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Abstract 

Purpose: The biological status of nitrite recently evolved from an inactive end product of nitric oxide catabolism 
to the largest intravascular and tissue storage of nitric oxide (NO). Although low partial O2 pressure favors 
enzymatic reconversion of nitrite into NO, low pH supports a nonenzymatic pathway. Because hypoxia and 
acidity are characteristics of the tumor microenvironment, we examined whether nitrite injection could 
preferentially lead to NO production in tumors and influence response to treatments.  
Experimental Design: The effects of nitrite were evaluated on arteriole vasorelaxation, tumor cell respiration 
and tumor blood flow, oxygenation, and response to radiotherapy.  
Results: We first showed that a small drop in pH (-0.6 pH unit) favored the production of bioactive NO from 
nitrite by documenting a higher cyclic guanosine 3',5'-monophosphate-dependent arteriole vasorelaxation. We 
then documented that an i.v. bolus injection of nitrite to tumor-bearing mice led to a transient increase in partial 
O2 pressure in tumor but not in healthy tissues. Blood flow measurements failed to reveal an effect of nitrite on 
tumor perfusion, but we found that O2 consumption by nitrite-exposed tumor cells was decreased at acidic pH. 
Finally, we showed that low dose of nitrite could sensitize tumors to radiotherapy, leading to a significant growth 
delay and an increase in mouse survival (versus irradiation alone).  
Conclusions: This study identified low pH condition (encountered in many tumors) as an exquisite environment 
that favors tumor-selective production of NO in response to nitrite systemic injection. This work opens new 
perspectives for the use of nitrite as a safe and clinically applicable radiosensitizing modality. 

 

Nitric oxide (NO), one of the smallest biologically active molecules, plays a major role in many key 
pathophysiologic processes including the control of vascular tone (1) and angiogenesis (2). Although nitrites 
(NO2) have been described for a long time, with nitrates, as the inert end products of the NO oxidative 
metabolism (3), recent evidence indicates that under specific conditions, nitrite can be reconverted into 
biologically active NO (4). The nitrite anion is now considered as the largest intravascular and tissue storage of 
NO, which may be made available depending on the tissue need. Nitrite was, for instance, shown to contribute to 
hypoxic vasodilation, i.e., a conserved systemic physiologic response that matches blood flow and oxygen 
delivery to tissue metabolic demand (5-7). Accordingly, several investigators showed that nitrite infusion could 
protect several organs, including heart, liver, kidney, and brain from ischemia-reperfusion injuries (8-13). 

Different enzymatic and nonenzymatic pathways are proposed to support the reductive reconversion of nitrite 
into NO. Heme-containing enzymes including hemoglobin (7, 14, 15) and xanthine oxidase (16, 17) may act as 
nitrite reductases and/or S-nitrosothiol synthases under hypoxia, thereby offering a salvage pathway to produce 
NO when the O2-consuming NO synthases become inoperative; endothelial NO synthase itself in the absence of 
oxygen may behave as a nitrite reductase (18). The nonenzymatic pathway for nitrite reconversion to NO 
requires another peculiarity of the microenvironment, namely a reduced pH, to favor the acidic reduction 
(disproportionation) of nitrite species (19-21). This is best exemplified in the stomach where the very low pH 
promotes the conversion of the high concentrations of nitrite present in saliva (derived from dietary nitrate) to 
NO and other nitrogen oxides to provide protection from swallowed pathogens (22) and enhance blood flow in 
the gastric mucosa (23). 

Because acidic pH is a specificity of many tumors (24-26), although to a much lesser extent than in stomach, one 
may hypothesize that nitrite could represent an important source of bioactive NO in tumors and/or that infusion 
of nitrite could preferentially produce a local burst of NO in tumors (versus host tissues at physiologic pH). The 
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therapeutic potential of an acute production of NO in tumors is huge as, by driving local vasodilation and 
increasing perfusion, NO may transiently increase the delivery of drugs into the tumor and correct hypoxia, 
thereby improving the efficacy of ionizing radiations. Moreover, these latter effects might be exacerbated by the 
intrinsic radiosensitizing effects of NO (27) and its capacity to inhibit mitochondrial respiration, thereby further 
increasing intracellular O2 levels (28, 29). 

