THE ROLE OF NITRIC OXIDE ON THE ZONALLY AVERAGED STRUCTURE OF THE THERMOSPHERE: SOLSTICE CONDITIONS FOR SOLAR CYCLE MINIMUM

J.-C. GÉRARD
Institut d’Astrophysique, Université de Liège—4200 Cointe-Liège, Belgium

and

R. G. ROBLE
High Altitude Observatory, National Center for Atmospheric Research*, P.O. Box 3000, Boulder, CO 80307, U.S.A.

(Received 1 August 1985)

Abstract—A zonally averaged chemical-dynamical model of the Earth’s thermosphere is used to investigate the importance of nitric oxide 5.3-µm cooling in controlling the dynamic structure of the thermosphere. The model calculates the zonally averaged circulation, temperature, major atmospheric constituents, and the odd-nitrogen distributions self-consistently for solstice conditions during solar cycle minimum. The NO infrared cooling competes with downward molecular conduction in the upper thermosphere and reaches a maximum of ∼ 500 K day⁻¹ near 170 km at high summer latitudes. The primary effect of the 5.3-µm cooling is to weaken the summer-to-winter latitudinal temperature gradient, which in turn weakens the summer-to-winter meridional circulation. In the upper thermosphere NO 5.3-µm cooling reduces the summer-to-winter pole temperature difference by about 45 K with an 8 ms⁻¹ reduction in the zonally averaged meridional wind velocity. There are corresponding reductions in the vertical and mean zonal wind velocities. The reduction of the mean circulation and latitudinal temperature gradient results in changes in composition of about −40% for O₂ and +15% for O in the upper thermosphere at high summer latitudes. The results suggest that NO 5.3-µm cooling has an important effect on the overall dynamic structure of the thermosphere, and it should be particularly important during solar maximum conditions and geomagnetic storms when the NO densities and neutral gas temperature increase substantially.

1. INTRODUCTION

The vertical thermal structure of the thermosphere is controlled primarily by a balance between the absorption of solar u.v. radiation by atmospheric constituents and downward molecular conduction. High-latitude heat sources caused by auroral particle precipitation and Joule dissipation of auroral currents also contribute to the heat budget of the thermosphere. Until recently, it was generally assumed that the heat absorbed in the thermosphere was conducted downward to the vicinity of the lower thermosphere and upper mesosphere where it was ultimately radiated to space by optically active minor atmosphere constituents, such as CO₂ and O₃. The only in-situ radiative cooling mechanism considered in the thermosphere was the 63-µm emission from the O³P¹ → O³P₂ transition (Bates, 1951). A rocket measurement of the O³P emission rate between 90 and 180 km by Grossman and Offermann (1978) showed that the 63-µm emission rate was considerably smaller than what would be expected from local thermodynamic equilibrium. This measurement suggests that the 63-µm line is not in local thermodynamic equilibrium. A further reduction of the intensity of the 63-µm emission is caused by the optical thickness of the O³P₁ → O³P₂ transition below 150 km (Kockarts and Petermans, 1970). Consequently, O³P emission is now considered an inefficient cooling process of the thermosphere. In the absence of an efficient heat loss in the lower thermosphere, current models lead to two difficulties:

— the calculated temperature gradient is steeper than observed values near 120 km (Kockarts, 1975; Donahue and Carignan, 1975);
— the calculated global mean exospheric temperature is larger than measured values, especially during solar maximum activity periods (Roble and Emery, 1983).

The potential role of the fundamental band of nitric oxide at 5.3-µm in the heat budget was suggested by...
Gordiets and Markov (1977). This suggestion was
stimulated by the satellite observations of substantial
molecular emission in the 4.5–8.5-μm region by
Markov et al. (1977).

Ogawa (1976) and Gordiets et al. (1978) calculated
the 5.3-μm emission rate distribution from various
sources, some of which do not contribute to remove
heat from the ambient atmosphere. Enhancements of
the 5.3-μm band during periods of strong magnetic
activity were detected from the ground by Stair et al.
(1975), Rawlins et al. (1981) and Reidy et al. (1982)
measured emission rates in the 3–25 MR range at high
 latitudes. These emissions were associated with the
increase in NO concentration generated by the
interaction of auroral energetic particles with the
atmosphere. Kockarts (1980) showed that the NO
emission is never in local thermodynamic equilibrium
(LTE) above 120 km and demonstrated that this
process is important in the thermospheric energy
budget, especially at locations with large NO densities.
He gave an expression for the 5.3-μm cooling rate that
depends on the local temperature and atmospheric
densities. To reexamine the global average energy
budget of the thermosphere, Roble and Emery (1983)
solved the one-dimensional globally averaged heat
conduction equation balancing radiative sources and
sinks and downward conduction simultaneously with
the hydrostatic equation. They used updated absorption
cross-sections and u.v. solar fluxes based on
Atmosphere Explorer measurements and concluded
that the effect of the NO cooling on the global mean
temperature is small during solar minimum activity
periods but becomes important at solar cycle
maximum, when both NO and temperature are larger.
Gordiets et al. (1982) presented some numerical models
of the thermospheric heat budget and concluded that
radiational cooling by NO above 130 km and by CO₂
below 130 km dominate over eddy turbulent heat
dissipation. Their model also showed a considerable
reduction of the daily mean exospheric temperature
when the NO cooling term was included.

