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Abstract— Multi-agent systems in biology, society, and engi-
neering are capable of making decisions through the dynamic
interaction of their elements. Nonlinearity of the interactions
is key for the speed, robustness, and flexibility of multi-agent
decision-making. In this work we introduce modulatory, that is,
multiplicative, in contrast to additive, interactions in a nonlinear
opinion dynamics model of fast-and-flexible decision-making.
The original model is nonlinear because network interactions,
although additive, are saturated. Modulatory interactions intro-
duce an extra source of nonlinearity that greatly enriches the
model decision-making behavior in a mathematically tractable
way. Modulatory interactions are widespread in both biological
and social decision-making networks; our model provides new
tools to understand the role of these interactions in networked
decision-making and to engineer them in artificial systems.

I. INTRODUCTION

We recently introduced a general, mathematically
tractable, nonlinear opinion dynamics (NOD) model of fast-
and-flexible multi-agent, multi-option decision-making [1],
[2], [3]. The model consists of a network of first-order
dynamics with saturated network interactions and exogenous
inputs. It is closely related to both bio-inspired [4] and
artificial [5] recurrent neural networks models. It is also
reminiscent of continuous-time models of gene regulatory
networks [6] with linear degradation dynamics and saturated
Hill-type [7] molecular interactions. It has been used to
model and analyze biological [8] and sociopolitical [9], [3]
collective decision-making as well as to engineer a number
of decision-making behaviors [10], [11], [12], [13], [14].

In our NOD, a linear term models negative feedback
regulation of opinions towards a neutral (unopinionated)
state. Saturated network interactions model nonlinear opinion
exchanges that can amplify the information brought by
exogenous inputs through positive feedback and trigger fast
and strong opinion formation. The balance between negative
and positive feedback is tuned by an attention parameter
that models the agents’ level of engagement in the decision-
making process. When positive and negative feedback are
perfectly balanced, the model undergoes a bifurcation at
which the neutral state becomes unstable and strong opinions
are formed. This opinion-forming bifurcation is the key
determinant of decision-making that is fast (i.e., indecision
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is broken as soon as it becomes costly) and flexible (i.e., it
has tunable sensitivity to inputs) [2].

In the original NOD model [1], [2], [3] network inter-
actions are saturated but otherwise additive. We provide
ample evidence in Section II that neural, biological, and
sociopolitical decision-making networks also use triadic [15]
interactions to dynamically modulate the weights of additive
interactions. We introduce such modulatory interactions as
multiplicative terms between opinions. The NOD model
in [1], [2], [3] cannot systematically represent the effect
of modulatory interactions. Here, we extend this NOD
model to include modulatory network interactions inspired
by modulatory interactions observed in nature and society.
We analyze how opinion-forming bifurcations are shaped by
these interactions, and explore their use to engineer more
complex decision-making behavior in autonomous agents in
a mathematically tractable way.

The paper contributions are the following. i) We define
a parametrization of modulatory interactions in the NOD
model introduced in [1], [2], [3]. ii) We analyze how mul-
tiplicative interactions shape the model’s opinion-forming
bifurcation behavior and we provide a thorough interpretation
of the analytical results in terms of fast-and-flexible decision-
making. iii) We use modulatory interactions to augment a
recently introduced NOD-based robotic obstacle avoidance
controller [12] and provide it with the capacity to make
decisions exclusively under specific conditions, termed here
conditional decision-making.

The paper is organized as follows. In Section II we
review evidence of modulatory interactions in nature and
society, and discuss their potential in engineered systems.
In Section III we define the general nonlinear opinion
dynamics model with modulatory interactions and discuss
its interpretation and possible generalizations. In Section IV
we illustrate the main ideas and results of the paper on a
representative example. Section V presents the main ana-
lytical results of the paper and thoroughly discusses their
consequence for the mathematical tractability of the model.
Section VI applies the main results of the paper to analyze
how modulatory interactions shape opinion formation in a
multi-agent two-option NOD model of modulatory social
influence and in a single-agent multi-option NOD model of
robotic navigation.

