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Abstract— We propose and analyze a nonlinear opinion
dynamics model for an agent making decisions about a
continuous distribution of options in the presence of input.
Inspired by perceptual decision-making, we develop new
theory for opinion formation in response to inputs about
options distributed on the circle. Options on the circle
can represent, e.g., the possible directions of perceived
objects and resulting heading directions in planar robotic
navigation problems. Interactions among options are en-
coded through a spatially invariant kernel, which we design
to ensure that only a small (finite) subset of options can
be favored over the continuum. We leverage the spatial
invariance of the model linearization to design flexible, dis-
tributed opinion-forming behaviors using spatiotemporal
frequency domain and bifurcation analysis. We illustrate
our model’s versatility with an application to robotic navi-
gation in crowded spaces.

Index Terms— Adaptive systems, biologically-inspired
methods, robotics

I. INTRODUCTION

IN perceptual decision-making, animals use sensory infor-
mation, such as visual and auditory stimuli, to respond to

their environment. Spatial invariance, the ability to respond to
stimuli based on relative positions rather than absolute spatial
coordinates, is believed to be a key feature of these sensory
processes [1]. Inspired by these insights, neural field models of
perceptual decision-making leverage spatial invariance [2]–[6].
They describe the spatiotemporal dynamics of neural activity
using integro-differential equations that capture interactions
between different regions of the neural field.

These models are widely used for embodied intelligence,
where sensory input, actions, and cognitive processes are
interconnected. In robotics, an agent can use a distributed
representation of its visual field and the objects within it to
drive decisions. For example, neural field models have been
used for robotic navigation in unknown environments with
obstacles [7], [8], manipulation [8], target acquisition [9],
sensorimotor control of robots through coupled fields [10],
and modeling of cognitive intentions [11]. Neural fields are
also used in neuromorphic devices, which emulate biological
processing in extremely low power hardware [12].

While these applications highlight the versatility of neural
fields for embodied intelligence, they mostly rely on empirical
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approaches. There are analytical approaches that characterize
the behavior of neural field models [2]–[6], but their input-
output behavior for arbitrary inputs is not yet fully charac-
terized. Response to input is considered in [2]–[4] but only
for specific classes of inputs. Our work here lays a theoretical
foundation for analysis, design, and control in more general
scenarios. The novelty of our contribution lies in our study of
the input-output behavior of our proposed nonlinear neural
field model. We use a spatiotemporal transfer function to
predict the model’s response from its linearization.

We propose a neural field model to generalize nonlinear
opinion dynamics (NOD) [13] from a finite set to a continu-
ous distribution of options. NOD has been used for robotic
perceptual decision-making in obstacle avoidance and task
allocation scenarios [14], [15]. The distributed NOD model
does not require prior knowledge of the number of objects in
an agent’s visual field and captures object volume and distance
in its continuous representation.

Our contributions are as follows. First, we propose a
new nonlinear opinion dynamics model for an agent making
decisions about a continuous distribution of options on the
circle and in the presence of input. Second, we prove the
system-theoretic spatial invariance of the model linearization.
Third, we use spatial-invariance of the linearized dynamics
to prove the existence of an opinion forming bifurcation for
the model with zero input. Fourth, we use space and time
frequency domain analysis of the model linearization and
define a spatiotempotal transfer function to infer the input-
output behavior of the nonlinear dynamics to arbitrary inputs.
Fifth, we propose a framework for designing kernels for an
application of our model to robotic navigation.

Mathematical background is in Section II. We present the
model in Section III. We prove the spatial invariance of the
model linearization in Section IV. In Section V we prove an
opinion-forming bifurcation in the model with zero input. In
Section VI, we discuss the model’s input-output behavior. We
propose a kernel design approach and illustrate our approach
in Section VII. A discussion is provided in Section VIII.