So far, discussions and analysis of the role of the NO
cooling have been based on one-dimensional descrip-
tions of the problem. Besides, the NO vertical profiles
adopted for these studies were somewhat arbitrary and
not necessarily consistent with the adopted tempera-
ture and neutral density distribution. In this study, we
use an updated version of the zonally averaged
chemical-dynamical model described by Roble and
Kasting (1984) (hereafter referred to as Paper I). The
steady-state perturbation temperature, wind com-
ponents, N₂, O₂ and O concentrations are calculated
from pole to pole in the upper mesosphere and
thermosphere. The NO density is calculated using the

two-dimensional odd-nitrogen model by Gérard et al.
(1984) (Paper II). The two models are coupled in such a
way as to obtain consistent values for the background
atmosphere and for the odd-nitrogen concentrations. A
solution without NO cooling is also compared with the
complete solution to quantitatively assess the
importance of the NO infrared emission on dynamics
and composition. Finally, a diagnostic package is used
to analyze the spatial distribution of the various terms
of the thermodynamic equation and evaluate the
relative importance of the NO cooling.

2. MODEL

The model used to calculate the zonally averaged
circulation, temperature and compositional structure
of the thermosphere in this study is based on that
described previously in Paper I. The Roble–Kasting
model itself was based on an earlier version, described
by Kasting and Roble (1981), which had been modified
to include high-latitude heat sources in addition to the
differential solar heating. This zonally averaged
chemical-dynamical model of the thermosphere
extends from 70 to 356 km and from pole to pole with a
latitudinal grid of 5° increments. This vertical grid uses a
"pseudo log pressure" coordinate z defined as:

$$z = -\log \left(\frac{P_r}{P_\infty} \right)$$

where r is the geocentric altitude, Pₙ is the pressure of an
atmosphere in diffusive equilibrium with a globally
averaged vertical temperature distribution Tₙ(r), and
P₀ is the pressure at 70 km. The model solves a system
of equations that includes the zonal and meridional
momentum and the thermodynamic, continuity,
hydrostatic, and diffusion equations for mass mixing
ratios of the major constituents. Consequently, the
model calculates the time-dependent two-dimensional
distributions of the major neutral constituents, O₂, N₂
and O; temperature; pressure; and mean zonal,
meridional, and vertical winds. The set of coupled
energy and momentum neutral gas equations and the
list of chemical reactions affecting odd-oxygen were
given by Kasting and Roble (1981). The major
modification in the context of this study is the addition
of a cooling term in the thermodynamic equation to
represent the i.r. emission of nitric oxide in the 5.3-μm
band. The formulation, given by Kockarts (1980), is
adopted and the cooling rate per unit mass due to NO
infrared emission is given by

$$Q_{NO} = \frac{hν}{ρ} [NO] A_{10} \exp \left(- \frac{hν}{kT} \right) \frac{k_{10}[O]}{k_{10}[O] + A_{10}},$$ \hspace{1cm} (1)
with:
\[h\nu = 3.73 \times 10^{-13} \text{ erg} \] the energy of photons in the 5.3-\(\mu\)m band;
\[\rho \] the local mass density;
\[A_{10} = 13.3 \text{ s}^{-1} \] the transition probability of the NO fundamental band;
\[k_{10} \] the vibrational relaxation coefficient of the process:
\[\text{NO}(v = 1) + \text{O} \rightarrow \text{NO}(v = 0) + \text{O}. \]

Atomic oxygen is considerably more effective than O_2 and N_2 in quenching vibrationally excited NO. We use the value \(k_{10} = 6.5 \times 10^{-11} \text{ cm}^3\text{s}^{-1} \) obtained at 300 K by Fernando and Smith (1979). The temperature dependence of this coefficient has not been determined, and so has been neglected in these calculations. A temperature dependence for this coefficient may quantitatively affect the results described below. The last term of equation (1) represents the departure from LTE (LTE corresponds to a value of 1 for this term). Actually, in the Earth's thermosphere this term is everywhere less than 1 and the 5.3-\(\mu\)m emission is not in LTE.