In this study, we provide the proof of concept that nitrite may selectively induce a transient increase in tumor 
partial O2 pressure {pO2), which may be exploited to improve the efficacy of radiotherapy. The effects of nitrite 
were identified to be attributable not to an increase in tumor blood flow but to a reduction in the O2 consumption 
rate of tumor cells. Based on this work, nitrite can be viewed as a promising, safe, and inexpensive adjuvant 
modality to antitumor strategies, particularly radiotherapy. 

Materials and Methods 

Mice and tumor cells.  

Male Rj:NMRI mice received an i.m. injection of 106 syngeneic (TLT) transplantable liver tumor 
hepatocarcinoma cells in the posterior right leg at the vicinity of the saphenous arteriole (i.e., the vessel used for 
ex vivo vasorelaxation assay; see below), as previously described (30, 31). The tumor diameters were tracked 
with an electronic caliper. When the tumor diameter reached 4.0 ± 0.5 mm, mice were randomly assigned to a 
treatment group. Nitrite (NaNO2) or saline was injected through the catheterized tail vein of anesthetized mice. 
Each procedure was approved by the local authorities according to national animal care regulations. 
Transplantable liver tumor TLT carcinoma cells were maintained in culture in DMEM containing 10% FCS. 

Videomotion analysis of vessel relaxation.  

Saphenous and mesenteric arterioles were dissected under a stereoscopic microscope and processed as 
previously described (31, 32). Briefly, vessels were mounted in a Plexigas isolated organ chamber circulated 
with oxygenated physiologic saline solution (37°C) and placed on an inverted microscope (Axiovert S100; 
Zeiss) connected to a charge-coupled device camera. Vessels were then pressurized with a physiologic saline 
solution - filled burette manometer at 60 mmHg. Digitized imaging (Ionoptix) allowed continuous monitoring of 
vessel external diameter. Arterioles were precontracted with a KC1 solution and were then exposed, at the 
indicated level of pH (6.8 or 7.4), to increasing concentrations of nitrite, in the presence (or not) of 1H-
[1,2,4]Oxadiazolo[4,3-a]quinox-alin-1-one (ODQ), L-NAME, or allopurinol; all the treatments were added in the 
bathing solution. 

Tumor oxygenation monitoring.  

Electronic paramagnetic resonance (EPR) oximetry, using charcoal (CX0670-1; EM Science) as the oxygen-
sensitive probe, was used to evaluate tumor and muscle oxygenation as previously described (33). EPR spectra 
were recorded using an EPR spectrometer (Magnettech) with a low frequence microwave bridge operating at 1.2 
GHz and extended loop resonator. Data acquisition was started before nitrite administration; each mouse was 
used as its own control. 

Tumor blood flow monitoring.  

Tumor blood flow was measured with a Laser Doppler imager (Moor Instruments), which maps cortical tumor 
perfusion (with a tissue penetration of ~ 2 mm), and with Laser Doppler microprobes (OxyFlo; Oxford 
Optronix). For the Laser Doppler measurements, mice were anesthetized and fur was removed from the limbs 
using a depilatory cream. Perfusion of the tumor-bearing and control legs was evaluated on the basis of colored 
histogram pixels. For OxyFlo measurements, fiberoptic microprobes were inserted into the tumor and into the 
opposite (healthy) leg. Data were collected continuously at a sampling frequency of 20 Hz. For both assays, the 
animals were placed on a heating pad (37°C) to minimize variations in temperature and a 10-min stable 
recording baseline was acquired before treatment administration through the catheterized tail vein (to validate the 
absence of movement artifacts). 

Oxygen consumption rate evaluation.  