II. MATHEMATICAL PRELIMINARIES

We denote the set of integer values as Z, the set of non-
negative integer values as N, the set of real numbers as R, and
the set of complex numbers as C. The unit circle is denoted
by S1, i.e., S1 = R/Z. For a, b ∈ R, the notation a ↗ b
indicates the limit a → b with a < b. For a complex number
s = σ+ iω, the real and imaginary parts are denoted as ℜ(s)
and ℑ(s), respectively. We represent the complex conjugate
as s̄ = σ − iω, the modulus as |s| =

√
ss̄ and the argument

as arg(s) = limn→∞ nℑ( n
√
s/|s|) for n ∈ N− {0}.



The Hilbert space of square-integrable real functions on S1
is denoted by L2(S1). The inner product of v, w ∈ L2(S1)
is ⟨v, w⟩ =

∫
S1 v(θ)w(θ)dθ. The induced norm is ||v|| =

⟨v, v⟩1/2. We denote operators with capital letters. Let A :
L2(S1) → L2(S1) be a linear operator. We let the set Sp(A) =
{λk} denote the point spectrum of A, if it is not empty. Each
eigenvalue λk ∈ Sp(A) satisfies Avk(θ) = λkvk(θ), where
vk ∈ L2(S1) denotes the eigenfunction corresponding to λk.
We denote λmax = argmax{ℜ(λk)} as the leading eigenvalue
of A, and its corresponding eigenfunction, vmax ∈ L2(S1), as
the leading mode.

Definition 1 (Differential operator): Let F : L2(S1) →
L2(S1) be a nonlinear operator. The differential of F in
the direction of z at a point z∗, is AF = DzF (z

∗) :=
limϵ→0

1
ϵ

(
F (ϵz+z∗)−F (z∗)

)
, provided that the limit exists.

Definition 2 (Multiplication Operator): A multiplication op-
erator M is defined by [Mh](x) := M(x)h(x), where h is
in the domain of M . Multiplication operators are the infinite-
dimensional equivalent of diagonal matrices.

Definition 3 (Spatial shift operator [16], [17]): The spatial
shift operator denoted by Tψ : L2(S1) → L2(S1) is defined
as h(θ) 7→ [Tψh](θ) := h(θ−ψ) for ψ ∈ S1 and h ∈ L2(S1).

Definition 4 (Spatially invariant operator [16], [17]): An
operator F is spatially invariant if TψF = FTψ .

We mainly work with a special class of spatially invariant
linear operators, namely, spatial convolution operators

[Az](θ) :=
∫
S1 W (θ − ϕ)z(ϕ)dϕ, (1)

where the convolution kernel W : S1 → R.
Definition 5 (Spatially Invariant Linear System [16], [17]):

Consider a spatiotemporal input-output linear system. Let
u(·, t), z(·, t) ∈ L2(S1) be the scalar-valued input and output
functions at time t ∈ R≥0, respectively. Let θ ∈ S1 be the
spatial coordinate. A linear system of the form

∂z
∂t (θ, t) = [Az](θ, t) + [Bu](θ, t), (2)

is spatially invariant if the linear operators A, B are spatially
invariant.

Definition 6 (Spatial Fourier transform [16], [17]): Let
f, g : S1 ×R≥0 be spatiotemporal fields with spatial and time
coordinates θ ∈ S1 and t ∈ R≥0. Suppose f(·, t), g(·, t) ∈
L2(S1) for all t ∈ R≥0. The spatial Fourier transform maps
f(θ, t) into its spatial Fourier coefficients

f̂(k, t) :=
∫
S1 f(θ, t)e

−i2πkθdθ, (3)

where k ∈ Z is the spatial frequency.
The spatial Fourier transform is a coordinate transformation

that expresses f(θ, t) in terms of the spatial Fourier modes
ηk(θ) = ei2πkθ, i.e., the Fourier basis on S1, and the Fourier
coefficients f̂(k, t). The inverse spatial Fourier transform can
be used to recover f(θ, t) from its Fourier coefficients f̂(k, t):

f(θ, t) =
∑
k∈Z f̂(k, t)e

i2πkθ. (4)

Parseval’s Identity [18] ensures that ⟨f̂ , ĝ⟩ = ⟨f, g⟩. The
spatial Fourier transform operator is denoted by F(·), and the
inverse spatial Fourier transform operator by F−1(·).