II. MODULATORY INTERACTIONS IN BIOLOGICAL,
SOCIAL, AND ARTIFICIAL DECISION-MAKING NETWORKS

We describe several examples of the occurrence and
relevance of modulatory interactions in biological and so-
cial systems, and propose their implementation in artificial



Fig. 1. Top left: Neuron A excites or inhibits Neuron B through additive
synaptic inputs. Neuron C modulates the strength of this interaction through
multiplicative dendritic and neuromodulatory inputs. Top right: Gene A
regulates the expression of Gene B through transcription factors. Gene C
modulates the strength of this regulation. Bottom left: Human A influences
the opinion of Human B through verbal information exchange. Human C
changes the strength of this influence by modulating the confidence that B
has on A. Bottom right: In nonlinear opinion dynamics, an opinion state xi

has either a positive or negative effect on another opinion state xj through
saturated additive interactions. Introducing multiplicative interactions, a
third opinion state xk modulates how strong these effects are.

systems by suitably augmenting NOD.
Neural Networks. Recent evidence [16], [17], [18] sug-

gests that multiplicative interactions between neurons (Fig. 1,
top left), implemented through nonlinear dendrites and neu-
romodulation, play a key role in many kinds of neural com-
putation. A fundamental building block of artificial neural
networks, the Gated Recurrent Unit (GRU), is also defined
by multiplicative interactions [19].

Gene Regulatory Networks. The modulation of the gene
transcription machinery, and its effects on gene expression
regulation, have been studied both in prokaryotes [20] and
eukaryotes [21]. This kind of molecular modulatory interac-
tions can naturally be modeled as multiplicative interactions
in gene regulatory network models [6] (Fig. 1, top right).

Social networks. Modulatory interactions between social
agents are often introduced into basic social network models
like the DeGroot model [22], (Fig. 1, bottom left). Ex-
amples include models of asymmetric political polarization
in the United States Congress [9], epidemics models with
risk aversion [23], and war-peace transitions in neighboring
nations [24]. As in the model we introduce in this paper, all
the models above use multiplicative terms between opinion
states to capture the effects of modulatory interactions.

NOD for autonomous agent control. The nonlinear opin-
ion dynamics in [1], [2], [3] have recently been used for
the control of autonomous agents, including self-driving
cars [13], robotic obstacle avoidance [12], and unmanned
surface vehicles [25]. Inspired by the widespread occurrence
of modulatory interactions in biological and social systems,
in Section VI-B we show how the NOD with modulatory
interactions introduced in the next section (Fig. 1, bottom
right) provide the means to enable conditional fast-and-

flexible decision-making in the NOD model proposed in [12]
for robot navigation.

III. A TRACTABLE NOD MODEL WITH MODULATORY
INTERACTIONS

The proposed NOD with modulatory interactions for a
group of agents forming opinions about two options is

τ ẋi = −xi + bi + S

 N∑
j=1

aij

(
u0 +

N∑
k=1

mijkx
n
k

)
xj

 ,

(1)

i = 1, . . . , N , which can also be written in vector form as

τ ẋ = −x+ b+ S((u01N1T
N + M̃(x))⊙A · x) (2)

where 1N = [1, . . . , 1]T ∈ RN , ⊙ represents element-wise
multiplication (Hadamard product), τ is the characteristic
timescale, x = [x1, . . . , xN ]T ∈ RN represents the agents’
opinion states, xi > 0 (resp. xi < 0) means a preference
for option 1 (resp. option 2), b = [b1 · · · bN ]T ∈ RN

are exogenous inputs that can bias the decision-making
behavior, and n ∈ N>0 is the order of the modulatory
interaction. A = [aij ]

N
i,j=1 is a matrix of interaction weights

that determines the additive effect of the opinion of agent
j on the opinion of agent i. The agent’s attention U(x) =
u01N1T

N + M̃(x) is the sum of the basal attention u0 that
an agent is paying to its neighbors’ opinions when x = 0
and the modulatory term M̃(x) = [m̃ij(x)]

N
i,j=1, where

m̃ij(x) =
∑N

k=1 mijkx
n
k , determines the effect of modula-

tory interactions on the attention paid to specific neighbors.
In particular, mijk determines the sign and strength of the
modulatory effect that the opinion of agent k has on aij .
That is, the attention paid by agent i to agent j is affected
by the state of agent k through the modulatory term mijkx

n
k .