Tumor cells were trypsinized, centrifuged, and resuspended in buffered saline solution at pH 7.4 or 6.7. An 
aliquot of 2.106 cells was incubated for 15 min in the presence of 100 µmol/L nitrite before the addition of 20% 
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dextran and neutral nitroxide (an oxygen sensitive probe), 15N 4-oxo-2,2,6,6-tetramethylpi-peridine-d16-15N-1-
oxyl at 0.2 mmol/L (CDN Isotopes). The suspension was drawn into glass capillary tubes; cytotoxicity was 
concomitantly evaluated with a 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay 
(34). All spectra were recorded on a Bruker EMX EPR spectrometer operating at 9 GHz, as previously described 
(33). The probe was calibrated at various O2 concentrations between 100% nitrogen and air so that the line width 
measurements were related to O2 concentration at any value. Nitrogen and air were mixed in an Aalborg gas 
mixer, and the oxygen concentration was analyzed using a Servomex oxygen analyzer OA540. The sealed tubes 
were placed into quartz EPR tubes maintained at 37°C, and the O2 levels were determined over time. 

 

Fig. 1:   Nitrite induces vasodilation in a pH- and NO-dependent manner. A, arterioles were mounted on a pressure 
myograph, precontracted to restore the vascular tone, and exposed to increasing doses of nitrite. A, vasodilating response to nitrite obtained 
at pH 7.4 (○) or 6.8 (●; n = 6). B, effect of the guanyl cyclase inhibitor ODQ (100 µmol/L; ○) on the vasodilating response to nitrite at pH 
6.8 (n = 3); the effect of the vehicle treatment is also shown (●; n = 3). Vasorelaxation is expressed as % (mean ± SE) of the maximal 
response observed at pH 7.4 (P < 0.01; n, number of arterioles per condition). 

 

 

Irradiation and tumor growth delay assay.  

Anesthetized tumor-bearing mice were i.v. injected with saline or nitrite solutions 10 min before being locally 
irradiated using a RT-250 device (Philips Medical Systems) with a dose delivery of 0.76 Gy/min. The tumor was 
centered in a circular irradiation field, and healthy tissues were protected by a lead mask. After treatment, tumor 
diameters and mouse survival were tracked daily. 

Statistical analyses.  

Data are reported as mean ± SE, and statistical analyses were done using Student's t test, two-way ANOVA 
analyses, or Log-rank test where appropriate. 
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Fig. 2: Nitrite i.v. injection induces a robust, transient, and tumor-specific increase in oxygenation. Tumor-bearing 
mice were i.v. injected with a 5 mmol/L nitrite solution (final blood concentration, ~100 µmol/L), and pO2 was determined by EPR oximetry 
in the tumor (implanted in the right leg) and in the muscle (of the contralateral leg). A, tumor (■; n=8) and muscle (▲; n = 5) pO2 before 
and after the injection (at t = 0); the effect of a saline injection on the tumor pO2 is also shown as control (□; n= 4). Results are expressed as 
% (mean ± SE) of basal pO2 levels (*, P < 0.05; **, P < 0.01; n, number of mice per condition). B to C mean (±SE) pO2 (expressed in 
mmHg) as determined in tumor (B) and muscle (C), before (white bars) and 15 min after i.v. injection of nitrite (blackbars; **, P < 0.01; 
n.s., nonsignificant; n = 4-8 mice per condition); note that different Y-axis scales are used in B and C. 

 

Results 

Nitrite induces arteriole dilation in a pH- and NO-dependent manner. We first aimed to determine whether 
bioactive NO could be produced from nitrite in response to a small drop in pH (as observed in tumors). For that 
purpose, we examined the response of arterioles (from the vascular bed wherein tumors are established in our 
mouse model) to nitrite administration. Arterioles (mean diameter, ~ 250 µm) were microdissected and mounted 
in a pressure myograph. Figure 1A shows that nitrite dose-dependently induced the relaxation of the arterioles 
both at physiologic and acidic pH (7.4 and 6.8, respectively). Interestingly, the maximal relaxation observed at 
pH 6.8 amounted to 2.5-fold to that obtained at pH 7.4. To further examine whether nitrite-driven vasodilation 
was due to the activation of the NO/cyclic guanosine 3',5'-monophosphate pathway, we repeated the experiments 
at pH 6.8 in the presence of 100 µmol/L ODQ, a pharmacologic inhibitor of the soluble guanyl cyclase. Figure 
1B shows that ODQ completely prevented the nitrite-induced relaxation of the arteriole, confirming implication 
of NO. To address the role of NO synthase and xanthine oxidase as possible enzymatic sources of nitrite 
reductase, these experiments were repeated in the presence of the specific pharmacologic inhibitors, L-NAME 
and allopurinol, respectively. These inhibitors failed to alter nitrite-induced vasorelaxation at both pH values 
(data not shown). 