The spatial Fourier transform (3) diagonalizes convolution
operators [16], i.e., if A is a convolution operator (1), then

[̂Ah](k) := Ŵ (k)ĥ(k), where Ŵ is the Fourier transform of
the kernel of A. Thus, A is mapped by F into a multiplication
operator over the spatial frequency k ∈ Z. For linear systems
of the form (2), if A and B are convolution operators, i.e. are
of the form (1), then

∂ẑ(k, t)

∂t
= ŴA(k)ẑ(k, t) + ŴB(k)û(k, t), (5)

where ŴA and ŴB are the Fourier transforms of the kernels
of A and B, respectively. Following [16], we refer to (5) as
the diagonalization of (2).

Definition 7 (Temporal Laplace Transform): Let z : S1 ×
R≥0 be a spatiotemporal field with spatial and time coordinates
θ ∈ S1 and t ∈ R≥0, respectively. Then, the temporal Laplace
transform maps z(θ, t) into

[Lz](θ, s) =
∫∞
0
z(θ, t)e−stdt, (6)

where s ∈ C, whenever the integral exists.

III. OPINION DYNAMICS ON THE CIRCLE

We propose a nonlinear opinion dynamics model for an
agent making decisions about a continuous distribution of
options on the circle. For every option θ ∈ S1, z(θ, t) ∈ R
is the opinion of the agent for option θ at time t, where
the more positive (negative) z(θ, t) is the more the agent
favors (disfavors) option θ. When z(θ, t) = 0, the agent
is neutral about option θ. Inspired by biological sensory
processes [1], [19], the relationship between each option is
encoded by the Lipschitz continuous kernel W : S1 → R
based solely on their relative positions. This design choice is
consistent with other neural field models [2]–[12] and provides
analytical tractability. A positive (negative) value of W (θ−ϕ)
corresponds to excitatory (inhibitory) interactions between the
options θ and ϕ. The opinion z(θ, t) evolves according to

τ ∂z∂t(θ, t)=−z(θ, t)+α
∫
S1
W(θ−ϕ)S(z(ϕ, t))dϕ+u(θ, t)

= [Gz](θ, t) + u(θ, t), (7)

where u(θ, t) ∈ R is the input, τ ∈ R>0 is the characteristic
timescale, and α ∈ R>0 is the attention to option interactions,
i.e., α models the agent commitment to forming strong opin-
ions. The nonlinear nature of (7) comes from S : R → R, a
saturating function with S(0) = 0, S

′
(0) = 1.

IV. SPECTRAL ANALYSIS OF LINEARIZATION

We study the spectrum of the linearization of (7) at the
neutral equilibrium z(θ, t) = 0, ∀θ ∈ S1. We prioritize local
behavior because it captures key changes in the stability and
quantity of equilibria. While global analysis is theoretically
valuable, it is often infeasible due to the complexity of the
system. Although we do not estimate the region of validity
of the local analysis we present in this paper, methods for
bounding the region of validity for similar analyses exist,
e.g. [20]. Conclusions from linearization typically hold within
a sufficiently large parametrized neighborhood of the neutral
equilibrium at the onset of instability. The implementations in
this paper, which focus on parameter regimes near this critical



point, demonstrate the practicality and validity of this local
approach.

We first prove spatial invariance, which enables the lin-
earized system to be diagonalized. Using the diagonalization,
we compute the eigenvalues and eigenfunctions of the lin-
earized system and prove their relationship with the Fourier
coefficients of the kernel and the spatial Fourier modes.