The nitric oxide concentration used in (1) is obtained from the 2-dimensional zonally averaged model of odd nitrogen described in Paper II. However, in order to calculate NO densities consistent with the major constituent concentrations and with the wind and temperature fields, the odd nitrogen model is coupled to the chemical-dynamical model. The NO distribution is recalculated at every time step by updating the production and loss terms and the vertical and meridional wind components \(w \) and \(v \) in the continuity equation, which controls the NO and N(4S) concentrations:

\[\frac{\partial n_i}{\partial t} = P_i - l_i n_i - \frac{\partial \phi_i}{\partial r} \]
\[- \left[\frac{1}{r^2} \frac{\partial (r^2 w)}{\partial r} - \frac{1}{r \sin \theta} \frac{\partial (v \sin \theta)}{\partial \theta} \right] n_i \]

where \(P_i \) and \(l_i \) are the chemical production and loss rates of \(n_i \), respectively, \(r \) and \(\theta \) the geocentric altitude and colatitude, and \(\phi_i \) the vertical molecular and eddy diffusion flux.

A 5-min time step is used to calculate the velocity and perturbation temperature fields. The chemical calculation is alternated with the dynamical calculation every 0.2 days to solve the continuity equations for the major constituents. The odd nitrogen is also updated every 0.2 days, and the new NO concentration is used to recalculate the net heating term of the thermodynamic equation at the following iteration. The boundary conditions are identical to those used in Papers I and II. In particular, the latitudinal profile of the meridional wind at the lower boundary condition is adopted from the model of Garcia and Solomon (1983). The initial major constituents, temperature, and wind fields are the solutions obtained in Paper I for conditions of moderate magnetic activity.

The odd-nitrogen concentrations calculated in Paper II for the "solar only" model with winds are used as initial values for the odd-nitrogen calculation. The combined system is integrated until it converges. Although the chemical-dynamical and odd-nitrogen models used for these calculations are similar to those described in Papers I and II, respectively, some changes have been made to update the photochemistry and ionization rates; these changes are described below.

The O_2 photolysis is produced by direct absorption of photons in the Schumann–Runge bands and continuum, and the Lyman-alpha line, and by indirect dissociation due to absorption of e.u.v. radiation. The dissociation rate in the Schumann–Runge continuum is now based on the parameterization given by Torr et al. (1980) which divides the 1375–1750 Å range into eight wavelength intervals. However, their values were based on the solar irradiance measurements by Heroux and Higgins (1977), which are globally 34% less than the high-resolution measurements by Rottman (1981). Consequently, the photodissociation rates have been recalculated for each interval by using the irradiance values listed by Rottman for 1972–1977 minimum solar activity conditions. The photoionization rates are calculated using the effective absorption and ionization cross-sections derived by Torr et al. (1979) for 37 intervals between 50 and 1050 Å. We have adopted the solar e.u.v. fluxes measured with the Atmosphere Explorer spectrometers during the minimum of the previous solar cycle. As previously, the e.u.v. O_2 dissociation rate is obtained by assuming that one O_2 molecule is dissociated for each absorption of an e.u.v. photon.

The latitudinal distribution of both the ionization by energetic particles and particle heating at high latitudes was previously modeled by a Gaussian function centered at 70° to represent the latitudinal distribution and a Chapman function for the altitude dependence. In the present model, the latitudinal distribution of the total particle energy flux is derived from the statistical analysis of the Atmosphere Explorer particle measurements by Spiro et al. (1982). Their table of auroral electron energy fluxes for values of the AE index < 300 nT was averaged over local time in order to obtain the mean latitudinal energy flux distribution \(F_{\theta}(\theta) \). The vertical distribution of the ionization rate
is given by:

\[P(z, \theta) = A P_e(\theta) \exp \left[1 - x - e^{-x} \right], \tag{3} \]

with

\[x = \frac{Z_A - Z}{D_H} \]

where \(D_H \) represents the topside scale height and \(Z_A \) the altitude of the peak ionization rate. This altitude is obtained by computing for each latitude bin the penetration depth of the electrons with initial energy \(E_0 \) using the energy-range relationship given by Lazarev (1967).

The latitudinal distribution of the characteristic energy is again obtained by zonally averaging the observational results of Spiro et al. (1982) for low magnetic activity conditions.

The value of the constant \(A \) in (3) is obtained by normalizing the spherical integral of \(P(z, \theta) \) to the total particle energy input. This energy input is calculated by partitioning the total planetary energy input into particle, Joule, and conduction heating in a way similar to Paper I. For example, it is assumed that Joule heating is 2.5 times stronger in the summer than in the winter hemisphere (Dickinson et al., 1977; Roble et al., 1977), but particle heating is equal in both hemispheres. The total global energy heating of magnetospheric origin is \(5 \times 10^{10} \) W, as assumed in Paper I to model magnetically quiet periods.

3. RESULTS

3a. Dynamics

The calculated circulation and temperature are illustrated in Fig. 1 for the case when the NO cooling term is included in the thermodynamic equation. They correspond to the same geophysical conditions as Fig. 4 of Paper I except for the presence of the 5.3-\(\mu \)m emission term in the thermodynamic equation. The summer-to-winter meridional wind (\(u \)) reaches peak values of about 30 ms\(^{-1} \) near 60\(^\circ \) in the summer hemisphere (Fig. 1a). This maximum is associated with the location of the auroral Joule heating source, which reinforces the solar-driven meridional circulation. In the winter hemisphere, a high-latitude reverse cell opposes the mean summer-to-winter circulation as a consequence of the high-latitude heating. This pattern is very similar to that obtained by Roble and Kasting (1984) although the maximum velocity has decreased from over 35 ms\(^{-1} \) to about 30 ms\(^{-1} \). The size of the winter polar reverse cell is also smaller than before.