Nitrite i.v. administration induces a robust, transient, and tumor-selective increase in oxygenation. 

To evaluate a possible role of nitrite in vivo, we used EPR to determine changes in local pO2 in a highly 
glycolytic mouse tumor model. Figure 2A shows that tail vein injection of nitrite (final blood concentration, 
~100 µmol/L) led to a net increase in tumor pO2 but failed to induce any changes in the (tumor free) contralateral 
limb muscle. Saline injection to tumor-bearing mice was also used as control and did not reveal any alteration in 
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the tumor pO2 (Fig. 2A). 

The effect of nitrite on tumor pO2 was transient, peaking at 2.5-fold of the basal level after 15 minutes and back 
to normal after 30 minutes. The absolute numbers (see Fig. 2B) indicate that the temporary shift in pO2 from 3.3 
± 0.6 to 8.0 ± 0.8 mmHg is in the range generally admitted to lead to radio-sensitizing effects (35). In the muscle, 
the pO2 was much higher (~35 mmHg) and not influenced by nitrite administration (Fig. 2C). 

 

Fig. 3:   Nitrite injection does not alter tumor blood flow. Tumor-bearing mice were i.v. injected with nitrite or saline (as 
described in Fig. 2), and blood flow was measured in tumor and healthy muscle. A, representative pictures from laser Doppler imaging 
obtained 15 min after nitrite injection; the zone corresponding to the tumor is surrounded by a dotted line. B, evolution of blood flow 
determined by laser Doppler imaging, simultaneously, in tumor (●) and muscle (○) before and after the nitrite injection (at t = 0). Data are 
expressed as % (mean ± SE) of the basal blood flow measured after saline injection (n = 6). C blood flow in tumor and muscle determined by 
Oxyflo microprobes 15 min after the i.v. injection of nitrite. Data are expressed as % (mean ± SE) of the basal blood flow measured in the 
muscle (n = 5 mice per condition). 
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Fig. 4:  Nitrite reduces tumor cell oxygen consumption at acidic pH. Graphs represent the tumor cell O2 consumption rate 
after exposure to a 100 µmol/L nitrite solution (■) ora saline solution (□) at pH 7.4 (A) and 6.7 (B), as measured by EPR oximetry. Data 
(mean ± SE) are expressed as % of O2 detected in the sealing tubes (n = 3-5; different cell pools); lack of overall cytotoxicity was verified in 
MTTassays (inset). C slope values (mean ± SE) of linear regressions presented in A and B are presented (**, P < 0.01). 

 

 

Nitrite administration does not alter tumor blood flow.  

We then sought to verify whether the effects of nitrite on pO2 could be attributed to an increase in tumor 
perfusion. We first used laser Doppler imaging to monitor blood flow at the surface of the tumor, where the 
microcirculation is the most developed in this tumor model (data not shown). Figure 3A shows that 
administration of nitrite (at the same concentration as used in Fig. 2) failed to induce any change in tumor (and 
muscle) perfusion. Normalization of the blood flow values confirmed that nitrite did not alter perfusion neither in 
the tumor, nor in the muscle when compared with a saline injection (Fig. 3B). We also used Oxyflo microprobes 
to monitor blood flow deeper in the tumor. Again, this more invasive technique failed to reveal significant 
alterations in the tumor (and muscle) perfusion in response to nitrite administration (Fig. 3C). 

Nitrite exposure decreases tumor cell oxygen consumption rate at acidic pH.  