Modulatory interactions thus generalize the state-dependent
attention mechanism introduced in [1], [26], [11], which is
key for speed and flexibility of decision-making. Finally,
S(x) = [S(x1), · · ·S(xN )], with S : R → R, is a vector of
smooth sigmoidal saturating functions satisfying S(0) = 0,
S′(0) = 1, S′′(0) = 0. To model symmetry between options
in the absence of inputs, it is natural to assume that S is
odd-symmetric. Here, we simply assume S(·) = tanh(·).

Alternatively, model (1) can be interpreted as a modulated
NOD for a single agent forming opinions about N options. In
this case, xi is the agent’s opinion about option i, where xi >
0 (xi < 0) means that the agent favors (disfavors) option
i, aij is the weight with which the agent’s opinion about
option i additively affects its opinion on option j, and mijk

is the weight with which the agent’s opinion about option k
modulates aij . In the single-agent, multi-option interpretation
of (1), S does not need to be odd-symmetric because there
is no natural symmetry between favoring or disfavoring an
option. Here, we assume S is a shifted tanh function, i.e.,
S(·) = tanh(·−s)+tanh(s)

1−tanh(s)2 , s ∈ R.
Similarly to the original, non-modulated NOD model, the

magnitude of the basal attention u0 tunes the balance be-
tween the negative feedback regulation provided by the linear



term in (1) and the positive feedback amplification provided
by the saturated networked term. For sufficiently large basal
attention, positive feedback dominates, which destabilizes the
neutral state x = 0 in an opinion-forming bifurcation that
organizes the fast-and-flexible decision-making behavior.

As we shall prove in Section V, model (1) is tractable
because modulatory interactions do not affect i) the location
of the bifurcation point in which the neutral state x = 0
loses stability, thoroughly analyzed in [1], [2], [3], and ii)
the kernel of the Jacobian of model (1) at bifurcation. This
determines (to leading order) the opinion pattern observed
once indecision is broken and the direction in the input space
to which the system is most sensitive close to bifurcation.
However, modulatory interactions do affect the shape of
the opinion-forming bifurcation branches. This non-local
effect is hard to characterize in full generality but it can be
analyzed on a case-by-case basis using Lyapunov-Schmidt
(LS) reduction [27, Section I.3] together with bifurcation
recognition and unfolding theory [27, Chapter 2 and 3].

IV. AN ILLUSTRATIVE EXAMPLE

For two agents (or two options), model (2) reduces to

τ ẋ1 = −x1 + b1 + S
(
(u0 +m111x

n
1 +m112x

n
2 )a11x1+

+ (u0 +m121x
n
1 +m122x

n
2 )a12x2)

)
(3a)

τ ẋ2 = −x2 + b2 + S
(
(u0 +m211x

n
1 +m212x

n
2 )a21x1+

+ (u0 +m221x
n
1 +m222x

n
2 )a22x2)

)
. (3b)

For the modulated interaction network sketched in Fig. 2A,
the additive and modulatory interaction matrices are

A =

(
0 −1
−1 0

)
, [Mij1] =

(
0 0
1 0

)
, [Mij2] =

(
0 0
0 0

)
,

(4)
i, j = 1, 2. Fig. 2B shows the bifurcation behavior of
model (3) for b1 = b2 = 0, without modulatory interactions
(M = 0) and with modulatory interactions of different
orders (n = 1, 2, 3), for additive and modulatory interaction
matrices defined in (4). In all cases, the neutral state x1 =
x2 = 0 loses stability in a bifurcation at u0 = 1.

When M = 0, the model exhibits the symmetric
indecision-breaking or opinion-forming supercritical pitch-
fork bifurcation thoroughly studied in [1], [2]. For b1 =
b2 = 0, the existence of this symmetric bifurcation arises
from the symmetry of the system with respect to swapping
agents and swapping options. Agent symmetry is enforced by
a symmetric adjacency matrix. Option symmetry is enforced
by the odd-symmetry of the vector field, as ensured by using
the odd sigmoidal function S(·) = tanh(·).