The zonal wind (\(w \)) field shown in Fig. 1b is directed eastward in the winter and westward in the summer hemisphere. The zonal jets peak near the lower boundary as a consequence of the boundary prescriptions as discussed in Paper I. The zonal velocities decrease at higher altitude as a result of the F-region ion drag. A secondary maximum is localized near 65\(^\circ \) in summer and is associated with the Coriolis torque acting on the peak of the meridional wind. The reversal of the zonal wind direction above 60\(^\circ \) and 240 km is caused by the equatorward flow generated by the high-latitude Joule heating. This pattern is again qualitatively similar to the results of Paper I, but the extent of the westward cell in winter and the magnitude of the wind have decreased.

The calculated distribution of temperature perturbation \(\Delta T \) from the global mean is illustrated in Fig. 1c. The perturbation temperature reaches about 130 K near the summer pole at high altitudes and decreases to about 30 K near 50\(^\circ \) in summer. Near the winter pole \(\Delta T \) rises to about 10 K as a result of the high-latitude heating. This structure is caused by the high-latitude heat source which moves the temperature minimum away from the pole. Near 110 km, the latitudinal temperature gradient is reversed, with values of \(\Delta T \) about 50 K at high winter latitudes and about 10 K at the summer pole. Comparison with Fig. 4c of Paper I shows that the latitudinal gradient of temperature at high altitudes is reduced from about 190 to 150 K. As will be discussed below, this is a direct consequence of the inclusion of the NO cooling term in the thermodynamic equation. Adiabatic heating and cooling are largely responsible for the reversal of the temperature gradient in the lower thermosphere, as will be discussed in a later section.

The calculated vertical wind (\(w \)) shown in Fig. 1d is upward in the poleward section of the summer hemisphere as an effect of the thermal expansion due to the solar and high-latitude heating. The maximum velocity of about 100 cm s\(^{-1} \) is reached over the summer pole. A downward motion is obtained in most of the winter hemisphere, but a rising motion is generated by the high-latitude heat source near the winter pole. The general pattern is similar to Fig. 4 of Paper I with a reduction of the maximum upward wind in summer and near the winter pole.

3b. Composition

The \(\text{O}_2 \), \(\text{O} \) and \(\text{N}_2 \) zonal mean concentrations associated with the circulation pattern are shown in Fig. 2. It shows the same global structure as Fig. 5 of Paper I, although the absolute densities are somewhat different. Two peaks of atomic oxygen reaching \(\sim 3 \times 10^{11} \) cm\(^{-3} \) are obtained in the lower thermosphere near 60\(^\circ \) in winter and near the summer pole. The equatorial trough in \(\text{O} \) results from the maximum of the
winter hemisphere, the vertical distribution curve becomes very flat and, at latitudes above 70°, the NO density decreases monotonically with altitude from the mesosphere to the upper thermosphere. This shape is due to the absence of solar radiation and thus of NO photolysis in this region. As a consequence, the nitric oxide produced in the thermosphere by ion-molecule reactions and particle-induced dissociation is carried downward by turbulent transport. These characteristics of the NO two-dimensional distribution are also in agreement with the results by Solomon et al (1982). In the F-region, the NO summer densities exceed the winter values by a factor of 4.

This difference is explained by the asymmetry in the temperature field and the O₂ compositional distribution. At high altitudes, the major source of NO is the reaction between O₂ and ground state N(^4)S atoms:

\[\text{N}(^4\text{S}) + \text{O}_2 \rightarrow \text{NO} + \text{O}, \]

whose rate coefficient is strongly temperature dependent. Consequently, the production rate and the concentration of NO is substantially larger near the summer pole, which is about 130 K warmer than the winter pole. In comparison with the results of Paper II, the lower peak NO concentration near 70° in summer and the absence of a peak in the winter auroral zone are due primarily to the different latitude and altitude distribution of the ionization source and to a minor extent to the slightly different neutral composition.

The NO meridional distribution calculated in Paper
II was shown to be in good agreement with the available satellite measurements of the latitudinal distribution during solar minimum cycle conditions at solstice (Cravens et al., 1986). Since the shape of the distribution and the absolute concentrations are not considerably different from the results of Paper II, the values in Fig. 3 may also be considered as a valid representation of the nitric oxide distribution for periods of low geomagnetic activity.

3c. Effect of the 5.3 μm cooling

In order to make a detailed evaluation of the role of the 5.3-μm cooling, the two-dimensional calculations were repeated with the Q_{NO} term set to zero in the thermodynamic equation. The initial wind, temperature, background composition, and NO density fields were identical, and the two calculations were made over the same model time. In this way, any difference between the two sets of results reflects the effect of the NO 5.3-μm band.