As a change in tumor blood flow could not account for the observed increase in tumor pO2, we then examined 
whether the consumption of O2 could differ in tumor cells exposed to nitrite. Tumor cells were isolated and 
placed in a sealed tube with nitrite, and respiration was monitored with a EPR oxygen - sensitive probe. We 
found that the rate of oxygen consumption was unaltered by the presence of nitrite when cells were bathed in a 
medium at pH 7.4 (Fig. 4A), whereas the respiration was significantly slowed down when the medium was 
buffered at pH 6.7 (Fig. 4B). Slope analysis revealed that the oxygen consumption rate under these mild acidic 
conditions was 38% smaller in the presence of nitrite (Fig. 4C). We also verified that in these experimental 
conditions, cell viability was not altered by the addition of nitrite (Fig. 4A and B, insets). 

A single nitrite administration radiosensitizes tumor.  

Finally, to validate the therapeutic effect of the reduction in O2 consumption (i.e., the local increase in tumor 
pO2), we locally irradiated tumor-bearing mice 15 minutes after i.v. administration of nitrite. Figure 5A shows 
that the combination of nitrite and a 6 Gy radiation dose significantly improved mouse survival. Importantly, 
nitrite alone did not effect tumor growth, even when administered at a 10-fold higher concentration. 
Determination of the tumor growth doubling time revealed that whereas radiotherapy alone delayed this variable 
by 2 days, the combination of irradiation and nitrite extended this time to 5.5 days, increasing by almost 2-fold 
the absolute doubling time value determined in saline-treated mice (Fig. 5B). 
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Discussion 

The major findings of this study are the demonstration of a tumor-selective increase in pO2 in response to a bolus 
systemic administration of nitrite and the proof of concept that such a procedure is therapeutically exploitable to 
radiosensitize tumors. Moreover, we have identified tumor cell respiration but not tumor perfusion as a critical 
target of nitrite, and low pH, as encountered in many tumor types, as a necessary condition to promote the nitrite 
conversion into bioactive NO. 

We found that both vascular and tumor cells may be influenced by nitrite exposure to a larger extent under acidic 
conditions than at physiologic pH. The same dose of nitrite (100 µmol/L) showed, for instance, a 3-fold higher 
capacity to dilate isolated arterioles (Fig. 1A) and a reduction in tumor cell O2 consumption by ~ 40% (Fig. 4B) 
when the pH was set at 6.7 to 6.8 (versus pH 7.4). Together with the observation that a blocker of the NO/cyclic 
guanosine 3',5'-monophosphate pathway prevented these effects, our results authenticate the acidic environment 
as a key variable to favor nitrite reconversion into NO. Interestingly, however, although we observed an increase 
in tumor pO2 after a bolus i.v. administration of nitrite in vivo, we failed to detect any effects of nitrite on the 
tumor blood flow using superficial and invasive methods of measurements. The balance between oxygen 
delivery and oxygen consumption implies that the nitrite-driven increase in tumor pO2 is attributable to the 
consumption arm of the equation, i.e., to the inhibition of mitochondrial respiration (as observed in vitro). 
Inhibitory effects of NO on cell respiration were previously reported to mainly arise from the nitrosylation and 
consecutive inhibition of the cytochrome c oxidase and complex I within the mitochondrial respiratory chain 
(28). 

 

Fig. 5:  Nitrite i.v. injection radiosensitizes tumor. A, Kaplan-Meier survival curves depicting the effects of low and high doses 
of nitrite [100 µM (●; n = 10) and 2 mmol/L (▲; n = 5), respectively], radiotherapy (6 Gy) + saline (□; n = 5) or a combination of 
radiotherapy and low dose of nitrite (administered 15 min before irradiation; ■ ; n = 5); the effect of saline injection (○; n = 10) is also 
shown as control. Data are expressed as % of mouse survival (*, P < 0.05 and **, P < 0.01 versus saline; #, P < 0.05 and ##, P < 0.01 
versus low dose of nitrite; §§, P < 0.01 versus radiotherapy + saline; n = number of mice per condition). B, tumor doubling time (mean ± 
SE) in the same groups as in (A ; **, P < 0.01 versus saline; #, P < 0.05 and ##, P < 0.01 versus low dose of nitrite; §§, P < 0.01 versus 
radiotherapy + saline). 
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The absence of alterations in the tumor cell respiration measured in vitro at physiologic pH emphasizes the 
critical role of acidity in driving the nitrite effects. Although blood flow removes waste products of the tumor 
cell metabolism, including lactic acid, thereby creating in vivo an acidity gradient from the blood vessels toward 
the surrounding tumor mass, such gradient is buffered in vitro by "normal" culture medium. It should be noted 
however that the small drop in pH (less than one pH unit; refs. 24-26) generally observed in tumors (including in 
highly glycolytic tumors as used in this study) is by far less pronounced than in the stomach where the 
continuous delivery of saliva-containing nitrite allows the production of bacteriostatic NO. Reducing equivalents 
particularly abundant in tumor cells (36) are therefore likely to play an important role in the local production of 
NO from nitrite. Interestingly, Zweier and colleagues (37) reported that the addition of an aliquot of ischemic 
tissue homogenates to nitrite in the presence of a low pH led to a dramatic increase in the rate of NO generation. 

