Analogical Reasoning Assessments In Intellectual Developmental Disabilities: A Systematic-Review

Marjorie GUILLOU¹, Christelle DECLERCQ¹, Jean-Pierre THIBAUT², Annick COMBLAIN³

- 1. Université de Reims Champagne Ardenne, C2S EA 6291, 51097 Reims, France
- 2. Université de Bourgogne, LEAD CNRS UMR 5022, 21000 Dijon, France
- 3. Université de Liège, RUCHE, 4000 Liège, Belgique

INTRODUCTION

Analogical reasoning (AR) is the ability to establish links on structural similarities between a known system (i.e., source) and a new system (i.e., the target) (Gentner, 1983; Holyoak, 2012). AR is considered to be impaired in IDD. However, there is a lack of consensus regarding its development and the availability of adapted tools to assess this ability in this population. The main purpose of this systematic-review is to provide a centralized analysis of AR abilities, and its means of assessment, in IDD. Our work focused on 3 types of information: (1) the studies' theoretical area and objectives. (2) the methods and tools used to assess AR abilities in IDD, (3) the results of these studies.

METHOD

This systematic review was conducted in accordance with the PRISMA methodology. The eligibility assessment was made in accordance with the JBI criteria. The included articles had to met over 70% of the criteria.

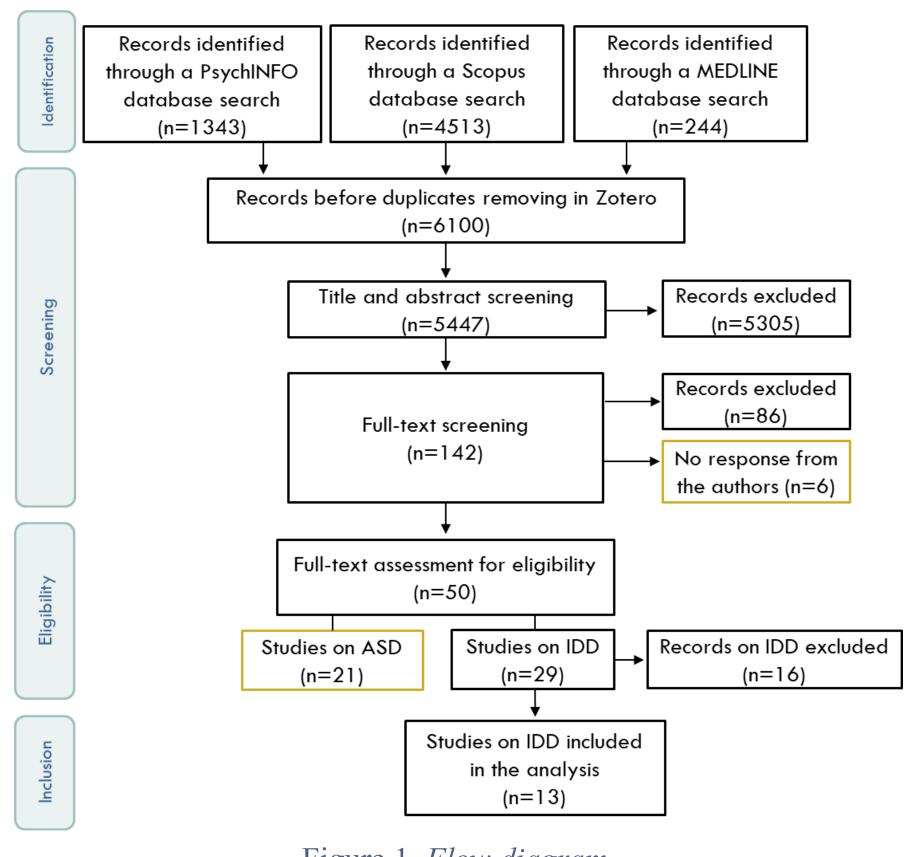


Figure 1. Flow diagram

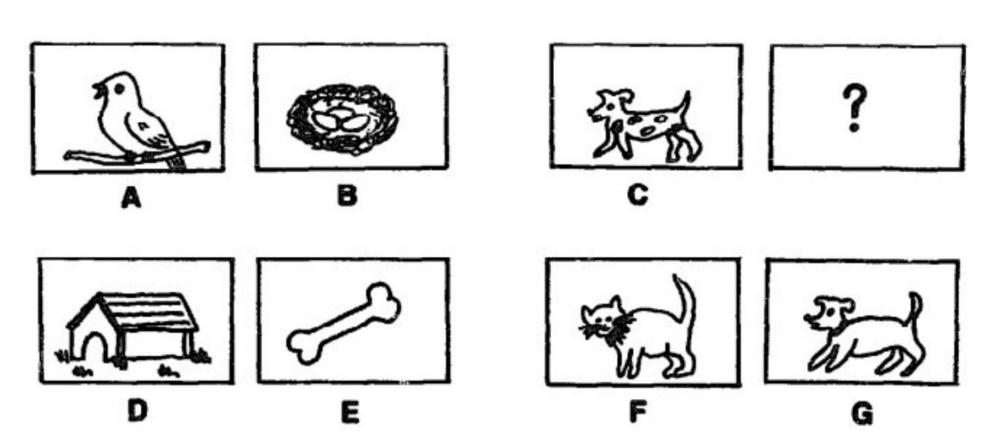


Figure 2. A:B::C:D analogy for « bird:nest::dog:doghouse » (Goswami, 1990).

RESULTS

Study (n=13)	IDD groups	Theoretical area	Material
Curie et al. (2016)	DS, FragX,	Analogical Reasoning	Geometrical A:B::C:D
	ARX		+ eye-tracking
Denaes-Bruttin (2011)	UND	Analogical Reasoning	Figurative A:B::C:D
Hetzroni et al. (2019)	UND	Analogical Reasoning	Word-extension task
Tzuriel & Klein (1985)	UND	Analogical Reasoning	Geometrical A:B::C:D
Vakil et al. (2011)	UND	Analogical Reasoning	Figurative and geometrical
			A:B::C:D + eye-tracking
Vakil & Lifshitz-Zehavi (2012)	DS, UND	Analogical Reasoning	RSPM + eye-tracking
Witt et al. (2020)	UND	Categorization	Word-extension task