When n = 1, any increase in x1 makes the modulated
inhibitory weight ã21 = (u0 + m211x1)a21 more negative.
That is, the larger x1 is the more it inhibits x2 because
∂ã21

∂x1
= m211a21 < 0. This modulatory interaction breaks

the network symmetry: it favors larger x1 and smaller
x2 as compared to the non-modulated regime. Formally,
such a modulatory interaction breaks both agent and option

Fig. 2. A) Arrows conventions for additive and modulatory interactions,
and an example of a modulated interaction network for a two-agent, two-
option decision-making dynamics (3). B) Effect of modulatory interactions
of various orders on the bifurcation behavior of (3) with additive and
modulatory interactions as in A). Stable (unstable) bifurcation branches
are indicated by thick (thin) lines. Supercritical pitchfork bifurcations are
indicated by blue dots, subcritical pitchfork bifurcations by blue circles,
saddle-node bifurcations by green dots, transcritical bifurcations by orange
dots.

symmetries by making the modulated adjacency matrix non-
symmetric and the modulated vector field non-odd symmet-
ric. This is reflected in the resulting bifurcation diagram: the
pitchfork unfolds into a transcritical bifurcation characterized
by a region of bistability between the neutral state and an
opinionated state x∗ characterized by x∗

1 > 0 > x∗
2 (the state

x2 is not shown in the bifurcation diagrams).

When n = 2, the modulated inhibitory weight ã21 =
(u0 + m211x

2
1)a21 is non-monotone in x1. If x1 > 0

(x1 < 0), an increase in x1 makes ã21 more (less) negative
because ∂ã21

∂x1
= 2m211a21x1 < 0 (> 0). This modulatory

interaction amplifies mutual inhibition but does not break
network symmetry: it favors larger x1 and smaller x2 for
positive x1 (and negative x2) but smaller x1 and larger
x2 for negative x1 (and positive x2). The even order of
the modulatory interaction preserves the symmetry of the
original system in the network equivariant sense of [28].
This is reflected in the resulting bifurcation diagram: the
symmetric pitchfork becomes subcritical and is characterized
by a region of bistability between the neutral state and two
symmetric opinionated states x∗

up = −x∗
down, such that

(x∗
up)1 > 0 > (x∗

up)2 and (x∗
down)1 < 0 < (x∗

down)2.

When n = 3, the modulated inhibitory weight ã21 = (u0+
m211x

3
1)a21 is monotone in x1, similarly to n = 1, because

∂ã21

∂x1
= 3m211a21x

2
1 ≤ 0. As for n = 1, this modulatory

interaction breaks both agent and option symmetry and there
exists a region of bistability between the neutral state and
an opinionated state x∗ characterized by x∗

1 > 0 > x∗
2.

For the same modulatory strength m211, a cubic modulatory
interaction locally preserves the supercritical pitchfork of the
non-modulated case, while a linear modulatory interaction
unfolds it into a transcritical bifurcation.



V. OPINION-FORMING BIFURCATIONS IN THE PRESENCE
OF MODULATORY INTERACTIONS

We start by proving that modulatory interactions do not
change neither the location of the opinion-forming bifur-
cation nor the associated critical subspace (the Jacobian
kernel at bifurcation) and sensitive subspace (the direction
in input space that is amplified nonlinearly along the crit-
ical subspace). We then state and interpret our main result
that characterizes opinion-forming bifurcation in modulated
NOD.

Start by observing that for b = 0 the neutral state
x = 0 is an equilibrium of (1) for all u0 ∈ R. Let
pi(x) =

∑N
j=1 aij

(
u0 +

∑N
k=1 mijkx

n
k

)
xj . Then (1) be-

comes τ ẋi = −xi+bi+S(pi(x)). It follows that the Jacobian
J(x) of (1) at x has components

Jil(x) =

{
S′(pi(x))∂pi/∂xl(x)− 1, if l = i,
S′(pi(x))∂pi/∂xl(x), if l ̸= i,

(5)

with

∂pi
∂xl

(x)=ailu0+

N∑
k=1

ailmilkx
n
k+n

N∑
j=1

aijmijlx
n−1
l xj .