Figure 4 illustrates the differences on the dynamic fields u, v, ΔT, and w obtained by subtracting the solution for the $Q_{\text{NO}} = 0$ case from the solutions shown in Fig. 1.

The calculated difference in temperature shown in Fig. 4c results from the combination of the direct effect of Q_{NO} on the net heating rate Q' and the indirect consequences of perturbations in the wind and composition fields. The importance of the various terms will be described quantitatively below. The most conspicuous effect of nitric oxide in Fig. 4c is to decrease the temperature in the summer hemisphere and increase it in the winter hemisphere. The maximum difference is nearly -30 K at 180 km at the summer pole and 22 K near the upper boundary at the winter pole. Since the calculated summer thermosphere is about 120 K warmer than the winter hemisphere, the effect of the 5.3-μm emission is to decrease the temperature contrast between the two hemispheres by about 40 K. This difference is explained by the larger NO concentrations and perturbation temperatures obtained in the summer hemisphere (Fig. 3), which tend to cool the summer hemisphere more efficiently. Another region of temperature decrease is observed near 120 km at high winter latitudes and is associated with the large NO concentrations in the dark polar lower thermosphere. The globally averaged temperature $T_e(x)$ used in this model is identical to that used by Kasting and Rode (1981). It corresponds to an exospheric temperature of 820 K and was obtained from the MSIS model atmosphere for solar minimum conditions above 120 km ($F_{10.7} = 80$, $A_p = 4$) smoothly connected to the 1976 U.S. Standard Atmosphere below. Since the diabatic heating term in the second member of the energy equation represents the perturbation heating with respect to the mean value, only temperature perturbations from the global average may be obtained with this model. Consequently, this approach does not provide any estimate of the decrease in the global temperature due to the NO cooling, but it yields the thermal differences from a prescribed global average value.

The differences in the wind components are shown in Fig. 4a, b, and d in cm s$^{-1}$. The high-altitude meridional wind velocity (Fig. 4a) is decreased by up to 8.5 m s$^{-1}$ by the NO cooling. This weakening of the summer-to-winter meridional wind is a consequence of the lower latitudinal temperature gradient shown in Fig. 4c. The zonal wind pattern is mostly affected in the upper thermosphere. The lower altitude zonal wind is controlled primarily by the value of the meridional wind at the lower boundary which is identical for both cases. The westward flow in the summer hemisphere and the eastward flow in winter are both weakened by the presence of the 5.3-μm cooling, with the exception of the intensification of the eastward flow at high winter latitudes. An increase of the zonal circulation is also produced near 125 km at summer mid-latitudes. The vertical wind circulation (Fig. 4d) is also weakened by the NO cooling. The upwelling and downwelling, in the summer and winter hemisphere respectively, are decreased by about 20%. The general conclusion is that the major effect of the 5.3-μm NO cooling is to weaken the circulation driven by the solar and magnetospheric
II was shown to be in good agreement with the available satellite measurements of the latitudinal distribution during solar minimum cycle conditions at solstice (Cravens et al., 1986). Since the shape of the distribution and the absolute concentrations are not considerably different from the results of Paper II, the values in Fig. 3 may also be considered as a valid representation of the nitric oxide distribution for periods of low geomagnetic activity.

3c. Effect of the 5.3 \(\mu \text{m} \) cooling

In order to make a detailed evaluation of the role of the 5.3-\(\mu \text{m} \) cooling, the two-dimensional calculations were repeated with the \(Q_{\text{NO}} \) term set to zero in the thermodynamic equation. The initial wind, temperature, background composition, and NO density fields were identical, and the two calculations were made over the same model time. In this way, any difference between the two sets of results reflects the effect of the NO 5.3-\(\mu \text{m} \) band.

Figure 4 illustrates the differences on the dynamic fields \(u, v, \Delta T, \) and \(w \) obtained by subtracting the solution for the \(Q_{\text{NO}} = 0 \) case from the solutions shown in Fig. 1.

The calculated difference in temperature shown in Fig. 4c results from the combination of the direct effect of \(Q_{\text{NO}} \) on the net heating rate \(Q' \) and the indirect consequences of perturbations in the wind and composition fields. The importance of the various terms will be described quantitatively below. The most conspicuous effect of nitric oxide in Fig. 4c is to decrease the temperature in the summer hemisphere and increase it in the winter hemisphere. The maximum difference is nearly \(-30\) K at 180 km at the summer pole and \(22\) K near the upper boundary at the winter pole. Since the calculated summer thermosphere is about \(120\) K warmer than the winter hemisphere, the effect of the 5.3-\(\mu \text{m} \) emission is to decrease the temperature contrast between the two hemispheres by about \(40\) K. This difference is explained by the larger NO concentrations and perturbation temperatures obtained in the summer hemisphere (Fig. 3), which tend to cool the summer hemisphere more efficiently. Another region of temperature decrease is observed near 120 km at high winter latitudes and is associated with the large NO concentrations in the dark polar lower thermosphere. The globally averaged temperature \(T(z) \) used in this model is identical to that used by Kasting and Roble (1981). It corresponds to an exospheric temperature of \(820\) K and was obtained from the MSIS model atmosphere for solar minimum conditions above 120 km (\(F_10.7 \) cm = 80, \(A_p = 4 \)) smoothly connected to the 1976 U.S. Standard Atmosphere below. Since the diabatic heating term in the second member of the energy equation represents the perturbation heating with respect to the mean value, only temperature perturbations from the global average may be obtained with this model. Consequently, this approach does not provide any estimate of the decrease in the global temperature due to the NO cooling, but it yields the thermal differences from a prescribed global average value.