Lemma 1 (Spatial invariance of the model linearization):
Define the nonlinear operator in (7) as [Fz](θ, t) =

∫
S1 W (θ−

ϕ)S(z(ϕ, t)). The differential of F in the direction z at
z(θ, t) = 0 is

[AF z](θ, t)=[DzF (0)](θ, t)=
∫
S1W (θ−ϕ)z(ϕ, t)dϕ. (8)

The linearization of (7) at the neutral equilibrium z(θ, t) = 0,

∂z
∂t (θ, t)=

1
τ

(
−z(θ, t) +α[AF z](θ, t)+u(θ, t)

)
= 1
τ ([AGz](θ, t) + u(θ, t)),

(9)

is a spatially invariant system in the sense of Definition 5.
Proof: Consider the expansion S(ϵz) =∑∞
n=0

1
n! (ϵz)

nS(n)(0). Then, we can express DzF (0) =

limϵ→0
ϵ
∫
S1W (θ−ϕ)S′(0)z(ϕ)dϕ+O(ϵ2)

ϵ , where O(ϵ2) denotes
higher order terms in ϵ. As ϵ → 0, the higher order terms
vanish and we are left with (8). Note that AF is a spatial
convolution operator, which is spatially invariant. Then, by
linearity so is AG. Thus, by Definition 5, (9) is a spatially
invariant system.

As a consequence of Lemma 1, we can diagonalize the
model linearization (9). Since (8) is a convolution operator,
we use (5) to get

∂ẑ
∂t (k, t) =

1
τ

(
− 1 + αŴ (k)

)
ẑ(k, t) + 1

τ û(k, t). (10)

Lemma 2 (Eigenvalues and eigenfunctions of the linearized
system): The eigenvalues λk ∈ Sp(AG) of the linearized
system (9) can be computed as

λk = 1
τ (−1 + αŴ (k)) (11)

for k ∈ Z. The corresponding eigenfunctions are the spatial
Fourier modes ηk(θ) = ei2πkθ.

Proof: The form of the eigenvalues follows directly from
the diagonalization (10) of the linearized dynamics (9). The
eigenfunctions are the spatial Fourier modes because they
form the basis of the Fourier transformation that is used to
diagonalize the system.

Lemma 2 reaffirms that, because of spatial invariance, the
spatial Fourier modes are the eigenfunctions of the model
linearization for any kernel design, provided it is spatially-
invariant. Since the Fourier coefficients of the kernel determine
the eigenvalues associated with each mode, they dictate which
modes dominate. More precisely, if all modes are stable, i.e.,
ℜ(λk) < 0 for all k ∈ Z, spatiotemporal inputs u(θ, t) will be
predominantly amplified along the Fourier modes with largest
ℜ(λk) as detailed in Section VI.

When the leading modes become unstable, that is, when the
real part of their eigenvalues change from negative to positive
through, e.g., an increase of the attention parameter α, the
nonlinear model (7) undergoes a bifurcation that enables robust
opinion formation even in the absence of inputs. The leading

Fourier modes determine the number of maxima of the stable
steady-state opinion patterns emerging at the bifurcation, as
detailed in the next section.

V. OPINION-FORMING BIFURCATIONS

We revisit the results presented in [4] for (7) with zero input.
We prove that (7) undergoes a bifurcation and compute the
bifurcation point. A local bifurcation occurs when the number
and/or stability of the equilibrium solutions changes due to
one or more eigenvalues of the model linearization crossing
the imaginary axis as a parameter is varied. The state and
parameter value at which this occurs is the bifurcation point.
We study how opinion patterns emerge and the role of kernel
W and show a bistability that enables rapid formation of strong
opinions. We make the following assumption to ensure the
eigenvalues of (9) are real.

Assumption 1 (Symmetric kernels): The kernel W in (7))
is symmetric, i.e. W (ψ) = W (−ψ). In particular, its Fourier
coefficients Ŵ are real and Ŵ (k) = Ŵ (−k).