We have the following evident but key lemma.
Lemma 5.1: The Jacobian J(0) of (1) at x = 0 is −I +

u0S
′(0)A. In particular, J(0) does not depend on M .

The following theorem generalizes [3, Theorem 4.2] to
model (1),(2). Let σ(A) denote the spectrum of A.

Theorem 5.2: Consider model (2). Suppose that A has a
strictly leading eigenvalue λmax, i.e., a simple real eigen-
value satisfying λmax > maxλi∈σ(A)\λmax

ℜ(λi). Let vmax

and wmax be the right and left eigenvectors associated to
λmax, respectively. Let u∗

0 = (S′(0)λmax)
−1. Then:

1. (Indecision-breaking bifurcation and critical subspace) For
b = 0, x = 0 is exponentially stable for u0 < u∗

0, undergoes
a bifurcation at u0 = u∗

0, and is unstable for u0 > u∗
0.

Furthermore, bifurcation branches emanating from (0, u∗
0)

are tangent to vmax.
2. (Input sensitivity subspace) If ⟨b,wmax⟩ = 0 and ∥b∥
is small enough, there exists a neighborhood U ∋ u∗

0

such that for all u0 ∈ U there exists an equilibrium x =
x∗(u0) satisfying ⟨x∗(u0),vmax⟩ = 0 such that x∗(u0) is
stable (unstable) for u0 < u∗

0 (u0 > u∗
0) and undergoes

a bifurcation at u0 = u∗
0. If ⟨b,wmax⟩ ̸= 0 and ∥b∥ is

small enough, then the bifurcation unfolds according to its
universal unfolding (see [27, Chapter 4]).

Proof: Observe that J(0) has a simple leading eigen-
value −1+u0S

′(0)λmax. Let U be the matrix that puts J(0)
in the Jordan form

UJ(0)U−1 =

(
−1 + u0S

′(0)λmax 01×N−1

0N−1 J̃(0)

)
.

Observe that [Ui1]
N
i=1 = vmax and [U−1

1i ]Ni=1 = (wmax)
⊤.

All the N − 1 eigenvalues of J̃(0) have negative real part
for u0 sufficiently close to u∗

0. Then the first statement
follows from Lyapunov’s indirect method [29, Theorem 4.7]
and the Center Manifold Theorem [30, Theorem 3.2.1]. The

second statement follows by applying the LS reduction [27,
Section I.3] at (x, u0) = (0, u∗

0) with respect to right and
left singular directions vmax,wmax and noticing that if
⟨b,wmax⟩ = 0 the reduced dynamics along vmax do not
depend on b, whereas for ⟨b,wmax⟩ ≠ 0 the branches are
predicted by applying unfolding theory [27, Chapter 4] on
the resulting scalar equilibrium equation.

It follows from Theorem 5.2 that the critical attention
value u∗

0 is independent of modulatory interactions. It solely
depends on the leading eigenstructure of A. Theorem 5.2 also
implies that the opinion patterns xbif along the opinionated
bifurcation branches are solely determined by the right
leading eigenvector vmax, i.e., to leading order, xbif =
x̄bifvmax, x̄bif ∈ R. Note that Theorem 5.2 predicts the
opinion-forming bifurcation also in the case b ̸= 0 and
the bifurcating equilibrium x∗ is not at the origin. More
precisely, the right leading eigenvector vmax of the Jacobian
J(0) at the origin singles out the subspace along which
we can perform the LS reduction, and, therefore, predicts
the following: i) sensitivity to inputs b ̸= 0 at bifurcation
is independent of modulatory interactions as determined by
the left leading eigenvector wmax of J(0); ii) the nonlinear
effects of inputs and other parameters on the bifurcating
branch shape can be predicted by computing higher-order
terms of the LS reduction and using bifurcation recognition
and unfolding theory [27, Chapters 2 and 3]. See [3, IV.B]
for an in-depth discussion on the graph structures for which
the assumptions of Theorem 5.2 are guaranteed to hold.

VI. SHAPING GLOBAL INDECISION-BREAKING
BIFURCATION THROUGH MODULATORY INTERACTIONS

In the next section we apply Theorem 5.2 and illustrate
first in a multi-agent, two-option network and then in a
single-agent, multi-option network how to analyze and pre-
dict the effect of modulatory interactions on the shape of
indecision-breaking bifurcation branches along vmax.