The differences in the wind components are shown in Fig. 4a, b, and d in cm s\(^{-1}\). The high-altitude meridional wind velocity (Fig. 4a) is decreased by up to \(8.5\) m s\(^{-1}\) by the NO cooling. This weakening of the summer-to-winter meridional wind is a consequence of the lower latitudinal temperature gradient shown in Fig. 4c. The zonal wind pattern is mostly affected in the upper thermosphere. The lower altitude zonal wind is controlled primarily by the value of the meridional wind at the lower boundary which is identical for both cases. The westward flow in the summer hemisphere and the eastward flow in winter are both weakened by the presence of the 5.3-\(\mu \text{m} \) cooling, with the exception of the intensification of the eastward flow at high winter latitudes. An increase of the zonal circulation is also produced near 125 km at summer mid-latitudes. The vertical wind circulation (Fig. 4d) is also weakened by the NO cooling. The upwelling and downwelling, in the summer and winter hemisphere respectively, are decreased by about \(20\%\). The general conclusion is that the major effect of the 5.3-\(\mu \text{m} \) NO cooling is to weaken the circulation driven by the solar and magnetospheric
heating sources. This cooling term Q_{NO} has a two-fold dependence on temperature. It depends directly on T by the exponential term in equation (1) and indirectly through the NO density, which, in the upper thermosphere, also increases with temperature. Consequently, this cooling term maximizes in the warmest regions of the thermosphere, tending to decrease the latitudinal temperature gradients and slow down the circulation. The effects on dynamics also generate changes in composition. Figure 5 shows the fractional change of the O_2, N_2 and O densities produced by the Q_{NO} term. Both O_2 and N_2 densities increase in the winter hemisphere and decrease in summer. The magnitude of the relative perturbation, however, is different. It reaches over 20% of the O_2 and 5% of the N_2 densities at 200 km. These changes are a consequence of the perturbation of the temperature distribution and scale heights and of the vertical wind velocity. The atomic oxygen density varies by up to 15%. An increase of O is calculated over most of the thermosphere with the exception of a latitudinal zone centered on 50° latitude in the winter hemisphere. This complex behaviour is partly explained by the weakening of the summer-to-winter circulation, which transports the atomic oxygen produced in the summer hemisphere into the winter regions. Another factor is
the decrease in vertical velocity, which causes less upwelling of O_2 and N_2 in the auroral regions.

4. THE THERMODYNAMIC EQUATION

The primary effect of the NO cooling in the thermosphere is to perturb the thermospheric temperature distribution as illustrated in Fig. 4c. These changes in the temperature distribution modify in turn the global-scale transport, which subsequently perturbs the chemical composition. The role of the 5.3-μm NO radiation can be evaluated by comparing its values with the other terms of the energy equation. For this purpose, a diagnostic package has been developed to evaluate the different terms of the thermodynamic equation from the final solution.

The zonally averaged thermodynamic equation may be written:

$$\frac{\partial T}{\partial t} = \frac{1}{\rho H_o c_v} \left(\kappa \frac{\partial T}{\partial z} - \frac{v}{r} \left(\frac{\partial T}{\partial \theta} - \frac{kT}{mc_v} \frac{\partial \ln \rho}{\partial \theta} \right) \right) + \frac{Q}{c_v} - w \left(\frac{\gamma}{H_o} \frac{\partial T}{\partial z} \frac{g}{c_v} \right), \quad (4)$$
with:

\(z \) the pseudo-log pressure vertical coordinate,

\(\theta \) the geographic colatitude,

\(t \) time,

\(T \) temperature,

\(T_0(z) \) global mean temperature profile,

\(\rho \) the mass density,

\(H_o \) the scale factor \((= kT_o/mg) \),

\(m \) the mean molecular mass,

\(\kappa \) the thermal (molecular + eddy) conductivity,

\(v \) the southward velocity,

\(w \) the "vertical" velocity \((= \Delta z/\Delta t) \),

\(c_v \) the specific heat at constant volume,

\(\gamma \) the ratio of specific heats \((= c_p/c_v) \),

\(g \) the gravitational acceleration,

\(Q \) the net diabatic heating rate per unit mass.

