Cardiovasc Surg* 2007;133:1226-33.
- Bauer T, Linke A, Sievert H, et al. Comparison of the effectiveness of transcatheter aortic valve implantation in patients with stenotic bicuspid versus tricuspid aortic valves (from the German TAVI Registry). *Am J Cardiol* 2014;113:518-21.
- Dvir D, Barbash IM, Ben-Dor I, et al. Paravalvular regurgitation after transcatheter aortic valve replacement: diagnosis, clinical outcome, preventive and therapeutic strategies. *Cardiovasc Revasc Med* 2013;14:174-81.
- Chamandi C, Barbanti M, Munoz-Garcia A, et al. Long-term outcomes in patients with new permanent pacemaker implantation following transcatheter aortic valve replacement. *J Am Coll Cardiol Intv* 2018;11:301.
- Perlman GY, Blanke P, Dvir D, et al. Bicuspid aortic valve stenosis: favorable early outcomes with a next-generation transcatheter heart valve in a multicenter study. *J Am Coll Cardiol Intv* 2016;9:817-24.
- Guyton RA, Padala M. Transcatheter aortic valve replacement in bicuspid aortic stenosis: early success but concerning red flags. *J Am Coll Cardiol Intv* 2016;9:825-7.
- Kroon H, von der Thesen JH, Ziviello F, et al. Heterogeneity of debris captured by cerebral embolic protection filters during TAVI. *EuroIntervention* 2020 Sep 8 [E-pub ahead of print].
- Makkar RR, Yoon SH, Leon MB, et al. Association between transcatheter aortic valve replacement for bicuspid vs tricuspid aortic stenosis and mortality or stroke. *JAMA* 2019;321:2193-202.
- Doerner J, Kupczyk PA, Wilsing M, et al. Cerebral white matter lesion burden is associated with the degree of aortic valve calcification and predicts peri-procedural cerebrovascular events in patients undergoing transcatheter aortic valve implantation (TAVI). *Catheter Cardiovasc Interv* 2018;91:774-82.
- Kahlert P, Al-Rashid F, Döttger P, et al. Cerebral embolization during transcatheter aortic valve implantation: a transcranial Doppler study. *Circulation* 2012;126:1245-55.
- Haussig S, Mangner N, Dwyer MG, et al. Effect of a cerebral protection device on brain lesions following transcatheter aortic valve implantation in patients with severe aortic stenosis: the CLEAN-TAVI randomized clinical trial. *JAMA* 2016;316:592-601.
- Goldberg I, Auriel E, Russell D, Korczyn AD. Microembolism, silent brain infarcts and dementia. *J Neurol Sci* 2012;322:250-3.
- Fan J, Fang X, Liu C, et al. Brain injury after transcatheter replacement of bicuspid versus tricuspid aortic valves. *J Am Coll Cardiol* 2020;76:2579-90.
- Messé SR, Acker MA, Kasner SE, et al. Stroke after aortic valve surgery: results from a prospective cohort. *Circulation* 2014;129:2253-61.

KEY WORDS aortic stenosis, aortic valve, bicuspid valve, cerebral injury, TAVR