A. Modulated indecision-breaking in a multi-agent, two-
option social influence network

Consider the 5-agent, 2-options, modulated opinion inter-
action network in Fig. 3A. Let all additive links have unitary
weight, all modulatory links have weight m̄ ≥ 0, and the
order of the modulatory interactions be n = 1. We interpret
this network as a social network with first-neighbor additive
coupling and the presence of an “influencer” node (node 1)
that affects the network discourse by modulating all additive
coupling weights as a function of its state.

In model (2) the additive interaction matrix A associated
to Fig. 3A is the adjacency matrix of an undirected ring
graph, i.e., the circulant matrix generated by the vector
[0, 1, 0, 0, 1]. Additionally, because agent 1 is the only mod-
ulator and it is modulating all interactions, the modulatory
interaction matrix M satisfies M··1 = m̄A, m̄ ∈ R, and
0 elsewhere. Invoking Theorem 5.2, there is an opinion-
forming bifurcation at u0 = u∗

0 = (S′(0)λmax)
−1, where

λmax = 2 is the largest eigenvalue of A. For S(·) = tanh(·),
u∗
0 = 1

2 . λmax = 2 is simple and with right and left



Fig. 3. A) The modulated opinion interaction network under study. B)
Bifurcation diagram in the absence of inputs and m̄ = 0. The model
undergoes a supercritical pitchfork at u0 = 1

2
along the consensus subspace

generated by vmax. C) Bifurcation diagram projection along vmax for
m̄ = 0.5. The pitchfork unfolds into a transcritical bifurcation (yellow
dot). The associated bistability region reflects the effects of the influencer
node in shaping the network discourse toward option 1.

eigenvectors proportional to vmax = wmax = [1, 1, 1, 1, 1]T .
The opinionated branches emerging at the opinion-forming
bifurcation are tangent to vmax, that is, to leading order,
they correspond to consensus opinion formation. Similarly,
only inputs such that ⟨b,wmax⟩ =

∑5
i=1 bi ̸= 0 affect the

opinion forming behavior.
To characterize how the influencer modulation shapes

opinionated branches we use the LS reduction with right
and left singular eigenvectors vmax,wmax. Let v be the
reduced variable along vmax and g(v, u0) be the LS reduced
equation. Then at (v, u0) = (0, 1

2 ):

g = ∂g
∂v = ∂g

∂u0
= ∂2g

∂u2
0
= 0,

∂
∂v

∂g
∂u0

= ∂
∂u0

∂g
∂v = 3, ∂2g

∂v2 = 4m̄, ∂3g
∂v3 = −2.

The recognition problem for the pitchfork [27, Prop. 9.2]
then implies that for m̄ = 0 the opinion forming bifurcation
is a supercritical pitchfork (Fig. 3B). When m̄ > 0, the
influencer acts in favor of option 1 and even in the absence
of inputs the pitchfork unfolds into a transcritical bifurcation
(Fig. 3C; [27, Section III.7]). Similarly to Fig. 2B (n = 1),
the influencer node modulation of the network discourse
creates a pre-bifurcation bistable region in which the group
can switch from neutral to option 1 even in the absence of
inputs. For b ̸= 0, the bifurcation unfolds in favor of the
option indicated by the distributed input ⟨b,wmax⟩.

B. Conditional decision-making through modulation in a
single-agent multi-option network for robot navigation

The single-agent, multi-option, modulated opinion inter-
action network in Fig. 4A provides an extension of the
NOD-based robot navigation controller introduced in [12].
It consists of two mutual inhibitory NOD subnetworks
made by nodes {1, 2}, ‘drive or stay’ , and {3, 4}, ‘steer
left or steer right’, respectively. The two subnetworks are
disconnected at the additive interaction level but node 1 of
subnetwork {1, 2} modulates the mutual inhibition strength

of subnetwork {3, 4} with modulatory weight m̄. Although
preferences for the two mutually-exclusive options in each
subnetwork could be modeled with a single (reduced) opin-
ion state, the use of one state per option permits to explicitly
define the modulatory role of each node and makes the
model interpretation more transparent without hampering its
mathematical tractability. The analysis for this example is
summarized by Fig. 4B.