Lemma 3 (Existence of a bifurcation point at the neutral
equilibrium): Consider (7). Let Assumption 1 hold. Suppose
argmaxk∈Z Ŵ (k) = {−kmax, kmax}, kmax ∈ N, denote the
spatial frequency corresponding to the largest Ŵ (k). Then,
system (7) undergoes a bifurcation at the neutral equilibrium
z(θ, t) = 0 and α∗ = 1

Ŵ (kmax)
. In particular, for 0 <

α < α∗ the neutral equilibrium is locally asymptotically
stable and for α > α∗ the neutral equilibrium is unsta-
ble. The bifurcation branches emerging at bifurcation for
α = α∗ are tangent to the subspace of L2(S1) generated
by cos(2πkmaxθ) and sin(2πkmaxθ). That is, steady-state
opinion patterns along the bifurcation branches have the form
z(θ, t) = A cos(2πkmaxθ) + B sin(2πkmaxθ) for A,B ∈ R.
In particular, the number of maxima exhibited in the opinion
patterns forming at bifurcation is fixed by kmax.

Proof: From Lemma 2, λk ∈ Sp(AG) are given by (11).
We solve for λk = 1

τ (−1 + αŴ (k)) = 0. Then, the first
eigenvalue crossing occurs at α∗ = 1

Ŵ (kmax)
= 1

Ŵ (−kmax)
with

two eigenvalues crossing at 0. For α < α∗ we have λk < 0
∀k so the origin is stable. However, once α > α∗, there exist
at least two positive eigenvalues so the origin will be unstable.
For the linearization, at the bifurcation, λk < 0, ∀k ̸= ±kmax,
so the corresponding spatial Fourier modes belong to the stable
manifold. The spatial Fourier modes ηkmax

(θ) and η−kmax
(θ)

form a basis for the center manifold; hence, they determine
the dominating bifurcation direction and emerging pattern of
the model linearization.

The bifurcation of system (7) with zero input is studied in
[4]. There a perturbation analysis is used to show that the spa-
tial pattern that appears is determined by the leading modes.
There are infinitely many branches of non-zero equilibria
which exhibit the same pattern with kmax maxima up to spatial
translation. As discussed in [4][Section 4.2.1], the stability
of the bifurcating branches can be computed as functions of
Ŵ (kmax), S′′(0)2 and S′′′(0). Generally, when S′′(0) = 0
all of the non-zero branches of equilibria that bifurcate from
the origin are stable. When S′′(0) ̸= 0, all non-zero branches
bifurcating at the origin are unstable; however, due to higher



Fig. 1. Bifurcation diagrams illustrating the effect of the shift value ξ on
the dynamics (7) with shifted sigmoid (12). Stable (unstable) branches
of equilibria are shown as solid (dashed) lines.

order terms, stable branches of non-zero equilibria exist farther
away from the origin. Fig. 1 illustrates ||z|| at the equilibria
as a function of the bifurcation parameter α with

S(z) = tanh(z−ξ)−tanh(−ξ)
sech2(ξ)

, (12)

a shifted hyperbolic tangent with ξ ≥ 0 shift. Note that
S′′(0) = 0 for ξ = 0 and S′′(0) ̸= 0 ∀ξ ̸= 0.

We see that for ξ ̸= 0, there are regions below the bifur-
cation point for which the neutral and a non-neutral solution
are both stable. This bistable region enables rapid formation
of strong opinions in response to spatially distributed input,
as discussed in Section VI. The patterns of opinion formation
depend on the kernel, which can be designed. Fig. 2 shows
how kmax, the spatial frequency corresponding to the largest
Fourier coefficient of the kernel, determines the number of
maxima exhibited in the steady-state opinion pattern of the
agent for (7) with zero-input. Spatial invariance ensures that
for all initial conditions the solution converges to the same
opinion pattern modulo a spatial translation (Fig. 2c).

The eigenstructure of the linearization of spatially invariant
systems with symmetric kernels (Assumption 1) is robust to
small violations of both spatial invariance and kernel symme-
try. Dominant eigenvalues, in particular, remain unique and
real.

VI. DECISION-MAKING ON THE CIRCLE WITH TUNABLE
SENSITIVITY TO DISTRIBUTED INPUT

We reintroduce distributed input to the model, and use its
linearization, together with spatial and temporal frequency
analysis, to infer the nonlinear input-output behavior.