Hemoglobin was identified by several authors to act as a transporter and provider of NO/NO derivatives through 
either direct S-nitrosylation (including by nitrite) and consecutive release of nitrosothiols (38) or through a direct 
interaction of nitrite with deoxyhemoglobin, which may release NO in regions of poor oxygenation (39, 40). 
These effects of hemoglobin were documented to favor vasorelaxation and thereby to help redistributing blood 
flow to ischemic regions of greatest need. In our experiments, the absence of changes in tumor and muscle blood 
flow indicates that such role of hemoglobin in driving the blood conversion of nitrite into NO is limited or at 
least counterbalanced by the NO-scavenging capacity of oxyhemoglobin and deoxyhemoglobin (41). A role of 
NO in modifying the affinity of hemoglobin for O2 (7) can however not be excluded in our experimental 
conditions and certainly warrants further investigation. By contrast, the incapacity of pharmacologic inhibitors of 
xanthine oxidase and NO synthase (allopurinol and L-NAME, respectively) to prevent nitrite effects allows us to 
reasonably rule out a major role of these two main tissue enzymes endowed with a nitrite reductase activity. 

The clinical potential of using nitrite as a strategy to sensitize tumor cells to radiotherapy is huge. First, the 
acidic microenvironment is a hallmark of many tumors, making this treatment modality applicable to a large 
variety of cancers. Furthermore, the effects of a bolus administration of nitrite are transient and occur rapidly. 
The 30-minute window of increased pO2 with the peaking value around 15 minutes may be conveniently 
anticipated before irradiation. Second, the strategy is inexpensive and if validated in clinical trials, could be 
applied as a standard clinical procedure. Third, and not least, the administration of nitrite seems as a safe 
approach with a favorable hazard/benefit ratio. As indicated above, the transient and tumor-selective nature of 
the NO burst needs to be distinguished from a sustained production of high amounts NO and the associated 
mutagenic effects (as observed in response to inducible NOS expression during chronic inflammation; ref. 42). 
In fact, considering the rate of nitrite reconversion into NO at pH 6.7 (19), the maximum concentration of NO 
that could be generated in our experimental conditions remains in the nanomolar range. It is also worthy to note 
that different authors have reported the safe administration of nitrite in mice and rats suffering from 
cardiovascular diseases. Data in non-rodent animals and humans are also available. For instance, Pluta and 
colleagues (43) reported that sodium nitrite infusion prevented delayed cerebral vasospasm in a primate model of 
subarachnoid hemorrhage without clinical or pathologic evidence of toxicity. Cosby and colleagues (39) reported 
that nitrite infusion into the human forearm brachial artery resulted in increased blood flow before and during 
exercise. It should also be mentioned that nitrite is historically used as a treatment for cyanide poisoning (44). 

In conclusion, our study shows that the small reduction in pH values (versus physiologic pH) as encountered in 
the extracellular medium of many tumors is sufficient to produce large amounts of bioactive NO in response to a 
systemic bolus nitrite injection. The consecutive increase in tumor pO2 may translate in a tumor-selective, safe, 
and inexpensive therapeutic strategy to sensitize tumors to radiotherapy. 
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