Expanding the term \(Q \), we may write the second member of (4) as the sum of eight terms:

\[
\frac{dT}{dt} = Q_s + Q_m + Q_{ch} + Q_{cond} + Q_{comp} + Q_{adv} + Q_{CO_2} + Q_{NO}.
\]

with:

\(Q_s \) the solar heating,

\(Q_m \) the magnetospheric heating, which is composed of Joule, particle, and plasma conduction heating,

\(Q_{ch} \) the chemical heating due to the atomic oxygen recombination,

\(Q_{cond} = \frac{1}{\rho c_v H_o} \frac{\partial}{\partial z} \left[\frac{(\kappa_m + \kappa_E)}{H_o} \frac{\partial T}{\partial t} \right] \),

the thermal conduction due to molecular and eddy heat conductivity. The eddy conductivity \(\kappa_E = 2.5 \, c_v \mu_E \) and the eddy viscosity \(\mu_E \) parameterize the vertical transport of heat by turbulent transport which dominates over molecular conductivity \(\kappa_m \) below the turbopause,

\(Q_{comp} = \frac{kT}{m c_v} \left(\frac{v \partial \ln \rho}{\partial \theta} + \frac{w \partial \ln \rho}{H_o \partial z} \right) \),

the compressional adiabatic heating,

\(Q_{adv} = -\frac{v \partial T}{r \partial \theta} - \frac{w \partial T}{H_o \partial z} \),

the \((-v \cdot \text{grad} \, T)\) temperature advection,

\(Q_{CO_2} \) the infrared radiative cooling by \(CO_2 \). Above 90 km, this term is calculated by using a Newtonian cooling coefficient based on the complete non-LTE approximation given by Dickinson et al. (1975) [Between 70 and 90 km, the cooling coefficient is linearly interpolated between the non-LTE value at 90 km and the value calculated by Dickinson (1973) at 70 km],

\(Q_{NO} \) the NO infrared radiation described before and given by expression (1).

Values of the eight terms have been contoured and are displayed in Figs. 6a–h in units of Kelvins per day. The solar heating term \(Q_s \) (a) peaks at 220 km, the altitude of maximum absorption of ultraviolet solar radiation. The magnetospheric heating source \(Q_m \) (b) maximizes at high polar latitudes with a secondary peak at 180 km near 70°. It makes a negligible contribution below 40° but exceeds the \(Q_s \) term in the high-latitude winter region.

The chemical heating \(Q_c \) (c) is confined to the lower thermosphere and is due to the \(O + O + M \rightarrow O_2 + M \) reaction, which releases 5.11 eV. As expected, its distribution resembles the \(O \) density contour in Fig. 2b. Although this term is only a fraction of \(Q_s \) in summer, it becomes the major heat source near 100 km in the winter polar cap. Molecular conduction (d) is a heat sink in the thermosphere above \(\sim 115 \) km since this process carries heat downward into the lower thermosphere where it is radiated away by \(CO_2 \) and NO. This is the dominant heat-loss term in the upper thermosphere at all latitudes. Below 100 km, the structure of this term is an effect of eddy conduction. Figure 6e shows the adiabatic heating and cooling term \(Q_{comp} \). In general, the summer hemisphere is cooled by the adiabatic expansion of the rising gas, and most of the region is heated by the compression accompanying the descending flow described in Fig. 1. However, a cooling cell is observed above 160 km at high winter latitudes. This expansion cell is associated with the upwelling generated by the heat source shown in Fig. 6d. The heat advection term \(Q_{adv} \) is shown in Fig. 6f. This term may be a source or a sink of heat, depending on the sign of the \(v \cdot \text{grad} \, T \) term. It maximizes as a sink near 160 km in the summer hemisphere, where heat is transported away by the vertical and meridional wind. The same occurs at winter high latitudes, where the heat of magnetospheric origin is convected away by the high-latitude reverse cell.

The \(CO_2 \) radiation cooling term is contoured in Figure 6g. It becomes important below 110 km and increases toward lower altitudes. Its value decreases from the summer to the winter pole as a result of the latitudinal temperature gradient. Finally, contours of the NO 5.3-μm radiative term are shown in Fig. 6h. This term peaks nears 170 km in summer and 145 km in winter, the largest value (600 K day\(^{-1}\)) being reached at the summer pole. At all latitudes, \(Q_{NO} \)
FIG. 6. CONTOURS OF THE VARIOUS HEATING AND COOLING TERMS OF THE THERMODYNAMIC EQUATIONS IN K day\(^{-1}\).
(a) Solar u.v. and e.u.v. heating; (b) magnetospheric heating; (c) chemical heating; (d) transport by conduction;
(e) adiabatic heating or cooling; (f) heat advection; (g) CO\(_2\) cooling; (h) NO cooling. The shaded areas indicate regions of cooling.
decreases from the summer to the winter pole. Three factors control the distribution of Q_{NO}: the local temperature and the NO and O densities. In the thermosphere, both NO and temperature are larger in the summer than in the winter hemisphere. Consequently, the Q_{NO} term maximizes in the warmer summer hemisphere. The secondary maximum obtained at 80° in winter is associated with the large NO concentration generated in the auroral zone by energetic particle precipitation.