We make the following assumptions.
Assumption 2 (Shifted sigmoid): We assume S′′(0) ̸= 0 to

ensure that a bistable region exists (see Fig. 1 for ξ ̸= 0).
Assumption 3 (Input assumptions): Inputs u(θ, t) ∈ L2(S1)

for all t ≥ 0. Furthermore, for all θ ∈ S1, u(θ, ·) : R≥0 →
R is slowly varying, that is, it is Lipschitz continuous with
Lispschitz constant 0 < l ≪ τ−1, for τ in (7).

The condition l ≪ τ−1 implies that inputs vary much
more slowly than the characteristic time constant of model (7).
Hence, under Assumption 3, we can use the quasi-static input
approximation and let u(θ, t) ≡ uh(θ).

For any diagonalized spatially distributed system of the
form (5), if [Lû](k, s), [Lẑ](k, s) exist, then the transfer
function H(k, s) characterizes the input-output response in

Fig. 2. Influence of the kernel design on the steady-state opinion
patterns of (7) with zero-input. (a) Two kernel designs. (b) Fourier
coefficients of the kernel. Top: ±kmax = ±1. Bottom: ±kmax = ±3.
(c) Steady-state opinion pattern z(θ,∞), of dynamics (7) for initial
conditions z(θ, 0). The number of maxima of z(θ,∞) equals kmax

of the corresponding kernel. Parameters: τ = 1, α = 0.98, p = 3,
ξ = 0.7.

terms of the Laplace transforms of ẑ(k, t) and û(k, t), i.e.,
[Lẑ](k, s) = H(k, s)[Lû](k, s). By the Final Value Theo-
rem, if the input is constant in time and (5) is stable, then
limt→∞ ẑ(k, t) = sH(k, 0)

(
ûh(k)
s

)
= H(k, 0)ûh(k). This

leads us to the following definition.
Definition 8 (Spatial transfer function): The spatial transfer

function of (5) is

H̃(k) = H(k, 0). (13)

Spatial transfer function H̃(k) determines the steady-state
output of (5) in response to input that is constant in time.

Theorem 4 (Spatial transfer function of (9)): Let Assump-
tions 1–3 hold. Let argmaxk∈Z Ŵ (k) = {−kmax, kmax},
kmax ∈ N, denote the spatial frequency of the largest Ŵ (k).
Spatial transfer function (13) of the linearized model (9) is

H̃(k) = τ
1−αŴ (k)

, k ∈ Z. (14)

In particular, for α↗ α∗, H̃(±kmax) → ∞.
Proof: From Lemma 2 we know the eigenvalues of (10),

the diagonalization of (9). So, we compute H(k, s) = 1
s−λk

.
Then H̃(k)= τ

1−αŴ (k)
. As α↗ α∗, H(±kmax, 0)→∞.

Theorem 4 implies that close to bifurcation, i.e., for α ↗
α∗, the input-output response of the linearized system is
dominated by the leading spatial Fourier modes η±kmax

(θ).
This means that the alignment of u(θ) with η±kmax

(θ) is the
main determinant of the model response to inputs.

For the nonlinear system with α ↗ α∗, the input-
output response takes place in the bistable region. If
⟨η±kmax(θ), uh(θ)⟩ = ûh(kmax) ̸= 0, the input is aligned
with the leading modes η±kmax(θ). These modes filter input
nonlinearity and amplify the input because, by Theorem 4,
the direction of these modes are ultrasensitive to input. The
result is a steady-state opinion pattern with kmax maxima and
||z(θ)|| ≫ ||uh(θ)||, as illustrated in the top row of Fig. 3. As
shown in Fig. 3a (top), the Fourier coefficients of the input for
±kmax = ±1 are nonzero meaning the input is aligned with
η±kmax

(θ) = η±1(θ). The input distribution in Fig. 3b (top) is
small in magnitude (less than 0.01), while the resulting steady-



Fig. 3. Input-output behavior of the dynamics (7) with input distributions
aligned or unaligned with the Fourier mode corresponding to ±kmax=
±1. Top row: Aligned. Bottom row: Unaligned. (a) Magnitude of the
Fourier coefficients of the input. (b) Input distribution. (c) Steady-state
opinion pattern z(0,∞). Parameters: τ =1, α=0.98, p=3, ξ=0.7.

state opinion pattern in Fig. 3c (top) has kmax = 1 maximum
that is greater than 1.5 in magnitude.