Facon & Nuchadee (2010)	DS, UND	Nonverbal intelligence	RCPM
Goharpey et al. (2013)	UND	Nonverbal intelligence	RCPM
Kemper et al. (1988)	FragX	Nonverbal intelligence	Matrix Analogies Subtest (K-ABC)
Mungkhetklang et al. (2016)	UND	Nonverbal intelligence	RCPM + WNV + TONI-4
Facon et al. (2016)	DS, UND	Receptive vocabulary	RCPM + BOEHM
Rinaldi et al. (2002)	UND	Working memory	Figurative A:B::C:D

DS: Down Syndrom; FragX: Fragile X Syndrom; ARX: ARX mutation; UND: undifferentiated etiology

Table 1. Theorical area and material used in the included studies.

Results	
Scores for IDD group < TD group, visual strategy IDD ≠ TD	
IDD can be trained in analogical reasoning	
IDD without ASD ≠ ASD without IDD	
Error type in IDD \neq TD and IDD can be trained in analogical reasoning	
Visual strategy IDD \neq TD	
) Visual strategy IDD ≠ TD	
Difficulties in relations generalizations in IDD	
UND = DS = TD	
IDD < CA, IDD = MA	
Matrix Analogies = the most consistant strenght of Mental Processing scale (K-ABC) in FragX	
WM contribution in IDD's nonverbal intelligence scores	
Correlation between RCPM and relational vocabulary	
IDD do not suceed to apply new WM strategy to analogical reasoning task	

CA: chronological-age matched control group; MA: mental-age matched control group; RCPM: Raven Coloured Progressive Matrices; WM: working memory

Table 2. Results of the included studies.

DISCUSSION & CONCLUSION

Our study highlights several key observations: (1) limited research on analogical reasoning in IDD, (2) heterogeneity among ID groups based on etiology, (3) diverse methods for measuring analogical reasoning, including original tasks (e.g., A:B::C:D, word-extension tasks), specific batteries (e.g., ARLT, CAM-R, CPAM), and standardized tasks (e.g., Raven's Progressive Matrices), (4) findings suggest impaired analogical reasoning in ID compared to typically developing individuals. We suggest future studies on analogical reasoning centralize it, standardize populations by removing etiological distinctions (Karmiloff-Smith, 2009), and unify tasks.

REFERENCES