The relative importance of the various cooling and heating terms depends on altitude and latitude. Some of them make a substantial contribution to the energy budget over large regions of the thermosphere, while others only play a significant role in regions confined in latitude or altitude. This is illustrated in Fig. 7, which shows the vertical distribution of the various terms of equation (3) at 70° latitude in summer. At this latitude, the heat source terms are Q_s, Q_m and Q_comp, whereas Q_{adv}, Q_{CO_2} and Q_{NO} represent sinks at all altitudes. Advection is a heat source at high altitudes and a sink at lower altitudes.

Conduction Q_{cond} is negative above 140 km and positive below, due to the effect of eddy conductivity. The dominant heat sources are solar and magnetospheric heating. Chemical heating makes a small and localized contribution at this latitude but becomes the dominant heating term near 100 km at high winter latitudes. Conduction dominates heat loss in the upper thermosphere. Near 150 km, NO cooling becomes more important and competes with adiabatic expansion and heat advection below this altitude. At still lower altitudes, CO$_2$ i.r. cooling becomes dominant.

5. SUMMARY AND CONCLUSIONS

The use of a coupled two-dimensional dynamical-chemical model of the background atmosphere and odd-nitrogen concentrations has permitted a self-consistent examination of the effect of nitric oxide on thermospheric dynamics and composition. We find that the main effect of the inclusion of the NO 5.3-μm radiation is to decrease the latitudinal temperature contrast between the summer and winter hemispheres. A temperature decrease of about 20 K is predicted in the summer upper thermosphere, which is warmer and richer in nitric oxide than the winter thermosphere. The summer to winter meridional circulation and the zonal wind field are reduced above 130 km as a result of the thermostatic effect of the NO infrared cooling. The neutral composition is also modified by the perturbation of the dynamic fields: N$_2$ and O$_2$ are decreased in the summer thermosphere by up to 10 and 40%, respectively. Atomic oxygen is larger by about 15% near 170 km at the summer pole. Again, NO radiative cooling tends to weaken the latitudinal composition gradient. Roble and Emery (1983) demonstrated the importance of nitric oxide on the control of the globally averaged exospheric temperature, especially during periods of maximum solar activity. Besides, other studies have indicated that the NO cooling reduces the amplitude of the diurnal variation of the exospheric temperature (Gordiets et al., 1982) and decreases the steepness of the temperature gradient in the lower thermosphere (Kockarts, 1980). The effect of the 5.3-μm band is complex since the magnitude of the NO cooling depends strongly on temperature and nitric oxide concentration. The NO distribution, in turn, is partly controlled by the temperature structure and chemical composition of the thermosphere. Satellite measurements (Rusch and Barth, 1975; Gérard and Barth, 1977; Cravens and Stewart, 1978; Stewart and Cravens, 1978; Cravens et al., 1986) and model calculations (Strobel, 1971; Rees and Roble, 1979; Cravens et al., 1979; Rusch and Sharp, 1981; Gérard et al., 1984) have shown that the nitric oxide distribution depends in a complex way on latitude, local time, solar cycle, and magnetic activity. It is thus expected that the importance of the 5.3-μm cooling is also fairly variable in time and space. The geophysical conditions modeled in this study correspond to magnetically quiet periods at solar minimum solstice conditions for which the exospheric
temperature (global mean value = 820 K) and NO concentrations are relatively small (\(\approx 10^7\) cm\(^{-3}\) peak value near the equator). Even for these quiet conditions, NO radiative cooling perturbs the thermospheric dynamics and composition of the thermosphere. It is likely that the magnitude of this perturbation is larger during periods of higher u.v. solar flux and magnetic activity. Nitric oxide thermospheric concentrations depend on the magnitude of the ionospheric odd-nitrogen sources and N\(_2\) dissociation rate which react to the modulation of the solar e.u.v. fluxes by the 11-year solar cycle (Garcia et al., 1984). Magnetic storms generate temperature enhancements due to large Joule heating and increase the high-latitude production of NO by energetic particles. During these periods, large amounts of NO are present in the high-latitude thermosphere (Narcisi and Swider, 1976; Swider, 1978; Gérard et al., 1983), and large 5.3-\(\mu\)m emission rates have been observed (Reidy et al., 1982).

Acknowledgments—One of the authors (J.-C.G.) is supported by the Belgian Foundation for Scientific Research (FNRS). This work was supported in part by NATO Cooperative Research Grant no. 166/84 and by FRFC grant no. 2-4507-82. We acknowledge the National Center for Atmospheric Research for computing time. NCAR is sponsored by the National Science Foundation. We thank E. Deneye for his computational help.

REFERENCES