If ⟨η±kmax(θ), uh(θ)⟩ = 0, the input is unaligned with the
leading modes η±kmax

(θ) and the steady-state opinion pattern
will not exhibit large maxima. I.e., because the input does
not have a component along the ultrasensitive direction, by
Theorem 4 it does not get amplified, as illustrated in the
bottom row of Fig. 3. As shown in Fig. 3a (bottom), the Fourier
coefficients of the input for ±kmax = ±1 are zero meaning
the input is unaligned with η±kmax

(θ) = η±1(θ). The input
distribution in Fig. 3b (bottom) is small in magnitude (less
than 0.01) and the resulting steady-state opinion pattern in
Fig. 3c (bottom) has no large maximum.

Our results show how even very small distributed input can
trigger the formation of a strong opinion and whether or not
this happens depends on the design of kernel W . Thus, W
can be designed to tune response to be ultrasensitive to inputs
that matter for function and robust to inputs that don’t.

VII. APPLICATION TO ROBOT NAVIGATION

We illustrate with simulations the benefits of our approach
to perceptual decision-making with an application of the
dynamics (7) to robot navigation. We consider the case of a
robot moving in a crowded space, such as an airport, where it
must pass through gaps of different sizes (e.g., between people
in a line) that may change over time. We assume the robot has
a (visual) sensor so that it can perceive these gaps.

We specialize to a scenario where a robot finds itself trapped
inside a circle of people and needs to choose and cross
through a large enough gap between people. Choosing a gap
is challenging as people may be distributed unevenly around
the circle, resulting in multiple gap options, only a select few
of which may be suitable for the robot to cross. Also, the size
of the gaps may change over time due to people moving for
their own purposes or in response to the robot, e.g., people
may move to make space for the robot to cross.

In Section VII-A we present a framework for designing W
from its Fourier coefficients to allow the robot to select a
single gap. We discuss four scenarios that demonstrate how our
model can be used for fast-and-flexible decision-making in this
robotic navigation problem. In Section VII-B two scenarios
demonstrate the robot’s ability to choose a single gap, while

Fig. 4. Decision-making of a robot selecting a gap through which to
cross a circle of non-moving people. Bottom row: gap distribution over
time where gaps are indicated by u(θ, t) > 0 in blue. Top row: opinion
pattern over time (strongest opinion in yellow). (a) One widest gap. (b)
Two wide gaps of same size. Parameters: τ = 1, α = 0.98, ξ = 0.7,
p = 3.

in Section VII-C the two other scenarios show how the robot
can quickly adapt to changes in gap sizes.

We take S1 to represent the circular visual field for the
robot. Then an option θ ∈ S1 represents the angle associated
to a point in the visual field. The input u(θ, t) is the visual
observation (e.g., pixel) at angle θ at time t. We let a point
in the input distribution that reflects a gap be represented
by u(θ, t) > 0, in blue in Fig. 4 (bottom). We assume
changes in gaps occur slowly enough that Assumption 3 holds.
The opinion z(θ, t) as shown in Fig. 4 (top) captures the
robot’s preference over time for one gap, where the preference
corresponds to the strongest opinion (in yellow).