The mutual inhibition strength of subnetwork {1, 2} is α.
Invoking Theorem 5.2, for u0 < α−1 the neutral state x1 =
x2 = 0 (idle state) is stable. For u0 > α−1 the neutral state
becomes unstable in a pitchfork bifurcation giving rise to two
opinionated stable equilibria characterized by x1 > 0 > x2

(‘drive’) and x1 < 0 < x2 (‘stay’), respectively.
The mutual inhibition strength of subnetwork {3, 4} is

β+m̄x1, so in this subnetwork the opinion-forming pitchfork
bifurcation happens for u0 = (β + m̄x1)

−1. Hence, if
m̄ > 0, the more positive (negative) is x1, the smaller
(larger) the basal attention u0 is needed for the opinion-
forming pitchfork of subnetwork {3, 4} to happen. For u0 <
(β + m̄x1)

−1 the neutral state x3 = x4 = 0 (‘no steering’)
is stable. For u0 > (β+m̄x1)

−1 the neutral state is unstable
and two stable opinionated equilibria appear, characterized
by x3 > 0 > x4 (‘steer left’) and x3 < 0 < x4 (‘steer right’),
respectively.

In the network model of Fig. 4A it is natural to assume
α > β in such a way that, as attention increases, the decision
to drive (or stay) happens before the decision to steer. If
m̄ = 0, the steering pitchfork of subnetwork {3, 4} happens
for the same basal attention value u0 = β−1, independently
of the decision state of the drive-or-stay subnetwork {1, 2}.
Conversely, for m̄ > 0 and recalling that x1 > 0 (x1 <
0) along the driving (staying) branch, the critical attention
value to trigger a steering decision is lower (higher) when
subnetwork {1, 2} is in the drive (stay) state. This ensures
faster and more sensitive steering decisions when driving
as opposed to staying. It also hampers the occurrence of
unrealistic or unwanted opinion states such as ‘stay and turn’.
Both are desirable properties for efficient navigation.

The modulation of the basal attention needed to trigger
a decision as a function of another decision outcome can
be understood as a form of soft or flexible conditional
decision-making: the sensitivity of a subordinate decision
(e.g. steering) is conditioned on the outcome of a primary
decision (e.g. drive-or-stay). The continuous state and param-
eter nature of modulated NOD, and the organizing role of
its bifurcations, makes this kind of soft conditional decision-
making tunable and adaptable according to the principles
of fast-and-flexible decision-making [2]. As in the previous
example, the presence of inputs (e.g., bdrive > 0 representing
a green light) would unfold the bifurcations in favor of the
suggested action.

VII. DISCUSSION

Inspired by examples in neuroscience, molecular biol-
ogy, and social sciences, we proposed a new NOD with



Fig. 4. A) The modulated opinion interaction network under study. B)
Bifurcation diagram for α = 1, β = 0.3, m̄ = 0. Branches are labelled
with the associated robot navigation commands (id: idle; dr: drive; st:
stay; drr: drive+steer right; drl: drive+steer left; str: stay+steer right; stl:
stay+steer left) C) Same as B but for m̄ = 2. In the presence of modulatory
interactions, the drive+steer bifurcation (drr,drl branches) happens for lower
u0 than the stay+steer bifurcation (str,stl branches).

modulatory interactions, rigorously characterized its opinion-
forming bifurcation behavior, and illustrated possible ap-
plications through social network and robotic navigation
examples. As in the original NOD model, the modulated
model can be extended to opinion dynamics with Na agents
and No options. Additionally, replacing the modulatory term
mijkx

n
k by a general polynomial in xk would lead to a

variant of (1) reminiscent of polynomial network dynamics
on hypergraphs [31]. Such a polynomial version of the model
could also be used to identify the order of modulatory
interactions in cases in which it is not known a priori,
e.g., by fitting the model to experimental data. A weakness
of the proposed approach, inherent to the used bifurcation-
theoretical methods, is that it could be difficult to characterize
in its full generality the effect of modulatory interactions
for arbitrary adjacency and modulatory matrices. This can
however always be done on a case-by-case basis.
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