A. Fourier-Based Kernel Design
We leverage the results of Theorem 4 to design a kernel

W that imposes the desired opinion formation behavior in
response to distributed input on S1. Options (angles) that are
close (far) to each other should have an excitatory (inhibitory)
interaction. And the opinion pattern should have a single max-
imum, so that the robot selects a single gap. From the results
summarized in Section VI, we design W such that Ŵ (k) = 0
for k = 0, and Ŵ (k) = f̂(k) ∀k ̸= 0, where f̂(k) : Z → R
is strictly decreasing, square-summable and symmetric. The
strictly decreasing property ensures that ±kmax = ±1 while
square-summability ensures that the inverse Fourier transform
of W exists and that W (θ − ϕ) ∈ L2(S1), by Parseval’s
identity [18]. Symmetry is required to satisfy Assumption 1.
For the following simulations, we take a Gaussian function
f̂(k) = e−(k−1)2/p2 , where p adjusts its width.

B. Choosing the Best Gap and Avoiding Deadlock
We illustrate the model’s ability to pick the best among

multiple gaps and to rapidly avoid deadlock when faced with
two equally suitable gaps. We assume the people in the circle
are not moving. In Fig. 4a (bottom) there are several gaps
but one that is clearly wider than the others. The input at
the location of the widest gap gets amplified so that the
single maximum guaranteed by the kernel design discussed
in Section VII-A forms at that location. Hence, we see in
Fig. 4a (top), that the robot forms a strong preference for
the widest gap. In Fig. 4b (bottom), there are two equally



Fig. 5. Decision-making of a robot selecting a gap through which to
cross a circle of moving people. Bottom row: gap distribution over time
where gaps are indicated by u(θ, t) > 0 in blue. Top row: opinion about
where to cross the line over time (strongest opinion in yellow). (a) Small
decrease over time in size of initially widest gap. (b) Large decrease
over time in size of initially widest gap. Parameters: τ = 1, α = 0.96,
ξ=0.6, p=3.

wide gaps. Since the kernel design discussed in Section VII-
A ensures that only one maximum is formed, one of the inputs
gets amplified and the others suppressed. In Fig. 4b (top), the
robot forms strong opinions for one of the two widest gaps
and avoids deadlock.

C. Robustness and Adaptability to Change
We illustrate the model’s robustness to unimportant change

and responsiveness to important change in input. We assume
the people in the circle are moving. In Fig. 5 (bottom), there
is initially one very wide gap and one narrow gap. However,
over time, the wide gap becomes narrower, and the narrower
gap becomes wider. In Fig. 5a, the decrease in size of the
initially wide gap is small enough that the robot can still
fit through it and thus it does not change its choice. Such
a change in gap size could result from humans making only
small positioning adjustments in response to the robot, which
would reflect as small perturbation to the input distribution.
In this case, since a strong opinion first forms in favor of the
gap that is initially widest and the gap remains sufficiently
large, the robot does not change its mind. This illustrates the
robustness of the decision-making to small changes in input.

In Fig. 5b, the decrease in size of the initially wide gap
is large enough that the robot changes its choice to the other
emerging gap. Such a change in gap size could result from
humans trying to make space for the robot to pass, which
would reflect as large change to the input distribution. In this
case, the opinion pattern changes in favor of the emerging
widest gap, i.e, the robot changes its mind about which gap it
prefers. This illustrates the adaptability of the robot’s decision-
making to large changes in input. We plan to characterize the
threshold that governs the switch between the behaviors shown
in Fig. 5a and Fig. 5b in future work.

VIII. DISCUSSION

We presented a new nonlinear opinion dynamics model for
an agent making decisions about a continuous distribution of
options in response to distributed input on the circle. We
proved spatial invariance of the model linearization and a
bifurcation of the model with zero input, which yields fast

and flexible decision-making. A key contribution is our study
of the input-output behavior of the model and design of the
kernel. We demonstrated important advantages of the model
in robot perceptual decision-making problem. In future work
we aim to derive an estimate for the region of validity of the
model linearization and characterize the relationship between
input distribution and the location where the maximum in the
opinion distribution forms. We will implement this model for
perceptual decision-making in robotics where the dynamics
are in a closed loop with the physical dynamics of the agent.
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